JP2007075824A - Hollow shaft - Google Patents

Hollow shaft Download PDF

Info

Publication number
JP2007075824A
JP2007075824A JP2005262664A JP2005262664A JP2007075824A JP 2007075824 A JP2007075824 A JP 2007075824A JP 2005262664 A JP2005262664 A JP 2005262664A JP 2005262664 A JP2005262664 A JP 2005262664A JP 2007075824 A JP2007075824 A JP 2007075824A
Authority
JP
Japan
Prior art keywords
spline
hollow shaft
diameter
molding
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005262664A
Other languages
Japanese (ja)
Inventor
Yuichi Asano
祐一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005262664A priority Critical patent/JP2007075824A/en
Publication of JP2007075824A publication Critical patent/JP2007075824A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow shaft with which a strength, a form rolling or press are improved and then, the lightening weight, the reduction of working load and cost, etc., can be obtained. <P>SOLUTION: This hollow shaft has a spline 3 and forms the lower diameter part 15 of the spline whose inner diameter after forming is smaller than the inner diameter before forming by plastic-working. The thickness of the lower diameter part 15 of the spline is made to almost the same before forming and after forming, and this plastic-working is a swaging working or an upset working. The plastic-working can be done at cold or at hot. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は中空シャフトに関し、詳しくは、自動車の等速ジョイント等に使用される中空シャフトに関する。   The present invention relates to a hollow shaft, and more particularly to a hollow shaft used for a constant velocity joint of an automobile.

この種の中空シャフトは、回転運動を伝達する機能を有し、伝達部材との連結手段にスプラインが使用される。すなわち、シャフトの端部にスプラインが形成される。このような中空シャフトのスプラインは、プレス加工や転造加工等にて形成される(特許文献1参照)。   This type of hollow shaft has a function of transmitting rotational motion, and a spline is used as a connection means with the transmission member. That is, a spline is formed at the end of the shaft. Such a hollow shaft spline is formed by pressing, rolling, or the like (see Patent Document 1).

転造加工またはプレス加工によってスプラインを形成する場合、転造加工またはプレス加工する前に、スプラインを形成する部位において、その径(外径)をスプライン下径に切削加工する必要があった。すなわち、図6(a)(b)に示すように、スプラインを形成する前のシャフト(以後、中空素材と呼ぶ)50の端部51外周面を切削加工にて、スプライン下径52を形成する。 When forming a spline by rolling or pressing, it is necessary to cut the diameter (outer diameter) to the spline lower diameter at the site where the spline is formed before rolling or pressing. That is, as shown in FIGS. 6A and 6B, the spline lower diameter 52 is formed by cutting the outer peripheral surface of the end portion 51 of the shaft 50 (hereinafter referred to as a hollow material) before forming the spline. .

そして、このスプライン下径52において、転造加工またはプレス加工にてスプラインを形成する。ここで、スプラインとは、周方向に沿って所定ピッチで配設される複数の軸方向凸部と、軸方向凸部間に配設される複数の軸方向凹部とからなる。転造加工は、一対のダイスを使用し、このダイス間に中空素材50を介在させ、ダイスを回転させてスプラインを成形する加工である。プレス加工は、中空素材50をダイスに軸方向に押し込んでスプラインを成形する加工である。
特開2001−121241号公報
And in this spline lower diameter 52, a spline is formed by rolling or pressing. Here, the spline includes a plurality of axial convex portions disposed at a predetermined pitch along the circumferential direction, and a plurality of axial concave portions disposed between the axial convex portions. The rolling process is a process of forming a spline by using a pair of dies, interposing a hollow material 50 between the dies, and rotating the dies. The press work is a process of forming the spline by pushing the hollow material 50 into the die in the axial direction.
JP 2001-121241 A

小径部からなるスプライン下径を切削加工で成形すると、小径部を成形する前に比べて、スプライン下径52の肉厚T2が小さく(薄く)なる。すなわち、切削加工後の外径dは切削加工前の外径Dよりも小さく、切削加工後の内径D2と切削加工前の内径D1とは同一であり、スプライン下径52の肉厚T2が切削加工前の肉厚T1よりも小さくなっている。   When the spline lower diameter composed of the small diameter portion is formed by cutting, the thickness T2 of the spline lower diameter 52 becomes smaller (thinner) than before the small diameter portion is formed. That is, the outer diameter d after the cutting is smaller than the outer diameter D before the cutting, the inner diameter D2 after the cutting is the same as the inner diameter D1 before the cutting, and the wall thickness T2 of the spline lower diameter 52 is the cutting. It is smaller than the thickness T1 before processing.

スプライン下径52の肉厚Tが薄くなれば、スプライン下径52は強度的に劣り、スプラインを形成する際の転造加工性またはプレス性が悪くなる。すなわち、肉厚が薄いと転造加工またはプレス加工時に肉が内径側に逃げて精度が落ちたり、転造割れが発生するからである。   If the wall thickness T of the spline lower diameter 52 is reduced, the spline lower diameter 52 is inferior in strength, and the rolling processability or pressability at the time of forming the spline is deteriorated. That is, if the wall thickness is thin, the flesh escapes to the inner diameter side during rolling or pressing, resulting in reduced accuracy or rolling cracks.

中空素材50には、図7(a)に示すように、ファイバーフロー(繊維状金属組織)54があり、切削加工では、図7(b)のように、A部において、ファイバーフロー54が切断されることになる。このように、ファイバーフロー54が切断されれば、強度低下に一層繋がることになる。なお、A部とは、スプライン下径52と、非スプライン下径(大径部)53との境界部分をいう。   As shown in FIG. 7A, the hollow material 50 has a fiber flow (fibrous metal structure) 54. In the cutting process, the fiber flow 54 is cut at a part A as shown in FIG. 7B. Will be. Thus, if the fiber flow 54 is cut, the strength is further reduced. The A portion refers to a boundary portion between the spline lower diameter 52 and the non-spline lower diameter (large diameter portion) 53.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、強度面および転造加工性またはプレス加工性が向上し、これによって、軽量化、加工負荷低減、コスト低減等が可能な中空シャフトを提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, the purpose of which is to improve the strength surface and rolling workability or press workability, thereby reducing weight, reducing processing load, The object is to provide a hollow shaft capable of reducing the cost.

本発明は、端部外径にスプラインが形成されたスプライン形成部を有する中空シャフトにおいて、前記スプライン加工の前加工が、塑性加工により成形され、その成形後の内径が成形前の内径よりも小さい小径部とし、かつその肉厚を成形前後で略同一としたものである。   The present invention relates to a hollow shaft having a spline forming portion in which a spline is formed on an outer diameter of an end portion, wherein the preprocessing before the spline processing is formed by plastic processing, and the inner diameter after molding is smaller than the inner diameter before molding. A small-diameter portion is used, and the thickness thereof is substantially the same before and after molding.

スプライン下径の肉厚を成形前後で略同一としたので、従来のように切削加工にてスプライン下径を成形した場合に比べて、その肉厚を大きくでき、スプライン下径の強度が向上する。強度が向上するので、転造加工またはプレス加工時に肉が内径側に逃げることを防止できる。スプライン下径を塑性加工にて成形するので、切削加工と異なってファイバーフロー(繊維状金属組織)が切断されない。しかも塑性加工であるので、その塑性変形によって被加工面が加工硬化する。   Since the thickness of the spline lower diameter is approximately the same before and after molding, the thickness can be increased and the strength of the spline lower diameter can be improved compared to the conventional case where the spline lower diameter is formed by cutting. . Since the strength is improved, it is possible to prevent the meat from escaping to the inner diameter side during rolling or pressing. Since the spline lower diameter is formed by plastic working, the fiber flow (fibrous metal structure) is not cut unlike cutting. And since it is plastic processing, the to-be-processed surface is work-hardened by the plastic deformation.

強度面や転造加工性またはプレス加工性に優れるので、このため、中空素材(素管)の肉厚や外径を小さくして軽量化を図ることができる。 Since it is excellent in terms of strength, rolling workability or press workability, the thickness and outer diameter of the hollow material (element tube) can be reduced to reduce the weight.

また、前記塑性加工がスウェージング加工であったり、アプセット加工であったりする。   Further, the plastic working may be a swaging process or an upset process.

前記塑性加工を冷間で実施しても、熱間で実施してもよい。   The plastic working may be performed cold or hot.

前記のように成形された中空シャフトとして、固定側ジョイントと摺動側ジョイントと連結する中空シャフトに適用するが、中空ステムや中空ロングステムに適用しても良い。   The hollow shaft formed as described above is applied to a hollow shaft connected to a fixed side joint and a sliding side joint, but may be applied to a hollow stem or a hollow long stem.

本発明によれば、スプライン下径の強度が向上する。また、強度が向上するので、転造加工またはプレス加工時に肉が内径側に逃げることを防止でき、転造加工性またはプレス加工性が向上する。このため、高精度スプラインを形成することができ、安定したスプライン係合(嵌合)が可能となる。   According to the present invention, the strength of the spline lower diameter is improved. Further, since the strength is improved, it is possible to prevent the meat from escaping to the inner diameter side during the rolling process or the pressing process, and the rolling processability or the press workability is improved. For this reason, a high-precision spline can be formed, and stable spline engagement (fitting) is possible.

また、切削加工と異なってファイバーフロー(繊維状金属組織)が切断されず、むしろ密になる。このため、強度が一層向上する。しかも塑性加工であるので、その塑性変形によって被加工面が加工硬化し、一層の強度の強化を図ることができる。   Further, unlike the cutting process, the fiber flow (fibrous metal structure) is not cut, but rather becomes dense. For this reason, strength further improves. And since it is plastic processing, the to-be-processed surface is work-hardened by the plastic deformation, and the intensity | strength can be strengthened further.

強度面や転造加工性またはプレス加工に優れるので、中空素材(素管)の肉厚や外径を小さくして軽量化や加工負荷軽減を図ることができる。さらに、設計自由度が向上し、コスト低減も期待できる。 Since it is excellent in terms of strength, rolling workability, or press work, the thickness and outer diameter of the hollow material (element tube) can be reduced to reduce the weight and reduce the processing load. Furthermore, the degree of freedom in design is improved, and cost reduction can be expected.

本発明に係る中空シャフトの実施形態を以下に詳述する。図1に示す中空シャフト1は、例えば、自動車のドライブシャフトに使用される。このため、両端部に等速自在継手(図示省略)が連結される。中空シャフト1は、軸方向中間部が大径部2に形成されると共に、両端部の外周側にはスプライン3、4が形成されている。なお、一端側のスプライン3と大径部2との間には、小径部5と中径部6等が形成されている。また、他端側のスプライン4と大径部2との間には、小径部7等が形成されている。   Embodiments of the hollow shaft according to the present invention will be described in detail below. The hollow shaft 1 shown in FIG. 1 is used for a drive shaft of an automobile, for example. For this reason, constant velocity universal joints (not shown) are connected to both ends. The hollow shaft 1 has an axially intermediate portion formed in the large diameter portion 2 and splines 3 and 4 formed on the outer peripheral sides of both end portions. A small-diameter portion 5 and a medium-diameter portion 6 are formed between the spline 3 on one end side and the large-diameter portion 2. Further, a small diameter portion 7 or the like is formed between the spline 4 on the other end side and the large diameter portion 2.

前記各スプライン3、4は、周方向に沿って所定ピッチで配設される複数の軸方向凸部と、軸方向凸部間に配設される複数の軸方向凹部とからなる。一端側のスプライン3に例えば固定式等速自在継手(図示省略)が装着され、他端側のスプライン4に例えば摺動式等速自在継手(図示省略)が装着される。一端側においては、スプライン3の軸方向範囲内、この中空シャフト1が固定式等速自在継手に装着された際に、抜け止めとなる止め輪の嵌合用の周方向溝8が形成されている。他端側においては、そのスプライン4の軸方向範囲外(反大径部側)に周方向溝9が形成されている。   Each of the splines 3 and 4 includes a plurality of axial convex portions disposed at a predetermined pitch along the circumferential direction, and a plurality of axial concave portions disposed between the axial convex portions. For example, a fixed type constant velocity universal joint (not shown) is attached to the spline 3 on one end side, and for example, a sliding type constant velocity universal joint (not shown) is attached to the spline 4 on the other end side. On one end side, a circumferential groove 8 for fitting a retaining ring is formed within the range of the spline 3 in the axial direction so that when the hollow shaft 1 is attached to a fixed type constant velocity universal joint, a retaining ring is fitted. . On the other end side, a circumferential groove 9 is formed outside the axial range of the spline 4 (on the side opposite to the large diameter portion).

次にスプライン3、4の成形方法を説明する。まず、両端部にスプライン3、4が形成されていない中空素材10を図2に示すように形成する。すなわち、端部にその外周面にスプライン3、4を形成するための端部中径部11、12を設けた中空素材10を形成する。なお、この中空素材10は、この端部中径部11、12以外は図1に示す完成品と同一形状とする。   Next, a method for forming the splines 3 and 4 will be described. First, the hollow material 10 in which the splines 3 and 4 are not formed at both ends is formed as shown in FIG. That is, the hollow material 10 provided with the end middle diameter portions 11 and 12 for forming the splines 3 and 4 on the outer peripheral surface of the end portion is formed. The hollow material 10 has the same shape as the finished product shown in FIG. 1 except for the end middle diameter portions 11 and 12.

この場合、図3(a)に示すように、端部中径部11は、その内周面には段差が形成されていない筒状とされる。この図3(a)に示す状態から、図3(b)に示すように、スプライン下径15を塑性加工にて成形する。   In this case, as shown to Fig.3 (a), the edge part inner diameter part 11 is made into the cylinder shape in which the level | step difference is not formed in the internal peripheral surface. From the state shown in FIG. 3A, the spline lower diameter 15 is formed by plastic working as shown in FIG. 3B.

塑性加工法としてスウェージング加工やアプセット加工等を用いることができる。スウェージング加工とは、パイプ(中空体)の端部を絞って外径を減少させる加工法であり、アプセット加工とは、パイプの端を加熱したのち、ダイスとマンドレルの間で据え込み加工する方法である。   As the plastic working method, a swaging process or an upset process can be used. Swaging is a processing method that reduces the outer diameter by narrowing the end of a pipe (hollow body). Upset processing is a process of upsetting between the die and mandrel after heating the end of the pipe. Is the method.

このスプライン下径15は、その塑性加工後(成形後)の外径dが成形前の外径Dよりも小さく、成形後の内径D3が成形前の内径D1よりも小さくなっている。このため、スプライン下径15の肉厚T3は成形前の肉厚T1と略同一に維持されている。すなわち、肉厚T3は、成形前後で内径同一時のスプライン形成部の肉厚T2(図6(b)参照)よりも大きくなっている。   The spline lower diameter 15 is such that the outer diameter d after plastic processing (after molding) is smaller than the outer diameter D before molding, and the inner diameter D3 after molding is smaller than the inner diameter D1 before molding. For this reason, the thickness T3 of the spline lower diameter 15 is maintained substantially the same as the thickness T1 before molding. That is, the wall thickness T3 is larger than the wall thickness T2 (see FIG. 6B) of the spline forming portion when the inner diameter is the same before and after molding.

そして、このようにスプライン下径15を形成した後は、転造加工またはプレス加工にてスプライン加工を行って、中空シャフト1を完成する。なお、前記では、一端側のスプライン3についてのみ説明したが、他端側のスプライン4についても同様であるので、その説明を省略する。転造加工は、一対のダイスを使用し、このダイス間に中空素材10を介在させ、ダイスを回転させてスプラインを成形する加工である。プレス加工は、中空素材10をダイスに軸方向に押し込んでスプラインを成形する加工である。   And after forming the spline lower diameter 15 in this way, spline processing is performed by rolling processing or press processing, and the hollow shaft 1 is completed. In the above description, only the spline 3 on the one end side has been described, but the same applies to the spline 4 on the other end side, and thus the description thereof is omitted. The rolling process is a process of forming a spline by using a pair of dies, interposing the hollow material 10 between the dies, and rotating the dies. The press work is a process of forming the spline by pushing the hollow material 10 into the die in the axial direction.

この中空シャフトでは、スプライン下径15の肉厚T3を成形前後で略同一としたものである。このため、従来のように、切削加工にてスプライ下径を成形した場合よりも肉厚T3を大きくすることができ、スプライン下径15の強度が向上する。強度が向上するので、転造加工またはプレス加工時に肉が内径側に逃げることを防止でき、転造加工性またはプレス加工性が向上する。このため、高精度スプラインを形成することができ、安定したスプライン係合(嵌合)が可能となる。   In this hollow shaft, the thickness T3 of the spline lower diameter 15 is substantially the same before and after molding. For this reason, the wall thickness T3 can be increased as compared with the conventional case where the splice lower diameter is formed by cutting, and the strength of the spline lower diameter 15 is improved. Since the strength is improved, it is possible to prevent the meat from escaping to the inner diameter side during rolling or pressing, and the rolling workability or press workability is improved. For this reason, a high-precision spline can be formed, and stable spline engagement (fitting) is possible.

ところで、中空素材10には、図4(a)に示すように、ファイバーフロー(繊維状金属組織)14があり、このような塑性加工では、切削加工と相違してA部においても切断されず、むしろ密になる。このため、強度が一層向上する。しかも塑性加工であるので、その塑性変形によって被加工面が加工硬化し、一層の強度の強化を図ることができる。   By the way, as shown in FIG. 4A, the hollow material 10 has a fiber flow (fibrous metal structure) 14, and in such plastic processing, it is not cut even in the A portion unlike the cutting processing. , Rather dense. For this reason, strength further improves. And since it is plastic processing, the to-be-processed surface is work-hardened by the plastic deformation, and the intensity | strength can be strengthened further.

強度面や転造加工性またはプレス加工性に優れるので、中空素材(素管)10の肉厚や外径を小さくして軽量化や加工負荷軽減を図ることができる。さらに、設計自由度が向上し、コスト低減も期待できる。   Since it is excellent in terms of strength, rolling workability or press workability, the thickness and outer diameter of the hollow material (element tube) 10 can be reduced to reduce the weight and reduce the processing load. Furthermore, the degree of freedom in design is improved, and cost reduction can be expected.

次に、図5は等速自在継手の外側継手部材16を示している。一般に、等速自在継手は、内周面にトラック溝が形成された前記外側継手部材16と、その外側継手部材16のトラック溝と対向するトラック溝が外周面に形成された内側継手部材と、外側継手部材16のトラック溝と内側継手部材のトラック溝との間に組み込まれたボールと、外側継手部材16と内側継手部材間に介在してボールを支持する保持器とからなる。なお、外側継手部材16としてトリポード型ジョイント等の他のジョイントであってもよい。   Next, FIG. 5 shows the outer joint member 16 of the constant velocity universal joint. In general, a constant velocity universal joint includes an outer joint member 16 having a track groove formed on an inner peripheral surface thereof, an inner joint member having a track groove formed on an outer peripheral surface thereof opposite to the track groove of the outer joint member 16; The ball includes a ball incorporated between the track groove of the outer joint member 16 and the track groove of the inner joint member, and a cage that supports the ball interposed between the outer joint member 16 and the inner joint member. The outer joint member 16 may be another joint such as a tripod type joint.

そして、外側継手部材16は、内側継手部材、ボールおよび保持器を収容した椀状のマウス部17と、そのマウス部17から軸方向に一体的に延びるステム(中空ステム)18を有する。この中空ステム(中空ロングステム)18の反マウス部側の端部に、スプライン19が形成されている。   The outer joint member 16 includes a bowl-shaped mouth portion 17 that houses the inner joint member, the ball, and the cage, and a stem (hollow stem) 18 that extends integrally from the mouth portion 17 in the axial direction. A spline 19 is formed at an end of the hollow stem (hollow long stem) 18 on the side opposite to the mouse.

この図5に示すステム18のスプライン19も、前記図2と図3等に示す成形方法によって形成される。まず、図3に示した中空素材10と同様、端部に、スプライン19が形成されていない端部中径部を有する中空素材(図示省略)を形成する。この際、この中径部は、その内周面には段差が形成されていない筒状とされる。その後、図3(b)と同様、スプライン下径15を塑性加工にて成形する。   The spline 19 of the stem 18 shown in FIG. 5 is also formed by the molding method shown in FIGS. First, similarly to the hollow material 10 shown in FIG. 3, a hollow material (not shown) having an end middle diameter portion where the spline 19 is not formed is formed at the end. At this time, the medium diameter portion is formed in a cylindrical shape having no step formed on the inner peripheral surface thereof. Thereafter, similarly to FIG. 3B, the spline lower diameter 15 is formed by plastic working.

このスプライン下径15も、図3に示すように、その塑性加工後(成形後)の外径dが成形前の外径Dよりも小さく、成形後の内径D3が成形前の内径D1よりも小さくなっている。このため、中空ステム18のための中空素材であっても、スプライン下径15の肉厚T3は成形前の肉厚T1と略同一に維持されている。すなわち、肉厚T3は、成形前後において内径同一時のスプライン下径の肉厚T2(従来の方法によって成形したスプライン下径の肉厚)よりも大きくなっている。   As shown in FIG. 3, the spline lower diameter 15 also has an outer diameter d after plastic working (after molding) smaller than an outer diameter D before molding, and an inner diameter D3 after molding is smaller than an inner diameter D1 before molding. It is getting smaller. For this reason, even if it is a hollow material for the hollow stem 18, the thickness T3 of the spline lower diameter 15 is maintained substantially the same as the thickness T1 before molding. That is, the wall thickness T3 is larger than the wall thickness T2 of the spline lower diameter when the inner diameter is the same before and after molding (the wall thickness of the spline lower diameter formed by the conventional method).

そして、このようにスプライン下径15を形成した後は、転造加工またはプレス加工にてスプライン加工を行って、この中空ステム18が完成することになる。   Then, after the spline lower diameter 15 is formed in this way, the hollow stem 18 is completed by performing spline processing by rolling or pressing.

このため、この中空ステム18も、前記中空シャフト1と同一の作用効果を奏することができる。したがって、この中空ステム18を等速自在継手に使用することによって、等速自在継手は安定した機能を長期にわたって発揮することができる。   For this reason, this hollow stem 18 can also exhibit the same effect as the hollow shaft 1. Therefore, by using this hollow stem 18 for a constant velocity universal joint, the constant velocity universal joint can exhibit a stable function over a long period of time.

なお、塑性加工として、冷間で行っても、熱間で行ってもよい。また、転造加工によって形成されるスプラインとして、その軸方向凸部および軸方向凹部の数等は任意に設定することができ、軸方向凸部および軸方向凹部の形状としても、装着される相手側に応じて種々変更することができる。   The plastic working may be performed cold or hot. Further, as splines formed by rolling, the number of axial convex portions and axial concave portions can be arbitrarily set, and the shape of the axial convex portions and the axial concave portions can also be attached. Various changes can be made depending on the side.

本発明に係る中空シャフトの実施形態を示す半裁断面図である。1 is a half-cut sectional view showing an embodiment of a hollow shaft according to the present invention. スプライン下径加工の中空素材の半裁断面図である。It is a half-cut sectional view of the hollow material of spline lower diameter processing. スプライン下径の成形方法を示し、(a)は成形前の簡略断面図であり、(b)は成形後の簡略断面図である。The spline lower diameter shaping | molding method is shown, (a) is a simplified sectional view before shaping | molding, (b) is a simplified sectional view after shaping | molding. ファイバーフローを示し、(a)は成形前の簡略断面図であり、(b)は成形後の簡略断面図である。The fiber flow is shown, (a) is a simplified sectional view before molding, and (b) is a simplified sectional view after molding. 中空ステムの一部断面で示す全体図である。It is a whole view shown with a partial cross section of a hollow stem. 従来のスプライン下径の成形方法を示し、(a)は成形前の簡略断面図であり、(b)は成形後の簡略断面図である。The conventional spline lower diameter shaping | molding method is shown, (a) is simplified sectional drawing before shaping | molding, (b) is simplified sectional drawing after shaping | molding. 従来におけるファイバーフローを示し、(a)は成形前の簡略断面図であり、(b)は成形後の簡略断面図である。The fiber flow in the past is shown, (a) is a simplified cross-sectional view before molding, and (b) is a simplified cross-sectional view after molding.

符号の説明Explanation of symbols

3、4、19 スプライン
15 スプライン下径
3, 4, 19 Spline 15 Spline lower diameter

Claims (6)

端部外径にスプラインが形成されたスプライン形成部を有する中空シャフトにおいて、前記スプライン加工の前加工が、塑性加工により成形され、その成形後の内径が成形前の内径よりも小さい小径部とし、かつその肉厚を成形前後で略同一としたことを特徴とする中空シャフト。   In a hollow shaft having a spline forming portion in which a spline is formed on the outer diameter of the end, the preprocessing of the spline processing is formed by plastic processing, and the inner diameter after the molding is a small diameter portion smaller than the inner diameter before molding, And the hollow shaft characterized by making the wall thickness substantially the same before and behind shaping | molding. 前記塑性加工がスウェージング加工であることを特徴とする請求項1に記載の中空シャフト。   The hollow shaft according to claim 1, wherein the plastic working is a swaging process. 前記塑性加工がアプセット加工であることを特徴とする請求項1に記載の中空シャフト。   The hollow shaft according to claim 1, wherein the plastic processing is upset processing. 前記塑性加工を冷間で行うことを特徴とする請求項1〜3のいずれか一項に記載の中空シャフト。   The hollow shaft according to any one of claims 1 to 3, wherein the plastic working is performed cold. 前記塑性加工が熱間で行うことを特徴とする請求項1〜3のいずれか一項に記載の中空シャフト。   The hollow shaft according to any one of claims 1 to 3, wherein the plastic working is performed hot. 等速自在継手の中空ステムに適用されることを特徴とする請求項1〜5のいずれか一項に記載の中空シャフト。   It is applied to the hollow stem of a constant velocity universal joint, The hollow shaft as described in any one of Claims 1-5 characterized by the above-mentioned.
JP2005262664A 2005-09-09 2005-09-09 Hollow shaft Pending JP2007075824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262664A JP2007075824A (en) 2005-09-09 2005-09-09 Hollow shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262664A JP2007075824A (en) 2005-09-09 2005-09-09 Hollow shaft

Publications (1)

Publication Number Publication Date
JP2007075824A true JP2007075824A (en) 2007-03-29

Family

ID=37936637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262664A Pending JP2007075824A (en) 2005-09-09 2005-09-09 Hollow shaft

Country Status (1)

Country Link
JP (1) JP2007075824A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052342A1 (en) 2009-10-29 2011-05-05 Ntn株式会社 Hollow shaft and constant velocity universal joint
KR101249341B1 (en) 2012-11-21 2013-04-09 임대규 A drum type washing machine and manufacturing method thereof
CN106825358A (en) * 2017-01-03 2017-06-13 清华大学 A kind of new V anvils and the forging method using the V anvils
JP2017136635A (en) * 2016-02-05 2017-08-10 新日鐵住金株式会社 Power transmission system shaft for automobile
WO2020067605A1 (en) * 2018-09-28 2020-04-02 일진제강 주식회사 Hollow drive shaft using upsetting method and manufacturing method therefor
WO2020203090A1 (en) * 2019-04-05 2020-10-08 Thk株式会社 Hollow shaft member and rolling device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162537A (en) * 1987-12-16 1989-06-27 Sumitomo Metal Ind Ltd Manufacture of bomb
JPH0899129A (en) * 1994-09-30 1996-04-16 Toshiba Corp Swaging method for pipe
JPH08281368A (en) * 1994-12-29 1996-10-29 Dana Corp Method for forming single shaft and yoke member
JPH09109900A (en) * 1995-10-13 1997-04-28 Mizushima Press Kogyo Kk Upper steering shaft and its manufacture
JP2001121241A (en) * 1999-10-27 2001-05-08 Aida Eng Ltd Hollow shaft and producting method thereof
JP2001280360A (en) * 2000-03-29 2001-10-10 Ntn Corp Outer joint member of constant velocity universal joint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162537A (en) * 1987-12-16 1989-06-27 Sumitomo Metal Ind Ltd Manufacture of bomb
JPH0899129A (en) * 1994-09-30 1996-04-16 Toshiba Corp Swaging method for pipe
JPH08281368A (en) * 1994-12-29 1996-10-29 Dana Corp Method for forming single shaft and yoke member
JPH09109900A (en) * 1995-10-13 1997-04-28 Mizushima Press Kogyo Kk Upper steering shaft and its manufacture
JP2001121241A (en) * 1999-10-27 2001-05-08 Aida Eng Ltd Hollow shaft and producting method thereof
JP2001280360A (en) * 2000-03-29 2001-10-10 Ntn Corp Outer joint member of constant velocity universal joint

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9856906B2 (en) 2009-10-29 2018-01-02 Ntn Corporation Hollow shaft and constant velocity universal joint
WO2011052342A1 (en) 2009-10-29 2011-05-05 Ntn株式会社 Hollow shaft and constant velocity universal joint
KR101249341B1 (en) 2012-11-21 2013-04-09 임대규 A drum type washing machine and manufacturing method thereof
JP2017136635A (en) * 2016-02-05 2017-08-10 新日鐵住金株式会社 Power transmission system shaft for automobile
CN106825358A (en) * 2017-01-03 2017-06-13 清华大学 A kind of new V anvils and the forging method using the V anvils
US11383291B2 (en) 2018-09-28 2022-07-12 Iljin Steel Corporation Hollow drive shaft using upsetting method and manufacturing method therefor
WO2020067605A1 (en) * 2018-09-28 2020-04-02 일진제강 주식회사 Hollow drive shaft using upsetting method and manufacturing method therefor
WO2020203090A1 (en) * 2019-04-05 2020-10-08 Thk株式会社 Hollow shaft member and rolling device
KR20210148150A (en) 2019-04-05 2021-12-07 티에치케이 가부시끼가이샤 hollow shaft member, transmission
DE112020001761T5 (en) 2019-04-05 2022-01-05 Thk Co., Ltd. Hollow shaft element and rolling device
JP2020168654A (en) * 2019-04-05 2020-10-15 Thk株式会社 Hollow shaft member and rolling device
JP7227059B2 (en) 2019-04-05 2023-02-21 Thk株式会社 Method for manufacturing hollow shaft member and method for manufacturing rolling device
US11959516B2 (en) 2019-04-05 2024-04-16 Thk Co., Ltd. Hollow shaft member and rolling device

Similar Documents

Publication Publication Date Title
JP2007075824A (en) Hollow shaft
KR102090351B1 (en) Method for producing a connecting element for transmitting rotational movements and connecting element produced thereby
CN102478139B (en) Pipe joint
JP4900092B2 (en) Method for manufacturing hose fittings
US20060048556A1 (en) Method of manufacturing a splined member for use in a driveshaft assembly
JP2008521670A (en) Method for manufacturing a segmented tubular stabilizer with a swivel motor
JP2010164106A (en) Outer side coupling member for fixed constant velocity universal joint
KR20190057048A (en) Cage manufacturing method for constant velocity ball joint
JP2002213476A5 (en)
JPH01141216A (en) Driving shaft fixing drive element as group
ITMI992497A1 (en) CONFIGURATION WITH A HOMACINETIC JOINT AND A HOUSING ELEMENT
JP2008073739A (en) Method for forming metal pipe, method for fitting pipe joint to pipe material, and joint method using pipe joint
JP2006096269A (en) Rolling bearing device, and its manufacturing method
JP2013066903A (en) Hollow power-transmission shaft
KR100982725B1 (en) Yoke manufacturing method
GB2053417A (en) A universal joint yoke
JP2004516942A (en) How to make a ball joint casing
JP5921918B2 (en) Method for manufacturing outer joint member for constant velocity universal joint
JP2007111740A (en) Method for forming screw thread and screw thread in ball screw thread
JP2007064266A (en) Hollow shaft
WO2008091134A1 (en) Yoke manufacturing method
JP2006064060A (en) Constant velocity universal joint
JP4554299B2 (en) Method for manufacturing hollow power transmission shaft
JP6639843B2 (en) Assembly of shaft and yoke and manufacturing method thereof
JP6256667B2 (en) Manufacturing method and manufacturing system for ring-shaped member for vehicle, manufacturing method and manufacturing system for synchronizer ring, and manufacturing method and manufacturing system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Effective date: 20110117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110506