JP2017136635A - Power transmission system shaft for automobile - Google Patents
Power transmission system shaft for automobile Download PDFInfo
- Publication number
- JP2017136635A JP2017136635A JP2016021154A JP2016021154A JP2017136635A JP 2017136635 A JP2017136635 A JP 2017136635A JP 2016021154 A JP2016021154 A JP 2016021154A JP 2016021154 A JP2016021154 A JP 2016021154A JP 2017136635 A JP2017136635 A JP 2017136635A
- Authority
- JP
- Japan
- Prior art keywords
- power transmission
- transmission system
- system shaft
- thickness
- portions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 39
- 230000008719 thickening Effects 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 abstract description 32
- 239000010959 steel Substances 0.000 abstract description 32
- 238000005242 forging Methods 0.000 abstract description 17
- 239000002184 metal Substances 0.000 abstract description 8
- 238000003825 pressing Methods 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Images
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Forging (AREA)
Abstract
Description
本発明は、自動車用の動力伝達系シャフトに関する。 The present invention relates to a power transmission shaft for an automobile.
現在、地球環境の保護の観点から、自動車の軽量化が求められている。例えば、車体を構成する鋼板の高張力化による板厚の低減や、各種の自動車搭載部品の軽量化が強力に推進されている。このため、自動車の製造コストは上昇する傾向にあり、各種自動車搭載部品のいっそうの低コスト化も求められている。 Currently, there is a demand for weight reduction of automobiles from the viewpoint of protecting the global environment. For example, the reduction of the plate thickness by increasing the tension of the steel plate constituting the vehicle body and the weight reduction of various automobile-mounted components are being strongly promoted. For this reason, the manufacturing cost of automobiles tends to increase, and further cost reduction of various automobile-mounted parts is required.
例えば、左右のドライブシャフトに接続されてトルクステアを防止する動力伝達系シャフトでは、既に、旧来の中実部品から中空化を図ることによって軽量化を図ることが実用化されている。 For example, in a power transmission system shaft that is connected to the left and right drive shafts to prevent torque steer, it has already been put into practical use to reduce the weight by hollowing out a conventional solid part.
このような中空のシャフトは、その軸方向で外径および内径が変化する形状を有することが多く、これまで、以下に列記の製造方法により製造されてきた。 Such a hollow shaft often has a shape in which an outer diameter and an inner diameter change in the axial direction, and has been manufactured by the manufacturing methods listed below.
(a)摩擦圧接を利用した製造方法
軸方向で外径および内径が変化する形状を有するシャフトにおける軸方向中央部と軸方向両端部を別々に製造し、摩擦圧接によりこれらを接合する方法である。軸方向中央部は鋼管を切断することにより製造し、軸方向両端部は鍛造品を削り出して製造する。
(A) Manufacturing method using friction welding This is a method in which the axial central portion and both axial end portions of a shaft having a shape whose outer diameter and inner diameter change in the axial direction are separately manufactured, and these are joined by friction welding. . The central part in the axial direction is manufactured by cutting a steel pipe, and both end parts in the axial direction are manufactured by cutting a forged product.
(b)ロータリースウェージングを利用した製造方法
軸方向の肉厚が一定な鋼管の両端部を、ロータリースウェージングにより薄肉化や縮径、増肉することにより製造する方法である。特許文献1には、この方法により、中空のシャフトを製造する発明が開示されている。
(B) Manufacturing method using rotary swaging This is a method of manufacturing both ends of a steel pipe having a constant axial thickness by reducing the thickness, reducing the diameter, and increasing the thickness by rotary swaging.
摩擦圧接を利用した製造方法によれば、製品の軸方向中央部を薄肉化できるためにシャフトの軽量化を図ることが確かに可能であるが、軸方向中央部と軸方向両端部を接合する必要があるため、製造コストの上昇は避けられない。また、接合部の品質管理を厳しく行う必要もあり、この面からも製造コストが嵩む。 According to the manufacturing method using friction welding, it is possible to reduce the weight of the shaft because the axial central portion of the product can be thinned, but the axial central portion and both axial end portions are joined. Since it is necessary, an increase in manufacturing cost is inevitable. In addition, it is necessary to strictly control the quality of the joint, and the manufacturing cost increases from this aspect.
また、ロータリースウェージングを利用した製造方法を実施するための設備は非常に高価であるとともに、この製造方法による加工時間は不可避的に長くなることから、製造コストが嵩む。 In addition, the equipment for carrying out the manufacturing method using rotary swaging is very expensive, and the processing time by this manufacturing method is inevitably long, so the manufacturing cost increases.
このように、従来の技術では、動力伝達系シャフトのような中空のシャフトを安価に製造することは難しかった。 As described above, in the conventional technique, it has been difficult to inexpensively manufacture a hollow shaft such as a power transmission shaft.
本発明の目的は、中空の動力伝達系シャフトを提供することである。 An object of the present invention is to provide a hollow power transmission system shaft.
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、素材である肉厚一定の鋼管を、製造しようとする製品の外形と同じ形状の内面形状を有する外型の内部に配置し、この鋼管の軸方向の両端面それぞれを鋼管の軸方向へ押圧可能なベース部と、このベース部に設けられて鋼管の軸方向の両端部の内面形状と同じ形状の外面形状を有する芯金部とを有する一対の金型の間で、鋼管を軸方向に圧縮することにより、中空の動力伝達系シャフトを安価に製造できることを知見し、さらに検討を重ねて本発明を完成した。 As a result of intensive studies in order to solve the above problems, the inventors have made a steel pipe with a constant thickness as a material inside an outer mold having the same inner shape as that of the product to be manufactured. And a base part capable of pressing both end faces in the axial direction of the steel pipe in the axial direction of the steel pipe, and an outer face shape provided on the base part and having the same shape as the inner face of the both end parts in the axial direction of the steel pipe It has been found that a hollow power transmission system shaft can be manufactured at low cost by compressing a steel pipe in the axial direction between a pair of molds having a core metal part, and further studies have been made to complete the present invention.
本発明は、軸方向の両端部から軸方向の中央部へ向けて、肉厚が最も厚い増肉部と、該増肉部よりも外径が大きいとともに肉厚が薄い膨出部と、該膨出部よりも外径が小さい中央部とを有する自動車用の中空の動力伝達系シャフトであって、
前記増肉部および前記膨出部の硬さは、前記中央部の硬さよりも大きい、自動車用の中空の動力伝達系シャフトである。
The present invention includes a thickened portion having the thickest wall thickness from both axial end portions to a central portion in the axial direction, a bulge portion having a larger outer diameter and a thinner wall thickness than the thickened portion, A hollow power transmission system shaft for an automobile having a central portion having a smaller outer diameter than the bulging portion,
The thickness of the thickened portion and the bulging portion is a hollow power transmission system shaft for an automobile that is larger than the hardness of the central portion.
本発明により、中空の動力伝達系シャフトを安価に提供することができるようになる。 According to the present invention, a hollow power transmission system shaft can be provided at low cost.
添付図面を参照しながら、本発明に係る自動車用の中空の動力伝達系シャフトとその製造方法を説明する。 A hollow power transmission system shaft for an automobile according to the present invention and a method for manufacturing the same will be described with reference to the accompanying drawings.
1.自動車用の中空の動力伝達系シャフト1
図1は、本発明の実施状況を模式に示す説明図であり、図1(a)は鍛造加工前を示し、図1(b)は鍛造加工後を示す。
1. Hollow
FIG. 1 is an explanatory diagram schematically showing the implementation status of the present invention, in which FIG. 1 (a) shows before forging and FIG. 1 (b) shows after forging.
図1(b)に示すように、本発明により自動車用の中空の動力伝達系シャフト1を鍛造加工による一工程で製造する。
As shown in FIG.1 (b), the hollow power
動力伝達系シャフト1は、軸方向の両端部2−1,2−2から軸方向の中央部2−3へ向けて、増肉部3−1,3−2と、膨出部4−1,4−2と、中央部5とを有する。
The
増肉部3−1,3−2は、増肉部3−1,3−2、膨出部4−1,4−2および中央部5のうちで、肉厚が最も厚い部分である。さらに、この増肉部3−1,3−2の外面にスプラインが刻設される。
The thickening portions 3-1 and 3-2 are the thickest portions among the thickening portions 3-1 and 3-2, the bulging portions 4-1 and 4-2, and the
膨出部4−1,4−2は、増肉部3−1,3−2よりも外径が大きいとともに肉厚が薄い部分である。増肉部3−1,3−2の外径は、増肉部3−1,3−2の外径を起点として徐々に増加し、膨出部4−1,4−2の軸方向の略中央位置で最大値となり、その後、中央部5へ向かうにつれて徐々に減少する。また、増肉部3−1,3−2の内径も、増肉部3−1,3−2の外径を起点として徐々に増加し、膨出部4−1,4−2の軸方向の略中央位置で最大値となり、その後、中央部5へ向かうにつれて徐々に減少する。
The bulging portions 4-1 and 4-2 are portions having a larger outer diameter and a smaller thickness than the thickening portions 3-1 and 3-2. The outer diameters of the thickened portions 3-1 and 3-2 gradually increase starting from the outer diameter of the thickened portions 3-1 and 3-2, and in the axial direction of the bulging portions 4-1 and 4-2. The maximum value is obtained at a substantially central position, and then gradually decreases toward the
中央部5は、膨出部4−1,4−2よりも外径が小さい。中央部5の肉厚は、動力伝達系シャフト1の軸方向について略一定である。
The
増肉部3−1,3−2は、鍛造加工により増肉されるため、大きくかつ均一に加工硬化されている。ここで、「大きく均一に」とは、硬度:200〜250Hv程度であり、硬度のばらつき(最大硬度と最小硬度の差)は50Hv程度であることを意味する。 Since the thickened portions 3-1 and 3-2 are thickened by forging, they are large and uniformly work-hardened. Here, “largely and uniformly” means that the hardness is about 200 to 250 Hv, and the variation in hardness (difference between the maximum hardness and the minimum hardness) is about 50 Hv.
また、膨出部4−1,4−2も、鍛造加工により拡径されるため、加工硬化されている。加工硬化の程度は膨出量にもよるが、およそ硬度:200〜250Hv程度である。 Further, the bulging portions 4-1 and 4-2 are also work hardened because the diameter is expanded by forging. The degree of work hardening is approximately 200 to 250 Hv, although it depends on the amount of swelling.
さらに、中央部5も、鍛造加工により拡径されるため、均一に加工硬化されている。ただし、増肉部や膨出部と比べると加工硬化の程度は小さく、硬度:190〜210Hv程度であり、硬度のばらつき(最大硬度と最小硬度の差)は20Hv程度である。
Furthermore, since the diameter of the
増肉部3−1,3−2、膨出部4−1,4−2、中央部5がこのように加工硬化されていることにより、動力伝達系シャフト1は、自動車用の動力伝達系シャフトの基本的性能として要求される捩り強度や捩り疲労への特性向上が十分に図られている。
The power
動力伝達系シャフト1は、例えば、S45CB軟質化材(TS=550MPa級)からなることが例示されるが、これに限定されるものではない。動力伝達系シャフト1は、鍛造加工による軸押しにより増肉と拡管を行われるために、加工による変形は、圧縮変形が主体となり、引張変形が少ない。このため、材料の高強度化による破断のリスクは非常に少ない。したがって、S45CB軟質化材よりも低強度材を適用可能であることは言うまでもないが、S45CB軟質化材よりも高強度材を用いても破断することなく成形可能である。
For example, the
S45CB軟質化材よりも高強度材では、軸押し荷重が高強度化に比例して増加するが、S35CB軟質化材でも350トン程度であることから、1000MPa級の高強度材でも700トン程度となり、量産プレス機でも十分に製造可能である。 In the case of high-strength material than S45CB softened material, the axial load increases in proportion to the increase in strength. However, in the case of S35CB softened material, it is about 350 tons. Even mass production presses can be fully manufactured.
2.動力伝達系シャフト1の製造方法
はじめに、図1(a)に示すように、素材である肉厚一定の鋼管6を、動力伝達系シャフト1の外形と同じ形状の内面形状7aを有する外型7の内部に、外型7の内面から離間させて配置する。
2. Manufacturing Method of Power Transmission System Shaft 1 First, as shown in FIG. 1A, an
鋼管6の径方向に関する外型7の内面と鋼管6の外面との間の隙間W(mm)は、鋼管6の軸方向の任意の位置における肉厚をt(mm)とするとともに外径をd(mm)とした場合に、W≧0.2×(t/d)であることが、加工時における荷重を低減できるために、望ましい。
The gap W (mm) between the inner surface of the
なお、図示していないが、外型7は、一般的な型鍛造に用いられる金型と同様に、左右2分割されて構成されており、成形後の製品を取り出すことができるように構成されている。
Although not shown, the
次に、鋼管6の軸方向の両端面6−1,6−2それぞれを鋼管6の軸方向へ押圧可能なベース部8−1,8−2と、ベース部8−1,8−2に設けられて動力伝達系シャフト1の軸方向の両端部の内面形状1−1,1−2と同じ形状の外面形状9−1a,9−2aを有する芯金部9−1,9−2とを有する上下一対の金型(芯金付きパンチ)10−1,10−2の間で、鋼管6を軸方向に圧縮する型鍛造を行う。
Next, both end surfaces 6-1 and 6-2 in the axial direction of the
この型鍛造の際、図1(b)中のA部では、金型10−1,10−2の底面から軸押しにより、増肉部3−1,3−2が形成される。図1(b)中のB部では、鋼管6が拘束されていないため、軸押しにより増肉はほとんどされずに拡管して膨出部4−1,4−2が形成される。さらに、図1(c)中のC部では、鋼管6が拘束されていないため、軸押しにより若干拡管され、場合によっては若干増肉されて中央部5が形成される。
At the time of this die forging, the thickened portions 3-1 and 3-2 are formed by axial pressing from the bottom surfaces of the molds 10-1 and 10-2 in the portion A in FIG. In part B in FIG. 1B, the
図2(a)は、本発明で用いることができる加工素材の鋼管6の寸法の範囲を示す説明図であり、図2(b)は、本発明により製造可能な中空の動力伝達系シャフト1の寸法の範囲を示す説明図である。なお、図2(a)および図2(b)に示す各部寸法は、鋼管6の素材としてS45CB軟質化材(TS=550MPa級)を用いた場合である。
FIG. 2 (a) is an explanatory view showing the range of dimensions of a
図2(b)に示す動力伝達系シャフト1は、各部の肉厚に関する下記条件1と、各部の外径に関する下記条件2とをともに満足する。
条件1:t1>t2、t3であって、かつ4mm<t1、t2、t3<15mm
条件2:D2>D1およびD2>D3、20mm<D1,D3<45mmであって、かつ22mm<D2<55mm
さらに、鋼管6の軸方向長さL(mm)に関する下記条件3を満足することが望ましい。
条件3:100≦L≦2000
この後、型鍛造により成形された中空の動力伝達系シャフト1から金型10−1,10−2を抜き出し、外型7を左右に2分割して、動力伝達系シャフト1を取り出す。このようにして、中空の動力伝達系シャフト1が一工程の型鍛造により、製造される。
The
Condition 1: t 1 > t 2 , t 3 and 4 mm <t 1 , t 2 , t 3 <15 mm
Condition 2: D 2 > D 1 and D 2 > D 3 , 20 mm <D 1 , D 3 <45 mm and 22 mm <D 2 <55 mm
Furthermore, it is desirable to satisfy the following condition 3 regarding the axial length L (mm) of the
Condition 3: 100 ≦ L ≦ 2000
Thereafter, the molds 10-1 and 10-2 are extracted from the hollow power
図3は、図1(a)および図1(b)に示す一対の金型10−1,10−2の変形例を示す説明図である。 FIG. 3 is an explanatory view showing a modification of the pair of molds 10-1 and 10-2 shown in FIGS. 1 (a) and 1 (b).
型鍛造により成形された中空の動力伝達系シャフト1から金型10−1,10−2を抜き出す際の引き抜き荷重を低減するために、金型10−1,10−2の芯金部9−1,9−2は、図3に示すように、その先端に向かうにつれて外径が小さくなるテーパ形状を有することが望ましい。
In order to reduce the drawing load when the molds 10-1 and 10-2 are extracted from the hollow power
特に、管端部である増肉部3−1,3−2を所望の肉厚分布とするためには、芯金部9−1,9−2の外径は、増肉部3−1,3−2の肉厚に応じて段階的または連続的に変化することが望ましい。 In particular, in order to obtain the desired thickness distribution in the thickened portions 3-1 and 3-2 which are the pipe end portions, the outer diameters of the cored bar portions 9-1 and 9-2 are set to the thickened portion 3-1. , 3-2 is desirably changed stepwise or continuously according to the thickness.
図4(a)は、芯金部9−1がテーパ形状を有する場合におけるテーパ角度αを示す説明図であり、図4(b)は、芯金部9−1のテーパ角度が一定の場合における成形完了時の状態を示す説明図であり、図4(c)は、芯金部9−1のテーパ角度が段階的に変化する場合における成形完了時の状態を示す説明図であり、さらに、図4(d)は、芯金部9−1のテーパ角度が連続的に変化する場合における成形完了時の状態を示す説明図である。 4A is an explanatory diagram showing the taper angle α when the cored bar part 9-1 has a tapered shape, and FIG. 4B shows the case where the taper angle of the cored bar part 9-1 is constant. FIG. 4C is an explanatory view showing a state when molding is completed when the taper angle of the cored bar portion 9-1 changes stepwise. FIG.4 (d) is explanatory drawing which shows the state at the time of completion | finish of shaping | molding in case the taper angle of the metal core part 9-1 changes continuously.
図4(a)に示すテーパ角度αは、0.3°以上10°以下であることが好ましい。 The taper angle α shown in FIG. 4A is preferably not less than 0.3 ° and not more than 10 °.
図4(b)に示す芯金部9−1は図3(a)および図3(b)に示す芯金部9−1と同様である。 The cored bar part 9-1 shown in FIG. 4B is the same as the cored bar part 9-1 shown in FIGS. 3A and 3B.
一方、図4(c)に示す芯金部9−1を有する金型10−1を用いることにより、製造される動力伝達系シャフト1の肉厚を段階的に変化させることができる。図4(c)に示す芯金部9−1では、テーパ角度αを、A部、B部、C部の3段階に分けている。A〜C部それぞれのテーパ角度αは、それぞれ0.3°以上10°以下の範囲で適宜組み合わせればよい。
On the other hand, by using the mold 10-1 having the core metal part 9-1 shown in FIG. 4C, the thickness of the manufactured
さらに、図4(d)に示す芯金部9−1を有する金型10−1を用いることにより、製造される動力伝達系シャフト1の肉厚を連続的に変化させることができる。テーパ角度αは、それぞれ0.3°以上10°以下の範囲で適宜変化させればよい。
Furthermore, the thickness of the
また、このテーパ形状を有することにより、鋼管1に金型10−1,10−2をセットする際の軸芯合わせを容易にすることも可能になる。
Moreover, by having this taper shape, it is also possible to facilitate the alignment of the axes when the molds 10-1 and 10-2 are set on the
図5は、図1(a)および図1(b)に示す一対の金型10−1,10−2の他の変形例を示す説明図である。 FIG. 5 is an explanatory view showing another modification of the pair of molds 10-1 and 10-2 shown in FIGS. 1 (a) and 1 (b).
型鍛造により成形された中空の動力伝達系シャフト1から金型10−1,10−2を抜き出す際の引き抜き荷重を低減するために、金型10−1,10−2の芯金部9−1,9−2は、図5に示すように、ベース部8−1,8−2における鋼管6の軸方向の両端面6−1,6−2との当接部8−1a,8−2aは、鋼管6の外側へ向けて傾斜して形成されることが望ましい。また、当接部8−1a,8−2aがこのように傾斜して形成されることにより、鋼管1に金型10−1,10−2をセットする際の軸芯合わせを容易にすることも可能になる。
In order to reduce the drawing load when the molds 10-1 and 10-2 are extracted from the hollow power
さらに、当接部8−1a,8−2aがこのように傾斜して形成されることにより、当接部8−1a,8−2aがこのように傾斜して形成されない場合(図1(a)および図1(b)参照)に比較して、鋼管6における膨出部4−1,4−2に形成される部分に対して、拡管方向への力がより負荷され、これにより、膨出部4−1,4−2をより早く形成することができるため、より小さい軸押し荷重で成形可能である。
Furthermore, when the contact portions 8-1a and 8-2a are formed in such an inclination, the contact portions 8-1a and 8-2a are not formed in such an inclination (FIG. ) And FIG. 1 (b)), a force in the tube expansion direction is more applied to the portions formed in the bulging portions 4-1 and 4-2 in the
図6は、図1(a)および図1(b)に示す一対の金型10−1,10−2のさらに他の変形例を示す説明図である。 FIG. 6 is an explanatory view showing still another modification of the pair of molds 10-1 and 10-2 shown in FIGS. 1 (a) and 1 (b).
図6に示すように、芯金部9−1,9−2がこのテーパ形状を有することと、当接部8−1a,8−2aが傾斜して形成されることを併せ持ってもよいことは言うまでもない。 As shown in FIG. 6, the cored bar portions 9-1 and 9-2 may have this tapered shape and the contact portions 8-1a and 8-2a may be formed to be inclined. Needless to say.
このようにして、本発明によれば、中空の動力伝達系シャフト1を、一工程の型鍛造により安価に製造することができる。
Thus, according to the present invention, the hollow
1 動力伝達系シャフト
1−1,1−2 両端部
3−1,3−2 増肉部
4−1,4−2 膨出部
5 中央部
6 鋼管
6−1,6−2 両端面
7 外型
7a 内面形状
8−1,8−2 ベース部
8−1a,8−2a 当接部
9−1,9−2 芯金部
DESCRIPTION OF
Claims (1)
前記増肉部および前記膨出部の硬さは、前記中央部の硬さよりも大きい、自動車用の中空の動力伝達系シャフト。 From the both axial end portions to the axial central portion, the thickened portion having the largest thickness, the bulging portion having a larger outer diameter than the thickening portion and having a small thickness, and the bulging portion A hollow power transmission system shaft for an automobile having a central portion with a small outer diameter,
A hollow power transmission system shaft for an automobile in which the thickness of the thickened portion and the bulging portion is greater than the hardness of the central portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016021154A JP6549048B2 (en) | 2016-02-05 | 2016-02-05 | Power transmission shaft for automobiles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016021154A JP6549048B2 (en) | 2016-02-05 | 2016-02-05 | Power transmission shaft for automobiles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017136635A true JP2017136635A (en) | 2017-08-10 |
JP6549048B2 JP6549048B2 (en) | 2019-07-24 |
Family
ID=59565303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016021154A Active JP6549048B2 (en) | 2016-02-05 | 2016-02-05 | Power transmission shaft for automobiles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6549048B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05263819A (en) * | 1990-03-08 | 1993-10-12 | Gkn Automot Ag | Drive shaft for motor vehicle |
JPH08243680A (en) * | 1995-03-13 | 1996-09-24 | Sumitomo Metal Ind Ltd | Upsetting method for tube |
JP2007075824A (en) * | 2005-09-09 | 2007-03-29 | Ntn Corp | Hollow shaft |
JP2011511214A (en) * | 2007-11-30 | 2011-04-07 | ベー アンド エミ ド ブラジル ソシエダッド アノニマ | Axle from seamless pipe for railway vehicles and method for manufacturing axle from seamless steel pipe for railway vehicles |
JP2011121068A (en) * | 2009-12-08 | 2011-06-23 | Ntn Corp | Swaging method, swaging device, and swaging die |
-
2016
- 2016-02-05 JP JP2016021154A patent/JP6549048B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05263819A (en) * | 1990-03-08 | 1993-10-12 | Gkn Automot Ag | Drive shaft for motor vehicle |
JPH08243680A (en) * | 1995-03-13 | 1996-09-24 | Sumitomo Metal Ind Ltd | Upsetting method for tube |
JP2007075824A (en) * | 2005-09-09 | 2007-03-29 | Ntn Corp | Hollow shaft |
JP2011511214A (en) * | 2007-11-30 | 2011-04-07 | ベー アンド エミ ド ブラジル ソシエダッド アノニマ | Axle from seamless pipe for railway vehicles and method for manufacturing axle from seamless steel pipe for railway vehicles |
JP2011121068A (en) * | 2009-12-08 | 2011-06-23 | Ntn Corp | Swaging method, swaging device, and swaging die |
Also Published As
Publication number | Publication date |
---|---|
JP6549048B2 (en) | 2019-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108367334B (en) | Method for manufacturing hollow pipe | |
JP3772110B2 (en) | Hollow steering rack shaft and manufacturing method thereof | |
WO2016133156A1 (en) | Metal pipe having thickened end portion, and method of manufacturing same | |
WO2015075934A1 (en) | Production method for forged crank shaft | |
TWI491455B (en) | Fabricating method of forging material | |
JP2016215233A (en) | Manufacturing method of forged crank shaft | |
JP4005507B2 (en) | How to make a ball joint casing | |
JP4216230B2 (en) | Method for manufacturing forged parts and method for manufacturing suspension arm for automobile | |
JP6549048B2 (en) | Power transmission shaft for automobiles | |
KR20140062390A (en) | Grain refining method for tubular metallic material | |
JP2006110621A (en) | Method for producing aluminum alloy-made die-forged product, and aluminum alloy-made preformed article for warm die-forging | |
JP4609259B2 (en) | Roller bearing roller manufacturing method | |
KR20120127974A (en) | Grain refining method for tubular metallic material | |
KR20150103573A (en) | Method of manufacturing connecting rod using the semi-closed sinter forging | |
KR20140014505A (en) | Manufacturing method for eye-forming of pipe stabilizer bar using multistage upsetting | |
JP5060424B2 (en) | Method for manufacturing hollow shaft | |
JP6872004B2 (en) | Screws and their manufacturing methods | |
JP3128208B2 (en) | Manufacturing method of ring-shaped parts | |
JPH0327297B2 (en) | ||
JP2015182099A (en) | Design method for forging punch and manufacturing method for forging punch and yoke | |
JPH084856B2 (en) | Piston rod manufacturing method | |
KR101379807B1 (en) | Manufacturing method of for yoke universal joint | |
KR101009843B1 (en) | Manufacturing Method of Connecting Rod | |
JPS61189835A (en) | Production of hollow drive shaft | |
RU2364463C1 (en) | Method of fabricating transportation vehicle wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6549048 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |