JP2007075674A - Microbubble generator and sanitary washing device equipped with it - Google Patents

Microbubble generator and sanitary washing device equipped with it Download PDF

Info

Publication number
JP2007075674A
JP2007075674A JP2005263379A JP2005263379A JP2007075674A JP 2007075674 A JP2007075674 A JP 2007075674A JP 2005263379 A JP2005263379 A JP 2005263379A JP 2005263379 A JP2005263379 A JP 2005263379A JP 2007075674 A JP2007075674 A JP 2007075674A
Authority
JP
Japan
Prior art keywords
water
electrode
flow path
bubbles
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005263379A
Other languages
Japanese (ja)
Inventor
Keiko Yasui
圭子 安井
Katsura Nanbu
桂 南部
Yasusuke Horiki
泰佑 堀木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005263379A priority Critical patent/JP2007075674A/en
Publication of JP2007075674A publication Critical patent/JP2007075674A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized microbubble mixing device which can be used even for small-sized apparatuses. <P>SOLUTION: A microbubble generator comprises a bubble mixing part 6 which is equipped with at least a pair of electrodes, and mixes bubbles generated by electrolysis of water with flowing water under pressure, and a gas-liquid spouting part 7 which spouts the water mixed with the bubbles. By dissolving the bubbles generated by the electrolysis of water, diameters of bubbles to be dissolved can be controlled by velocity of liquid on the surfaces of the electrodes, and bubble growth rate, that is, current density, which dispenses with a booster pump and a tank, enabling miniaturization of the device, which enables incorporation into small apparatuses. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水の電気分解により発生した気泡を流水に加圧混入することで、微細気泡を発生させる微細気泡発生装置に関するものである。   The present invention relates to a fine bubble generating apparatus that generates fine bubbles by pressurizing and mixing bubbles generated by electrolysis of water into flowing water.

従来、微細気泡を発生させる方法としては、イジェクタを利用するものや、旋回流により気泡を微細化するもの、加圧溶解によるものが知られている(例えば、特許文献1、特許文献2)。図6に、加圧溶解法による微細気泡発生装置のフローを示す。   Conventionally, as a method for generating fine bubbles, a method using an ejector, a method for making bubbles fine by a swirling flow, and a method using pressure dissolution are known (for example, Patent Document 1 and Patent Document 2). FIG. 6 shows a flow of the fine bubble generator by the pressure dissolution method.

図6において、加圧溶解方式の微細気泡発生装置は、水の流路100と、流路100に設けた加圧溶解部101と、加圧溶解部101の出口に接続した減圧弁107で構成されている。加圧溶解部101は流路100と接続し、吸気弁103を介して空気を流水に混合する吸込部102、水を搬送するポンプ104、流水に空気を溶解するタンク105、余分な空気を開放する空気抜弁106で構成している。   In FIG. 6, the pressure-dissolving type fine bubble generator includes a water channel 100, a pressure-dissolving unit 101 provided in the channel 100, and a pressure reducing valve 107 connected to the outlet of the pressure-dissolving unit 101. Has been. The pressure dissolution unit 101 is connected to the flow path 100, and a suction unit 102 that mixes air with running water via an intake valve 103, a pump 104 that transports water, a tank 105 that dissolves air into running water, and releases excess air. The air vent valve 106 is configured.

上記構成において、流路100から加圧溶解部101に流入した水は、吸込部102で吸気弁103の吸気口を介して空気を吸い込み、気液を混合する。吸気弁103では、流水に溶解する量以上の空気を吸引し、気液の混合した流水はポンプ104により加圧され、タンク105に送られる。空気はタンク105内で流水に溶解され、未溶解の空気は、タンク105に設けた空気抜弁106から大気へ開放する。空気を溶解した流水は、減圧弁107により、急激に減圧され、それにより加圧され、水に溶解していた気体が、一気に微細気泡として析出するものである。
特開2002-191949号公報 特開2004−283810号公報
In the above configuration, the water that has flowed into the pressure dissolving part 101 from the flow path 100 sucks air through the suction port of the suction valve 103 by the suction part 102 and mixes the gas and liquid. The intake valve 103 sucks air in an amount more than that dissolved in the flowing water, and the flowing water mixed with gas and liquid is pressurized by the pump 104 and sent to the tank 105. Air is dissolved in running water in the tank 105, and undissolved air is released to the atmosphere from an air vent valve 106 provided in the tank 105. The flowing water in which the air has been dissolved is rapidly depressurized by the pressure reducing valve 107, and the gas that has been pressurized and dissolved in the water is precipitated as fine bubbles at once.
Japanese Patent Laid-Open No. 2002-191949 JP 2004-283810 A

しかしながら、前記従来の加圧溶解方式や旋回流方式では、水を加圧するためのポンプや気液を混合するためのタンク等が必要となるため、装置が大型化するという課題があった。   However, the conventional pressure dissolution method and swirl flow method require a pump for pressurizing water, a tank for mixing gas and liquid, and the like, and there is a problem that the apparatus is increased in size.

風呂装置や給湯機などの比較的に大きな設備機器では、微細気泡水を用いる場合に、上記した加圧溶解方式や旋回流方式を用いて微細気泡を発生させることができるが、温水洗浄便座や洗濯機、食器洗浄器などの小型の機器に用いるには、微細気泡発生装置が大型化しているので、小型機器に組み込むことができないという課題があった。また、イジェクタを利用した場合には、微細気泡発生装置を小型化することはできるが、イジェクタ方式では、混入する気泡径が大きくなるという課題があった。   In relatively large equipment such as a bath apparatus or a water heater, when using fine bubble water, fine bubbles can be generated using the above-mentioned pressure dissolution method or swirl flow method. In order to use it for a small device such as a washing machine and a dishwasher, there is a problem that it cannot be incorporated in a small device because the fine bubble generating device is enlarged. Further, when the ejector is used, the fine bubble generating device can be reduced in size, but the ejector method has a problem that the bubble diameter to be mixed becomes large.

上記従来の課題に鑑み、本発明が解決しようとする課題は、小型機器にも利用できる小型の微細気泡混入装置を提供することにある。   In view of the above-described conventional problems, the problem to be solved by the present invention is to provide a small-sized microbubble mixing device that can also be used for small-sized devices.

上記の課題を解決するために、本発明の微細気泡発生装置は、少なくとも1対の電極を有し、水の電気分解により発生した気泡を流水に加圧混入する気泡混入部と、気泡の混入した加圧水を噴出する気液噴出部を備えたものである。   In order to solve the above problems, a fine bubble generating apparatus of the present invention has at least one pair of electrodes, a bubble mixing part that pressurizes and mixes bubbles generated by electrolysis of water into flowing water, and mixing of bubbles The gas-liquid ejection part which ejects the pressurized water which was made is provided.

上記手段とすることにより、微細気泡を生成するために加圧ポンプやタンクが不要とな
り、装置を小型化することができる。
By using the above means, a pressure pump and a tank are not required to generate fine bubbles, and the apparatus can be miniaturized.

本発明の微細気泡発生装置は、加圧ポンプやタンクが不要となるため、装置を小型化することができるとともに、小型化することで小型機器への組込も可能とすることができる。   Since the microbubble generator of the present invention does not require a pressure pump or a tank, the apparatus can be miniaturized and can be incorporated into a small device by miniaturization.

第1の発明は、少なくとも1対の電極を有し、水の電気分解により発生した気泡を流水に加圧混入する気泡混入部と、気泡の混入した加圧水を噴出する気液噴出部を備えた構成とし、水の電気分解により得られた気泡で微細気泡を生成することができ、気泡混入部で加圧溶解した気泡を、気液噴出部で開放減圧することで微細な気泡を得ることができ、装置を小型化することができる。   The first invention has at least one pair of electrodes, and includes a bubble mixing portion that pressurizes and mixes bubbles generated by electrolysis of water into flowing water, and a gas-liquid ejection portion that ejects pressurized water mixed with bubbles. It is possible to generate fine bubbles with bubbles obtained by electrolysis of water, and to obtain fine bubbles by opening and decompressing the bubbles dissolved under pressure in the bubble mixing part at the gas-liquid ejection part The apparatus can be reduced in size.

すなわち、水の電気分解により電極表面で生成する気泡の径は、電解開始直後は極微小であり、電気分解の進行とともに、気泡が成長合体し、その後電極表面から離脱する。この離脱した気泡の径は、電極表面での液体の流速や、気泡成長速度、すなわち電流密度によって決まるため、微細気泡を生成するために加圧ポンプやタンクが不要となるため、装置を小型化することができる。   That is, the diameter of bubbles generated on the electrode surface by electrolysis of water is extremely small immediately after the start of electrolysis, and as the electrolysis progresses, the bubbles grow and coalesce and then leave the electrode surface. Since the diameter of the detached bubbles is determined by the liquid flow velocity on the electrode surface and the bubble growth rate, that is, the current density, a pressure pump and a tank are not required to generate fine bubbles, thereby miniaturizing the device. can do.

第2の発明は、特に、第1の発明において気泡混入部を小型化すること設置の自由度が向上し、気泡混入部と気液噴出部を隣接して設けることが可能になる。また、これにより気泡の加圧、開放減圧を連続して行なうことでき、溶解した気泡の流路内での合体を防止することができ、微細気泡を混合することができる。   In the second invention, in particular, the size of the bubble mixing portion in the first invention is reduced, so that the degree of freedom of installation is improved, and the bubble mixing portion and the gas-liquid ejection portion can be provided adjacent to each other. Further, by this, it is possible to continuously pressurize and depressurize the bubbles, prevent coalescence of dissolved bubbles in the flow path, and mix fine bubbles.

第3の発明は、特に、第1の発明または第2の発明の気泡混入部において、入水口と吐水口とを有し、前記入水口より吐水口の断面積が小さくなる構成とすることで、簡易な構成で気泡混入部の内圧を高めることができる。   In particular, the third aspect of the present invention has a water inlet and a water outlet in the bubble mixing portion of the first invention or the second invention, and the cross-sectional area of the water outlet is smaller than the water inlet. The internal pressure of the bubble mixing part can be increased with a simple configuration.

第4の発明は、特に、第1〜第3のいずれかの発明の気泡混入部を、芯電極と、前記芯電極の外周に設けた流路と、流路を囲うケースと、ケース内壁に設けた電極と、流路の流速を変化させる流速可変手段とで構成することにより、芯電極とケース内壁に設けた電極間で水を電気分解することができるとともに、電極を例えば円筒状に形成することで、ノズルやホース内部への組み込みを可能とすることができる。   In particular, the fourth aspect of the invention includes the bubble mixing portion of any one of the first to third aspects of the invention on the core electrode, the flow path provided on the outer periphery of the core electrode, the case surrounding the flow path, and the case inner wall. By comprising the provided electrode and the flow rate variable means for changing the flow rate of the flow path, water can be electrolyzed between the core electrode and the electrode provided on the inner wall of the case, and the electrode is formed in a cylindrical shape, for example By doing so, it can be incorporated into the nozzle or hose.

第5の発明は、特に、第4の発明の流速可変手段を、流路の流速を速くする方向に変化させる構成とすることにより、流路の流速が速くなり流路内を加圧するとともに、電極表面の流速を速くすることで、電極面からの気泡の離脱を早めることができ、気泡を小径化することができる。   In the fifth aspect of the invention, in particular, the flow rate variable means of the fourth aspect of the invention is configured to change the flow rate of the flow path in a direction to increase the flow rate, thereby increasing the flow rate of the flow path and pressurizing the flow path. By increasing the flow velocity on the electrode surface, the separation of bubbles from the electrode surface can be accelerated, and the bubbles can be reduced in diameter.

第6の発明は、特に、第5の発明の流速可変手段を、流路の下流側に向かって流速が速くなる構成とすることにより、電気分解による気体混入量の増加する下流側にいくにしたがって、圧力を高くすることで、気泡の微細化および流路内での気泡の合体を防止することができる。   In the sixth aspect of the invention, in particular, the flow rate variable means of the fifth aspect of the invention is configured so that the flow rate increases toward the downstream side of the flow path, so that the gas mixing amount due to electrolysis increases to the downstream side. Therefore, by increasing the pressure, it is possible to prevent the bubbles from being miniaturized and the bubbles from being combined in the flow path.

第7の発明は、特に、第4〜第6のいずれか1つの発明の流速可変手段を、少なくとも流路の一部を狭くさせる構成としたことにより、簡単な構成で流速を加速することができ、気泡を小径化することができる。   In the seventh aspect of the invention, in particular, the flow rate variable means of any one of the fourth to sixth aspects of the invention is configured to narrow at least a part of the flow path, so that the flow rate can be accelerated with a simple configuration. The bubble can be reduced in diameter.

第8の発明は、特に、第1〜第3のいずれか1つの発明の気泡混入部において、固体高
分子膜と前記固体高分子膜の両面に形成した電極からなる気泡発生手段を備えた構成とすることにより、電極間の距離を縮めることで、電源の負荷を抑え電気分解による気泡の発生量を増やすことができ、簡易で小型の構成で微細気泡を発生させることができる。
In an eighth aspect of the present invention, in particular, in the bubble mixing portion of any one of the first to third aspects, a configuration including a bubble generating means comprising a solid polymer film and electrodes formed on both surfaces of the solid polymer film By reducing the distance between the electrodes, the load of the power source can be suppressed and the amount of bubbles generated by electrolysis can be increased, and fine bubbles can be generated with a simple and small configuration.

第9の発明は、特に、第1〜第8のいずれか1つの発明において、電極は少なくとも陽極を二酸化鉛電極とし、電気分解により前記二酸化鉛電極表面で酸素とともに発生するオゾンを混入することで、オゾンによる殺菌漂白作用を得ることができるとともに、電気分解によりオゾンを発生させるため、放電装置等のオゾン発生装置が不要となり、発生後速やかに溶解させることでオゾンの溶解効率を高めることができる。   According to a ninth aspect of the invention, in particular, in any one of the first to eighth aspects of the invention, at least the anode is a lead dioxide electrode, and ozone generated along with oxygen on the surface of the lead dioxide electrode is mixed by electrolysis. In addition to being able to obtain a sterilizing and bleaching action by ozone, ozone is generated by electrolysis, so an ozone generator such as a discharge device is not required, and the ozone dissolution efficiency can be increased by dissolving quickly after generation. .

第10の発明は、第1〜第9のいずれか1つに記載の微細気泡発生装置を備えた衛生洗浄装置としたので、洗浄効率の向上はもちろん、装置の小型化を図ることができる。   In the tenth aspect of the invention, the sanitary washing apparatus includes the fine bubble generating apparatus according to any one of the first to ninth aspects, so that the cleaning efficiency can be improved and the apparatus can be downsized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また、本実施の形態の説明において、同一構成および作用効果を奏するところには同一符号を付して重複した説明を行わないものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment. Further, in the description of the present embodiment, the same reference numerals are given to the same configurations and effects and the redundant description is not performed.

(実施の形態1)
図1は、本発明の第1の実施の形態における微細気泡発生装置を示す断面図である。図1において、微細気泡混入装置は、芯電極1と、芯電極1の外周に設けた流路2と、流路2を囲うケース3と、ケース3内壁に設けた電極4と、流路2内の流速を変化させる流速可変手段としてのコイル状バネ5とを有する気泡混入部6と、気液噴出部7とを備えている。コイル状バネ5は、コイル状バネ5のピッチ間を構成する流路断面積が、ケース3と芯電極1との間に構成された流路の断面積より狭くなるようなピッチで旋回させる構成としている。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a fine bubble generator in a first embodiment of the present invention. In FIG. 1, the fine bubble mixing device includes a core electrode 1, a flow path 2 provided on the outer periphery of the core electrode 1, a case 3 surrounding the flow path 2, an electrode 4 provided on the inner wall of the case 3, and a flow path 2. A bubble mixing part 6 having a coiled spring 5 as a flow rate varying means for changing the flow rate inside, and a gas-liquid ejection part 7 are provided. The coiled spring 5 is configured to rotate at a pitch such that the cross-sectional area of the flow path that forms the pitch of the coiled spring 5 is narrower than the cross-sectional area of the flow path that is formed between the case 3 and the core electrode 1. It is said.

そして、気泡混入部6は、入水口8と、気液噴出部7に通じる吐水口9と、電極端子10、11と、流路2をシールするためのOリング12と、直流電源13を備えている。また、吐水口9はケース3内の内圧を高め、気泡を加圧して水に溶解させるため、吐水口9の断面積を入水口8よりも小さくなるように形成している。気液噴出部7は、気泡混入部6の小型化により、気泡混入部6の吐水口9に隣接して設けられている。   The bubble mixing part 6 includes a water inlet 8, a water outlet 9 that leads to the gas-liquid jet part 7, electrode terminals 10 and 11, an O-ring 12 for sealing the flow path 2, and a DC power source 13. ing. Further, the water outlet 9 is formed so that the cross-sectional area of the water outlet 9 is smaller than that of the water inlet 8 in order to increase the internal pressure in the case 3 and pressurize bubbles to dissolve in water. The gas-liquid ejection part 7 is provided adjacent to the water outlet 9 of the bubble mixing part 6 due to the downsizing of the bubble mixing part 6.

以上のように構成された微細気泡混入装置について、以下その動作、作用を説明する。水は、図2に示す図1の側面断面図に記載の矢印のように、ケース3の中心から偏芯した側面位置の入水口8から入水し、芯電極1の外周に形成されている流路2に流れ込み、さらに、芯電極1の外周に沿って流路に螺旋状に配置したコイル状バネ5によって芯電極1の外周を螺旋状に旋回して流れ、この間に直流電源13の印加された芯電極1と電極4による電気分解で生じた気泡が水に加圧溶解され、そしてケース3の中心から偏芯した側面位置の吐出口9より吐出され、気液噴出部で開放減圧することで微細な気泡が得られる。   The operation and action of the fine bubble mixing device configured as described above will be described below. As shown by the arrow in the side sectional view of FIG. 1 shown in FIG. 2, water enters from the water inlet 8 at the side surface position eccentric from the center of the case 3, and is formed on the outer periphery of the core electrode 1. The coil spring 5 is spirally disposed in the flow path along the outer periphery of the core electrode 1 and flows around the outer periphery of the core electrode 1 in a spiral manner. The bubbles generated by the electrolysis by the core electrode 1 and the electrode 4 are pressurized and dissolved in water, discharged from the discharge port 9 at the side surface eccentric from the center of the case 3, and opened and depressurized at the gas-liquid jet part. Fine bubbles can be obtained.

すなわち、螺旋状に配置されたコイル状バネ5は、コイル状バネ5のピッチ間を構成する流路断面積が、ケース3と芯電極1との間に構成された流路2の断面積より狭くなるようなピッチで旋回させる構成としている。したがって、コイル状バネ5に沿って螺旋状に流れる旋回流の流速は、コイル状バネ5がない場合に比べて速くなり、流速が加速されることになる。   That is, the coil-shaped springs 5 arranged in a spiral form have a cross-sectional area of the flow path that forms between the pitches of the coil-shaped springs 5 than the cross-sectional area of the flow path 2 that is formed between the case 3 and the core electrode 1. It is set as the structure made to turn by the pitch which becomes narrow. Therefore, the flow velocity of the swirl flow that spirally flows along the coil spring 5 is faster than that without the coil spring 5, and the flow velocity is accelerated.

特に、ケース3と芯電極1の間に形成された円筒状の流路空間は、アスペクト比の大きな流路断面となり、もしコイル状バネ5がない場合、ケース3の中心から偏芯した側面位置に設けた入水口8から入った水は、上流では芯電極1の外周に沿って螺旋状に流れるが
、下流になるにしたがって旋回流が失われ、徐々に円筒状の軸方向の流れ成分が主体となり、下流においては実質上、水の流速が遅くなる。
In particular, the cylindrical channel space formed between the case 3 and the core electrode 1 has a channel cross section with a large aspect ratio, and if there is no coiled spring 5, the side surface position is eccentric from the center of the case 3. Water flowing in from the water inlet 8 provided in the water flows spirally along the outer periphery of the core electrode 1 in the upstream, but the swirling flow is lost toward the downstream, and the cylindrical axial flow component is gradually reduced. It becomes the main body, and the flow rate of water is substantially reduced downstream.

然るに、本実施例ではコイル状バネ5をケース3と芯電極1の間に形成された円筒状の流路空間に備えた構成となっており、流れは旋回流で速い流速状態が継続し、電極4と水の境界層の領域が非常に薄くなる。そして、電極4表面での流速を速めることで、電極4表面からの気泡の離脱を促進し、電極4表面での気泡成長を防止することができ、微細な気泡を水に混入することができる。   However, in this embodiment, the coil spring 5 is provided in a cylindrical flow path space formed between the case 3 and the core electrode 1, and the flow is a swirling flow and a fast flow rate state continues. The area of the boundary layer between the electrode 4 and water becomes very thin. And by accelerating the flow velocity on the surface of the electrode 4, the separation of bubbles from the surface of the electrode 4 can be promoted, the growth of bubbles on the surface of the electrode 4 can be prevented, and fine bubbles can be mixed into water. .

一方、水の電気分解は直流電源13により、芯電極1と電極4間に直流電圧を印加することで起こり、陽極側では酸素ガスおよび塩素ガスが発生し、陰極側では水素ガスが発生する。電気分解により発生する気体は、初めは電極4表面に付着した状態で小さな核が形成され、電解の進行とともに、徐々に成長し、隣接する気泡と合体しながら、電極表面から離脱する。   On the other hand, the electrolysis of water occurs when a DC voltage is applied between the core electrode 1 and the electrode 4 by the DC power source 13, and oxygen gas and chlorine gas are generated on the anode side, and hydrogen gas is generated on the cathode side. The gas generated by electrolysis initially forms small nuclei in a state of adhering to the surface of the electrode 4, and gradually grows with the progress of electrolysis and separates from the electrode surface while coalescing with adjacent bubbles.

気泡の成長速度は電気分解の電流密度に依存し、電極4表面から離脱する気泡の径は、電極4の表面平滑度および電極4表面の流速、ケース3内の内圧状態に関係する。そして、吐水口9は、その断面積を入水口8よりも小さくなるように形成しているので、ケース3内の内圧を高めることができ、簡易な構成である電気分解で生成した気泡を加圧溶解することができる。   The bubble growth rate depends on the current density of the electrolysis, and the bubble diameter detached from the electrode 4 surface is related to the surface smoothness of the electrode 4, the flow velocity of the electrode 4 surface, and the internal pressure state in the case 3. Since the water discharge port 9 is formed so that its cross-sectional area is smaller than that of the water intake port 8, the internal pressure in the case 3 can be increased, and bubbles generated by electrolysis having a simple configuration can be added. Can be melted under pressure.

さらに、電極4表面の流速を速めることで、気泡の離脱を速めることができ、気泡を微細化することができる。特に、芯電極1および電極4には、チタンの表面に白金等の貴金属を焼結ないしはメッキにより形成した貴金属電極を用いることができるが、表面平滑度の高いメッキ電極を用いるのが望ましい。   Furthermore, by increasing the flow velocity on the surface of the electrode 4, it is possible to accelerate the separation of the bubbles and to refine the bubbles. In particular, as the core electrode 1 and the electrode 4, a noble metal electrode formed by sintering or plating a noble metal such as platinum on the surface of titanium can be used, but it is desirable to use a plated electrode having high surface smoothness.

続いて、本実施の形態における微細気泡混入装置を温水洗浄装置に組み込んだ場合について説明する。図3に、本実施の形態の微細気泡発生装置を組み込んだ衛生洗浄装置の断面図を示す。   Then, the case where the fine bubble mixing apparatus in this Embodiment is integrated in a warm water washing | cleaning apparatus is demonstrated. FIG. 3 shows a cross-sectional view of a sanitary washing apparatus incorporating the fine bubble generating apparatus of the present embodiment.

図3において、便器14の外周上に環状の暖房便座15と便器14の後端部上に横長の衛生洗浄装置本体16を設置している。そして、衛生洗浄装置本体16の中に、熱交換器17を備え、熱交換された温水が洗浄ノズル18の噴出部19から噴出し用便後の人体20の局部を洗浄するものである。   In FIG. 3, a horizontally long sanitary washing device main body 16 is installed on the outer periphery of the toilet 14 on the annular heating toilet seat 15 and the rear end of the toilet 14. And the heat exchanger 17 is provided in the sanitary washing apparatus main body 16, and the hot water after heat exchange wash | cleans the local part of the human body 20 after the stool for ejection from the ejection part 19 of the washing nozzle 18. FIG.

衛生洗浄装置本体16は、その中に主用部品として遮断弁21と流量制御装置22を備えており、その他、制御基板などの部品は図示を省略する。   The sanitary washing device main body 16 includes a shut-off valve 21 and a flow rate control device 22 as main components therein, and other components such as a control board are not shown.

本実施の形態の微細気泡発生装置は、芯電極1と、芯電極1の外周に設けた流路と、流路を囲うケース3と、ケース3内壁に設けた電極4とで構成した気泡混入部6にあって、ケース3とケース3の内周面に設置した電極4を円筒状に形成して、筒状の長い洗浄ノズル18の内部に組み込んでいる。そして、ケース3の入水口8、吐出口9は洗浄ノズル18の内部流路に通じ、さらに気液噴出部7を洗浄ノズル18の洗浄水の吐出する小さな孔である噴出部19で構成したものである。   The fine bubble generator of the present embodiment includes a core electrode 1, a channel provided on the outer periphery of the core electrode 1, a case 3 surrounding the channel, and an electrode 4 provided on the inner wall of the case 3 In the part 6, the case 3 and the electrode 4 installed on the inner peripheral surface of the case 3 are formed in a cylindrical shape and incorporated in a long cylindrical cleaning nozzle 18. The water inlet 8 and the outlet 9 of the case 3 lead to the internal flow path of the cleaning nozzle 18, and the gas-liquid jetting part 7 is composed of a jetting part 19 that is a small hole for discharging the cleaning water of the cleaning nozzle 18. It is.

従って、ケース3とケース3の内周面に設置した電極4を円筒状に形成するだけで、本実施の形態における微細気泡発生装置の特長である小型を生かして洗浄ノズル18の内部に組み込むことが可能になり、さらに小型化することで洗浄ノズル18の噴出部19を気液噴出部7とすることができ、気泡の加圧、開放減圧を連続して行なうことができ、洗浄水に溶解した気泡の流路2内での合体を防止することができるため、さらに気泡を微細化
することができる。
Therefore, the case 3 and the electrode 4 installed on the inner peripheral surface of the case 3 are simply formed in a cylindrical shape, and incorporated into the cleaning nozzle 18 by taking advantage of the small size which is a feature of the fine bubble generating device in the present embodiment. By further downsizing, the jet part 19 of the cleaning nozzle 18 can be made into the gas-liquid jet part 7, and the pressurization and depressurization of the bubbles can be performed continuously and dissolved in the washing water. Since the coalesced bubbles in the flow path 2 can be prevented, the bubbles can be further refined.

このように、本実施の形態によると、水の電気分解により発生した気泡を溶解することで、溶解する気泡の径を電極表面での液体の流速や、気泡成長速度、すなわち電流密度によって、コントロールすることができる。そのため、水の電気分解により得られた気泡で微細気泡を生成することができ、気泡混入部で加圧溶解した気泡を、気液噴出部で開放減圧することで微細な気泡を得ることができ、装置を小型化することができる。   Thus, according to the present embodiment, by dissolving bubbles generated by electrolysis of water, the diameter of the bubbles to be dissolved is controlled by the flow rate of the liquid on the electrode surface, the bubble growth rate, that is, the current density. can do. For this reason, fine bubbles can be generated with bubbles obtained by electrolysis of water, and fine bubbles can be obtained by opening and decompressing the bubbles that are dissolved under pressure in the bubble mixing part at the gas-liquid ejection part. The apparatus can be reduced in size.

また、気泡混入部を小型化することで、設置の自由度が向上し、気泡混入部と気液噴出部を隣接して設けることができ、気泡の加圧、開放減圧を連続して行なうことで、溶解した気泡の流路内での合体を防止することができ、さらに気泡を微細化することができる。   In addition, by reducing the size of the bubble mixing part, the degree of freedom of installation is improved, and the bubble mixing part and the gas-liquid ejection part can be provided adjacent to each other, and the pressure of the bubbles and the decompression of the bubbles are continuously performed. Thus, coalescence of dissolved bubbles in the flow path can be prevented, and the bubbles can be further miniaturized.

また、気泡混入部を、芯電極と、芯電極の外周に設けた流路と、流路を囲うケースと、ケース内壁に設けた電極とし、電極を円筒状に形成したため、ノズルやホース内部への組み込みを可能とすることができる。   In addition, the bubble mixing part is a core electrode, a flow path provided on the outer periphery of the core electrode, a case surrounding the flow path, and an electrode provided on the inner wall of the case, and the electrode is formed in a cylindrical shape. Can be incorporated.

(実施の形態2)
図4は、本発明の第2の実施の形態における微細気泡発生装置の気泡混入部を示す断面図である。本実施の形態は、実施の形態1におけるコイル状バネ5に代えて、ピッチの異なる複数のコイル状バネ23、24を流路2に設けた点が異なり、それ以外の同一構成で作用効果を奏するところには同一符号を付して詳細な説明を省略し、異なるところを中心に説明する。
(Embodiment 2)
FIG. 4 is a cross-sectional view showing the bubble mixing part of the fine bubble generating apparatus according to the second embodiment of the present invention. The present embodiment is different from the first embodiment in that a plurality of coiled springs 23 and 24 having different pitches are provided in the flow path 2 instead of the coiled spring 5 in the first embodiment. The same reference numerals are assigned to the parts to be played, detailed description is omitted, and different points will be mainly described.

微細気泡混入装置は、芯電極1と、芯電極1の外周に設けた流路2と、流路2を囲うケース3と、ケース3内壁に設けた電極4と、流路2に入れ口側から出口側に渡り直列に配置し、流路2内の流速を変化させる流速可変手段としてのコイル状バネ材23とコイル状バネ24を備えた気泡混入部6と、気液噴出部7で構成されている。そして、螺旋状に配置されたコイル状バネ23、24のピッチ間を構成する流路断面積は、コイル状バネ材23で構成された流路の断面積より、コイル状バネ材24で構成された流路の断面積が狭くなるような構成としている。   The microbubble mixing device includes a core electrode 1, a flow path 2 provided on the outer periphery of the core electrode 1, a case 3 surrounding the flow path 2, an electrode 4 provided on the inner wall of the case 3, and an inlet side in the flow path 2. A gas bubble mixing part 6 provided with a coiled spring material 23 and a coiled spring 24 as a flow rate varying means that is arranged in series from the outlet side to the outlet side and changes the flow rate in the flow path 2, and a gas-liquid jet part 7. Has been. The cross-sectional area of the flow path that constitutes the pitch between the helical springs 23 and 24 arranged in a spiral shape is configured by the coil-shaped spring material 24 from the cross-sectional area of the flow path that is configured by the coil-shaped spring material 23. Further, the cross-sectional area of the flow path is reduced.

水は、実施の形態1と同様にケース3の中心から偏芯した側面位置の入水口8から入水し、芯電極1の外周に流れ込み、さらに、芯電極1の外周に沿って螺旋状に配置したコイル状バネ23、コイル状バネ24によって、芯電極1の外周を螺旋状に旋回して流れ、再び側面に設けた吐出口9より吐出される。   As in the first embodiment, water enters from the water inlet 8 at the side surface position eccentric from the center of the case 3, flows into the outer periphery of the core electrode 1, and is arranged spirally along the outer periphery of the core electrode 1. By the coiled spring 23 and the coiled spring 24, the outer circumference of the core electrode 1 flows spirally and flows again from the discharge port 9 provided on the side surface.

そして、螺旋状に配置されたコイル状バネ23、24のピッチ間を構成する流路断面積は、コイル状バネ材23で構成された流路の断面積より、コイル状バネ材24で構成された流路の断面積が狭くなるような構成としているので、下流側に向かって流速が速くなる構成となり、電気分解による気体混入量の増加する下流側にいくにしたがって、圧力を高くすることができ、気泡の微細化および流路内での気泡の合体を防止することができる。   The cross-sectional area of the flow path that constitutes the pitch between the helical springs 23 and 24 arranged in a spiral shape is configured by the coil-shaped spring material 24 from the cross-sectional area of the flow path that is configured by the coil-shaped spring material 23. Since the cross-sectional area of the flow path becomes narrower, the flow velocity becomes faster toward the downstream side, and the pressure can be increased as it goes to the downstream side where the amount of gas contamination due to electrolysis increases. It is possible to prevent the bubbles from being miniaturized and the bubbles from being coalesced in the flow path.

(実施の形態3)
図5は、本発明の第3の実施の形態における微細気泡発生装置の気泡混入部の構成を示す断面図である。
(Embodiment 3)
FIG. 5 is a cross-sectional view showing the configuration of the bubble mixing part of the fine bubble generating apparatus according to the third embodiment of the present invention.

図5において、気泡混入部25は、気泡発生手段を構成する筒状のケース26内の流路27の中心部にあって長手方向に沿い、両面に電極としての多孔質貴金属電極28を締め付け金具29で圧着させた固体高分子膜としての棒状の電解質膜30を設け、さらにケース26の一端部で中心よりずれて側面に設けた入水口31と、ケース26の他端部で中心
よりずれて側面に設けた吐水口32と、電極端子33を備えた構成となっている。気液噴出部34は、気泡混入部25の小型化により、気泡混入部25の吐水口32に隣接して設けられている。
In FIG. 5, the bubble mixing part 25 is located in the center of the flow path 27 in the cylindrical case 26 constituting the bubble generating means, extends along the longitudinal direction, and clamps a porous noble metal electrode 28 as an electrode on both sides. 29, a rod-shaped electrolyte membrane 30 as a solid polymer membrane crimped at 29 is provided, and a water inlet 31 provided on the side surface is shifted from the center at one end of the case 26, and is shifted from the center at the other end of the case 26. The water outlet 32 provided on the side surface and the electrode terminal 33 are provided. The gas-liquid ejection part 34 is provided adjacent to the water outlet 32 of the bubble mixing part 25 due to the downsizing of the bubble mixing part 25.

以下その動作、作用を説明すると、電極端子33より多孔質貴金属電極28間に直流電圧を印加することで、水が電気分解され微細気泡が発生する。この電気分解で発生する気泡量は流れた電流量に依存し、電流量は電解時間が長く電極間距離が短くなるほど増加する。   The operation and action will be described below. By applying a DC voltage from the electrode terminal 33 to the porous noble metal electrode 28, water is electrolyzed and fine bubbles are generated. The amount of bubbles generated by this electrolysis depends on the amount of current that flows, and the amount of current increases as the electrolysis time increases and the distance between the electrodes decreases.

一般に通常の電気分解で電流量を多く得るために電極間距離を縮めようとしても、電解の時間経過とともに水道水中のカルシウムイオンやマグネシウムイオンなどが電極表面に析出し、電極間を閉塞してしまうため電極間距離は数mm程度離す必要があり、十分な気泡を得るためには電極面積を増やし、印加電圧を高めなければならなかった。   Generally, even if it is attempted to reduce the distance between the electrodes in order to obtain a large amount of current by ordinary electrolysis, calcium ions, magnesium ions, etc. in tap water are deposited on the electrode surface with the passage of time of electrolysis and block the electrodes. Therefore, the distance between the electrodes needs to be separated by about several mm. In order to obtain sufficient bubbles, the electrode area must be increased and the applied voltage must be increased.

然るに本実施の形態では、多孔質貴金属電極28間の距離は電解質膜30の厚みとなるため電極間距離が縮まり、電解電流を大きくすることが可能となり発生させる気泡の量を増やすことができる。   However, in the present embodiment, the distance between the porous noble metal electrodes 28 is the thickness of the electrolyte membrane 30, so the distance between the electrodes is reduced, the electrolytic current can be increased, and the amount of bubbles generated can be increased.

また、電解質はカルシウムイオンやマグネシウムイオンを通さないため電極間のスケール析出が防止され、常に安定して高い電流量を得ることができるとともに、電極を多孔質とすることで、電極面積を増やすことができさらに装置を小型化することができる。   In addition, since the electrolyte does not pass calcium ions or magnesium ions, scale deposition between the electrodes is prevented, and a high amount of current can be obtained stably at all times, and the electrode area can be increased by making the electrodes porous. In addition, the apparatus can be miniaturized.

多孔質貴金属電極28には、チタンの表面に白金等の貴金属を焼結ないしはメッキにより形成した貴金属電極を用いることができるが、多孔質貴金属電極28として二酸化鉛電極を用いた場合には、電極の表面では水の電気分解で生成した酸素がオゾンに酸化され、オゾンガス溶解水を得ることができる。   As the porous noble metal electrode 28, a noble metal electrode formed by sintering or plating a noble metal such as platinum on the surface of titanium can be used. When a lead dioxide electrode is used as the porous noble metal electrode 28, the electrode On the surface, oxygen generated by electrolysis of water is oxidized to ozone, and ozone gas-dissolved water can be obtained.

一般的な貴金属電極を陽極として用いた場合でも、陽極表面反応で発生するガスにオゾンはわずかに含まれているが、陽極として二酸化鉛電極を用いることでオゾンの発生効率を高めることができる。   Even when a general noble metal electrode is used as the anode, the gas generated by the anode surface reaction contains a slight amount of ozone. However, the use of a lead dioxide electrode as the anode can increase the efficiency of ozone generation.

オゾンは水に対する溶解効率が悪く、気相放電等によりオゾンガスを発生させてから水に溶解する場合には発生したオゾンガスが水に溶解しきれず放出してしまい高濃度のオゾン溶解水を得ることが困難であったが、電気分解で直接オゾンを生成溶解することで、電気分解で生成したオゾンは、気泡径が小さく高濃度であるため水への溶解効率が高まり高濃度にオゾンが溶解した水を効率よく生成することができる。   Ozone has poor dissolution efficiency in water, and when ozone gas is generated by gas-phase discharge or the like and then dissolved in water, the generated ozone gas cannot be completely dissolved in water and released, so that high-concentration ozone-dissolved water can be obtained. Although it was difficult, the ozone generated by electrolysis by dissolving and generating ozone directly by electrolysis increases the efficiency of dissolution in water because the bubble diameter is small and the concentration is high. Can be generated efficiently.

オゾンの溶解した水を用いることで、オゾンによる殺菌漂白作用を得ることができるとともに、電気分解によりオゾンを発生させるため、放電装置等のオゾン発生装置が不要となり、発生後速やかに溶解させることでオゾンの溶解効率を高めることができる。   By using ozone-dissolved water, sterilization bleaching action by ozone can be obtained, and ozone is generated by electrolysis, so there is no need for an ozone generator such as a discharge device. The dissolution efficiency of ozone can be increased.

以上のように本発明にかかる微細気泡発生装置は、水の電気分解により発生した気泡を溶解することで、溶解する気泡の径を電極表面での液体の流速や、気泡成長速度すなわち電流密度によって、コントロールすることができる。そのため、加圧ポンプやタンクが不要となるため、装置を小型化することができ、装置を小型化することで、小型機器への組込も可能とすることができる。   As described above, the fine bubble generating apparatus according to the present invention dissolves bubbles generated by electrolysis of water, so that the diameter of the bubbles to be dissolved depends on the flow rate of liquid on the electrode surface, the bubble growth rate, that is, the current density. Can be controlled. Therefore, since a pressurization pump and a tank become unnecessary, an apparatus can be reduced in size and it can also be integrated in a small apparatus by reducing an apparatus.

本発明の実施の形態1における微細気泡発生装置の断面図Sectional drawing of the fine bubble generator in Embodiment 1 of this invention 同微細気泡発生装置の側面断面図Side sectional view of the microbubble generator 同実施の形態1の微細気泡発生装置を用いた衛生洗浄装置の断面図Sectional drawing of the sanitary washing apparatus using the fine bubble generator of Embodiment 1 本発明の実施の形態2における微細気泡発生装置の断面図Sectional drawing of the fine bubble generator in Embodiment 2 of this invention 本発明の実施の形態3における気泡混入部の断面図Sectional drawing of the bubble mixing part in Embodiment 3 of this invention 従来の微細気泡発生装置の構成図Configuration of conventional microbubble generator

符号の説明Explanation of symbols

1 芯電極(電極)
2 流路
3 ケース
4 電極
5、23、24 コイル状バネ(流速可変手段)
6、25 気泡混入部
7 気液噴出部
8 入水口
9 吐水口
16 衛生洗浄装置本体
18 洗浄ノズル
19 噴出部(気液噴出部)
28 多孔質貴金属電極(電極)
30 電解質膜(固体高分子膜)
1 Core electrode
2 Flow path 3 Case 4 Electrode 5, 23, 24 Coil spring (flow rate variable means)
6, 25 Bubble mixing part 7 Gas-liquid ejection part 8 Water inlet 9 Water outlet 16 Sanitary washing device body 18 Cleaning nozzle 19 Ejection part (gas-liquid ejection part)
28 Porous noble metal electrode (electrode)
30 Electrolyte membrane (solid polymer membrane)

Claims (10)

少なくとも1対の電極を有し、水の電気分解により発生した気泡を流水に加圧混入する気泡混入部と、気泡の混入した水を噴出する気液噴出部を備えた微細気泡発生装置。 A fine bubble generating apparatus having at least one pair of electrodes and including a bubble mixing portion that pressurizes and mixes bubbles generated by electrolysis of water into flowing water, and a gas-liquid jetting portion that jets water containing bubbles. 気泡混入部と気液噴出部を隣接して設けたことを特徴とする請求項1記載の微細気泡混入装置。 2. The fine bubble mixing device according to claim 1, wherein the bubble mixing portion and the gas-liquid jetting portion are provided adjacent to each other. 気泡混入部は、入水口と吐水口とを有し、前記入水口より吐水口の断面積が小さくなる構成とした請求項1または2に記載の微細気泡発生装置。 The fine bubble generating device according to claim 1 or 2, wherein the bubble mixing part has a water inlet and a water outlet, and the cross-sectional area of the water outlet is smaller than the water inlet. 気泡混入部は、芯電極と、前記芯電極の外周に設けた流路と、前記流路を囲うケースと、前記ケース内壁に設けた電極と、前記流路内の流速を変換する流速可変手段とを備えた請求項1から3のいずれか1項記載の微細気泡混入装置。 The bubble mixing part includes a core electrode, a flow path provided on the outer periphery of the core electrode, a case surrounding the flow path, an electrode provided on the inner wall of the case, and a flow rate variable means for converting a flow rate in the flow path. The fine bubble mixing device according to any one of claims 1 to 3, further comprising: 流速可変手段は、流路の流速を速くする方向に変化させる構成とした請求項4記載の微細気泡発生装置。 5. The fine bubble generating device according to claim 4, wherein the flow rate variable means is configured to change the flow rate of the flow path in a direction to increase the flow rate. 流速可変手段は、流路の下流側に向かって流速が速くなるような構成とした請求項5記載の微細気泡発生装置。 6. The fine bubble generating device according to claim 5, wherein the flow velocity varying means is configured such that the flow velocity increases toward the downstream side of the flow path. 流速可変手段は、少なくとも流路の一部を狭くするように構成した請求項4から6のいずれか1項記載の微細気泡発生装置。 The microbubble generator according to any one of claims 4 to 6, wherein the flow rate variable means is configured to narrow at least a part of the flow path. 気泡混入部は、固体高分子膜と前記固体高分子膜の両面に形成した電極からなる気泡発生手段を備えた請求項1から3のいずれか1項記載の微細気泡発生装置。 The fine bubble generating device according to any one of claims 1 to 3, wherein the bubble mixing portion includes a bubble generating means including a solid polymer film and electrodes formed on both surfaces of the solid polymer film. 電極は少なくとも陽極を二酸化鉛電極とし、電気分解により前記二酸化鉛電極表面で酸素とともに発生するオゾンを混入することを特徴とした請求項1から8のいずれか1項記載の微細気泡発生装置。 9. The microbubble generator according to claim 1, wherein at least the anode is a lead dioxide electrode, and ozone generated together with oxygen on the surface of the lead dioxide electrode is mixed by electrolysis. 請求項1から請求項9のいずれか1項に記載の微細気泡発生装置を備えた衛生洗浄装置。 A sanitary washing device comprising the fine bubble generating device according to any one of claims 1 to 9.
JP2005263379A 2005-09-12 2005-09-12 Microbubble generator and sanitary washing device equipped with it Withdrawn JP2007075674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263379A JP2007075674A (en) 2005-09-12 2005-09-12 Microbubble generator and sanitary washing device equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263379A JP2007075674A (en) 2005-09-12 2005-09-12 Microbubble generator and sanitary washing device equipped with it

Publications (1)

Publication Number Publication Date
JP2007075674A true JP2007075674A (en) 2007-03-29

Family

ID=37936504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263379A Withdrawn JP2007075674A (en) 2005-09-12 2005-09-12 Microbubble generator and sanitary washing device equipped with it

Country Status (1)

Country Link
JP (1) JP2007075674A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157580A (en) * 2010-01-29 2011-08-18 Univ Of Shiga Prefecture Electrolytic synthesis method of ozone fine bubble
CN105986283A (en) * 2015-02-12 2016-10-05 江苏海事职业技术学院 Ozone air purifier
JP2018187601A (en) * 2017-05-11 2018-11-29 パナソニックIpマネジメント株式会社 Washing machine rinse water purification device and washing device
CN114105320A (en) * 2021-12-16 2022-03-01 大连理工大学 Method for inhibiting electrode surface scaling by utilizing nano/micro-bubble induced scaling substance liquid-phase nucleation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157580A (en) * 2010-01-29 2011-08-18 Univ Of Shiga Prefecture Electrolytic synthesis method of ozone fine bubble
CN105986283A (en) * 2015-02-12 2016-10-05 江苏海事职业技术学院 Ozone air purifier
CN105986283B (en) * 2015-02-12 2019-02-26 江苏海事职业技术学院 A kind of ozone air purifier
JP2018187601A (en) * 2017-05-11 2018-11-29 パナソニックIpマネジメント株式会社 Washing machine rinse water purification device and washing device
CN114105320A (en) * 2021-12-16 2022-03-01 大连理工大学 Method for inhibiting electrode surface scaling by utilizing nano/micro-bubble induced scaling substance liquid-phase nucleation

Similar Documents

Publication Publication Date Title
JP5102725B2 (en) Flush toilet facilities
JP2007021343A (en) Microbubble generator
JP5574877B2 (en) Ozone water generator
WO2007034580A1 (en) Nanofluid generator and cleaning apparatus
JP2003126665A (en) Microbubble generator
JP2010115594A (en) Fine bubble generation method, fine bubble generator, and reduced water
JP2008006397A (en) Microbubble generation apparatus
JP2007075674A (en) Microbubble generator and sanitary washing device equipped with it
JP2010142760A (en) Oxygen-hydrogen water production method and device therefor
JP2009112979A (en) Apparatus and method for producing ozone water
TW200303784A (en) Ozone mixing device and ozone mixing method
WO2012108235A1 (en) Plasma generator, cleaning and purifying device using the plasma generator, and small-sized electrical apparatus
JP4804527B2 (en) Nozzle for generating fine bubbles
JP2009226230A (en) Device of generating microbubble, and method of generating microbubble
JP4843339B2 (en) Ozone water supply device
JP2008173525A (en) Water treatment apparatus
JPH10230150A (en) Aerator
JP2008114099A (en) Microbubble generation device and bubble fining implement
JP2013237035A (en) Gas dissolver
JP2006061829A (en) Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them
JP2010155754A (en) Apparatus and method of manufacturing ozone water
JP2001259395A (en) Aerator
WO2013061654A1 (en) Solution generation device and ozone water generation device, and sanitary equipment cleaning device equipped with same
US9604862B2 (en) Oxidation method, nozzle and system for treating waste water
JP2004057936A (en) Water cleaning apparatus and nozzle for cavitation reactor used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100216