JP2011157580A - Electrolytic synthesis method of ozone fine bubble - Google Patents

Electrolytic synthesis method of ozone fine bubble Download PDF

Info

Publication number
JP2011157580A
JP2011157580A JP2010019157A JP2010019157A JP2011157580A JP 2011157580 A JP2011157580 A JP 2011157580A JP 2010019157 A JP2010019157 A JP 2010019157A JP 2010019157 A JP2010019157 A JP 2010019157A JP 2011157580 A JP2011157580 A JP 2011157580A
Authority
JP
Japan
Prior art keywords
ozone
water
ion
fine bubbles
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010019157A
Other languages
Japanese (ja)
Other versions
JP5544181B2 (en
Inventor
Kenji Kikuchi
憲次 菊地
Takeo Oku
健夫 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
De Nora Permelec Ltd
University of Shiga Prefecture
Original Assignee
Permelec Electrode Ltd
Panasonic Electric Works Co Ltd
University of Shiga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Panasonic Electric Works Co Ltd, University of Shiga Prefecture filed Critical Permelec Electrode Ltd
Priority to JP2010019157A priority Critical patent/JP5544181B2/en
Priority to CN2011100339106A priority patent/CN102140648A/en
Publication of JP2011157580A publication Critical patent/JP2011157580A/en
Application granted granted Critical
Publication of JP5544181B2 publication Critical patent/JP5544181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which electrolytic water can be electrolytically synthesized from raw material water, wherein the electrolytic water has a large amount of ozone fine bubbles having an average particle size of 10-500 nm dissolved therein. <P>SOLUTION: The electrolytic water containing ≥0.02 mM of ozone fine bubbles having an average particle size of 10-500 nm is obtained by supplying an electrolyte-containing aqueous solution to an electrolytic cell 1 in which a conductive diamond anode 5 is installed, and then conducting electrolysis and synthesizing ozone; wherein the electrolysis is carried out under a current density of 0.01-0.5 A/cm<SP>2</SP>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、オゾン微細気泡を溶解した電解水の電解合成方法に関する。   The present invention relates to a method for electrolytic synthesis of electrolyzed water in which ozone fine bubbles are dissolved.

[オゾン水]
オゾンガスを溶解したオゾン水は、米国FDA(食品医薬品局)では食品添加物リストに登載され、食品貯蔵、製造工程での殺菌剤として認可(2001年)が得られている。既に食品工場内の殺菌、食品そのものの殺菌に多くの実績がある。最近では、皮膚科、眼科、歯科などの医療現場においても、これまでの殺菌水と同等以上に効果を発揮しつつ、生体への負荷を軽減できることが注目されている。殺菌消毒剤としては、塩素系殺菌剤が価格面と効果の点で汎用されているが、塩素系殺菌剤の多量使用により弊害が発生し、例えば大量に食材を取り扱う工場、小売店では100ppmを越える次亜塩素酸ナトリウムによる洗浄を行っており、これが食材の味を損なうのみならず危険性(THMの増加)を付与していることが問題視されている。また、長期にわたる次亜塩素酸塩の使用によりこの薬剤に対する耐性菌が生じており、殺菌効果に疑念が生じている。
[Ozone water]
Ozone water in which ozone gas is dissolved is listed on the Food Additives List in the US FDA (Food and Drug Administration) and has been approved (2001) as a bactericide in food storage and manufacturing processes. There are already many achievements in sterilization in food factories and foods themselves. Recently, in medical fields such as dermatology, ophthalmology, and dentistry, it has been attracting attention that it can reduce the load on the living body while exhibiting the same or better effect than conventional sterilized water. As a disinfectant, a chlorine-based disinfectant is widely used in terms of price and effect. However, harmful effects occur due to the use of a large amount of the chlorine-based disinfectant. It has been regarded as a problem that it is not only deteriorating the taste of the food but also imparting danger (increased THM). In addition, long-term use of hypochlorite has resulted in resistance bacteria to this drug, raising doubts about its bactericidal effect.

これを解決することを主目的として、電気分解により生成される電解水が、農業、食品、医療等の分野において有用であるかが鋭意検討され、日本を中心に代替利用が進んでいる。電解水の優れた殺菌・消毒作用に着目し、医療現場や家庭での利用、例えば患部、切開部、留置カテーテルの経皮開口部等の殺菌、消毒、あるいはキッチン用品、ベビー用品、家具等の家庭用品、トイレ、浴槽等の住居まわりの殺菌、消毒に使用することが検討されている。このような電解水は、溶解によりイオンが生じる溶質、例えば塩化ナトリウム等を添加し、また必要に応じpH調整のための酸を添加した水(被電解水)を、電気分解することによって得られる。 With the main purpose of solving this problem, it has been eagerly studied whether electrolyzed water produced by electrolysis is useful in fields such as agriculture, food, and medicine, and alternative use is progressing mainly in Japan. Paying attention to the excellent sterilization and disinfection action of electrolyzed water, use in medical sites and homes, such as sterilization, disinfection of affected areas, incisions, percutaneous openings of indwelling catheters, etc., kitchenware, baby products, furniture, etc. It is considered to be used for sterilization and disinfection of household items, toilets, bathtubs and other residential areas. Such electrolyzed water is obtained by electrolyzing water (electrolyzed water) to which a solute that generates ions upon dissolution, such as sodium chloride, is added, and where necessary an acid for adjusting the pH is added. .

酸性水のメリットは、次の通りである。
(1) THMは酸性では生成しにくいため安全性が優れている。
(2) 耐性菌が発生しにくく、オンサイトで管理が行いやすい。
(3)アルカリ性電解水との併用処理ができる
(4)水道水のような感覚で利用でき、手指に匂いが残らない
(5)直前での使用で十分(殺菌時間が短い)である。
The merit of acidic water is as follows.
(1) THM is excellent in safety because it is difficult to be generated when acidic.
(2) Resistant bacteria are unlikely to occur and management is easy on-site.
(3) Can be used in combination with alkaline electrolyzed water (4) Can be used as if it were tap water, and no odor remains on the fingers (5) Use immediately before (short sterilization time).

一方、オゾン水のメリットは、次の通りである。
(1) オゾン(OHラジカル)殺菌効果は細胞壁の酸化破壊であり無差別性のため耐性菌が存在しない。
(2) 酸素に分解されるため有害な二次生成物がない
(3) 残留性がない
残留性がないことはメリットでもあり、デメリットでもある。オゾンガスを溶液中に安定に保つことができれば、その応用、効果の拡大が期待できる。
On the other hand, the merits of ozone water are as follows.
(1) Ozone (OH radical) bactericidal effect is oxidative destruction of cell walls, and there is no resistant bacteria because of indiscriminateness.
(2) There are no harmful secondary products because it is decomposed into oxygen. (3) The absence of persistence without persistence is both a merit and a demerit. If ozone gas can be kept stable in the solution, its application and effect can be expected to expand.

[オゾン水の製法]
オゾン水は従来から放電型のオゾンガス発生器を用いて製造することが一般的であり、数ppmのオゾン水を容易に製造でき、浄水処理、食品洗浄分野で利用されている。しかしながら、以下の理由により使用分野に制限であった。
(1) オゾンをいったんガスとして発生させ、その後、水に溶解させる2つの工程を必要とすること。
(2) 後述する電解法に比較して濃度が低いため高圧下で水中に注入し、溶解させ、製造する必要がある。
(3) 発生電源が高電圧・高周波のため、小型化しにくい。
(4) 放電によるオゾン水生成装置では、オゾンガス発生能力が安定するまで時間(数分間の待機時間)を要し、瞬時に一定濃度のオゾン水を調製することが困難である。
[Production method of ozone water]
Conventionally, ozone water is generally produced using a discharge-type ozone gas generator, and several ppm of ozone water can be easily produced, and is used in the field of water purification and food washing. However, it was limited to the field of use for the following reasons.
(1) To generate ozone once as a gas and then require two steps to dissolve in water.
(2) Since the concentration is lower than that of the electrolysis method described later, it is necessary to inject, dissolve and manufacture in water under high pressure.
(3) Since the generated power supply is high voltage and high frequency, it is difficult to reduce the size.
(4) In the ozone water generating device by discharge, it takes time (a waiting time of several minutes) until the ozone gas generation ability is stabilized, and it is difficult to instantaneously prepare ozone water having a constant concentration.

電解法は、放電法に比較して電力原単位は劣るが、高濃度のオゾンガス及び水が容易に得られる特徴により、電子部品洗浄などの特殊分野で汎用されている。原理的に直流低圧電源を用いるため、瞬時応答性、安全性に優れており、小型のオゾンガス、オゾン水発生器としての利用が期待されている。 The electrolysis method is inferior in terms of electric power unit as compared with the discharge method, but is widely used in special fields such as electronic component cleaning due to the feature of easily obtaining high-concentration ozone gas and water. Since a DC low-voltage power supply is used in principle, it has excellent instantaneous response and safety, and is expected to be used as a small ozone gas and ozone water generator.

オゾンガスを効率よく発生させるには、適切な触媒と電解質を選択することが不可欠である。電極材料として、白金などの貴金属、α-二酸化鉛、β-二酸化鉛、フルオロカーボンを含浸させたグラッシーカーボン、ダイヤモンドが知られている。電解質としては、硫酸、リン酸、フッ素基含有などの水溶液が利用されてきたが、取り扱いが不便であり広まってはいない。固体高分子電解質を隔膜として用い、純水を原料とする水電解セルは、その点で管理がしやすく、汎用されている(非特許文献1)。従来からの触媒である二酸化鉛では、12重量%以上の高濃度なオゾンガスが得られる。   In order to efficiently generate ozone gas, it is essential to select an appropriate catalyst and electrolyte. Known electrode materials include noble metals such as platinum, α-lead dioxide, β-lead dioxide, glassy carbon impregnated with fluorocarbon, and diamond. As an electrolyte, an aqueous solution containing sulfuric acid, phosphoric acid, fluorine group and the like has been used, but it is inconvenient to handle and has not spread. A water electrolysis cell using a solid polymer electrolyte as a diaphragm and using pure water as a raw material is easy to manage in that respect and is widely used (Non-Patent Document 1). With lead dioxide, which is a conventional catalyst, ozone gas having a high concentration of 12% by weight or more can be obtained.

特許文献1では、導電性ダイヤモンドが機能水(オゾン含む)用電極として有用であることが開示されている。直接合成方式と呼ばれるシステムでは、電極近傍の溶液に十分な流速を与えることで、ガス化する前にオゾン水として取り出すようにしている(特許文献2)。特許文献3では、オゾンを溶解する電解水の噴霧装置、特に得られた電解水を霧状に噴霧する小型スプレー装置が考案されている。 Patent Document 1 discloses that conductive diamond is useful as an electrode for functional water (including ozone). In a system called a direct synthesis method, a sufficient flow rate is given to a solution in the vicinity of an electrode so as to be taken out as ozone water before gasification (Patent Document 2). In patent document 3, the spraying apparatus of the electrolyzed water which melt | dissolves ozone, especially the small spray apparatus which sprays the obtained electrolyzed water in mist form are devised.

[ナノバブル・マイクロバブル]
近年、ナノバブル、マイクロバブルと呼ばれる微細気泡に関する基礎的研究や実用化の検討が行われている。最近の展開については、微細気泡の最新技術NTS(2006)に記載されている。水と空気を急速に混ぜて発生させた直径数〜数十ミクロンの気泡は、水中に安定に浮遊し、長期間に亘ってガス成分を保存することができる。これらの気泡は次第にガス成分が溶液に溶け込むに従い、ナノサイズにまで減少していくが、気泡の収縮過程が進行するに従い、内部は高圧、高温化する。最終的に気泡が消滅する際には周囲の水分子を圧壊し、ラジカルを生成することも報告されている。
[Nano Bubble / Micro Bubble]
In recent years, basic research and practical application of fine bubbles called nanobubbles and microbubbles have been studied. Recent developments are described in the latest technology for fine bubbles, NTS (2006). Bubbles having a diameter of several to several tens of microns generated by rapidly mixing water and air float stably in water, and can store gas components over a long period of time. These bubbles gradually decrease to nano size as the gas component dissolves in the solution, but the inside becomes high pressure and high temperature as the bubble shrinkage process progresses. It has also been reported that when bubbles eventually disappear, surrounding water molecules are crushed to generate radicals.

当初、酸素などのガスを主体とするナノ、マイクロバブルの効果は報告され、その後マイクロバブル化したオゾン含有気泡は洗浄効果があることは知られている。以下に関連する技術、特許を説明する。 Initially, the effects of nano- and micro-bubbles mainly composed of gas such as oxygen were reported, and it is known that ozone-containing bubbles that have become micro-bubbles have a cleaning effect. The following technologies and patents will be described.

特許文献4には、気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液からなることを特徴とする酸素ナノバブル水についての開示がある。 Patent Document 4 discloses oxygen nanobubble water characterized in that the diameter of the bubbles is 50 to 500 nm, and the bubbles are made of an aqueous solution containing oxygen nanobubbles containing oxygen.

特許文献5には、気泡の直径が50〜500nmであって、前記気泡内にオゾンを含有するオゾンナノバブルが含まれる水溶液からなることを特徴とするオゾン水について開示がある。 Patent Document 5 discloses ozone water having a bubble diameter of 50 to 500 nm, and comprising an aqueous solution containing ozone nanobubbles containing ozone in the bubble.

特許文献6では、水中にオゾンが直径200nm以下のオゾンナノバブルとして存在し、前記オゾンの溶解濃度が、0.1〜5mg/Lである長期持続型オゾン水について報告され、オゾンナノバブルとして長期に安定化させるためには、水溶液中に含まれるナトリウム等の電解質イオンが必要であることが開示されている。これは、オゾンナノバブルの周囲に特定の電解質イオンが存在することで、電解質イオン濃度の上昇によりガスに対する水の溶解度が低下する現象(ソルティングアウト現象)により気泡内部のガスの溶解を抑制する。   In Patent Literature 6, ozone is present in water as ozone nanobubbles having a diameter of 200 nm or less, and the ozone concentration is 0.1 to 5 mg / L. It is disclosed that an electrolyte ion such as sodium contained in an aqueous solution is necessary to make it into an aqueous solution. This is because the presence of specific electrolyte ions around the ozone nanobubbles suppresses the dissolution of the gas inside the bubbles due to a phenomenon in which the solubility of water in the gas decreases due to an increase in electrolyte ion concentration (a salting out phenomenon).

特許文献7では、液体中にマイクロバブルを発生させるためのマイクロバブル発生装置として、多孔質性を有する導電性材料で形成され、両極間に電圧が印加されることにより液体を電気分解する2つの電極を備えたマイクロバブル発生装置が、開示されているが、オゾンガスについては記載がなく、電極材料も限定されている。 In Patent Document 7, two microbubble generators for generating microbubbles in a liquid are formed of a conductive material having a porous property and electrolyze a liquid by applying a voltage between both electrodes. Although the microbubble generator provided with the electrode is disclosed, there is no description about ozone gas, and the electrode material is also limited.

製法に関しても多くの報告が見られる。特許文献8では、マイクロバブルを含む液体を貯留槽に供給し、この供給されたマイクロバブルを含む液体に対し超音波振動を印加することにより、前記液体中のマイクロバブルを圧壊し、前記液体中にナノバブルを生成する方法が開示されている。この他にも、水中放電、超音波による発生、特殊な硝子膜フィルターを用いる方法がある。旋回流式発生器では、オゾン発生装置のガスを循環水と混合させ、マイクロバブルを製造する。マイクロバブル発生装置では高圧水を流し、オリフィスを介してガスを真空圧下で吸収する。バブルジェット(登録商標)、微細液滴噴霧などの方式も開発されている。   There are many reports on manufacturing methods. In Patent Document 8, a liquid containing microbubbles is supplied to a storage tank, and ultrasonic vibration is applied to the supplied liquid containing microbubbles to crush the microbubbles in the liquid, Discloses a method of generating nanobubbles. In addition to this, there are methods using underwater discharge, generation by ultrasonic waves, and a special glass membrane filter. In a swirl type generator, the gas of an ozone generator is mixed with circulating water to produce microbubbles. In the microbubble generator, high-pressure water is flowed and gas is absorbed under vacuum pressure through an orifice. Methods such as bubble jet (registered trademark) and fine droplet spraying have also been developed.

応用技術に関しては、特許文献9では、ナノバブル及びマイクロバブルにより汚濁水を浄化するナノバブル利用汚濁水浄化方法が、特許文献10では除菌可能な水耕栽培装置および水耕栽培方法、特許文献11では冷却塔における冷却水にオゾンマイクロナノバブルを含有させる冷却水改質方法が開示されている。その他、船舶運航抵抗の低減、ウィルスの不活性化、食品分野、農業分野、養殖畜産における水質浄化、医療分野においては造影剤、治療(ドラッグデリバリー)などが検討されている。   Regarding the applied technology, in Patent Document 9, a nanobubble-utilized polluted water purification method that purifies polluted water using nanobubbles and microbubbles is disclosed in Patent Document 10, which is a hydroponic cultivation apparatus and hydroponics method that can be sterilized. A cooling water reforming method in which ozone micro-nano bubbles are contained in the cooling water in the cooling tower is disclosed. In addition, reduction of ship operation resistance, inactivation of viruses, food field, agriculture field, water purification in aquaculture and livestock farming, contrast medium, treatment (drug delivery), etc. are being studied in the medical field.

製造方法に関しては改良すべき点があった。即ち、オゾン、酸素ガスを水に溶解させる方式では、大きい気泡のまま、溶解せずに放出される割合が大きく、オゾンガスについてはこれを除外する装置を付加する必要が生じ、不都合である。したがって、オゾンをナノバブルとして簡便に合成できる方法の開発は有意義である。   Regarding the manufacturing method, there was a point to be improved. That is, the method of dissolving ozone and oxygen gas in water has a large ratio of being released without being dissolved in large bubbles, which is inconvenient because it is necessary to add a device for excluding ozone gas. Therefore, the development of a method that allows ozone to be easily synthesized as nanobubbles is significant.

上記のように、水電解では水素、酸素のナノ気泡、マイクロ気泡の存在は報告されているが、電解によりオゾンナノ気泡、マイクロ気泡が合成できるかについては知られていない。また、適切な電極材料について、これまでに報告されていない。   As described above, the presence of hydrogen, oxygen nanobubbles and microbubbles has been reported in water electrolysis, but it is not known whether ozone nanobubbles or microbubbles can be synthesized by electrolysis. In addition, no appropriate electrode material has been reported so far.

特開平9−268395号公報JP-A-9-268395 特開平8−134677号公報JP-A-8-134777 特開2006−346203号公報JP 2006-346203 A 特開2005−246294号公報JP 2005-246294 A 特開2005−246293号公報JP 2005-246293 A 特開2007−275089号公報JP 2007-275089 A 特開2007−38149号公報JP 2007-38149 A 特開2006−280183号公報JP 2006-280183 A 特開2007−10572号公報JP 2007-10572 A 特開2008−206448号公報JP 2008-206448 A 特開2007−326031号公報JP 2007-326031 A

J. Electrochem. Soc., 132, 367(1985)J. Electrochem. Soc., 132, 367 (1985)

微細気泡を合成する方法は上述のように各種報告があるが、電気分解によりオゾン微細気泡を合成できることが確認されてはいなかった。ダイヤモンド電極はオゾンガス発生に適しているが、微細気泡を多量に合成できるかについてはこれまで報告がなく、該方法で合成したオゾン水を長期に亘って保存すること、また微細気泡を用いた応用など提案されたことはなかった。   As described above, various methods for synthesizing fine bubbles have been reported, but it has not been confirmed that ozone fine bubbles can be synthesized by electrolysis. Diamond electrodes are suitable for generating ozone gas, but there has been no report on whether or not a large amount of fine bubbles can be synthesized, and it is possible to store ozone water synthesized by this method for a long period of time, and applications using fine bubbles. It was never proposed.

本発明は、水溶液を電気分解し、水溶液にオゾン微細気泡を多量に合成できる電解製造方法を提供することを目的とする。   An object of the present invention is to provide an electrolytic production method capable of electrolyzing an aqueous solution and synthesizing a large amount of ozone fine bubbles in the aqueous solution.

本発明は、導電性ダイヤモンド陽極が設置された電解セルに、電解質を含有する水溶液を供給して電気分解を行って、オゾン微細気泡(ナノバブルと称することもある)が溶解した電解水を製造する方法において、電流密度を0.01A/cm2〜0.5A/cm2として電気分解を行うことにより、平均粒径が10nm〜500nmのオゾン微細気泡を0.02mM以上含有する電解水を製造する方法であり、原料である電解液について、炭酸イオン、重炭酸イオン、硝酸イオン、硫酸イオン、塩化物イオン、過塩素酸イオン、水酸イオン、ナトリウムイオン、カリウムイオンのうち、少なくとも1つ以上の電解質を含有し、それらの濃度範囲が0.1〜1000mMであることが好ましい。 The present invention supplies electrolytic solution containing an electrolyte to an electrolysis cell in which a conductive diamond anode is installed, and performs electrolysis to produce electrolyzed water in which ozone fine bubbles (sometimes referred to as nanobubbles) are dissolved. In the method, electrolysis is carried out at a current density of 0.01 A / cm 2 to 0.5 A / cm 2 to produce electrolyzed water containing 0.02 mM or more of ozone fine bubbles having an average particle size of 10 nm to 500 nm. The electrolyte solution as a raw material is a method comprising at least one of carbonate ion, bicarbonate ion, nitrate ion, sulfate ion, chloride ion, perchlorate ion, hydroxide ion, sodium ion and potassium ion. It is preferable that electrolytes are contained and the concentration range thereof is 0.1 to 1000 mM.

更には、陽極室におけるオゾン微細気泡を溶解した電解水の合成と同時に、陰極室で水素微細気泡を含有する電解水を合成することも可能である。 Furthermore, it is possible to synthesize electrolyzed water containing hydrogen fine bubbles in the cathode chamber simultaneously with the synthesis of electrolyzed water in which ozone fine bubbles are dissolved in the anode chamber.

以下本発明方法に使用する各要素に関し説明する、   Hereinafter, each element used in the method of the present invention will be described.

[電極反応]
電解セルでの陽極反応は、
2H2O = O2 + 4H+ + 4e-
の酸素発生が進行するが、触媒、電解条件によって、
3H2O = O3 + 6H+ + 6e-
のオゾンが生成し、これを溶解したオゾン水が合成できる。
[Electrode reaction]
The anodic reaction in the electrolytic cell is
2H 2 O = O 2 + 4H + + 4e
Oxygen evolution proceeds, but depending on the catalyst and electrolysis conditions,
3H 2 O = O 3 + 6H + + 6e
Ozone is generated, and ozone water in which it is dissolved can be synthesized.

[電流密度]
一般的に電流密度が大きいほど、オゾンの電流効率が増加するが、発熱による分解も促進される。
[Current density]
In general, as the current density increases, the current efficiency of ozone increases, but decomposition due to heat generation is also promoted.

本発明者らは、生成するオゾン微細気泡への電流密度の影響を鋭意検討し、電流密度が0.01A/cm2〜0.5A/cm2内にあると、平均粒径が10nm〜500nmのオゾン微細気泡を0.02mM以上含有する電解水を製造できることを見出した。電流密度が、前記範囲より小さくても大きくてもオゾン微細気泡の生成効率が極端に低下する。 The present inventors have intensively studied the influence of the current density to produce ozone micro-bubbles, the current density is in 0.01A / cm 2 ~0.5A / cm 2, an average particle diameter 10nm~500nm It has been found that electrolyzed water containing 0.02 mM or more of ozone fine bubbles can be produced. Whether the current density is smaller or larger than the above range, the generation efficiency of ozone fine bubbles is extremely reduced.

更に電流密度が下限値より小さいと、電流効率が小さくなり、CNBも1ppm以下となり、実用に適さない。上限値より大きいと、温度の増大があり、電流効率の低下、電極原単位の増加を招き、また、電極が短寿命となるため、実用的でない。 Further, if the current density is smaller than the lower limit value, the current efficiency is decreased, and CNB is 1 ppm or less, which is not suitable for practical use. If the value is larger than the upper limit value, the temperature increases, resulting in a decrease in current efficiency, an increase in the electrode basic unit, and an electrode having a short life, which is not practical.

[他の電解条件]
電解は常圧で行っても良いが、更に高濃度のオゾン微細気泡を得るために、高圧下で電解を行うことが好ましい。
[Other electrolysis conditions]
Although electrolysis may be performed at normal pressure, it is preferable to perform electrolysis under high pressure in order to obtain a higher concentration of fine ozone bubbles.

温度は低いほど電極におけるオゾンの電流効率が増加し、また、溶解度も増加するが、セル電圧の増加要因でもあるため、溶液の温度は5℃〜60℃が好ましい。   The lower the temperature, the higher the current efficiency of ozone at the electrode and the higher the solubility. However, the temperature of the solution is preferably 5 ° C. to 60 ° C. because it is a factor for increasing the cell voltage.

[陽極材料]
陽極基材としてはチタン、ニオブなどの弁金属、その合金、シリコンに限定される。ダイヤモンドはドーピングにより電気伝導性の制御も可能であることから、電極材料として有望とされている。ダイヤモンド電極は水の分解反応に対しては不活性であり、酸化反応では酸素以外にオゾン、過酸化水素の生成が報告されている。触媒は陽極の一部に存在すればよく、前記基材の一部が露出していても支障ない。
[Anode material]
The anode base material is limited to valve metals such as titanium and niobium, alloys thereof, and silicon. Diamond is considered promising as an electrode material because it can control electrical conductivity by doping. The diamond electrode is inactive against the decomposition reaction of water, and ozone and hydrogen peroxide are reported to be generated in addition to oxygen in the oxidation reaction. The catalyst only needs to be present on a part of the anode, and there is no problem even if a part of the substrate is exposed.

導電性ダイヤモンド電極を製造するために代表的な熱フィラメントCVD法について説明する。炭素源となるメタンCH4など炭化水素ガス、或いはアルコールなどの有機物を用い、CVDチャンバー内に水素ガスと共に送り込み、還元雰囲気に保ちながら、フィラメントを熱し、炭素ラジカルが生成する温度1800〜2400℃に加熱にする。このときダイヤモンドが析出する温度(750〜950℃)領域に電極基材を設置する。水素に対する炭化水素ガス濃度は0.1〜10vol%、圧力は20hPa〜1013hPa(1気圧)である。 A typical hot filament CVD method for producing a conductive diamond electrode will be described. Using a hydrocarbon gas such as methane CH 4 as a carbon source or an organic substance such as alcohol, it is sent together with hydrogen gas into the CVD chamber, and while maintaining a reducing atmosphere, the filament is heated to a temperature of 1800 to 2400 ° C. at which carbon radicals are generated. Heat. At this time, an electrode base material is installed in a temperature (750 to 950 ° C.) region where diamond is deposited. The hydrocarbon gas concentration with respect to hydrogen is 0.1 to 10 vol%, and the pressure is 20 hPa to 1013 hPa (1 atm).

ダイヤモンドが良好な導電性を得るために、原子価の異なる元素を微量添加することは不可欠である。ホウ素BやリンPの好ましい含有率は1〜100000ppmであり、更に好ましくは100〜10000ppmである。原料化合物にはトリメチルボロン(CH3) 3Bを用いるが、毒性の少ない酸化ホウ素B23、5酸化2燐P25などの利用も好ましい。電極基材の形状としては、板のみならず、粒子、繊維、板、穴明き板、棒などが可能である。 In order for diamond to obtain good conductivity, it is indispensable to add a trace amount of elements having different valences. A preferable content of boron B or phosphorus P is 1 to 100,000 ppm, and more preferably 100 to 10,000 ppm. Trimethylboron (CH 3 ) 3 B is used as the raw material compound, but it is also preferable to use boron oxide B 2 O 3 , pentaoxide 2 phosphorus P 2 O 5, etc., which are less toxic. The shape of the electrode substrate can be not only a plate but also particles, fibers, plates, perforated plates, bars, and the like.

電解によりオゾン微細気泡を製造するためには、電解により生じた過飽和なオゾン成分を素早く電極表面から除去することが好ましい。検討の結果、表面の凹凸粗さが小さいほど、平滑であるほど、微細な気泡が合成できることを確認できた。電極表面の粗さとして、1〜100ミクロンの範囲であることが好ましい。   In order to produce ozone fine bubbles by electrolysis, it is preferable to quickly remove supersaturated ozone components generated by electrolysis from the electrode surface. As a result of the study, it was confirmed that the smaller the surface roughness, the smoother the finer bubbles that can be synthesized. The roughness of the electrode surface is preferably in the range of 1 to 100 microns.

[陰極材料]
陰極反応は主に水素発生であり、水素に対して脆化しない電極触媒を使用することが好ましく、白金族金属、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボン、ダイヤモンドなどが好ましい。陰極基材としてはステンレス、ジルコニウム、カーボン、ニッケル、チタンなどに限定される。本発明方法に使用する装置では、いずれもオゾンや過酸化物が溶解した水と接触する配置となるため、酸化耐性に優れたものが好ましい。
[Cathode material]
The cathodic reaction is mainly hydrogen generation, and it is preferable to use an electrode catalyst that does not embrittle with hydrogen, and platinum group metals, nickel, stainless steel, titanium, zirconium, gold, silver, carbon, diamond and the like are preferable. The cathode base material is limited to stainless steel, zirconium, carbon, nickel, titanium and the like. In the apparatus used for the method of the present invention, all of them are in contact with water in which ozone or peroxide is dissolved.

[膜材料]
電極反応で生成した活性な物質を安定に保つために中性隔膜やイオン交換膜が利用可能である。膜はフッ素樹脂系、炭化水素樹脂系のいずれでも良いが、オゾンや過酸化物耐食性の面で前者が好ましい。イオン交換膜は、陽極、陰極で生成した物質が反対の電極で消費されるのを防止するとともに、液の電導度の低い場合でも電解を速やかに進行させる機能を有するため、伝導性の乏しい純水などを原料として利用する場合には必須となる。材質としては、フッ素樹脂系、ポリイミド樹脂系が好ましい。
[Membrane material]
In order to keep the active substance generated by the electrode reaction stable, a neutral diaphragm or an ion exchange membrane can be used. The film may be either a fluororesin or a hydrocarbon resin, but the former is preferable in terms of ozone and peroxide corrosion resistance. The ion exchange membrane has a function to prevent the substances generated at the anode and cathode from being consumed at the opposite electrode, and to rapidly proceed electrolysis even when the liquid conductivity is low. This is essential when water or the like is used as a raw material. The material is preferably a fluororesin system or a polyimide resin system.

[電解セル]
陽極、陰極及び電解質溶液からなる1室セルや、更に隔膜を含む2室セルを、電解セルとして使用でき、図1には2室セルを示した。電極間距離は0.1mm〜50mmが好ましく、0.1mmから2mm程度がより好適である。これより近いと接触により短絡が発生しやすく、これより遠いとセル電圧の増加を招く。各室には、電解液の供給口と排出口、生成ガスの排出口が設けられている。製造された電解水は、セル室内に保存することも可能であるが、別途の容器に保存することが好ましい。タンク材質は電解水により侵されない材料を選択する。特に問題がなければPE樹脂などでよい。隔膜により陽極室と陰極室が区画された2室セルでは、陽極室よりオゾン微細気泡を含有する電解水を、陰極室より水素微細気泡を含有する電解水を同時に合成することができ、用途によっては優れた電解装置と云える。
[Electrolysis cell]
A one-chamber cell composed of an anode, a cathode and an electrolyte solution, and a two-chamber cell further including a diaphragm can be used as an electrolysis cell. FIG. 1 shows a two-chamber cell. The distance between the electrodes is preferably 0.1 mm to 50 mm, more preferably about 0.1 mm to 2 mm. If it is closer than this, a short circuit is likely to occur due to contact, and if it is farther than this, the cell voltage increases. Each chamber is provided with an electrolyte supply port and discharge port, and a generated gas discharge port. The produced electrolyzed water can be stored in the cell chamber, but is preferably stored in a separate container. As the tank material, a material that is not affected by electrolyzed water is selected. If there is no particular problem, PE resin or the like may be used. In a two-chamber cell in which an anode chamber and a cathode chamber are partitioned by a diaphragm, electrolyzed water containing ozone fine bubbles from the anode chamber and electrolyzed water containing hydrogen fine bubbles from the cathode chamber can be synthesized simultaneously. Is an excellent electrolyzer.

[原料水]
溶解によりイオンが生じる溶質、例えば塩化ナトリウム等を添加し、また必要に応じpH調整のための酸を添加した水(原料水)を、電気分解することによってオゾン微細気泡を溶解した電解水が得られる。
[Raw material water]
Electrolyzed water (raw water) with the addition of a solute that generates ions upon dissolution, such as sodium chloride, and the addition of an acid for pH adjustment (raw water) is obtained by dissolving the ozone fine bubbles. It is done.

前記原料水は、炭酸イオン、重炭酸イオン、硝酸イオン、硫酸イオン、塩化物イオン、水酸イオン、ナトリウムイオン、カリウムイオン、のうち、少なくとも1つ以上の電解質を含有し、それらの濃度範囲が0.1〜1000mMであることが好ましい。これらのイオンは気泡の合一を抑制する効果が知られており、微細気泡の合成濃度の程度に含まれていることが好ましい。この範囲より小さいと、抑制効果が期待できず、また、これより大きい範囲は、単に無駄な添加物となり、合成した溶液の実用性が劣ることになる。 The raw water contains at least one electrolyte of carbonate ion, bicarbonate ion, nitrate ion, sulfate ion, chloride ion, hydroxide ion, sodium ion, potassium ion, and the concentration range thereof. It is preferable that it is 0.1-1000 mM. These ions are known to have an effect of suppressing coalescence of bubbles, and are preferably included in the degree of synthesis of fine bubbles. If it is smaller than this range, the inhibitory effect cannot be expected, and if it is larger than this range, it will simply be a useless additive, and the practicality of the synthesized solution will be poor.

水道水、井戸水なども利用可能な原料水である。しかしながら伝導度が小さく、セル電圧に占める抵抗損失が無視できないため、上記の電解質を添加することが好ましい。また、水道水、井戸水、海水などの金属イオンを多く含む処理対象では、陰極表面に水酸化物或いは、炭酸化物が沈殿し反応が阻害される恐れがある。また陽極表面にはシリカなどの酸化物が析出する。これを防ぐために、逆電流を適当な時間(1分から1時間)ごとに与えることにより、陰極では酸性化し、陽極ではアルカリ化するため、発生ガス及び供給水の流動により加速され、析出物の脱離反応が容易に進行する。   Tap water, well water, etc. can also be used as raw water. However, since the conductivity is small and the resistance loss in the cell voltage cannot be ignored, it is preferable to add the above electrolyte. Moreover, in the processing object containing many metal ions, such as tap water, well water, seawater, there exists a possibility that a hydroxide or a carbonate may precipitate on the cathode surface and reaction may be inhibited. In addition, an oxide such as silica is deposited on the surface of the anode. In order to prevent this, by applying a reverse current every appropriate time (1 minute to 1 hour), it is acidified at the cathode and alkalized at the anode. The separation reaction proceeds easily.

濃度が上記より大きい場合、ナノバブル濃度の増加が期待できるが、生成した電解水を実用する場合に、希釈、あるいは、加えた電解質の除去などの工程が必要となり、かえって不便となる。   If the concentration is higher than the above, an increase in nanobubble concentration can be expected. However, when the generated electrolyzed water is put to practical use, a process such as dilution or removal of the added electrolyte is required, which is inconvenient.

[生成電解水]
従来から報告されているように、気泡の合一を抑制する電解質として、カチオンとしてカリウム、ナトリウム、リチウムイオンが、アニオンとして、水酸イオン、塩化物イオン、硝酸イオン、臭化物イオン、硫酸イオンなどが知られている。これらの電解質を選択し、合成される電解水中に残存することにより長寿命のナノ、マイクロバブル(オゾン微細気泡)が合成できる。微細気泡はこれらの気泡の合一を抑制する電解質の選択をしない場合でも合成できる。但し、塩化物イオンなどの電解により容易に酸化し、次亜塩素酸などを生成するイオンは、オゾン生成効率の低下を招くため、避けることが好ましい。一方で、微細気泡であるオゾン成分と次亜塩素酸を共存させた溶液を合成する場合には、塩化物イオンを低濃度溶解した原料水を用いることが可能である。これらの塩は電解により過酸化物が生成し、殺菌効果の残留性を担う機能も有している。
[Generated electrolyzed water]
As reported previously, potassium, sodium, lithium ions as cations as electrolytes that suppress the coalescence of bubbles, and hydroxide ions, chloride ions, nitrate ions, bromide ions, sulfate ions, etc. as anions. Are known. By selecting these electrolytes and remaining in the synthesized electrolyzed water, it is possible to synthesize long-lived nano and micro bubbles (ozone fine bubbles). Microbubbles can be synthesized even without selecting an electrolyte that suppresses coalescence of these bubbles. However, it is preferable to avoid ions that easily oxidize by electrolysis of chloride ions or the like and generate hypochlorous acid or the like because the ozone generation efficiency is reduced. On the other hand, when synthesizing a solution in which an ozone component that is fine bubbles and hypochlorous acid coexist, raw material water in which chloride ions are dissolved at a low concentration can be used. These salts have a function of generating peroxides by electrolysis and responsible for the persistence of the bactericidal effect.

合成した電解液は保存でき、用途に応じて利用可能である。微細気泡は溶液中で帯電しゼータ電位がpH依存性を有するため、pHを制御してオゾン殺菌力を制御することも可能である。即ち、対象とする物質、生物が正に帯電している場合、微細気泡を負に帯電させ、対象が負に帯電している場合、微細気泡を正に帯電させる。   The synthesized electrolyte can be stored and can be used depending on the application. Since the fine bubbles are charged in the solution and the zeta potential has pH dependence, it is possible to control the ozone sterilizing power by controlling the pH. That is, when the target substance or organism is positively charged, the fine bubbles are negatively charged. When the target is negatively charged, the fine bubbles are positively charged.

[電解水中のナノ・マイクロバブルの定量]
陽極室から取り出される電解液にヨウ化カリウムを入れ、チオ硫酸ナトリウムによる酸化還元滴定を行い、溶解するオゾンの濃度および電流効率を算出する。このときのオゾン濃度をC1(mM)とする。また、採取した電解液を純水で5倍希釈した後、同様の測定方法にて濃度および電流効率を算出する。後者の濃度をC5(mM)とすると、ナノバブルの濃度CNBは下式にて見積もりが可能である。
[Quantification of nano / micro bubbles in electrolyzed water]
Potassium iodide is added to the electrolytic solution taken out from the anode chamber, and oxidation-reduction titration with sodium thiosulfate is performed to calculate the concentration of dissolved ozone and the current efficiency. The ozone concentration at this time is C 1 (mM). Further, after the collected electrolyte solution is diluted five times with pure water, the concentration and current efficiency are calculated by the same measurement method. When the latter concentration is C 5 (mM), the nanobubble concentration C NB can be estimated by the following equation.

5×5 − C1 = CNB C 5 × 5 − C 1 = C NB

オゾン濃度はKI法で測定した。UV法、インジゴ法などでも定量できる。本発明方法におけるオゾン微細気泡を含むオゾン水全体の濃度CNBは0.02mM (1ppm)以上とする。これ以下の濃度では、実用的な効果が期待できない。 The ozone concentration was measured by the KI method. It can also be quantified by UV method, indigo method and the like. The concentration C NB of the entire ozone water including ozone fine bubbles in the method of the present invention is 0.02 mM (1 ppm) or more. If the concentration is less than this, a practical effect cannot be expected.

本発明方法は、殺菌、消毒、脱色などの分野において、電解水装置の利用の拡大に寄与することが期待される。オゾン発生とナノバブル発生を1つの工程によって行うことで、装置の小型化、軽量化、低価格化が達成でき、実用化に大いに貢献できる。   The method of the present invention is expected to contribute to the expansion of the use of electrolyzed water devices in fields such as sterilization, disinfection, and decolorization. By performing ozone generation and nanobubble generation in a single process, the device can be reduced in size, weight, and cost, which can greatly contribute to practical use.

本発明方法に使用できる2室セルを示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the two-chamber cell which can be used for this invention method.

以下、本発明を添付図面及び実施例に基づいてより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples.

図1は、本発明方法に使用できる2室セルを示す概略縦断面図である。
2室セル1は、パーフルオロスルホン酸系の陽イオン交換膜2により、陽極室3と陰極室4と区画されている。陽イオン交換膜2の陽極室3側には、弁金属製等の板状基体上に不純物をドープさせた導電性ダイヤモンド層を被覆したダイヤモンド陽極5が間隔を空けて設置され、前記陽イオン交換膜2の陰極室側には間隔を空けて、板状陰極6が設置されている。
FIG. 1 is a schematic longitudinal sectional view showing a two-chamber cell that can be used in the method of the present invention.
The two-chamber cell 1 is divided into an anode chamber 3 and a cathode chamber 4 by a perfluorosulfonic acid cation exchange membrane 2. On the side of the anode chamber 3 of the cation exchange membrane 2, a diamond anode 5 in which a conductive diamond layer doped with impurities is coated on a plate-like substrate made of valve metal or the like is disposed at an interval. A plate-like cathode 6 is provided on the cathode chamber side of the membrane 2 with a space therebetween.

陽極室3の下部及び上部には側方に向けて、それぞれ原料陽極水供給口7及び合成されたオゾン微細気泡溶解水取出口8が形成され、かつ陰極室4の下部及び上部には側方に向けて、それぞれ原料陰極水供給口9及び合成された水素ガス取出口10が形成されている。   A raw material anode water supply port 7 and a synthesized ozone fine bubble dissolved water outlet 8 are respectively formed laterally at the lower and upper portions of the anode chamber 3, and laterally at the lower and upper portions of the cathode chamber 4. The raw material cathode water supply port 9 and the synthesized hydrogen gas outlet 10 are formed respectively.

このセル1の陽極室3及び陰極室4に、原料陽極水供給口7及び原料陰極水供給口9から、電解質を溶解した原料水を供給しながら、電流密度が0.01A/cm2〜0.5A/cm2となるように通電する。これにより陽極室では、平均粒径が10nm〜500nmのオゾン微細気泡が0.02mM以上の濃度で合成され、同時に陰極室では、通常の水電解により水素ガスが発生する。得られたオゾン微細気泡を溶解する電解水は、オゾン微細気泡溶解水取出口8から取出され、所定用途に使用される。 A current density of 0.01 A / cm 2 to 0 is supplied to the anode chamber 3 and the cathode chamber 4 of the cell 1 while supplying the raw water containing the electrolyte from the raw anode water supply port 7 and the raw cathode water supply port 9. Current is supplied so as to be 5 A / cm 2 . Thereby, ozone fine bubbles having an average particle diameter of 10 nm to 500 nm are synthesized in the anode chamber at a concentration of 0.02 mM or more, and at the same time, hydrogen gas is generated in the cathode chamber by normal water electrolysis. The obtained electrolyzed water for dissolving the ozone fine bubbles is taken out from the ozone fine bubble-dissolved water outlet 8 and used for a predetermined use.

[実施例及び比較例] [Examples and Comparative Examples]

「実施例1」
陽極として、表面に導電性ダイヤモンド触媒(ホウ素ドープ濃度1300ppm)層を形成したニオブ製の板状電極(5cm×5cm)を用いた。隔膜としてイオン交換膜(デュポン製Nafion117、厚さ0.2mm)を用い、陰極として、白金0.2ミクロンをめっきにより形成させた板状電極(5cm×5cm)を用い、陽極室、陰極室の2室を有する電解セルを構築した。電解セルの各室には気体、液体の流路を設けた。NaOHでpH12に調整した0.5Mの硝酸ナトリウム水溶液を原料として、陽極室、陰極室の下部から毎分35mLにて供給した。電流密度を0.1A/cm2とし、温度を出口にて25℃に制御した。オゾンガスの水和した溶解分濃度C1は0.25mMであり5倍希釈方法での濃度C5 が1.8mMであった。この差からナノバブルとしてのオゾン水濃度は1.55mMであった。ナノバブルに関する電流効率は21%であった。
"Example 1"
A niobium plate electrode (5 cm × 5 cm) having a conductive diamond catalyst (boron doping concentration of 1300 ppm) layer formed on the surface was used as the anode. An ion exchange membrane (Dafon Nafion 117, thickness 0.2 mm) is used as a diaphragm, and a plate electrode (5 cm × 5 cm) formed by plating with 0.2 μm platinum is used as a cathode. An electrolysis cell having two chambers was constructed. Gas and liquid flow paths were provided in each chamber of the electrolysis cell. A 0.5 M sodium nitrate aqueous solution adjusted to pH 12 with NaOH was used as a raw material and supplied at a rate of 35 mL / min from the lower part of the anode chamber and the cathode chamber. The current density was 0.1 A / cm 2 and the temperature was controlled at 25 ° C. at the outlet. The hydrated dissolved component concentration C 1 of ozone gas was 0.25 mM, and the concentration C 5 in the 5-fold dilution method was 1.8 mM. From this difference, the concentration of ozone water as nanobubbles was 1.55 mM. The current efficiency for the nanobubbles was 21%.

[実施例2]
電流密度を0.4A/cm2としたこと以外実施例1と同様に電解を行ったところ、オゾンガス溶解分濃度C1は0.2mMであり、5倍希釈方法での濃度C5 が1.9mMであり、この差からナノバブルとしてのオゾン水濃度は1.7mMであった。ナノバブルに関する電流効率は5.5%であった。
[Example 2]
When electrolysis was performed in the same manner as in Example 1 except that the current density was 0.4 A / cm 2 , the ozone gas dissolved component concentration C 1 was 0.2 mM, and the concentration C 5 in the 5-fold dilution method was 1. From this difference, the ozone water concentration as nanobubbles was 1.7 mM. The current efficiency for the nanobubbles was 5.5%.

[実施例3]
電流密度を0.08A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 が0.8mMであり、ナノバブルに関する電流効率は1.4%であった。
[Example 3]
When electrolysis was performed in the same manner as in Example 1 except that the current density was 0.08 A / cm 2 , the concentration C 5 in the 5-fold dilution method was 0.8 mM, and the current efficiency with respect to nanobubbles was 1.4%. Met.

[実施例4]
電流密度を0.01A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 が0.02mMであり、ナノバブルに関する電流効率は2.7%であった。
[Example 4]
When electrolysis was performed in the same manner as in Example 1 except that the current density was 0.01 A / cm 2 , the concentration C 5 in the 5-fold dilution method was 0.02 mM, and the current efficiency related to nanobubbles was 2.7%. Met.

[比較例1]
電流密度を0.005A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 は測定限界以下であった。
[Comparative Example 1]
When electrolysis was performed in the same manner as in Example 1 except that the current density was 0.005 A / cm 2 , the concentration C 5 in the 5-fold dilution method was below the measurement limit.

[比較例2]
電流密度を0.55A/cm2としたこと以外実施例1と同様に電解を行ったところ、5倍希釈方法での濃度C5 は0.01mMであった。
[Comparative Example 2]
When electrolysis was conducted in the same manner as in Example 1 except that the current density was 0.55 A / cm 2 , the concentration C 5 in the 5-fold dilution method was 0.01 mM.

[実施例5]
NaOHでpH12に調製した0.5Mの過塩素酸ナトリウムを用いたこと以外は実施例1と同様な電解を行ったところ、オゾンガス溶解分濃度C1は0.1mMであり、5倍希釈方法での濃度C5 が0.3mMであり、この差からナノバブルとしてのオゾン水濃度は0.2mMであった。ナノバブルに関する電流効率は3.5%であった。
[Example 5]
Except for using 0.5 M sodium perchlorate adjusted to pH 12 with NaOH, the same electrolysis as in Example 1 was performed. As a result, the ozone gas dissolved component concentration C 1 was 0.1 mM, and the 5-fold dilution method was used. the concentration C 5 of a 0.3 mM, the concentration of ozone water as nanobubbles from this difference was 0.2 mM. The current efficiency for nanobubbles was 3.5%.

また、陰極室からは、水素水が得られ、水素のナノバブルとして、水素ガス溶解濃度1mM、5倍希釈方法での濃度3mMが得られた。   Also, hydrogen water was obtained from the cathode chamber, and as hydrogen nanobubbles, a hydrogen gas dissolution concentration of 1 mM and a concentration of 3 mM by a 5-fold dilution method were obtained.

「実施例6」
陽極として導電性ダイヤモンド触媒(ホウ素ドープ濃度1300ppm)を形成したシリコン製の板状電極(3.5cm×3.5cm)を用いた。0.01Mの炭酸ナトリウムを用い実施例1と同様な測定を行ったところ、電流密度0.1A/cm2で溶存オゾン濃度C1は0.3mMMであり、5倍希釈方法での濃度C5 が0.9mMであり、ナノバブルに関する電流効率は8%であった。
"Example 6"
A silicon plate electrode (3.5 cm × 3.5 cm) on which a conductive diamond catalyst (boron doping concentration 1300 ppm) was formed was used as the anode. When the same measurement as in Example 1 was performed using 0.01 M sodium carbonate, the dissolved ozone concentration C 1 was 0.3 mMM at a current density of 0.1 A / cm 2 , and the concentration C 5 in the 5-fold dilution method was Was 0.9 mM and the current efficiency for nanobubbles was 8%.

[比較例3]
陽極として、白金板を用いたこと以外は実施例1と同様のセルを組み立て試験したところ、オゾンガスの水和した溶解分濃度C1は0.01mMであり、5倍希釈方法での濃度C5 は計測できない程度の量であった。これより微細気泡の存在は確認できないほど少ないと推察された。
[Comparative Example 3]
When a cell similar to that of Example 1 was assembled and tested except that a platinum plate was used as the anode, the hydrated dissolved component concentration C 1 of ozone gas was 0.01 mM, and the concentration C 5 in the 5-fold dilution method was Was an amount that could not be measured. From this, it was speculated that the presence of fine bubbles could not be confirmed.

1 2室セル
2 陽イオン交換膜
3 陽極室
4 陰極室
5 ダイヤモンド陽極
6 板状陰極
1 2 chamber cell 2 cation exchange membrane 3 anode chamber 4 cathode chamber 5 diamond anode 6 plate cathode

Claims (3)

導電性ダイヤモンド陽極が設置された電解セルに、電解質を含有する水溶液を供給して電気分解を行って、オゾン微細気泡が溶解した電解水を製造する方法において、電流密度を0.01A/cm2〜0.5A/cm2として電気分解を行うことにより、平均粒径が10nm〜500nmのオゾン微細気泡を0.02mM以上含有する電解水を製造することを特徴とする方法。 In a method for producing electrolyzed water in which ozone fine bubbles are dissolved by supplying an aqueous solution containing an electrolyte to an electrolysis cell in which a conductive diamond anode is installed, and performing electrolysis, the current density is 0.01 A / cm 2. A method comprising producing electrolyzed water containing 0.02 mM or more of ozone fine bubbles having an average particle diameter of 10 nm to 500 nm by performing electrolysis at ˜0.5 A / cm 2 . 電解質が、炭酸イオン、重炭酸イオン、硝酸イオン、硫酸イオン、塩化物イオン、過塩素酸イオン、水酸イオン、ナトリウムイオン及びカリウムイオンから成る郡から選択される少なくとも1種であり、その濃度範囲が0.1mM〜1000mMである請求項1記載の方法。   The electrolyte is at least one selected from the group consisting of carbonate ion, bicarbonate ion, nitrate ion, sulfate ion, chloride ion, perchlorate ion, hydroxide ion, sodium ion and potassium ion, and its concentration range The method according to claim 1, wherein is 0.1 mM to 1000 mM. 陽極室でのオゾン微細気泡を含有する電解水の合成と同時に、陰極室で水素微細気泡を含有する電解水を合成する請求項1記載の方法。   The method according to claim 1, wherein electrolyzed water containing hydrogen fine bubbles is synthesized in the cathode chamber simultaneously with synthesis of electrolyzed water containing ozone fine bubbles in the anode chamber.
JP2010019157A 2010-01-29 2010-01-29 Electrochemical synthesis of ozone fine bubbles Active JP5544181B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010019157A JP5544181B2 (en) 2010-01-29 2010-01-29 Electrochemical synthesis of ozone fine bubbles
CN2011100339106A CN102140648A (en) 2010-01-29 2011-01-28 Electrolytic synthesis method of ozone micro-bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019157A JP5544181B2 (en) 2010-01-29 2010-01-29 Electrochemical synthesis of ozone fine bubbles

Publications (2)

Publication Number Publication Date
JP2011157580A true JP2011157580A (en) 2011-08-18
JP5544181B2 JP5544181B2 (en) 2014-07-09

Family

ID=44408436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019157A Active JP5544181B2 (en) 2010-01-29 2010-01-29 Electrochemical synthesis of ozone fine bubbles

Country Status (2)

Country Link
JP (1) JP5544181B2 (en)
CN (1) CN102140648A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198310A (en) * 2013-03-29 2014-10-23 国立大学法人福井大学 Compact electrolytic water generator
JP2014531300A (en) * 2011-08-25 2014-11-27 ターサノ・インコーポレーテッド Treatment of water to extend the half-life of ozone
JP5691023B1 (en) * 2014-02-15 2015-04-01 株式会社勝電技研 Hydrogen water production equipment
JP2017039981A (en) * 2015-08-20 2017-02-23 国立研究開発法人産業技術総合研究所 Method for producing hydrogen peroxide and production device therefor
JP2018068153A (en) * 2016-10-26 2018-05-10 三菱電機株式会社 Food treatment device
JP2018184655A (en) * 2017-04-27 2018-11-22 学校法人慶應義塾 Device and method for collecting valuable materials by electrolytic reduction of exhaust gas
US10852253B2 (en) 2016-03-18 2020-12-01 Hitachi High-Tech Corporation Specimen observation method
JP2021531951A (en) * 2019-07-03 2021-11-25 ヂェァジァン ユニバーシティZhejiang University Hydrogen production sterilization system by ultrasonic-electrode-nanoporous membrane coupling
JP7152824B1 (en) 2022-08-26 2022-10-13 株式会社ナノバブル研究所 Cation-containing microbubble generator and cation generator
JP7446099B2 (en) 2019-12-06 2024-03-08 エア・ウォーター株式会社 Composition for treating infection in root canals and dentinal tubules of teeth

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668952A (en) * 2012-04-26 2012-09-19 中国农业大学 Sterilization method of soilless culture medium
DE102014203372A1 (en) * 2014-02-25 2015-08-27 Condias Gmbh Electrode arrangement for an electrochemical treatment of a liquid
CN105112937A (en) * 2015-09-30 2015-12-02 广州市德百顺电气科技有限公司 Ozone water electrolysis device directly connected to coated electrode
CN108611655B (en) * 2018-03-18 2020-11-06 广州市德百顺电气科技有限公司 Electrode unit and electrode composed of same
CN110499518B (en) * 2018-05-18 2021-08-06 苏州庚泽新材料科技有限公司 Electrolysis device
US20230112608A1 (en) 2021-10-13 2023-04-13 Disruptive Oil And Gas Technologies Corp Nanobubble dispersions generated in electrochemically activated solutions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060011A (en) * 2002-07-30 2004-02-26 Neo Ozone Kk Electrolytic ozone water manufacturing apparatus
JP2007075674A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Microbubble generator and sanitary washing device equipped with it
JP2008192630A (en) * 2006-03-20 2008-08-21 Eiji Matsumura Electromechanical component cleaning method and electromechanical component cleaning device
JP2009052105A (en) * 2007-08-28 2009-03-12 Nikka Micron Kk Ozone water production apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819860B2 (en) * 2003-03-12 2006-09-13 三洋電機株式会社 Ozone generator
JP4723627B2 (en) * 2007-11-15 2011-07-13 ペルメレック電極株式会社 Membrane-electrode assembly, electrolytic cell using the same, electrolytic water spray device, and sterilization method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060011A (en) * 2002-07-30 2004-02-26 Neo Ozone Kk Electrolytic ozone water manufacturing apparatus
JP2007075674A (en) * 2005-09-12 2007-03-29 Matsushita Electric Ind Co Ltd Microbubble generator and sanitary washing device equipped with it
JP2008192630A (en) * 2006-03-20 2008-08-21 Eiji Matsumura Electromechanical component cleaning method and electromechanical component cleaning device
JP2009052105A (en) * 2007-08-28 2009-03-12 Nikka Micron Kk Ozone water production apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013040112; 青山敬 他: 'HBF4水溶液およびH2SO4水溶液中におけるダイヤモンド電極上でのオゾン発生' ソーダ工業技術討論会講演要旨集 Vol.26th, 20021128, Page.9-12 *
JPN6013054469; 吉原佐知雄 他: 'ボロンドープダイヤモンド電極を利用したオゾン水製造システムの検討' 電気化学会大会講演要旨集 72nd, 20050401, Page.61 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783443B2 (en) 2011-08-25 2017-10-10 Tersano Inc. Treatment of water to extend half-life of ozone
JP2014531300A (en) * 2011-08-25 2014-11-27 ターサノ・インコーポレーテッド Treatment of water to extend the half-life of ozone
US10017409B2 (en) 2011-08-25 2018-07-10 Tersano Inc. Treatment of water to extend half-life of ozone
JP2015142915A (en) * 2011-08-25 2015-08-06 ターサノ・インコーポレーテッド Treatment of water to extend half-life of ozone
JP2014198310A (en) * 2013-03-29 2014-10-23 国立大学法人福井大学 Compact electrolytic water generator
JP2015150512A (en) * 2014-02-15 2015-08-24 株式会社勝電技研 Hydrogen water production apparatus
JP5691023B1 (en) * 2014-02-15 2015-04-01 株式会社勝電技研 Hydrogen water production equipment
JP2017039981A (en) * 2015-08-20 2017-02-23 国立研究開発法人産業技術総合研究所 Method for producing hydrogen peroxide and production device therefor
US10852253B2 (en) 2016-03-18 2020-12-01 Hitachi High-Tech Corporation Specimen observation method
JP2018068153A (en) * 2016-10-26 2018-05-10 三菱電機株式会社 Food treatment device
JP2018184655A (en) * 2017-04-27 2018-11-22 学校法人慶應義塾 Device and method for collecting valuable materials by electrolytic reduction of exhaust gas
JP2021531951A (en) * 2019-07-03 2021-11-25 ヂェァジァン ユニバーシティZhejiang University Hydrogen production sterilization system by ultrasonic-electrode-nanoporous membrane coupling
JP7072928B2 (en) 2019-07-03 2022-05-23 ヂェァジァン ユニバーシティ Hydrogen production sterilization system by ultrasonic-electrode-nanoporous membrane coupling
JP7446099B2 (en) 2019-12-06 2024-03-08 エア・ウォーター株式会社 Composition for treating infection in root canals and dentinal tubules of teeth
JP7152824B1 (en) 2022-08-26 2022-10-13 株式会社ナノバブル研究所 Cation-containing microbubble generator and cation generator
JP2024031264A (en) * 2022-08-26 2024-03-07 株式会社ナノバブル研究所 Cation-containing fine bubble generator and cation generator

Also Published As

Publication number Publication date
CN102140648A (en) 2011-08-03
JP5544181B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5544181B2 (en) Electrochemical synthesis of ozone fine bubbles
JP4410155B2 (en) Electrolyzed water ejection device
JP4980016B2 (en) Electrolyzed water ejection device and sterilization method
JP3913923B2 (en) Water treatment method and water treatment apparatus
TWI608129B (en) Electrolysis device and electrolytic ozone water production device
US6767447B2 (en) Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide
JP4723627B2 (en) Membrane-electrode assembly, electrolytic cell using the same, electrolytic water spray device, and sterilization method
JP5113892B2 (en) Membrane-electrode assembly, electrolytic cell using the same, ozone water production apparatus, ozone water production method, sterilization method, and waste water / waste liquid treatment method
EP2078701B1 (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
TW201208182A (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP5098050B2 (en) Membrane-electrode assembly, electrolysis unit using the same, electrolyzed water ejection device, and sterilization method
JP2010527337A (en) Disinfectant based on aqueous hypochlorous acid (HOCl) containing solution, process for making it and use thereof
JP2009125628A (en) Membrane-electrode assembly, electrolytic cell using the same, ozone water generator, and sterilization method
JP2004267956A (en) Method for producing mixed electrolytic water
KR100958677B1 (en) High efficient un-divided electrochemical cell and apparatus for manufacturing of chlorine dioxide using it
JP5876431B2 (en) Small electrolyzed water generator
JP2004313780A (en) Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash
KR101847924B1 (en) Apparatus for manufacturing sterilized water
KR100956872B1 (en) High Efficient method for manufacturing of aqueous chlorine dioxide using un-divided electrochemical cell
GB2556947B (en) Electrochemical cell and method for operation of the same
KR20090091479A (en) Ozone water generator using ion exchange memberane by electrolysis and disinfectant water plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5544181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250