JP2006061829A - Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them - Google Patents

Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them Download PDF

Info

Publication number
JP2006061829A
JP2006061829A JP2004247365A JP2004247365A JP2006061829A JP 2006061829 A JP2006061829 A JP 2006061829A JP 2004247365 A JP2004247365 A JP 2004247365A JP 2004247365 A JP2004247365 A JP 2004247365A JP 2006061829 A JP2006061829 A JP 2006061829A
Authority
JP
Japan
Prior art keywords
gas
dissolved oxygen
liquid
air chamber
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004247365A
Other languages
Japanese (ja)
Inventor
Koji Ejima
孝治 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004247365A priority Critical patent/JP2006061829A/en
Publication of JP2006061829A publication Critical patent/JP2006061829A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro air-bubble generation apparatus which has simple structure and can be disassembled for cleaning cleaning, to provide a dissolved oxygen remover using the micro air-bubble generation apparatus and to provide an efficient dissolved oxygen removal method using the micro air-bubble generation apparatus and the dissolved oxygen remover. <P>SOLUTION: The micro air-bubble generation apparatus 1 comprises a throttle part 9 in which the cross-section of a flow path of allowing fluid to flow therethrough is reduced, a divergent part 11 which is located downstream of the throttle part 9 and has the cross-section enlarged along the flowing direction of the flow path, a gas-liquid mixing part 10 which is located downstream of the throttle part 9 and upstream of the divergent part 11 and has a cross-section larger than the cross-section of the throttle part 9, a gas introduction part 14 which is perforated on a pipe body near the constricted part 9, an air chamber formation member 15 which is fitted into a pipe body and forms an air chamber 16 communicated with the gas introduction part 14 and receiving gas from the gas introduction part 14, and a slit part 24 which is located downstream of the throttle part 9 and upstream of the gas-liquid mixing part 10 and introduces the gas radially flowing into the air chamber 16 toward the center line of the pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細な気泡を発生可能な微細気泡発生装置、これを用いた溶存酸素除去装置およびこれらを用いた液体の溶存酸素の除去方法に関する。   The present invention relates to a fine bubble generating apparatus capable of generating fine bubbles, a dissolved oxygen removing apparatus using the same, and a method for removing dissolved oxygen in a liquid using the same.

食品は、酸化によって品質が低下するものが多く、酸化を防止することは品質維持の上で大変重要である。液状の食品または飲料品などにおいては、液に溶け込んでいる溶存酸素が酸化を引き起こす原因の一つとなっている。   Many foods are degraded in quality due to oxidation, and preventing oxidation is very important in maintaining quality. In liquid foods or beverages, dissolved oxygen dissolved in the liquid is one of the causes of oxidation.

液体中の溶存酸素を取り除く方法の一つに脱気法がある。これは液体を含む系内を減圧にすることにより、液体に溶解可能な溶存酸素を低下させ、溶存酸素を取り除く方法である。脱気法にはガス透過膜を用いる膜脱気法や、減圧した密閉容器中に溶液を噴霧する方法などがある。   One method of removing dissolved oxygen in a liquid is a degassing method. This is a method of reducing the dissolved oxygen that can be dissolved in the liquid by reducing the pressure in the system containing the liquid to remove the dissolved oxygen. Examples of the degassing method include a membrane degassing method using a gas permeable membrane and a method of spraying a solution in a reduced pressure sealed container.

また液体中に窒素ガスを供給することにより、液体中の溶存酸素を低減させる窒素置換法もよく用いられている。窒素置換法では溶存酸素が酸素分圧の少ない窒素ガス中に移動することで、液中の溶存酸素濃度が低減する。この方法において、少ない窒素ガスで効率よく窒素置換するためには、微細な窒素ガスの気泡を形成させたり、液とこの気泡を効率的に混合させる必要がある。これらに関してはいくつかの技術が開示されている。たとえば液送出管内に不活性ガスを放射線状に噴出させるためのスパージャを設け、スパージャから噴出される不活性ガスと液体とを効率よく混合する技術が開発されている。このときスパージャから噴出させる不活性ガスを微細化するために、ガス噴出部を焼結金属で形成し、さらに気液混合部の混合性能を高めるために、気液混合部に金属製のたわしなどからなる充填物を充填するなどの工夫がなされている(例えば特許文献1参照)。   Further, a nitrogen substitution method is often used in which nitrogen gas is supplied into the liquid to reduce dissolved oxygen in the liquid. In the nitrogen substitution method, dissolved oxygen moves into nitrogen gas having a low oxygen partial pressure, so that the dissolved oxygen concentration in the liquid is reduced. In this method, in order to efficiently replace nitrogen with a small amount of nitrogen gas, it is necessary to form fine nitrogen gas bubbles or to efficiently mix the liquid and the bubbles. Several techniques have been disclosed for these. For example, a technique has been developed in which a sparger for injecting an inert gas in a radial pattern in a liquid delivery pipe is provided, and the inert gas and liquid ejected from the sparger are mixed efficiently. At this time, in order to refine the inert gas ejected from the sparger, the gas ejection part is made of sintered metal, and in order to further improve the mixing performance of the gas-liquid mixing part, the gas-liquid mixing part is made of metal A device has been devised such as filling with a filling made of (for example, see Patent Document 1).

またエジェクタ効果を利用して溶液中に微細な気泡を発生させる技術も開示されている(例えば特許文献2および特許文献3参照)。この方法は加圧した水を絞り部を有する管路に供給することで、絞り部に負圧部分を発生させ、ガスを吸引させ気泡を発生させるものである。   A technique for generating fine bubbles in a solution using the ejector effect is also disclosed (see, for example, Patent Document 2 and Patent Document 3). In this method, pressurized water is supplied to a pipe line having a throttle portion, thereby generating a negative pressure portion in the throttle portion and sucking gas to generate bubbles.

また旋回式微細気泡発生装置を用いて、微細気泡を発生させる技術も開示されている(例えば特許文献4参照)。これは円錐形の容器の内壁円周方向に加圧水を導入し、旋回流を形成させ、円錐容器の先端からこの水を噴出させることで、円錐管軸上に負圧部分が形成される。この負圧部分に気体が吸引され、円錐容器の上部から吸引された気体は、糸状となり円錐容器先端から水といっしょに噴出する。噴出と同時に周囲の静水によりその旋回流が急激に弱められることから、糸状の気体が切断され10〜20μm程度の気泡が発生するとする技術である。
特開2001−46809号公報 特開平6−63371号公報 特開平11−90275号公報 特開2000−447号公報
In addition, a technique for generating fine bubbles using a swirling fine bubble generator is also disclosed (see, for example, Patent Document 4). This introduces pressurized water in the circumferential direction of the inner wall of the conical container, forms a swirling flow, and ejects this water from the tip of the conical container, thereby forming a negative pressure portion on the conical tube axis. Gas is sucked into the negative pressure portion, and the gas sucked from the upper part of the conical container becomes a string and is ejected together with water from the tip of the conical container. Since the swirling flow is suddenly weakened by the surrounding static water at the same time as the ejection, this is a technique in which the filamentous gas is cut and bubbles of about 10 to 20 μm are generated.
JP 2001-46809 A JP-A-6-63371 JP-A-11-90275 JP 2000-447 A

脱気法は溶存酸素を低減する方法としては、簡便な操作で溶存酸素を低減することが可能な方法ではあるが、清酒中の溶存酸素を除去するような場合には、アルコール分、香気成分も同時に除去されるおそれがある。   The degassing method is a method that can reduce dissolved oxygen by a simple operation as a method for reducing dissolved oxygen, but in the case of removing dissolved oxygen in sake, the alcohol content, aroma component May be removed at the same time.

特許文献2および特許文献3に記載のエジェクタ効果を利用する方法は、簡便な方法で気泡を形成させることが可能であるが、液体の導入作用でガスの吸引を行うめ、気液割合を調整することができない。また気泡の更なる微細化も求められている。   Although the method using the ejector effect described in Patent Document 2 and Patent Document 3 can form bubbles by a simple method, the gas is sucked by the liquid introduction action, and the gas-liquid ratio is adjusted. Can not do it. There is also a demand for further miniaturization of bubbles.

特許文献4に記載の旋回流を利用し微細気泡を発生させ、この微細気泡を液中に供給することで、溶存酸素を低減させる旋回式微細気泡発生装置は、噴出口の液が静水状態であることが望ましいことから、タンク内など使用されるケースが多い。   The swirl type fine bubble generator that reduces the dissolved oxygen by generating fine bubbles using the swirl flow described in Patent Document 4 and supplying the fine bubbles into the liquid. Since it is desirable, there are many cases where it is used in a tank.

液体状の食品、飲料水、アルコール飲料などにあっては、香気成分を損なわない溶存酸素の除去方法であるとともに、それに使用する装置または方法にあっては、洗浄が容易な装置または方法であることが必要である。このため溶存酸素の除去に使用される装置は、構造が簡単でかつ内部の洗浄が容易な装置であることが必要となる。洗浄の容易性の点において、溶存酸素除去装置は配管途中に装着し使用できるものであることが望ましい。   For liquid foods, drinking water, alcoholic beverages, etc., it is a method for removing dissolved oxygen that does not impair the aroma components, and the apparatus or method used for it is an apparatus or method that is easy to clean. It is necessary. For this reason, the apparatus used for removal of dissolved oxygen needs to be an apparatus with a simple structure and easy internal cleaning. In terms of ease of cleaning, it is desirable that the dissolved oxygen removing device be installed and used in the middle of the piping.

本発明の目的は、構造が簡単で分解洗浄が可能な微細気泡発生装置、これを用いた溶存酸素除去装置およびこれらを用いた効率的な液中の溶存酸素の除去方法を提供することにある。   An object of the present invention is to provide a fine bubble generating device having a simple structure and capable of being decomposed and washed, a dissolved oxygen removing device using the same, and an efficient method for removing dissolved oxygen in a liquid using the same. .

本発明は、管体に液体とガスとを流通させ微細気泡を発生させる微細気泡発生装置において、
液体を流通させる流路の断面積を縮小させた絞り部と、
該絞り部の下流にあって流路の流れ方向に従い断面積が拡大する末広部と、
該絞り部の下流でかつ該末広部の上流に位置し該絞り部の断面積より大きな断面積を有する気液混合部と、
該絞り部の近傍で管体に穿設したガス導入部と、
該ガス導入部と連絡し、該ガス導入部からのガスを受入れる気室を形成する該管体内部に装着された気室形成部材と、
該絞り部の下流でかつ該気液混合部の上流に位置し、放射線状に管の中心線に向かって該気室に流入する気体を液体流路に導入するスリット部と、
を含むことを特徴とする微細気泡発生装置である。
The present invention relates to a fine bubble generating apparatus for generating fine bubbles by circulating a liquid and a gas through a tube body.
A constricted portion in which the cross-sectional area of the flow path through which the liquid flows is reduced;
A divergent portion that is downstream of the throttle portion and whose cross-sectional area expands in accordance with the flow direction of the flow path;
A gas-liquid mixing section located downstream of the throttle section and upstream of the divergent section and having a cross-sectional area larger than the cross-sectional area of the throttle section;
A gas introduction part drilled in the tube in the vicinity of the throttle part;
An air chamber forming member attached to the inside of the tubular body that communicates with the gas introducing portion and forms an air chamber that receives the gas from the gas introducing portion;
A slit part that is located downstream of the throttle part and upstream of the gas-liquid mixing part, and that introduces gas flowing into the air chamber radially toward the center line of the pipe into the liquid flow path;
It is the fine bubble generator characterized by including.

また本発明で、前記管体は略中央部で二つの管体に分離可能に形成され、
前記気室形成部材は、管体から着脱可能に装着されることを特徴とする請求項1に記載の微細気泡発生装置である。
In the present invention, the tubular body is formed to be separable into two tubular bodies at a substantially central portion,
The microbubble generator according to claim 1, wherein the air chamber forming member is detachably mounted from a tubular body.

また本発明で、前記気室形成部材は、一端に突起物を備え、
前記スリット部は、前記気室形成部材の突起物を管体に当接させることにより形成することを特徴とする請求項1または請求項2に記載の微細気泡発生装置である。
In the present invention, the air chamber forming member includes a protrusion at one end,
3. The microbubble generator according to claim 1, wherein the slit portion is formed by bringing a projection of the air chamber forming member into contact with a tubular body. 4.

また本発明は、前記管体の内部にあって前記絞り部上流側に旋回流を発生させる旋回流発生部材を備えることを特徴とする請求項1から請求項3のいずれかに記載の微細気泡発生装置である。   Moreover, this invention is provided with the swirl | vortex flow generation | occurrence | production member in the inside of the said pipe body and generating a swirl | vortex flow to the said throttle part upstream, The microbubble in any one of the Claims 1-3 characterized by the above-mentioned. Generator.

また本発明は、請求項1から請求項4のいずれかに記載の微細気泡発生装置と、
液中の溶存酸素を除去するための窒素ガスを前記微細気泡発生装置に導入する窒素ガス導入管路と、
前記窒素ガス導入管路の途中に設けられ導入する窒素ガス流量を測定するためのガス流量計と、
該ガス流量計と前記微細気泡発生装置の前記ガス導入部とを接続する前記窒素ガス導入管路の途中に装着される圧力計と、
を含むことを特徴とする溶存酸素除去装置である。
The present invention also provides a microbubble generator according to any one of claims 1 to 4,
A nitrogen gas introduction pipe for introducing nitrogen gas for removing dissolved oxygen in the liquid into the fine bubble generating device;
A gas flow meter for measuring a nitrogen gas flow rate provided and introduced in the middle of the nitrogen gas introduction line;
A pressure gauge attached in the middle of the nitrogen gas introduction pipe connecting the gas flow meter and the gas introduction part of the fine bubble generating device;
It is a dissolved oxygen removal apparatus characterized by including.

また本発明は、請求項5に記載の溶存酸素除去装置を用いたことを特徴とする溶存酸素除去方法である。   Moreover, this invention is the dissolved oxygen removal method using the dissolved oxygen removal apparatus of Claim 5.

本発明によれば、管体に液体とガスとを流通させ微細気泡を発生させる微細気泡発生装置において、液体を流通させる流路の断面積を縮小させた絞り部と、絞り部の下流側にあって流路の流れ方向に従い断面積が拡大する末広部と、絞り部の下流側でかつ末広部の上流に位置し絞り部の断面積より大きな断面積を有する気液混合部を有するので、この部分で圧力差を生じさせることで、微細な気泡を発生させることができる。また、ガス導入部と連絡した気室を形成し、放射線状に管の中心線に向かって気室に流入する気体を液体流路に導入するスリット部を有するので、スリット部からガスを円周上均一に液に供給することが可能となり、円周上1箇所からのガスの導入と比較して気泡が微細化される効果を有する。   According to the present invention, in the fine bubble generating device for generating the fine bubbles by circulating the liquid and the gas through the tube body, the throttle portion having a reduced cross-sectional area of the flow path for circulating the liquid, and the downstream side of the throttle portion Since there is a divergent part whose cross-sectional area expands according to the flow direction of the flow path, and a gas-liquid mixing part located on the downstream side of the throttle part and upstream of the divergent part and having a cross-sectional area larger than the cross-sectional area of the throttle part, By generating a pressure difference at this portion, fine bubbles can be generated. In addition, an air chamber communicating with the gas introduction portion is formed, and a slit portion is provided for introducing the gas flowing into the air chamber radially toward the center line of the tube into the liquid flow path. It becomes possible to supply the liquid uniformly and has an effect that the bubbles are made finer than the introduction of gas from one place on the circumference.

また本発明によれば、管体は略中央部で二つの管体に分離可能に形成され、気室形成部材は、管体から着脱可能であるので、微細気泡発生装置を分解することが容易である。また気室形成部材を管体から着脱することが可能なため、内部まで洗浄することが可能である。食品分野のように、洗浄を頻繁に行う必要がある場合にあっては特に有用である。   Further, according to the present invention, the tubular body is formed to be separable into two tubular bodies at a substantially central portion, and the air chamber forming member is detachable from the tubular body, so that the fine bubble generating device can be easily disassembled. It is. Further, since the air chamber forming member can be detached from the tube body, the inside can be cleaned. This is particularly useful when frequent washing is required, such as in the food field.

また本発明によれば、気室形成部材は一端に突起物を備え、スリット部は、気質形成部材の突起物を管体に当接させることにより形成するので、スリット部を容易に形成することができる。また、スリット部のスリット幅は突起物の幅を変更することで調整をすることが可能なので、スリット幅の調整が容易である。   Further, according to the present invention, the air chamber forming member is provided with a protrusion at one end, and the slit portion is formed by bringing the protrusion of the temperament forming member into contact with the tubular body, so that the slit portion can be easily formed. Can do. Further, since the slit width of the slit portion can be adjusted by changing the width of the protrusion, the slit width can be easily adjusted.

また本発明によれば、管体の内部であって、絞り部上流側に旋回流を発生させる旋回流発生部材を備えるので、絞り部上流側の液に旋回流が形成され、より微細な気泡を発生させることができる。また、この旋回流発生部材は着脱可能な構造とすることで、管体内部の洗浄が容易となる。   Further, according to the present invention, since the swirl flow generating member that generates the swirl flow is provided inside the tube and upstream of the constriction part, the swirl flow is formed in the liquid upstream of the constriction part, and finer bubbles are formed. Can be generated. In addition, since the swirl flow generating member has a detachable structure, the inside of the tube body can be easily cleaned.

また本発明によれば、請求項1から請求項4のいずれかに記載の微細気泡発生装置と、液中の溶存酸素を除去するための窒素ガスを微細気泡発生装置に導入する窒素ガス導入管路とを含むので、微細気泡発生装置を溶存酸素除去装置として利用することができる。また、窒素ガス導入管路の途中に設けられ導入される窒素ガス流量を測定するためのガス流量計と、ガス流量計と微細気泡発生装置のガス導入部とを接続する窒素ガス導入管路の途中に装着された圧力計とを含むので、窒素ガス流量の調整を容易に行うことができる。また、本溶存酸素除去装置は、管体を含み構成される微細気泡発生装置を備えるので、配管途中に装着して使用することができる。これにより分解、洗浄操作が容易となる。   According to the invention, the fine bubble generating device according to any one of claims 1 to 4 and a nitrogen gas introducing pipe for introducing nitrogen gas for removing dissolved oxygen in the liquid into the fine bubble generating device. Therefore, the fine bubble generating device can be used as a dissolved oxygen removing device. In addition, a gas flow meter for measuring a nitrogen gas flow rate provided in the middle of the nitrogen gas introduction pipeline, and a nitrogen gas introduction pipeline connecting the gas flow meter and the gas introduction part of the fine bubble generator Since the pressure gauge attached in the middle is included, it is possible to easily adjust the nitrogen gas flow rate. Moreover, since this dissolved oxygen removal apparatus is equipped with the microbubble generator comprised including a tubular body, it can be used in the middle of piping. This facilitates disassembly and cleaning operations.

また本発明によれば、溶存酸素除去装置を用いた液中の溶存酸素を除去する方法なので、微細な気泡を発生させることが可能となり、より少ない窒素ガス量で溶存酸素を除去させることができる。これにより溶存酸素除去操作に伴う食品の香気成分などの損失を抑制することができる。   In addition, according to the present invention, since the dissolved oxygen in the liquid is removed using the dissolved oxygen removing device, it is possible to generate fine bubbles and to remove dissolved oxygen with a smaller amount of nitrogen gas. . Thereby, loss, such as a fragrance component of a food accompanying a dissolved oxygen removal operation, can be controlled.

図1は、本発明の実施の一形態としての微細気泡発生装置1の管体を分離した状態を示す簡略的な断面図である。本微細気泡発生装置1は、管体に液体とガスとを流通させ流路内の圧力変化を利用して微細気泡を発生させる微細気泡発生装置である。   FIG. 1 is a simplified cross-sectional view showing a state in which a tubular body of a microbubble generator 1 as an embodiment of the present invention is separated. The fine bubble generating device 1 is a fine bubble generating device that circulates liquid and gas through a tube body and generates fine bubbles by using a pressure change in a flow path.

微細気泡発生装置1は、液体を流通させるための管体2、3を有する。管体2,3は各々一端にフランジ4、5を有しており、フランジ4、5間にガスケット6を装着し図示を省略した接続部材によって接続して使用する。管体2の内部は液入口部7から液の流れ方向に向かって断面積が減少するテーパ形状8である。一方管体3は管体2と同様、流れ方向に向かって断面積が減少した下流側に流路の断面積が一番小さい絞り部9を有する。絞り部9の下流側には、絞り部9よりも断面積が広い気液混合部10を有し、さらに下流には断面積が流れ方向に向かって拡大する末広部11を有する。テーパ形状部8のテーパ角度θ1および末広部11の拡がり角θ2は略6°が好ましい。   The fine bubble generating device 1 includes tube bodies 2 and 3 for circulating a liquid. Each of the pipes 2 and 3 has flanges 4 and 5 at one end, and is used by connecting a gasket 6 between the flanges 4 and 5 and connecting them with a connecting member (not shown). The inside of the tube body 2 has a tapered shape 8 in which the cross-sectional area decreases from the liquid inlet portion 7 toward the liquid flow direction. On the other hand, the tube body 3 has the throttle portion 9 having the smallest cross-sectional area of the flow path on the downstream side where the cross-sectional area decreases in the flow direction, like the tube body 2. A gas-liquid mixing unit 10 having a wider cross-sectional area than the throttle unit 9 is provided on the downstream side of the throttle unit 9, and a divergent part 11 whose cross-sectional area expands in the flow direction is further provided downstream. The taper angle θ1 of the tapered portion 8 and the spread angle θ2 of the divergent portion 11 are preferably about 6 °.

ここでは管体2および管体3の一端に他の管体と接続するためのフランジ12、13を備えているが、他の管体との接続にフランジを使用しない場合には、フランジ12、13は必ずしも必要はない。他の管体との接続は、他の管体と接続可能なネジ機構またはテーパ管などであってもよい。   Here, the flanges 12 and 13 for connecting to other pipe bodies are provided at one end of the pipe body 2 and the pipe body 3, but when the flange is not used for connection to other pipe bodies, the flange 12, 13 is not necessarily required. The connection with the other tube may be a screw mechanism or a tapered tube that can be connected to the other tube.

また管体3は、絞り部9近傍にガスを導入するためのガス導入口14を有する。ガス導入口14は、管体3に孔を穿設することで形成することができる。また管体3は内部に気室形成部材15を備える。気室形成部材15は、液に導入するガスを円周方向上均一に排出するための気室16を形成し、気室16はガス導入口14と連結している。   The tube body 3 also has a gas inlet 14 for introducing gas in the vicinity of the throttle portion 9. The gas inlet 14 can be formed by making a hole in the tube 3. The tube body 3 includes an air chamber forming member 15 therein. The air chamber forming member 15 forms an air chamber 16 for uniformly discharging the gas introduced into the liquid in the circumferential direction, and the air chamber 16 is connected to the gas inlet 14.

図2は気室形成部材15の側面図、図3は気室形成部材15の図2のA―A線の方向から見た図である。気室形成部材15は、内部に液が流通するための流路を有し、円筒状の部材17、外部がテーパ形状の部材18および円筒状の部材17に比較して外径の大きい円筒状の部材19からなる。円筒状の部材17の先端には3箇所に突起物20が設けられている。突起物20の数は1または2つであってもよいが、突起物20はスリット部24の幅を決める働きをするので、スリット幅を均一にする点から突起物20を3箇所設けることが望ましい。   2 is a side view of the air chamber forming member 15, and FIG. 3 is a view of the air chamber forming member 15 as viewed from the direction of line AA in FIG. The air chamber forming member 15 has a flow path through which the liquid flows, and has a cylindrical shape having a larger outer diameter than the cylindrical member 17, the externally tapered member 18, and the cylindrical member 17. It consists of the member 19 of this. Projections 20 are provided at three positions on the tip of the cylindrical member 17. The number of the protrusions 20 may be one or two. However, since the protrusion 20 functions to determine the width of the slit portion 24, three protrusions 20 are provided in order to make the slit width uniform. desirable.

気室形成部材15は、管体2と接する管体3の一端から着脱可能に装着され、管体3の内壁21と円筒状の部材17の外壁22とで気室16を形成する。気室形成部材15は中央部に外部がテーパ形状の部材18を有するので、気室形成部材15を管体3の中心に容易に配置することができる。また円筒状の部材17の内壁は、絞り部9を形成する。   The air chamber forming member 15 is detachably mounted from one end of the tube body 3 in contact with the tube body 2, and the air chamber 16 is formed by the inner wall 21 of the tube body 3 and the outer wall 22 of the cylindrical member 17. Since the air chamber forming member 15 has a member 18 having a tapered shape at the center, the air chamber forming member 15 can be easily disposed at the center of the tube body 3. Further, the inner wall of the cylindrical member 17 forms a throttle portion 9.

さらに気室形成部材15は円筒状の部材17に設けられる突起物20が管体3の内壁23に当接し、スリット部24を形成する。スリット部24は、気室16と連絡しガス導入口14から導入されるガスを液に供給する。スリット部24は、円周方向に均一に形成されるので、液に対して円周方向上均一にガスを供給することができる。このためガスを円周方向の一箇所から供給する場合に比較して、ガスを分散して供給することが可能であり、発生する気泡径を小さくすることができる。   Further, in the air chamber forming member 15, the protrusion 20 provided on the cylindrical member 17 abuts on the inner wall 23 of the tubular body 3 to form a slit portion 24. The slit portion 24 communicates with the air chamber 16 and supplies the gas introduced from the gas inlet 14 to the liquid. Since the slit portion 24 is formed uniformly in the circumferential direction, gas can be supplied uniformly in the circumferential direction to the liquid. For this reason, compared with the case where gas is supplied from one place in the circumferential direction, it is possible to supply the gas in a dispersed manner, and the generated bubble diameter can be reduced.

スリット部24の幅(スリット幅)はガス流量との関係を考慮して決定することが望ましく、ガス導入時に大きな圧力損失を発生させない幅であれば狭いことが望ましい。スリット幅が大きくなりすぎると、円周方向から均一にガスを発生させることができなくなるためである。本発明においては、スリット幅を突起物20の厚さとしているので、突起物20の厚さを変更することでスリット幅を容易に調整することができる。   The width of the slit portion 24 (slit width) is desirably determined in consideration of the relationship with the gas flow rate, and is desirably narrow if the width does not cause a large pressure loss at the time of gas introduction. This is because if the slit width becomes too large, gas cannot be generated uniformly from the circumferential direction. In the present invention, since the slit width is the thickness of the protrusion 20, the slit width can be easily adjusted by changing the thickness of the protrusion 20.

また、気室形成部材15は管体3内部へ着脱可能に装着されるので、必要に応じて気室形成部材15を取り外すことができる。これにより気室16またはスリット部24の洗浄を容易に行うことができる。管体3への気室形成部材15の装着は、ねじ構造による装着、勘合による装着など、着脱可能な装着方法であれば特に限定されるものではない。   Further, since the air chamber forming member 15 is detachably attached to the inside of the tube body 3, the air chamber forming member 15 can be removed as necessary. Thereby, the air chamber 16 or the slit part 24 can be easily cleaned. The mounting of the air chamber forming member 15 to the tubular body 3 is not particularly limited as long as it is a detachable mounting method such as mounting by a screw structure or mounting by fitting.

さらに管体2に内部には、供給される液に旋回流を発生させるスパイル状の旋回流発生部材25を装着することができる。図4に旋回流発生部材25の大略的な外観形状を示す。旋回流発生部材25は管体2のテーパ形状8にほぼ一致した径を有しており、旋回流を発生させるために180°のひねりが加えられている。これにより液に旋回流が発生し、より微細な気泡を発生させることができる。旋回流発生部材25は、旋回流を発生させる機能を備えるものであれば、形状は特に限定されるものではない。また旋回流発生部材25は、着脱可能に装着されるので取り外すことで、管体2の内部の洗浄を容易に行うことができる。   Furthermore, a spiral swirl flow generating member 25 that generates a swirl flow in the supplied liquid can be mounted inside the tube body 2. FIG. 4 shows a schematic external shape of the swirling flow generating member 25. The swirl flow generating member 25 has a diameter substantially coincident with the tapered shape 8 of the tube body 2, and a twist of 180 ° is added to generate the swirl flow. Thereby, a swirl flow is generated in the liquid, and finer bubbles can be generated. The shape of the swirl flow generating member 25 is not particularly limited as long as it has a function of generating a swirl flow. Further, since the swirl flow generating member 25 is detachably mounted, the inside of the tube body 2 can be easily cleaned by removing it.

次に本発明の微細気泡発生装置1の作用について説明する。   Next, the operation of the fine bubble generator 1 of the present invention will be described.

図示を省略した液供給ポンプなどにより、液が微細気泡発生装置1の液入口部7に供給される。供給された液は管体2の断面積が流れ方向に向かって減少しているため、液流速を上昇させながら、管体3に流入する。管体3に流入した液は断面積が一番小さい絞り部9でさらに液流速を上昇させる。絞り部9では液流が最大となる一方で静圧が低くなる。絞り部9を通過した液は、絞り部9よりも断面積の大きい気液混合部10で液流速を低下させると同時に静圧を上昇させた後、末広部11に流入する。   The liquid is supplied to the liquid inlet portion 7 of the microbubble generator 1 by a liquid supply pump (not shown) or the like. The supplied liquid flows into the tube 3 while increasing the liquid flow rate because the cross-sectional area of the tube 2 decreases in the flow direction. The liquid flowing into the tube body 3 further increases the liquid flow rate at the throttle portion 9 having the smallest cross-sectional area. In the throttle unit 9, the liquid flow is maximized while the static pressure is lowered. The liquid that has passed through the throttle unit 9 decreases the liquid flow rate at the gas-liquid mixing unit 10 having a larger cross-sectional area than the throttle unit 9 and simultaneously increases the static pressure, and then flows into the divergent unit 11.

一方ガスは、絞り部9近傍に設けられたガス導入口14に接続された図示を省略したガス供給管を通じて、任意の流量のガスが供給される。供給されたガスはガス導入口14から気室16に導かれ、スリット部24からガスが流出する。スリット部24は絞り部9と気液混合部10との境界に設けられているため、流入したガスは絞り部9と気液混合部10との間の圧力差でせん断力が生じ微細気泡となる。スリット部24は円周方向に均一に設けられているので、ガスは円周方向から均一に流出する。このように一箇所から導入されたガスを円周上均一に排出するので、微細な気泡を発生させることができる。   On the other hand, the gas is supplied at an arbitrary flow rate through a gas supply pipe (not shown) connected to a gas inlet 14 provided in the vicinity of the throttle 9. The supplied gas is guided from the gas inlet 14 to the air chamber 16, and the gas flows out from the slit portion 24. Since the slit portion 24 is provided at the boundary between the throttle portion 9 and the gas-liquid mixing portion 10, the inflowing gas generates a shearing force due to a pressure difference between the throttle portion 9 and the gas-liquid mixing portion 10. Become. Since the slit part 24 is provided uniformly in the circumferential direction, the gas flows out uniformly from the circumferential direction. Thus, since the gas introduced from one place is discharged | emitted uniformly on a periphery, a fine bubble can be generated.

次に上記微細気泡発生装置1を用いた溶存酸素除去装置30を示す。図5は本発明の実施の他の形態としての微細気泡発生装置1を用いた溶存酸素除去装置30の概略的な構成を示す図である。本実施形態で図1の実施形態に対応する部分には、同一の符号を付して重複する説明は省略する。溶存酸素除去装置30は、大略的に微細気泡発生装置1と窒素ガス供給系40および架台50とで構成される。窒素ガス供給系40は、ミクロンフィルタ41、脱臭フィルタ42、窒素ガス流量計43および圧力計44を含み構成される。   Next, the dissolved oxygen removal apparatus 30 using the said microbubble generator 1 is shown. FIG. 5 is a diagram showing a schematic configuration of a dissolved oxygen removing apparatus 30 using a fine bubble generating apparatus 1 as another embodiment of the present invention. In this embodiment, parts corresponding to those of the embodiment of FIG. The dissolved oxygen removing device 30 is generally composed of a fine bubble generating device 1, a nitrogen gas supply system 40, and a mount 50. The nitrogen gas supply system 40 includes a micron filter 41, a deodorizing filter 42, a nitrogen gas flow meter 43 and a pressure gauge 44.

図示を省略した窒素ガスボンベ等を通じて供給される窒素ガスは、樹脂製の窒素ガス導入管路45の一端である入口部46を通じて導入され、ミクロンフィルタ41で微細な異物などが除去される。ミクロンフィルタ41で異物を除去された窒素ガスは、脱臭フィルタ42に流入し、ここで脱臭される。本実施形態では窒素ガス導入管路45に、樹脂製の配管を使用したけれどもステンレス配管などであってもよいことはもちろんである。脱臭フィルタ42は、固定用の部材51を脱臭フィルタ42に取り付け、固定用部材51をネジなどの接合部材52で架台50に接合し固定する。   Nitrogen gas supplied through a nitrogen gas cylinder (not shown) or the like is introduced through an inlet 46 that is one end of a resin-made nitrogen gas introduction pipe 45, and fine foreign matters are removed by the micron filter 41. Nitrogen gas from which foreign matter has been removed by the micron filter 41 flows into the deodorizing filter 42 where it is deodorized. In the present embodiment, resin pipes are used for the nitrogen gas introduction line 45, but it goes without saying that stainless steel pipes may be used. The deodorizing filter 42 has a fixing member 51 attached to the deodorizing filter 42, and the fixing member 51 is joined and fixed to the mount 50 with a joining member 52 such as a screw.

ミクロンフィルタ41および脱臭フィルタ42は、必ずしも使用する必要はなく、溶存酸素除去装置30の使用用途に応じて、使い分ければよい。例えば排液中の溶存酸素を除去するような場合は、ミクロンフィルタ41および脱臭フィルタ42を使用する必要はないが、溶存酸素除去装置30を液状の食品または飲料品の溶存酸素除去に使用するような場合は、ミクロンフィルタ41および脱臭フィルタ42を使用することが望ましい。脱臭フィルタ42を通過した窒素ガスは、架台50に固定された窒素ガス流量計43を経て、微細気泡発生装置1のガス導入口14に導入される。窒素ガス導入管45とガス導入口14とは、フィッティングなどの接続部材46で接続される。   The micron filter 41 and the deodorizing filter 42 are not necessarily used, and may be properly used according to the usage application of the dissolved oxygen removing device 30. For example, when removing the dissolved oxygen in the drainage liquid, it is not necessary to use the micron filter 41 and the deodorizing filter 42, but the dissolved oxygen removing device 30 is used for removing the dissolved oxygen from the liquid food or beverage. In such a case, it is desirable to use the micron filter 41 and the deodorizing filter 42. The nitrogen gas that has passed through the deodorizing filter 42 is introduced into the gas inlet 14 of the fine bubble generating device 1 through a nitrogen gas flow meter 43 fixed to the gantry 50. The nitrogen gas introduction pipe 45 and the gas introduction port 14 are connected by a connection member 46 such as a fitting.

窒素ガス流量計43には流量調整弁47が設けられ、これにより供給するガス量を調整することができる。また窒素ガス流量計43とガス導入部14とを接続する窒素ガス導入管路45の途中には、圧力計44が設けられており、管路内の圧力を確認することができる。また窒素ガス流量計43または圧力計44を保護するために、圧力計44とガス導入部14とを接続する窒素ガス導入管路45の途中に、液体の逆流を防止するための逆止弁を設けることが望ましい。なお、微細気泡発生装置1は、架台50に図示を省略した固体部材を用いて固定される。   The nitrogen gas flow meter 43 is provided with a flow rate adjusting valve 47, whereby the amount of gas supplied can be adjusted. Further, a pressure gauge 44 is provided in the middle of the nitrogen gas introduction pipe line 45 connecting the nitrogen gas flow meter 43 and the gas introduction part 14, and the pressure in the pipe line can be confirmed. Further, in order to protect the nitrogen gas flow meter 43 or the pressure gauge 44, a check valve for preventing the back flow of the liquid is provided in the middle of the nitrogen gas introduction pipe line 45 connecting the pressure gauge 44 and the gas introduction part 14. It is desirable to provide it. The fine bubble generator 1 is fixed to the gantry 50 using a solid member (not shown).

以上のような構成のもと、本溶存酸素除去装置30を使用する場合は、微細気泡発生装置1の入口部に、液供給ポンプなどを接続し液の供給を行うともに、窒素ガス入口部46を通じて窒素ガスを供給し使用する。微細気泡発生装置1により、液中に微細気泡を発生することが可能となり、少ない窒素ガスで液中の溶存酸素を効率的に除去することができる。本溶存酸素装置30は、送液配管の途中に設置し使用することができるので、装置の分解、洗浄を容易に行うことができる。   When the present dissolved oxygen removing device 30 is used with the above-described configuration, a liquid supply pump or the like is connected to the inlet of the microbubble generator 1 to supply the liquid, and the nitrogen gas inlet 46 Nitrogen gas is supplied through and used. The fine bubble generating device 1 can generate fine bubbles in the liquid, and can efficiently remove dissolved oxygen in the liquid with a small amount of nitrogen gas. Since the present dissolved oxygen device 30 can be installed and used in the middle of the liquid supply piping, the device can be easily disassembled and cleaned.

本溶存酸素除去装置30の使用先は特に限定されないけれども、食品加工用水、日本酒、ワインまたは焼酎などのアルコール飲料、ジュースなどの清涼飲料、醤油などの調味料、食用油などの液体状食品、液体状化粧品に使用すれば、香気成分をほとんど排出することなく液中の溶存酸素を除去することができる。さらに上記にように分解、洗浄が容易なため食品、飲料に溶存酸素除去装置30を好適に使用することができる。   Although the use destination of this dissolved oxygen removing device 30 is not particularly limited, water for food processing, alcoholic beverages such as sake, wine or shochu, soft drinks such as juice, seasonings such as soy sauce, liquid food such as edible oil, liquid If it is used for a cosmetic, dissolved oxygen in the liquid can be removed with almost no discharge of aroma components. Furthermore, since the decomposition and washing are easy as described above, the dissolved oxygen removing device 30 can be suitably used for foods and beverages.

なお、本実施形態では溶存酸素の除去に窒素ガスを使用した例を示したけれども、溶存酸素の除去に使用可能なガスは窒素ガスに限定されるものではない。使用用途に応じて二酸化炭素、アルゴンガスなどの不活性ガスを使用することもできる。   In this embodiment, an example in which nitrogen gas is used to remove dissolved oxygen is shown, but the gas that can be used to remove dissolved oxygen is not limited to nitrogen gas. An inert gas such as carbon dioxide or argon gas can be used depending on the intended use.

次に溶存酸素除去装置30を用いた実施例を示す。   Next, the Example using the dissolved oxygen removal apparatus 30 is shown.

本実施例1では、貯蔵中の酒に含まれる溶存酸素を溶存酸素除去装置30を用いて除去した。実施例1の酸素除去のプロセスフローを図6に示す。低温貯蔵庫60に貯蔵した一般酒を液ポンプ61を介して溶存酸素除去装置30を構成する微細気泡発生装置1に、毎分100リットルの割合で送った。窒素ガスは窒素ガスボンベ62の出口に減圧弁63を設け、ニードル弁64で流量を毎分30リットルに調整し、微細気泡発生装置1に供給した。窒素ガス流量および圧力の確認は溶存酸素除去装置30の窒素ガス流量計43および圧力計44で行った。微細気泡発生装置1を通じて溶存酸素を除去した酒は常温貯蔵庫65に貯蔵した。低温貯蔵庫60の温度は約2℃、常温貯蔵庫65は室温状態であった。   In Example 1, dissolved oxygen contained in the liquor being stored was removed using the dissolved oxygen removing device 30. FIG. 6 shows a process flow for removing oxygen according to the first embodiment. The general liquor stored in the low temperature storage 60 was sent through the liquid pump 61 to the fine bubble generating device 1 constituting the dissolved oxygen removing device 30 at a rate of 100 liters per minute. Nitrogen gas was provided with a pressure reducing valve 63 at the outlet of the nitrogen gas cylinder 62, the flow rate was adjusted to 30 liters per minute with the needle valve 64, and the nitrogen gas was supplied to the fine bubble generator 1. The nitrogen gas flow rate and pressure were confirmed with the nitrogen gas flow meter 43 and the pressure gauge 44 of the dissolved oxygen removing device 30. The liquor from which dissolved oxygen was removed through the fine bubble generator 1 was stored in the room temperature storage 65. The temperature of the low temperature storage 60 was about 2 ° C., and the normal temperature storage 65 was at room temperature.

溶存酸素除去に伴う香気成分の変化量を調べるため、溶存酸素除去操作を行った場合と溶存酸素除去操作を行わなかった場合とで、それぞれ香気成分の濃度を測定した。香気成分には酒の代表的な香気成分である酢酸イソアミルとカプロン酸エチルを選定し、濃度測定はガスクロマトグラフィで行った。   In order to examine the amount of change in the fragrance component accompanying the removal of dissolved oxygen, the concentration of the fragrance component was measured when the dissolved oxygen removal operation was performed and when the dissolved oxygen removal operation was not performed. As the aroma component, isoamyl acetate and ethyl caproate, which are representative aroma components of sake, were selected, and the concentration was measured by gas chromatography.

(実施例1の結果)液量4000リットル移送直後の常温貯蔵庫65内の酒に含まれる溶存酸素濃度は、0.8mg/Lであった。この時の溶存酸素と窒素ガスとの置換効率はほぼ100%であった。また溶存酸素除去操作後の酒に含まれる酢酸イソアミル濃度は、約2.73mg/Lであったのに対し、溶存酸素除去操作を行わなかったときの酢酸イソアミル濃度は、約2.69mg/Lとほぼ同じ値であった。同様に、酒に含まれるカプロン酸エチルの濃度は溶存酸素除去操作を行った場合が約1.42mg/L、溶存酸素除去操作を行わなかった場合が約1.30mg/Lとほぼ同じ値であった。   (Results of Example 1) The concentration of dissolved oxygen contained in the sake in the room temperature storage 65 immediately after the transfer of 4000 liters of liquid was 0.8 mg / L. At this time, the replacement efficiency of dissolved oxygen and nitrogen gas was almost 100%. The concentration of isoamyl acetate contained in the liquor after the dissolved oxygen removal operation was about 2.73 mg / L, whereas the concentration of isoamyl acetate when the dissolved oxygen removal operation was not performed was about 2.69 mg / L. And almost the same value. Similarly, the concentration of ethyl caproate contained in sake is about 1.42 mg / L when the dissolved oxygen removal operation is performed, and about 1.30 mg / L when the dissolved oxygen removal operation is not performed. there were.

吟醸酒を使用した場合の実施例を示す。   The example at the time of using ginjo sake is shown.

低温貯蔵庫60の貯蔵温度が13℃、移送した酒量が550Lであった以外、条件は実施例1と同一である。実施例2では香気成分の分析のみ行った。   The conditions are the same as in Example 1 except that the storage temperature of the low-temperature storage 60 was 13 ° C. and the amount of liquor transferred was 550 L. In Example 2, only the analysis of aroma components was performed.

(実施例2の結果)溶存酸素除去操作後の酒に含まれる酢酸イソアミル濃度は、約1.70mg/Lであったのに対し、溶存酸素除去操作を行わなかったときの酢酸イソアミル濃度は、約1.83mg/Lとほぼ同じ値であった。同様に、酒に含まれるカプロン酸エチルの濃度は溶存酸素除去操作を行った場合が約1.08mg/L、溶存酸素除去操作を行わなかった場合が約1.22mg/Lとほぼ同じ値であった。   (Result of Example 2) The concentration of isoamyl acetate contained in the sake after the dissolved oxygen removal operation was about 1.70 mg / L, whereas the concentration of isoamyl acetate when the dissolved oxygen removal operation was not performed was The value was almost the same as about 1.83 mg / L. Similarly, the concentration of ethyl caproate contained in sake is about 1.08 mg / L when the dissolved oxygen removal operation is performed, and about 1.22 mg / L when the dissolved oxygen removal operation is not performed. there were.

比較例1Comparative Example 1

従来から使用されているように窒素ガスを円周方向の一箇所から供給する方式の微細気泡発生装置を使用して、次の条件で微細気泡の発生テストを行った。絞り部の直径を6mm、液供給液量を毎時2000リットル、供給ガス量を毎分10リットルした。   A microbubble generation test was performed under the following conditions using a microbubble generator of a type in which nitrogen gas is supplied from one place in the circumferential direction as conventionally used. The diameter of the throttle part was 6 mm, the liquid supply liquid amount was 2000 liters per hour, and the supply gas amount was 10 liters per minute.

(比較例1の結果)ガス側の圧力が十分に低下せず、気泡は十分に微細化しなかった。   (Result of Comparative Example 1) The pressure on the gas side was not sufficiently reduced, and the bubbles were not sufficiently refined.

本発明の実施の一形態としての微細気泡発生装置1の管体を分離した状態を示す簡略的な断面図である。It is a simple sectional view showing the state where the tube of fine bubble generating device 1 as one embodiment of the present invention was separated. 本発明の気室形成部材15の側面図である。It is a side view of the air chamber forming member 15 of the present invention. 本発明の気室形成部材15の図2のA−A線の方向から見た図である。It is the figure seen from the direction of the AA line of FIG. 2 of the air chamber formation member 15 of this invention. 本発明の旋回流発生部材25の大略的な外観形状を示す図である。It is a figure which shows the general | schematic external appearance shape of the swirl | vortex flow generation member 25 of this invention. 本発明の実施の他の形態としての微細気泡発生装置1を用いた溶存酸素除去装置30の概略的な構成を示す図である。It is a figure which shows schematic structure of the dissolved oxygen removal apparatus 30 using the microbubble generator 1 as other form of implementation of this invention. 本発明の実施例1の酸素除去の概略的フローを示す図である。It is a figure which shows the schematic flow of the oxygen removal of Example 1 of this invention.

符号の説明Explanation of symbols

1 微細気泡発生装置
2、3 管体
9 絞り部
10 気液混合部
11 末広部
14 ガス導入部
15 気室形成部材
16 気室
20 突起物
24 スリット部
25 旋回流発生部材
30 溶存酸素除去装置
43 ガス流量計
44 圧力計
45 窒素ガス導入管路
DESCRIPTION OF SYMBOLS 1 Fine bubble generator 2, 3 Tubing body 9 Restriction part 10 Gas-liquid mixing part 11 Wide end part 14 Gas introduction part 15 Air chamber formation member 16 Air chamber 20 Projection 24 Slit part 25 Swirling flow generation member 30 Dissolved oxygen removal apparatus 43 Gas flow meter 44 Pressure gauge 45 Nitrogen gas inlet line

Claims (6)

管体に液体とガスとを流通させ微細気泡を発生させる微細気泡発生装置において、
液体を流通させる流路の断面積を縮小させた絞り部と、
該絞り部の下流にあって流路の流れ方向に従い断面積が拡大する末広部と、
該絞り部の下流でかつ該末広部の上流に位置し該絞り部の断面積より大きな断面積を有する気液混合部と、
該絞り部の近傍で管体に穿設したガス導入部と、
該ガス導入部と連絡し、該ガス導入部からのガスを受入れる気室を形成する該管体内部に装着された気室形成部材と、
該絞り部の下流でかつ該気液混合部の上流に位置し、放射線状に管の中心線に向かって該気室に流入する気体を液体流路に導入するスリット部と、
を含むことを特徴とする微細気泡発生装置。
In a fine bubble generator that circulates liquid and gas through a tube to generate fine bubbles,
A constricted portion in which the cross-sectional area of the flow path through which the liquid flows is reduced;
A divergent portion that is downstream of the throttle portion and whose cross-sectional area expands in accordance with the flow direction of the flow path;
A gas-liquid mixing section located downstream of the throttle section and upstream of the divergent section and having a cross-sectional area larger than the cross-sectional area of the throttle section;
A gas introduction part drilled in the tube in the vicinity of the throttle part;
An air chamber forming member attached to the inside of the tubular body that communicates with the gas introducing portion and forms an air chamber that receives the gas from the gas introducing portion;
A slit part that is located downstream of the throttle part and upstream of the gas-liquid mixing part, and that introduces gas flowing into the air chamber radially toward the center line of the pipe into the liquid flow path;
A microbubble generator characterized by comprising:
前記管体は略中央部で二つの管体に分離可能に形成され、
前記気室形成部材は、管体から着脱可能に装着されることを特徴とする請求項1に記載の微細気泡発生装置。
The tubular body is formed to be separable into two tubular bodies at a substantially central portion,
The microbubble generator according to claim 1, wherein the air chamber forming member is detachably attached to the tube body.
前記気室形成部材は、一端に突起物を備え、
前記スリット部は、前記気室形成部材の突起物を管体に当接させることにより形成することを特徴とする請求項1または請求項2に記載の微細気泡発生装置。
The air chamber forming member includes a protrusion at one end,
The fine bubble generating device according to claim 1, wherein the slit portion is formed by bringing a projection of the air chamber forming member into contact with a tubular body.
前記管体の内部にあって前記絞り部上流側に旋回流を発生させる旋回流発生部材を備えることを特徴とする請求項1から請求項3のいずれかに記載の微細気泡発生装置。   The fine bubble generating device according to any one of claims 1 to 3, further comprising a swirl flow generating member that generates a swirl flow inside the tubular body and upstream of the throttle unit. 請求項1から請求項4のいずれかに記載の微細気泡発生装置と、
液中の溶存酸素を除去するための窒素ガスを前記微細気泡発生装置に導入する窒素ガス導入管路と、
前記窒素ガス導入管路の途中に設けられ導入する窒素ガス流量を測定するためのガス流量計と、
該ガス流量計と前記微細気泡発生装置の前記ガス導入部とを接続する前記窒素ガス導入管路の途中に装着される圧力計と、
を含むことを特徴とする溶存酸素除去装置。
The fine bubble generator according to any one of claims 1 to 4,
A nitrogen gas introduction pipe for introducing nitrogen gas for removing dissolved oxygen in the liquid into the fine bubble generating device;
A gas flow meter for measuring a nitrogen gas flow rate provided and introduced in the middle of the nitrogen gas introduction line;
A pressure gauge attached in the middle of the nitrogen gas introduction pipe connecting the gas flow meter and the gas introduction part of the fine bubble generating device;
A device for removing dissolved oxygen, comprising:
請求項5に記載の溶存酸素除去装置を用いたことを特徴とする溶存酸素除去方法。   A dissolved oxygen removing method using the dissolved oxygen removing apparatus according to claim 5.
JP2004247365A 2004-08-26 2004-08-26 Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them Pending JP2006061829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247365A JP2006061829A (en) 2004-08-26 2004-08-26 Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247365A JP2006061829A (en) 2004-08-26 2004-08-26 Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them

Publications (1)

Publication Number Publication Date
JP2006061829A true JP2006061829A (en) 2006-03-09

Family

ID=36108750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247365A Pending JP2006061829A (en) 2004-08-26 2004-08-26 Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them

Country Status (1)

Country Link
JP (1) JP2006061829A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296420A (en) * 2006-04-27 2007-11-15 Sharp Corp Gas-liquid mixing device
JP2008023515A (en) * 2006-06-20 2008-02-07 Sharp Corp Microbubble generator
JP2008036468A (en) * 2006-08-01 2008-02-21 Sharp Corp Mixing and dispersing device and mixing and dispersing system
JP2008062151A (en) * 2006-09-06 2008-03-21 Nishida Marine Boiler Co Ltd Apparatus for generating bubble
JP2009526646A (en) * 2006-02-15 2009-07-23 エクシカ インコーポレイテッド Venturi device
KR101020112B1 (en) 2010-08-05 2011-03-09 강원태 Apparatus for removing the dissolved oxygen and sterilizing
JP2013132735A (en) * 2011-12-27 2013-07-08 Fanuc Ltd Wire electric discharge machine dissolving inert gas in machining fluid and wire electric discharge machining method
JP2016179459A (en) * 2015-03-25 2016-10-13 エウレカ・ラボ株式会社 Aspirator valve with improved pipeline formability
WO2018190550A1 (en) * 2017-04-11 2018-10-18 김천호 Oxygen supply device for water quality improvement

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526646A (en) * 2006-02-15 2009-07-23 エクシカ インコーポレイテッド Venturi device
JP2007296420A (en) * 2006-04-27 2007-11-15 Sharp Corp Gas-liquid mixing device
JP4619316B2 (en) * 2006-04-27 2011-01-26 シャープ株式会社 Gas-liquid mixing device
JP2008023515A (en) * 2006-06-20 2008-02-07 Sharp Corp Microbubble generator
JP2008036468A (en) * 2006-08-01 2008-02-21 Sharp Corp Mixing and dispersing device and mixing and dispersing system
JP2008062151A (en) * 2006-09-06 2008-03-21 Nishida Marine Boiler Co Ltd Apparatus for generating bubble
KR101020112B1 (en) 2010-08-05 2011-03-09 강원태 Apparatus for removing the dissolved oxygen and sterilizing
JP2013132735A (en) * 2011-12-27 2013-07-08 Fanuc Ltd Wire electric discharge machine dissolving inert gas in machining fluid and wire electric discharge machining method
JP2016179459A (en) * 2015-03-25 2016-10-13 エウレカ・ラボ株式会社 Aspirator valve with improved pipeline formability
WO2018190550A1 (en) * 2017-04-11 2018-10-18 김천호 Oxygen supply device for water quality improvement
KR20180114710A (en) * 2017-04-11 2018-10-19 김천호 Apparatus for oxygen supply for water treatment
KR101959780B1 (en) * 2017-04-11 2019-03-19 비앤비코포레이션 주식회사 Apparatus for oxygen supply for water treatment

Similar Documents

Publication Publication Date Title
JP2010075838A (en) Bubble generation nozzle
WO2018020701A1 (en) Nanobubble-generating nozzle and nanobubble-generating device
WO2005115596A1 (en) Method and device for producing fine air bubble-containing liquid, and fine air bubble producer assembled in the device
JP2008086868A (en) Microbubble generator
JP2008161825A (en) Gas dissolving device
JP5573879B2 (en) Microbubble generator
JP2008161819A (en) Gas dissolving device
JP2006159187A (en) Superfine bubble generating device
JP4426612B2 (en) Fine bubble generation nozzle
JP2008161831A (en) Bubble generator
JP2009028579A (en) Bubble generating apparatus
JP2006136777A (en) Mixing apparatus for fine bubble
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2006061829A (en) Micro air-bubble generation apparatus, dissolved oxygen remover using the same and dissolved oxygen removing method using them
JP2008161832A (en) Bubble generator
JP2000325767A (en) Apparatus for generating gas-liquid mixed stream and gas-liquid mixing unit pipe
JP2008161822A (en) Gas dissolving device and microbubble feeding device
JP2007020779A (en) Microbubble generating nozzle
JP6691716B2 (en) Method and device for generating fine bubbles
JP2008023435A (en) Microbubble generator
JP2007000848A (en) Method for generating fine bubble
JP4376888B2 (en) Microbubble generator
JP2007268390A (en) Bubble generating device
JP2003260342A (en) Apparatus and method for mixing ozone
JP2010125427A (en) Nozzle for generating microbubble