JP2007073880A - Substrate processing apparatus - Google Patents

Substrate processing apparatus Download PDF

Info

Publication number
JP2007073880A
JP2007073880A JP2005262122A JP2005262122A JP2007073880A JP 2007073880 A JP2007073880 A JP 2007073880A JP 2005262122 A JP2005262122 A JP 2005262122A JP 2005262122 A JP2005262122 A JP 2005262122A JP 2007073880 A JP2007073880 A JP 2007073880A
Authority
JP
Japan
Prior art keywords
pressure
processing chamber
processing
line
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005262122A
Other languages
Japanese (ja)
Other versions
JP2007073880A5 (en
JP4813854B2 (en
Inventor
Yukihiko Takekuma
有紀彦 武隈
Naoya Miyashita
直也 宮下
Hiroki Okamiya
弘樹 岡宮
Haruo Morikawa
晴夫 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005262122A priority Critical patent/JP4813854B2/en
Publication of JP2007073880A publication Critical patent/JP2007073880A/en
Publication of JP2007073880A5 publication Critical patent/JP2007073880A5/ja
Application granted granted Critical
Publication of JP4813854B2 publication Critical patent/JP4813854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate processing apparatus capable of controlling a pressure in its processing chamber to be maintained to a predetermined value, and of discharging a stored liquid independently of variations in an external pressure. <P>SOLUTION: The substrate processing apparatus includes: a reservoir 36 provided to an exhaust line 4 for exhausting a processing gas in the processing chamber 19, and for storing a liquid contained in the processing gas; a liquid discharge line 37 provided to a downstream side from the reservoir 36, and for discharging the liquid from the reservoir 36; a pressure control means 24 for controlling the pressure in the processing chamber 19; an absolute pressure detection means 24b for detecting the pressure in the processing chamber 19 in unit by an absolute pressure; and a differential pressure detection means 23 for detecting the pressure in the processing chamber 19 by a differential pressure from the external pressure. The substrate processing apparatus controls the liquid discharge line 37 so as not to be communicatively connected to the outer part of the apparatus, while controlling the pressure control means 24 on the basis of a detection value detected by the absolute pressure detection means 24b when processing the substrate; and controls the liquid discharge line 37 so as to be communicatively connected to the outer part of the apparatus on the basis of a detection value detected by the differential pressure detection means 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はシリコンウェーハ等の基板に酸化膜等の成膜処理を行う基板処理装置に関するものである。   The present invention relates to a substrate processing apparatus for forming a film such as an oxide film on a substrate such as a silicon wafer.

基板処理装置は、シリコンウェーハ等の基板を処理する為の処理炉を具備し、該処理炉内の処理室に所定枚数のウェーハを収納し、該ウェーハを加熱しつつ処理ガスを導入して、ウェーハ表面に成膜処理、或は不純物の拡散等の処理を行っている。又、処理後の排気ガス中に液化成分を含む処理、例えば純粋な水蒸気を処理ガスとして酸化膜の生成を行う基板処理装置では、処理炉の排気系に液化成分を貯溜する為の貯液手段を具備している。   The substrate processing apparatus includes a processing furnace for processing a substrate such as a silicon wafer, stores a predetermined number of wafers in a processing chamber in the processing furnace, introduces a processing gas while heating the wafer, A film forming process or a process such as impurity diffusion is performed on the wafer surface. Also, in a substrate processing apparatus that generates an oxide film by using pure water vapor as a processing gas, for example, a processing that includes a liquefied component in the exhaust gas after processing, liquid storage means for storing the liquefied component in the exhaust system of the processing furnace It has.

例えば特許文献1は、図7で示す様に、酸化膜を生成するパイロジェニック炉57を具備している半導体製造装置を示しており、排気系58には排気ガス中の液化した水を捕捉し、又所定量以上となった場合に水を排出する貯水器59を示している。又、成膜品質を一定にする為には、前記排気系58には、処理室の圧力を所定圧に保持する為の排気制御用バルブ装置が設けられている(図7中には図示せず)。   For example, Patent Document 1 shows a semiconductor manufacturing apparatus having a pyrogenic furnace 57 for generating an oxide film as shown in FIG. 7, and the exhaust system 58 captures liquefied water in the exhaust gas. Moreover, the water reservoir 59 which discharges | emits water when it becomes more than predetermined amount is shown. Further, in order to make the film formation quality constant, the exhaust system 58 is provided with an exhaust control valve device for keeping the pressure in the processing chamber at a predetermined pressure (not shown in FIG. 7). )

従来、排気制御用バルブ装置は、外気圧を基準として処理室の圧力を検出し、検出結果に基づき、処理室内を制御している。一方、検出する外気圧は、基板処理装置が設置されている標高、外気圧の変化によって変動するので、処理室内の圧力もその影響により変動してしまうのを防ぐ様、外気圧の変動を考慮して前記排気制御用バルブ装置による圧力制御をしなければならず、調整作業が面倒であったという問題がある。   2. Description of the Related Art Conventionally, an exhaust control valve device detects the pressure in a processing chamber with reference to the outside air pressure, and controls the processing chamber based on the detection result. On the other hand, the detected external air pressure varies depending on the altitude and the external air pressure at which the substrate processing apparatus is installed. Therefore, the variation in the external air pressure is taken into consideration to prevent the pressure in the processing chamber from fluctuating due to the influence. Thus, the pressure control by the exhaust control valve device has to be performed, and there is a problem that adjustment work is troublesome.

又、貯液手段に貯溜した液体を排出する場合に、前記処理室内の圧力の変動が無い様に考慮されなければならず、更に、液化した液が前記排気系58を構成する配管に残留しない様に考慮されなければならない。   Further, when discharging the liquid stored in the liquid storage means, it must be considered that there is no fluctuation in the pressure in the processing chamber, and further, the liquefied liquid does not remain in the piping constituting the exhaust system 58. Must be considered in the same way.

特開平6−326085号公報JP-A-6-326085

本発明は斯かる実情に鑑み、外気圧の変動に拘らず、処理室内の圧力を所定値に保持制御可能とすると共に、処理室内の圧力を変動させることなく貯溜液の排出を可能とするものである。   In view of such circumstances, the present invention makes it possible to maintain and control the pressure in the processing chamber to a predetermined value regardless of fluctuations in the external pressure, and to discharge the stored liquid without changing the pressure in the processing chamber. It is.

本発明は、基板を処理する処理室と、該処理室に処理ガスを供給するガス供給ラインと、前記処理室の処理ガスを排気する排気ラインと、該排気ラインに設けられ、処理ガス中の液化物を貯溜する貯液具と、該貯液具より下流側に設けられ、該貯液具からの液化物を外部に排出する排液ラインと、前記排気ラインに設けられ、前記処理室の圧力を制御する圧力制御手段と、前記排気ラインに設けられ、前記処理室の圧力を絶対圧で検出する絶対圧検出手段と、前記排気ラインに設けられ、前記処理室の圧力を外気との差圧で検出する差圧検出手段とを具備し、基板を処理する際は、前記絶対圧検出手段の検出する検出値に基づき前記圧力制御手段を制御しつつ前記排液ラインと前記外部とを連通しない状態とし、液化物を排出する際には、前記差圧検出手段の検出する検出値に基づき前記排液ラインと外部とが連通する状態となる様に制御する基板処理装置に係るものである。   The present invention is provided in a processing chamber for processing a substrate, a gas supply line for supplying a processing gas to the processing chamber, an exhaust line for exhausting the processing gas in the processing chamber, and the exhaust line. A liquid storage device for storing the liquefied material, a drainage line provided downstream of the liquid storage device, for discharging the liquefied material from the liquid storage device to the outside, and provided in the exhaust line. A pressure control means for controlling the pressure, an absolute pressure detection means for detecting the pressure of the processing chamber as an absolute pressure, provided in the exhaust line, and a difference between the pressure of the processing chamber and the outside air provided in the exhaust line. A differential pressure detecting means for detecting pressure, and when processing a substrate, the drain line and the outside communicate with each other while controlling the pressure control means based on a detection value detected by the absolute pressure detecting means. Before discharging the liquefied material. Wherein based on a detection value detected by the differential pressure detecting means discharge line and the outside is related to a substrate processing apparatus for controlling so as to become a state of communicating.

本発明によれば、基板を処理する処理室と、該処理室に処理ガスを供給するガス供給ラインと、前記処理室の処理ガスを排気する排気ラインと、該排気ラインに設けられ、処理ガス中の液化物を貯溜する貯液具と、該貯液具より下流側に設けられ、該貯液具からの液化物を外部に排出する排液ラインと、前記排気ラインに設けられ、前記処理室の圧力を制御する圧力制御手段と、前記排気ラインに設けられ、前記処理室の圧力を絶対圧で検出する絶対圧検出手段と、前記排気ラインに設けられ、前記処理室の圧力を外気との差圧で検出する差圧検出手段とを具備し、基板を処理する際は、前記絶対圧検出手段の検出する検出値に基づき前記圧力制御手段を制御しつつ前記排液ラインと前記外部とを連通しない状態とし、液化物を排出する際には、前記差圧検出手段の検出する検出値に基づき前記排液ラインと外部とが連通する状態となる様に制御するので、前記排液ラインからの外気の進入、大気圧の変動の影響を防止でき、一定の排気圧下での処理が可能となり、処理品質が向上し、安定した基板処理を行うことが可能となり、又液化物を排出する際にも排気ライン及び処理室内の圧力が外気圧より負圧になってスムーズに排出されない様なことを防ぐことができる等の優れた効果を発揮する。   According to the present invention, a processing chamber is provided in the processing chamber for processing a substrate, a gas supply line for supplying a processing gas to the processing chamber, an exhaust line for exhausting the processing gas in the processing chamber, and the exhaust line. A liquid storage device for storing the liquefied material therein, a drain line provided on the downstream side of the liquid storage device, for discharging the liquefied material from the liquid storage device to the outside, and the exhaust line, A pressure control means for controlling the pressure of the chamber; an absolute pressure detection means for detecting the pressure of the processing chamber as an absolute pressure; provided in the exhaust line; Differential pressure detection means for detecting the pressure difference between the drain line and the outside while controlling the pressure control means based on the detection value detected by the absolute pressure detection means. When the liquid is discharged Since the control is performed so that the drainage line communicates with the outside based on the detection value detected by the differential pressure detecting means, the influence of the outside air from the drainage line and the fluctuation of the atmospheric pressure is prevented. This makes it possible to perform processing under a certain exhaust pressure, improve the processing quality, enable stable substrate processing, and the pressure in the exhaust line and the processing chamber is external pressure even when liquefied material is discharged. It exhibits excellent effects such as preventing negative pressure from being discharged smoothly.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明が実施される基板処理装置に用いられる酸化、拡散処理炉の一例について説明する。   First, referring to FIG. 1, an example of an oxidation and diffusion processing furnace used in a substrate processing apparatus in which the present invention is implemented will be described.

図1はバッチ式の処理炉を示しており、ヒータベース21に加熱手段であるヒータ10が立設され、該ヒータ10内に炭化珪素製の均熱管1が同心に収納され、該均熱管1内に炭化珪素製又は石英製の反応管2が同心に配設され、該反応管2は処理室19を画成する。   FIG. 1 shows a batch type processing furnace, in which a heater 10 as a heating means is erected on a heater base 21, a silicon carbide soaking tube 1 is concentrically housed in the heater 10, and the soaking tube 1 A reaction tube 2 made of silicon carbide or quartz is concentrically disposed therein, and the reaction tube 2 defines a processing chamber 19.

前記反応管2の下端部には導入口5が取付けられ、該導入口5はガス供給ラインを介して図示しない処理ガス供給源(例えば水蒸気発生器)、或は窒素ガス等の不活性ガス(パージガス)供給源に接続され、ガス供給ラインはガス供給管3、流量制御手段、例えばマスフローコントローラ22が設けられている。該マスフローコントローラ22は、供給する水蒸気(H2 O)又はガスの流量を所定の量に制御し得る。   An introduction port 5 is attached to the lower end of the reaction tube 2, and the introduction port 5 is connected to a processing gas supply source (not shown) (for example, a steam generator) or an inert gas such as nitrogen gas (via a gas supply line). The gas supply line is provided with a gas supply pipe 3 and a flow rate control means such as a mass flow controller 22. The mass flow controller 22 can control the flow rate of water vapor (H2 O) or gas supplied to a predetermined amount.

又、前記反応管2の下端部には排気口9が連通され、該排気口9はガス排気ラインを介して図示しない排気装置に接続され、ガス排気ラインにはガス排気管4、差圧型圧力センサ23、圧力制御弁24が設けられている。   An exhaust port 9 communicates with the lower end of the reaction tube 2, and the exhaust port 9 is connected to an exhaust device (not shown) via a gas exhaust line. The gas exhaust line includes a gas exhaust tube 4, a differential pressure type pressure. A sensor 23 and a pressure control valve 24 are provided.

該圧力制御弁24は、後述する真空発生器24a、及び絶対圧検出センサ24bを具備している。前記真空発生器24aは後述するN2 供給ライン45からの窒素ガスの高速噴射(エジェクタ)で真空を発生するものであり、前記絶対圧検出センサ24bは発生された真空と後述する排気圧検知ライン49から得られる前記ガス排気管4の圧力差、即ち該ガス排気管4の絶対圧、換言すれば前記処理室19の絶対圧を検出するものであり、前記絶対圧検出センサ24bは0〜1330hPaの範囲で圧力の検知が可能となっており、検出圧力は圧力制御部29に送出される様になっている。   The pressure control valve 24 includes a vacuum generator 24a, which will be described later, and an absolute pressure detection sensor 24b. The vacuum generator 24a generates a vacuum by high-speed injection (ejector) of nitrogen gas from an N2 supply line 45, which will be described later, and the absolute pressure detection sensor 24b and an exhaust pressure detection line 49, which will be described later. The pressure difference of the gas exhaust pipe 4 obtained from the above, that is, the absolute pressure of the gas exhaust pipe 4, in other words, the absolute pressure of the processing chamber 19 is detected, and the absolute pressure detection sensor 24b has a pressure of 0 to 1330 hPa. The pressure can be detected within the range, and the detected pressure is sent to the pressure control unit 29.

前記導入口5には導管6が連通され、該導管6は前記反応管2の外面に沿って上昇し、該反応管2の上端面に設けられたガス溜め部7に連通し、該ガス溜め部7は分散孔8を介して前記処理室19と連通している。   A conduit 6 communicates with the introduction port 5, the conduit 6 rises along the outer surface of the reaction tube 2, communicates with a gas reservoir 7 provided on the upper end surface of the reaction tube 2, and the gas reservoir The part 7 communicates with the processing chamber 19 through the dispersion hole 8.

該処理室19には炭化珪素製又は石英製のボート16が装入、引出し可能となっており、該ボート16はボートキャップ15、ベース12を介してシールキャップ13に載置され、該シールキャップ13は前記反応管2の下端開放面を気密に閉塞可能である。前記シールキャップ13はボートエレベータ18によって支持され、該ボートエレベータ18は前記シールキャップ13を介して前記ボートキャップ15、前記ボート16を昇降可能であり、昇降によって前記ボート16が前記処理室19に装脱可能となっている。   A silicon carbide or quartz boat 16 can be loaded into and withdrawn from the processing chamber 19. The boat 16 is placed on a seal cap 13 via a boat cap 15 and a base 12. 13 can airtightly close the open bottom surface of the reaction tube 2. The seal cap 13 is supported by a boat elevator 18, and the boat elevator 18 can raise and lower the boat cap 15 and the boat 16 through the seal cap 13, and the boat 16 is mounted in the processing chamber 19 by raising and lowering. It is possible to remove.

前記ボートキャップ15は前記ベース12に対して回転可能であり、前記ボートキャップ15は回転手段14によって回転可能となっている。   The boat cap 15 is rotatable with respect to the base 12, and the boat cap 15 is rotatable by a rotating means 14.

図1中、25は主制御部を示し、該主制御部25は温度制御部26、ガス流量制御部27、駆動制御部28、前記圧力制御部29を具備している。該圧力制御部29は、前記差圧型圧力センサ23からの圧力検出信号及び/又は前記絶対圧検出センサ24bからの圧力検出信号に基づき前記処理室19を所定の圧力に制御する。   In FIG. 1, reference numeral 25 denotes a main control unit, and the main control unit 25 includes a temperature control unit 26, a gas flow rate control unit 27, a drive control unit 28, and the pressure control unit 29. The pressure control unit 29 controls the processing chamber 19 to a predetermined pressure based on a pressure detection signal from the differential pressure type pressure sensor 23 and / or a pressure detection signal from the absolute pressure detection sensor 24b.

炉内の所要箇所の温度を検出する熱電対11からの検出結果は前記温度制御部26に入力され、該温度制御部26は温度検出結果を基に前記処理室19が所定温度、例えばプロセス温度となる様に前記ヒータ10を制御する。又、前記ガス流量制御部27は前記導入口5から導入される反応ガスを所定流量に制御し、前記圧力制御部29は、前記差圧型圧力センサ23及び/又は前記絶対圧検出センサ24bから入力される圧力を基に前記圧力制御弁24を制御して前記処理室19の圧力を所定圧力例えばプロセス圧力に制御する。   A detection result from the thermocouple 11 that detects the temperature of a required location in the furnace is input to the temperature control unit 26, and the temperature control unit 26 sets the processing chamber 19 to a predetermined temperature, for example, a process temperature based on the temperature detection result. The heater 10 is controlled so that The gas flow rate control unit 27 controls the reaction gas introduced from the introduction port 5 to a predetermined flow rate, and the pressure control unit 29 is input from the differential pressure type pressure sensor 23 and / or the absolute pressure detection sensor 24b. Based on the pressure, the pressure control valve 24 is controlled to control the pressure in the processing chamber 19 to a predetermined pressure, for example, a process pressure.

前記駆動制御部28は、前記回転手段14を制御して処理中の前記ボート16を所定の回転速度で回転させ、又前記ボートエレベータ18を制御して、前記ボート16の昇降を行わせる。   The drive control unit 28 controls the rotating means 14 to rotate the boat 16 being processed at a predetermined rotational speed, and controls the boat elevator 18 to raise and lower the boat 16.

以下、基板処理の一例である酸化処理、例えば水蒸気によるパイロジェニック酸化を説明する。   Hereinafter, an oxidation process which is an example of a substrate process, for example, pyrogenic oxidation with water vapor will be described.

前記ボートエレベータ18を駆動して、前記ボート16を降下させる。   The boat elevator 18 is driven to lower the boat 16.

図示しないウェーハ移載機により前記ボート16にウェーハ17を1バッチ分の所定枚数移載する。前記ヒータ10により前記反応管2内が前記均熱管1を介して加熱され、前記熱電対11により検出される前記処理室19の温度に基づいて、該処理室19の温度が所定の温度、例えば600℃に制御される。尚、予め前記処理室19は前記導入口5、前記導管6より不活性ガスが供給され、不活性ガスが充填されている。   A predetermined number of wafers 17 are transferred onto the boat 16 by a wafer transfer machine (not shown). The inside of the reaction tube 2 is heated by the heater 10 via the soaking tube 1, and the temperature of the processing chamber 19 is set to a predetermined temperature based on the temperature of the processing chamber 19 detected by the thermocouple 11, for example, Controlled at 600 ° C. The processing chamber 19 is previously filled with an inert gas by being supplied with an inert gas from the inlet 5 and the conduit 6.

未処理ウェーハ17が前記ボート16に装填され、該ボート16が前記ボートエレベータ18により前記反応管2に装入される。前記ボート16の装入状態では、前記シールキャップ13が前記反応管2の下端開口部を気密に閉塞する。前記処理室19の温度を、例えば処理温度としての750℃〜1000℃から選択される温度迄昇温しつつ前記絶対圧検出センサ24bの検出圧力を基に前記圧力制御弁24により、前記処理室19の圧力が処理圧、例えば950hPa〜960hPaに維持される。   Unprocessed wafers 17 are loaded into the boat 16, and the boat 16 is loaded into the reaction tube 2 by the boat elevator 18. When the boat 16 is loaded, the seal cap 13 airtightly closes the lower end opening of the reaction tube 2. The temperature of the processing chamber 19 is raised to a temperature selected from, for example, 750 ° C. to 1000 ° C. as a processing temperature, and the processing chamber is controlled by the pressure control valve 24 based on the detected pressure of the absolute pressure detection sensor 24b. The pressure of 19 is maintained at a processing pressure, for example, 950 hPa to 960 hPa.

前記回転手段14が駆動され、前記ボート16を介して前記ウェーハ17が回転される。同時に前記ガス供給管3から反応ガスとして水蒸気が供給される。供給された水蒸気はは、前記ガス溜め部7から前記分散孔8を通って前記反応管2を下降し、前記ウェーハ17に対して均等に供給され、酸化処理が成される。酸化処理中の前記処理室19は、前記ガス排気管4を介して排気ガスが排気される。   The rotating means 14 is driven, and the wafer 17 is rotated through the boat 16. At the same time, water vapor is supplied as a reaction gas from the gas supply pipe 3. The supplied water vapor descends the reaction tube 2 from the gas reservoir 7 through the dispersion hole 8 and is uniformly supplied to the wafer 17 to be oxidized. The exhaust gas is exhausted through the gas exhaust pipe 4 into the processing chamber 19 during the oxidation process.

基板処理が完了すると、前記処理室19が不活性ガスによりガスパージされ、前記ボートエレベータ18により前記ボート16が降下され、処理済のウェーハ17が払出される。   When the substrate processing is completed, the processing chamber 19 is purged with an inert gas, the boat elevator 18 is lowered by the boat elevator 18, and the processed wafers 17 are discharged.

空となった前記ボート16に未処理ウェーハ17が移載され、上記した処理が繰返される。   Unprocessed wafers 17 are transferred to the empty boat 16 and the above processing is repeated.

尚、一例迄、本実施の形態の処理炉にて処理される処理条件は、SiO2 膜の成膜に於いては、ウェーハ温度750℃、ガス種供給量は酸素(O2 )8l/min、水素(H2 )8l/min、処理圧力は960hPaである。   Note that, up to an example, the processing conditions processed in the processing furnace of the present embodiment are as follows: in the formation of the SiO 2 film, the wafer temperature is 750 ° C., the gas species supply amount is oxygen (O 2) 8 l / min, hydrogen (H2) 8 l / min, processing pressure is 960 hPa.

以下、図2を参照して前記圧力制御弁24を含む排気系30について説明する。   Hereinafter, the exhaust system 30 including the pressure control valve 24 will be described with reference to FIG.

前記排気口9に接続された前記ガス排気管4は耐熱、耐食性の合成樹脂製であり、例えばフッ素樹脂製であり、工場排気装置のダクト等に接続されている。該工場の排気系は大気に対して、例えば−1000Pa程度の負圧となっている。前記ガス排気管4には、下流側に向ってガスクーラ31、前記差圧型圧力センサ23、前記圧力制御弁24、第1開閉弁32、第1圧力検出器33が設けられている。前記差圧型圧力センサ23は差圧型センサであり、前記処理室19と外気との差圧を検出可能となっている。前記ガスクーラ31の下流側に排液ライン34が連通され、該排液ライン34には下流側に向って第1エアバルブ35、貯溜具であるドレインタンク36、第2エアバルブ37が設けられ、前記ドレインタンク36には貯液を排出する為のドレイン管50が接続されている。前記第1エアバルブ35、前記ドレインタンク36、前記第2エアバルブ37等は貯液手段40を構成する。前記ドレインタンク36の概略を図3(A)に示す。   The gas exhaust pipe 4 connected to the exhaust port 9 is made of heat-resistant and corrosion-resistant synthetic resin, for example, made of fluororesin, and is connected to a duct or the like of a factory exhaust device. The exhaust system of the factory has a negative pressure of, for example, about -1000 Pa with respect to the atmosphere. The gas exhaust pipe 4 is provided with a gas cooler 31, the differential pressure sensor 23, the pressure control valve 24, a first on-off valve 32, and a first pressure detector 33 toward the downstream side. The differential pressure type pressure sensor 23 is a differential pressure type sensor and can detect a differential pressure between the processing chamber 19 and the outside air. A drain line 34 communicates with the downstream side of the gas cooler 31, and the drain line 34 is provided with a first air valve 35, a drain tank 36 as a reservoir, and a second air valve 37 toward the downstream side. A drain pipe 50 for discharging the stored liquid is connected to the tank 36. The first air valve 35, the drain tank 36, the second air valve 37, and the like constitute a liquid storage means 40. An outline of the drain tank 36 is shown in FIG.

前記ドレインタンク36は、1回の処理で発生する水分を充分貯溜することができる容量を有し、該ドレインタンク36の上端と下端に前記排液ライン34が連通している。又、1回の処理で発生する水分を貯溜した場合の液位より上方に、後述する圧力制御部ドレインライン43が連通している。   The drain tank 36 has a capacity capable of sufficiently storing water generated in one process, and the drain line 34 communicates with the upper and lower ends of the drain tank 36. Further, a pressure control unit drain line 43, which will be described later, communicates with the upper side of the liquid level when water generated in one process is stored.

前記排液ライン34の前記ガスクーラ31と前記第1エアバルブ35との間と、前記ガス排気管4の前記第1開閉弁32と前記圧力検出器33との間はバイパスライン38によって接続され、該バイパスライン38には前記排液ライン34から前記ガス排気管4に向って第3エアバルブ39、第2開閉弁41が設けられている。前記第3エアバルブ39はノーマリーオープンバルブ(常時開バルブ)であり、通電時に閉となる様になっており、停電時前記第3エアバルブ39が開となり、前記処理室19の圧力を逃す様になっている。又、前記第3エアバルブ39は、前記差圧型圧力センサ23が外気の圧力以上の圧力を検出した場合、前記反応管2が過加圧により割れたりしない様に開となり、前記処理室19の圧力を逃す様になっている。   A bypass line 38 connects between the gas cooler 31 and the first air valve 35 in the drain line 34 and between the first on-off valve 32 and the pressure detector 33 in the gas exhaust pipe 4. The bypass line 38 is provided with a third air valve 39 and a second on-off valve 41 from the drain line 34 toward the gas exhaust pipe 4. The third air valve 39 is a normally open valve (normally open valve), which is closed when energized. The third air valve 39 is opened during a power failure so that the pressure in the processing chamber 19 is released. It has become. The third air valve 39 is opened so that the reaction tube 2 is not cracked due to overpressure when the differential pressure sensor 23 detects a pressure higher than the pressure of the outside air, and the pressure in the processing chamber 19 is increased. Is supposed to be missed.

前記ガス排気管4の所要位置、図示では前記バイパスライン38の前記第3エアバルブ39の上流側と前記ドレインタンク36とは同圧化ライン42によって連通されている。該同圧化ライン42によって前記処理室19と前記ドレインタンク36の圧力が等しくされることで、排水性能が向上される。   A required position of the gas exhaust pipe 4, in the drawing, the upstream side of the third air valve 39 in the bypass line 38 and the drain tank 36 are connected by a pressure equalizing line 42. The pressure in the processing chamber 19 and the drain tank 36 is made equal by the pressure equalization line 42, so that drainage performance is improved.

前記圧力制御弁24と前記ドレインタンク36とは圧力制御部ドレインライン43によって接続され、該圧力制御部ドレインライン43には第4エアバルブ44が設けられている。   The pressure control valve 24 and the drain tank 36 are connected by a pressure control unit drain line 43, and a fourth air valve 44 is provided in the pressure control unit drain line 43.

前記圧力制御弁24には、真空圧発生用のN2 供給ライン45が接続され、又該N2 供給ライン45から圧力制御部駆動用のパイロットライン46が分岐されている。前記N2 供給ライン45には、前記パイロットライン46との分岐点より下流側に第6エアバルブ53が設けられ、該第6エアバルブ53は前記圧力制御部29によって開閉される。又前記パイロットライン46は前記圧力制御弁24に接続され、前記パイロットライン46には分岐点から下流に向って圧力調整弁47、圧力センサ48が設けられ、前記ガス排気管4の圧力は前記排気圧検知ライン49により前記圧力制御弁24に送出されている。   An N2 supply line 45 for generating vacuum pressure is connected to the pressure control valve 24, and a pilot line 46 for driving the pressure controller is branched from the N2 supply line 45. The N2 supply line 45 is provided with a sixth air valve 53 downstream from the branch point with the pilot line 46, and the sixth air valve 53 is opened and closed by the pressure controller 29. The pilot line 46 is connected to the pressure control valve 24. The pilot line 46 is provided with a pressure regulating valve 47 and a pressure sensor 48 from the branch point to the downstream, and the pressure in the gas exhaust pipe 4 is reduced to the exhaust pressure. It is sent to the pressure control valve 24 by an atmospheric pressure detection line 49.

次に、基板処理に伴う前記排気系30の作用について図2、図3、図4を参照して説明する。   Next, the operation of the exhaust system 30 associated with the substrate processing will be described with reference to FIGS.

基板処理中は、前記第1開閉弁32、前記第2開閉弁41、前記第1エアバルブ35、前記第4エアバルブ44、第6エアバルブ53が開、前記第3エアバルブ39、前記第2エアバルブ37が閉となっており(図2、図3(A))、前記処理室19から排出される排気ガスは前記排気口9から前記ガス排気管4を介し、前記ガスクーラ31、前記圧力制御弁24を通って工場排気装置に排出される。   During substrate processing, the first on-off valve 32, the second on-off valve 41, the first air valve 35, the fourth air valve 44, and the sixth air valve 53 are opened, and the third air valve 39 and the second air valve 37 are opened. The exhaust gas exhausted from the processing chamber 19 is closed from the exhaust port 9 through the gas exhaust pipe 4 through the gas cooler 31 and the pressure control valve 24 (FIGS. 2 and 3A). It is discharged to the factory exhaust system.

基板処理中、前記処理室19の処理圧力は絶対圧検出センサ24bによって検出される。即ち、前記絶対圧検出センサ24bによって前記処理室19の絶対圧が検出される。該絶対圧検出センサ24bは前記N2 供給ライン45の前記第6エアバルブ53が開され大量のN2 が前記真空発生器24aに流入されることにより発生される真空状態と前記処理室19の圧力との差、即ち該処理室19の絶対圧を検出する。   During the substrate processing, the processing pressure in the processing chamber 19 is detected by an absolute pressure detection sensor 24b. That is, the absolute pressure in the processing chamber 19 is detected by the absolute pressure detection sensor 24b. The absolute pressure detection sensor 24b has a relationship between the vacuum state generated when the sixth air valve 53 of the N2 supply line 45 is opened and a large amount of N2 flows into the vacuum generator 24a, and the pressure in the processing chamber 19. The difference, that is, the absolute pressure of the processing chamber 19 is detected.

前記圧力制御部29は、処理室を例えば950hPaに維持制御するとした場合、前記圧力制御部29は前記絶対圧検出センサ24bの検出圧力に基づき前記処理室19の圧力が950hPaとなる様に排気系、例えば前記圧力制御弁24を制御する。該圧力制御弁24の制御としては、例えば、前記パイロットライン46のパイロット圧を前記圧力調整弁47によって制御し、前記圧力制御弁24内に含まれている弁の開度を調整する等である。前記絶対圧検出センサ24bの検出圧は真空を基準とするので、気象条件等大気圧が変動しても影響を受けることはない。従って、前記処理室19の処理圧は大気の変動に拘らず、例えば950hPaの処理圧に維持制御される。   When the pressure control unit 29 maintains and controls the processing chamber at, for example, 950 hPa, the pressure control unit 29 determines that the pressure in the processing chamber 19 becomes 950 hPa based on the detection pressure of the absolute pressure detection sensor 24b. For example, the pressure control valve 24 is controlled. Examples of the control of the pressure control valve 24 include controlling the pilot pressure of the pilot line 46 by the pressure adjusting valve 47 and adjusting the opening degree of the valve included in the pressure control valve 24. . Since the detection pressure of the absolute pressure detection sensor 24b is based on vacuum, it is not affected even if atmospheric pressure such as weather conditions fluctuates. Accordingly, the processing pressure in the processing chamber 19 is maintained and controlled at a processing pressure of, for example, 950 hPa, regardless of atmospheric fluctuations.

前記差圧型圧力センサ23は外気の圧力即ち大気圧との差を検出するので、気象条件によって検出する値が変動する。   Since the differential pressure type pressure sensor 23 detects the difference between the pressure of the outside air, that is, the atmospheric pressure, the value to be detected varies depending on the weather conditions.

基板処理工程では、前記処理室19の圧力によって、膜厚、膜質が変動するので、品質の維持向上には、該処理室19内の圧力は絶対圧で制御する必要があるが、処理中を除く駆動部の制御、例えばエアバルブ等のシーケンス制御には絶対圧は必要とされない。従って、基板処理前、基板処理後の前記処理室19の圧力制御、或は駆動部を作動させるタイミングを得る為の圧力検出は、前記差圧型圧力センサ23が検出した圧力検出値に基づき実行される。例えば、前記第1エアバルブ35、前記第2エアバルブ37、前記第4エアバルブ44等駆動部の開閉のタイミングは前記差圧型圧力センサ23の圧力検出に基づき実行される。   In the substrate processing step, the film thickness and the film quality vary depending on the pressure in the processing chamber 19. Therefore, in order to maintain and improve the quality, the pressure in the processing chamber 19 needs to be controlled with an absolute pressure. Absolute pressure is not required for the control of the drive unit except the sequence control of the air valve, for example. Accordingly, the pressure detection for obtaining the timing for operating the pressure of the processing chamber 19 before or after the substrate processing or for operating the drive unit is executed based on the pressure detection value detected by the differential pressure sensor 23. The For example, the opening / closing timing of the drive unit such as the first air valve 35, the second air valve 37, the fourth air valve 44, and the like is executed based on the pressure detection of the differential pressure sensor 23.

この場合、前記N2 供給ライン45は前記第6エアバルブ53によって閉とされ、前記圧力制御弁24には窒素ガスの供給が停止されている。前記真空発生器24aによる真空発生には大量の窒素ガスを使用するので、絶対圧が必要な基板処理工程のみ前記真空発生器24aを作動させることで、窒素ガスの消費量を減少させランニングコストを低減できる。   In this case, the N2 supply line 45 is closed by the sixth air valve 53, and the supply of nitrogen gas to the pressure control valve 24 is stopped. Since a large amount of nitrogen gas is used for generating a vacuum by the vacuum generator 24a, operating the vacuum generator 24a only in a substrate processing process that requires an absolute pressure reduces the consumption of nitrogen gas and reduces the running cost. Can be reduced.

又、処理中、排気ガスには蒸気が含まれており、該蒸気は前記ガスクーラ31で冷却されることで凝縮し、前記ドレインタンク36に滴下貯溜される。この時、前記ガスクーラ31で凝縮しなかった排気中の水蒸気で、前記圧力制御弁24内で凝縮するものもあり、該圧力制御弁24で凝縮した水は前記圧力制御部ドレインライン43を通って前記ドレインタンク36に貯溜される。尚、前記同圧化ライン42により前記ガス排気管4の排気圧と前記ドレインタンク36内の圧力が同圧化されているので、前記排液ライン34、前記圧力制御部ドレインライン43からの水の流入は円滑に行われる。   Further, during the process, the exhaust gas contains steam, and the steam is condensed by being cooled by the gas cooler 31 and is dripped and stored in the drain tank 36. At this time, water vapor in the exhaust gas that has not been condensed in the gas cooler 31 may be condensed in the pressure control valve 24, and the water condensed in the pressure control valve 24 passes through the pressure control unit drain line 43. It is stored in the drain tank 36. Since the exhaust pressure of the gas exhaust pipe 4 and the pressure in the drain tank 36 are equalized by the same pressure equalizing line 42, water from the drain line 34 and the pressure control unit drain line 43 is used. Inflow is smooth.

基板処理が完了すると、前記処理室19が窒素ガスによりガスパージされ、前記差圧型圧力センサ23が検出した圧力検出値に基づき、大気圧復帰し、前記ボートエレベータ18により前記ボート16が降下される。この時、前記差圧型圧力センサ23は、絶対圧でなく、外気との差圧により大気圧復帰させるので、前記処理室19と外気との圧力差を確実に同圧化することができ、前記シールキャップ13を開する際の衝撃により前記反応管2が割れてしまうことを防げる。又、大気圧復帰されると前記第1エアバルブ35、前記第4エアバルブ44が閉となる。その後、前記第2エアバルブ37が開となり、前記ドレインタンク36内に貯溜された水は前記第2エアバルブ37を通って排出される(図2、図3(B))。この時、前記差圧型圧力センサ23は、絶対圧でなく外気との差圧を検出し、この差圧に基づき大気圧復帰させるので、前記ドレインタンク36内と外気との差圧を確実に同圧化することができ、スムーズに排液することができる。   When the substrate processing is completed, the processing chamber 19 is purged with nitrogen gas, the atmospheric pressure is restored based on the detected pressure value detected by the differential pressure sensor 23, and the boat 16 is lowered by the boat elevator 18. At this time, the differential pressure type pressure sensor 23 restores the atmospheric pressure not by absolute pressure but by differential pressure with the outside air, so that the pressure difference between the processing chamber 19 and the outside air can be surely equalized, It is possible to prevent the reaction tube 2 from being broken by an impact when the seal cap 13 is opened. Further, when the atmospheric pressure is restored, the first air valve 35 and the fourth air valve 44 are closed. Thereafter, the second air valve 37 is opened, and the water stored in the drain tank 36 is discharged through the second air valve 37 (FIGS. 2 and 3B). At this time, the differential pressure type pressure sensor 23 detects not the absolute pressure but the differential pressure with the outside air, and the atmospheric pressure is restored based on this differential pressure. Therefore, the differential pressure between the drain tank 36 and the outside air is surely the same. The pressure can be increased and the liquid can be drained smoothly.

前記ドレインタンク36の水が排出されると、前記第2エアバルブ37が閉とされ、前記ドレインタンク36が外気と縁切り(遮断)された後、前記第1エアバルブ35、第4エアバルブ44が開とされる(図2、図3(C))。前記ドレインタンク36内は前記同圧化ライン42によって排気圧と同圧化されるので、前記第1エアバルブ35、前記第4エアバルブ44が閉状態で前記排液ライン34、圧力制御部ドレインライン43に溜った水51(図3(B)参照)も円滑に前記ドレインタンク36に排出される。   When the water in the drain tank 36 is discharged, the second air valve 37 is closed, and after the drain tank 36 is cut off (blocked) from outside air, the first air valve 35 and the fourth air valve 44 are opened. (FIG. 2, FIG. 3C). Since the inside of the drain tank 36 is made the same pressure as the exhaust pressure by the same pressure equalizing line 42, the drain line 34 and the pressure control part drain line 43 are closed when the first air valve 35 and the fourth air valve 44 are closed. The water 51 (see FIG. 3B) accumulated in the water is smoothly discharged to the drain tank 36.

尚、前記同圧化ライン42に第5エアバルブ52を設けてもよいが、この場合、該第5エアバルブ52は、前記第1エアバルブ35、前記第4エアバルブ44が閉し、前記第2エアバルブ37が開する前に閉し、又前記第2エアバルブ37が閉した後、前記第1エアバルブ35、前記第4エアバルブ44が開する前に開する(図4参照)。即ち、前記第2エアバルブ37が開している状態では前記第5エアバルブ52は閉状態となっており、前記第2エアバルブ37が開したことにより、前記同圧化ライン42を介して外気圧が前記処理室19に影響を与えずに、更に外気が前記ガス排気管4を逆流し、前記処理室19に混入するのを防ぐ様にすることができる。   A fifth air valve 52 may be provided in the same pressure equalizing line 42. In this case, the fifth air valve 52 is configured such that the first air valve 35 and the fourth air valve 44 are closed, and the second air valve 37 is closed. It is closed before opening, and after the second air valve 37 is closed, it is opened before the first air valve 35 and the fourth air valve 44 are opened (see FIG. 4). That is, when the second air valve 37 is open, the fifth air valve 52 is closed, and when the second air valve 37 is opened, the external air pressure is applied via the pressure equalization line 42. Without affecting the processing chamber 19, it is possible to prevent outside air from flowing back through the gas exhaust pipe 4 and entering the processing chamber 19.

尚、前記第1開閉弁32、前記第2開閉弁41はメンテナンス時に工場排気装置と縁切りする為、閉とされる。又、前記圧力検出器33は工場排気装置側の圧力を検知しており、工場排気装置側の圧力の変動により、工場排気装置側の圧力変動が前記処理室19の圧力に影響を与えない様に監視している。   The first on-off valve 32 and the second on-off valve 41 are closed in order to cut off the factory exhaust device during maintenance. Further, the pressure detector 33 detects the pressure on the factory exhaust device side so that the pressure fluctuation on the factory exhaust device side does not affect the pressure in the processing chamber 19 due to the fluctuation in pressure on the factory exhaust device side. To monitor.

図5により第2の貯液手段40について説明する。尚、図5中、図2中で示したものと同等のものには同符号を付し、その説明を省略する。   The second liquid storage means 40 will be described with reference to FIG. 5 that are the same as those shown in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.

図5に示す貯液手段40では、下部ドレイン管50aを内部上方に突出する様にドレインタンク36に接続し、該ドレインタンク36内に水溜部55が形成される様にし、上部ドレイン管50bの下端を前記水溜部55に浸漬する様にしたものであり、第2エアバルブ37を開とした場合に前記下部ドレイン管50aから前記上部ドレイン管50bに外気が逆流すること防止される様にしたものである。尚、前記下部ドレイン管50aの上端部は、斜めにカットされており、該下部ドレイン管50aの上端に表面張力が発生し、水が流れ難くなるのを防いでいる。   In the liquid storage means 40 shown in FIG. 5, the lower drain pipe 50a is connected to the drain tank 36 so as to protrude upward and the water reservoir 55 is formed in the drain tank 36. The lower end is immersed in the water reservoir 55, and when the second air valve 37 is opened, the outside air is prevented from flowing back from the lower drain pipe 50a to the upper drain pipe 50b. It is. Note that the upper end of the lower drain pipe 50a is cut obliquely to prevent surface tension from being generated at the upper end of the lower drain pipe 50a, making it difficult for water to flow.

図6により第3の貯液手段40について説明する。該第3の貯液手段40では、2つの上部ドレインタンク36a、下部ドレインタンク36bを具備している。   The third liquid storage means 40 will be described with reference to FIG. The third liquid storage means 40 includes two upper drain tanks 36a and a lower drain tank 36b.

前記上部ドレインタンク36aには排液ライン34の上部ドレイン管50bが接続され、前記上部ドレインタンク36aには中間ドレイン管50cを介して前記下部ドレインタンク36bが接続され、前記中間ドレイン管50cには第1エアバルブ35が設けられている。又、前記上部ドレインタンク36aには、圧力制御部ドレインライン43が接続されている。   An upper drain pipe 50b of a drain line 34 is connected to the upper drain tank 36a, the lower drain tank 36b is connected to the upper drain tank 36a via an intermediate drain pipe 50c, and the intermediate drain pipe 50c is connected to the upper drain tank 36a. A first air valve 35 is provided. A pressure control unit drain line 43 is connected to the upper drain tank 36a.

前記中間ドレイン管50cの下端は前記下部ドレインタンク36bの底面近くに達している。又前記下部ドレインタンク36bの底面を貫通して下部ドレイン管50aの上部が突出しており、前記下部ドレインタンク36bの底部に液が貯溜する水溜部55が形成される様になっており、該水溜部55に前記中間ドレイン管50cの下端が浸漬する様になっている。尚、前記下部ドレイン管50aの前記水溜部55より下方には第2エアバルブ37が設けられている。又、前記下部ドレインタンク36bには、同圧化ライン42が接続されている。   The lower end of the intermediate drain pipe 50c reaches near the bottom surface of the lower drain tank 36b. The upper portion of the lower drain pipe 50a protrudes through the bottom surface of the lower drain tank 36b, and a water reservoir 55 for storing liquid is formed at the bottom of the lower drain tank 36b. The lower end of the intermediate drain pipe 50c is immersed in the portion 55. A second air valve 37 is provided below the water reservoir 55 of the lower drain pipe 50a. Further, a pressure equalizing line 42 is connected to the lower drain tank 36b.

前記水溜部55が形成されることで、前記第2エアバルブ37を開とした場合に、前記下部ドレイン管50aから前記中間ドレイン管50c、前記上部ドレイン管50bに外気が逆流しない様になっている。尚、ガス排気管4内の圧力と外気圧との間で大きな圧力差が生じないことが分っている場合は、前記水溜部55の逆流防止機能で充分であり、前記第2エアバルブ37は省略することができる。   By forming the water reservoir 55, when the second air valve 37 is opened, outside air does not flow back from the lower drain pipe 50a to the intermediate drain pipe 50c and the upper drain pipe 50b. . When it is known that a large pressure difference does not occur between the pressure in the gas exhaust pipe 4 and the external pressure, the backflow prevention function of the water reservoir 55 is sufficient, and the second air valve 37 is Can be omitted.

(付記)
又、本発明は以下の実施の態様を含む。
(Appendix)
The present invention includes the following embodiments.

(付記1)基板を処理する処理室と、該処理室に処理ガスを供給するガス供給ラインと、前記処理室内の前記処理ガスを排気する排気ラインと、該排気ラインに設けられ、前記処理ガス中の液化物を貯蓄する貯液具と、該貯液具より上流側に設けられ、前記排気ラインの主ラインと前記貯液具との間を開閉する第1開閉弁と、前記貯液具より下流側に設けられ、前記貯液具からの液化物を排出制御可能な様に開閉する第2開閉弁と、前記排気ラインに設けられ、前記処理室の圧力を制御する圧力制御手段と、前記排気ラインに設けられ、前記処理室内の圧力を絶対圧で検出する絶対圧型圧力検出手段と、前記排気ラインに設けられ、前記処理室内の圧力を外気との差圧にて検出する差圧型圧力検出手段とを備え、前記基板を処理する際は、前記絶対圧型圧力検出手段の検出する検出値に基づき前記圧力制御手段を制御しつつ前記第2開閉弁を閉状態にし、前記液化物を排出する際には、前記差圧型圧力検出手段の検出する検出値に基づき前記第1開閉弁を閉状態にした後、前記第2開閉弁を開状態にする様に制御することを特徴とする基板処理装置。   (Supplementary Note 1) A processing chamber for processing a substrate, a gas supply line for supplying a processing gas to the processing chamber, an exhaust line for exhausting the processing gas in the processing chamber, and the processing gas provided in the exhaust line. A liquid storage device for storing the liquefied material therein, a first on-off valve provided on the upstream side of the liquid storage device for opening and closing between the main line of the exhaust line and the liquid storage device, and the liquid storage device A second on-off valve provided on the further downstream side for opening and closing the liquefied material from the liquid storage device so as to be able to control discharge; and a pressure control means for controlling the pressure of the processing chamber provided in the exhaust line; An absolute pressure type pressure detecting means provided in the exhaust line for detecting the pressure in the processing chamber with an absolute pressure, and a differential pressure type pressure provided in the exhaust line for detecting the pressure in the processing chamber with a differential pressure from the outside air. And when the substrate is processed, When the second on-off valve is closed while controlling the pressure control means based on the detection value detected by the absolute pressure type pressure detection means and the liquefied material is discharged, the detection detected by the differential pressure type pressure detection means The substrate processing apparatus, wherein after the first on-off valve is closed based on the value, the second on-off valve is controlled to be opened.

本発明の実施の形態に使用される処理炉を示す断面概略図である。It is a section schematic diagram showing a processing furnace used for an embodiment of the invention. 本発明の実施の形態に於ける排気系の説明図である。It is explanatory drawing of the exhaust system in embodiment of this invention. (A)(B)(C)は該排気系に於ける貯液手段の説明図である。(A), (B), and (C) are explanatory views of the liquid storage means in the exhaust system. 該貯液手段に於けるバルブの開閉を示すタイミング線図である。It is a timing diagram which shows opening and closing of the valve | bulb in this liquid storage means. 第2の貯溜手段を示す断面図である。It is sectional drawing which shows a 2nd storage means. 第3の貯溜手段を示す断面図である。It is sectional drawing which shows a 3rd storage means. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example.

符号の説明Explanation of symbols

1 均熱管
2 反応管
3 ガス供給管
4 ガス排気管
5 導入口
9 排気口
19 処理室
23 差圧型圧力センサ
24 圧力制御弁
24a 真空発生器
24b 絶対圧検出センサ
25 主制御部
29 圧力制御部
34 排液ライン
35 第1エアバルブ
36 ドレインタンク
37 第2エアバルブ
38 バイパスライン
42 同圧化ライン
44 第4エアバルブ
45 N2 供給ライン
DESCRIPTION OF SYMBOLS 1 Soaking | uniform-heating pipe | tube 2 Reaction pipe | tube 3 Gas supply pipe | tube 4 Gas exhaust pipe 5 Inlet port 9 Exhaust port 19 Processing chamber 23 Differential pressure type pressure sensor 24 Pressure control valve 24a Vacuum generator 24b Absolute pressure detection sensor 25 Main control part 29 Pressure control part 34 Drain line 35 First air valve 36 Drain tank 37 Second air valve 38 Bypass line 42 Pressure equalization line 44 Fourth air valve 45 N2 supply line

Claims (1)

基板を処理する処理室と、該処理室に処理ガスを供給するガス供給ラインと、前記処理室の処理ガスを排気する排気ラインと、該排気ラインに設けられ、処理ガス中の液化物を貯溜する貯液具と、該貯液具より下流側に設けられ、該貯液具からの液化物を外部に排出する排液ラインと、前記排気ラインに設けられ、前記処理室の圧力を制御する圧力制御手段と、前記排気ラインに設けられ、前記処理室の圧力を絶対圧で検出する絶対圧検出手段と、前記排気ラインに設けられ、前記処理室の圧力を外気との差圧で検出する差圧検出手段とを具備し、基板を処理する際は、前記絶対圧検出手段の検出する検出値に基づき前記圧力制御手段を制御しつつ前記排液ラインと前記外部とを連通しない状態とし、液化物を排出する際には、前記差圧検出手段の検出する検出値に基づき前記排液ラインと外部とが連通する状態となる様に制御することを特徴とする基板処理装置。   A processing chamber for processing a substrate, a gas supply line for supplying a processing gas to the processing chamber, an exhaust line for exhausting the processing gas in the processing chamber, and an exhaust line for storing a liquefied material in the processing gas A liquid storage device that is provided downstream of the liquid storage device, a drain line that discharges liquefied material from the liquid storage device to the outside, and an exhaust line that controls the pressure in the processing chamber. A pressure control means; an absolute pressure detection means provided in the exhaust line for detecting the pressure of the processing chamber by an absolute pressure; and a pressure control means provided in the exhaust line for detecting the pressure of the processing chamber by a differential pressure from outside air. A differential pressure detecting means, and when processing a substrate, the drain control line is not in communication with the outside while controlling the pressure control means based on the detected value detected by the absolute pressure detecting means, When discharging the liquefied material, the differential pressure detection A substrate processing apparatus and the drain line and the outside based on a detection value detected by the stage and controls so as to be a state of communicating.
JP2005262122A 2005-09-09 2005-09-09 Substrate processing apparatus and semiconductor manufacturing method Active JP4813854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262122A JP4813854B2 (en) 2005-09-09 2005-09-09 Substrate processing apparatus and semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262122A JP4813854B2 (en) 2005-09-09 2005-09-09 Substrate processing apparatus and semiconductor manufacturing method

Publications (3)

Publication Number Publication Date
JP2007073880A true JP2007073880A (en) 2007-03-22
JP2007073880A5 JP2007073880A5 (en) 2008-10-16
JP4813854B2 JP4813854B2 (en) 2011-11-09

Family

ID=37935045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262122A Active JP4813854B2 (en) 2005-09-09 2005-09-09 Substrate processing apparatus and semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP4813854B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883768B1 (en) * 2008-08-22 2009-02-18 주식회사 미래보 Apparatus for protecting over-flow of reactive gas into liquid collector in manufacturing process of semi-conductors
JP2017054862A (en) * 2015-09-07 2017-03-16 株式会社東芝 Semiconductor manufacturing device and removal device for semiconductor manufacturing device
EP3686322A1 (en) * 2019-01-25 2020-07-29 Kabushiki Kaisha Toshiba Silicon-containing product forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233505A (en) * 1998-02-13 1999-08-27 Tokyo Electron Ltd Exhaust apparatus
JP2000058543A (en) * 1998-08-10 2000-02-25 Tokyo Electron Ltd Method and device for oxidation
JP2001201263A (en) * 1999-11-09 2001-07-27 Tokyo Electron Ltd Heat treatment apparatus
JP2003045867A (en) * 2001-07-30 2003-02-14 Tokyo Electron Ltd Heat treatment system
JP2003318172A (en) * 2002-04-19 2003-11-07 Tokyo Electron Ltd Film forming method, deducing method for film forming and processing time correction expression, film forming device, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233505A (en) * 1998-02-13 1999-08-27 Tokyo Electron Ltd Exhaust apparatus
JP2000058543A (en) * 1998-08-10 2000-02-25 Tokyo Electron Ltd Method and device for oxidation
JP2001201263A (en) * 1999-11-09 2001-07-27 Tokyo Electron Ltd Heat treatment apparatus
JP2003045867A (en) * 2001-07-30 2003-02-14 Tokyo Electron Ltd Heat treatment system
JP2003318172A (en) * 2002-04-19 2003-11-07 Tokyo Electron Ltd Film forming method, deducing method for film forming and processing time correction expression, film forming device, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883768B1 (en) * 2008-08-22 2009-02-18 주식회사 미래보 Apparatus for protecting over-flow of reactive gas into liquid collector in manufacturing process of semi-conductors
JP2017054862A (en) * 2015-09-07 2017-03-16 株式会社東芝 Semiconductor manufacturing device and removal device for semiconductor manufacturing device
EP3686322A1 (en) * 2019-01-25 2020-07-29 Kabushiki Kaisha Toshiba Silicon-containing product forming apparatus
CN111485286A (en) * 2019-01-25 2020-08-04 株式会社东芝 Apparatus for forming silicon-containing substance

Also Published As

Publication number Publication date
JP4813854B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
TWI400756B (en) Substrate processing apparatus and substrate processing method and a method for manufacturing semiconductor device
JP5226438B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
US7858534B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
US8293646B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
US20090064765A1 (en) Method of Manufacturing Semiconductor Device
JP4813854B2 (en) Substrate processing apparatus and semiconductor manufacturing method
JP2009117554A (en) Substrate treatment device
JP2010123624A (en) Wafer treatment apparatus
JP2009224422A (en) Method of manufacturing semiconductor apparatus and semiconductor manufacturing apparatus
JP4342559B2 (en) Substrate processing apparatus and method for forming semiconductor device
JP2008210852A (en) Substrate treating equipment and method of manufacturing semiconductor device
JP2001060555A (en) Substrate treating method
JP2010245422A (en) Semiconductor manufacturing device
KR20070054437A (en) Pressure control system of low pressure chemical vapor deposition apparatus
JP5198988B2 (en) Manufacturing method of semiconductor device
JP2008072054A (en) Substrate processing apparatus
JP4304354B2 (en) Semiconductor device processing method
WO2018179507A1 (en) Semiconductor device manufacturing method, substrate processing device, and program
JP2007080939A (en) Substrate processing apparatus
JP4994424B2 (en) Substrate processing apparatus and method for forming semiconductor device
KR20040077310A (en) Apparatus for fabricating a wafer and method for the same
Fallon Atmospheric furnace pressure control
KR20060099777A (en) Exhaust system for semiconductor deposition equipment
JP2004363499A (en) Substrate holding means
KR20070066712A (en) Loadlock chamber of low pressure chemical vapor deposition apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4813854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350