JP2007071606A - ラマン散乱光観測装置 - Google Patents

ラマン散乱光観測装置 Download PDF

Info

Publication number
JP2007071606A
JP2007071606A JP2005257035A JP2005257035A JP2007071606A JP 2007071606 A JP2007071606 A JP 2007071606A JP 2005257035 A JP2005257035 A JP 2005257035A JP 2005257035 A JP2005257035 A JP 2005257035A JP 2007071606 A JP2007071606 A JP 2007071606A
Authority
JP
Japan
Prior art keywords
light
raman scattered
scattered light
wavelength
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005257035A
Other languages
English (en)
Other versions
JP4749805B2 (ja
Inventor
Makoto Igarashi
誠 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Priority to JP2005257035A priority Critical patent/JP4749805B2/ja
Publication of JP2007071606A publication Critical patent/JP2007071606A/ja
Priority to US11/818,294 priority patent/US20080007716A1/en
Application granted granted Critical
Publication of JP4749805B2 publication Critical patent/JP4749805B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】 安価かつ簡便に、生体組織のような蛍光発光する被観測対象物から蛍光とラマン散乱光を分離できるラマン散乱光観測装置を提供する。
【解決手段】 光源11のインコヒーレントな光は、回転される回転フィルタ14に設けたフィルタF1、F2を順次光路中に配置することにより、中心波長がλ及びλの狭帯域のバンドパス光となり、時間を隔てて交互に生体2に照射され、生体2から放射される蛍光を含むラマン散乱光成分をバンドパスフィルタ22を介して検出器24で受光し、信号処理装置5内の対の信号メモリ27、28に格納する。そして、信号メモリ27、28から読み出された信号を、差分処理回路29で差分処理して、蛍光成分を除去してラマン散乱光の信号成分を分離抽出する。
【選択図】 図1

Description

本発明は、生体組織のように蛍光発光する被観測対象物から発せられるラマン散乱光を蛍光の影響を軽減して観測するラマン散乱光観測装置に関する。
内視鏡は消化管等の生体臓器内部を非侵襲的に観察する医療機器である。一般的な内視鏡検査では白色光による粘膜の観察が行われており、粘膜の僅かな色調変化を自然な色として表現することで、数mm程度の微小病変を検知することも可能である。
一方、現状の白色光による内視鏡検査では、Barrett食道に発生したDysplasia(前癌病変)の視認能力、または、大腸ポリープの腫瘍と非腫瘍の鑑別診断という観点では十分なものではない。組織の良悪性や悪性の度合を特定するには、組織の採取(バイオプシー)、および、病理組織学的検査が必要となるが、組織採取の際のサンプリングエラー、病理組織学的検査に伴うコストや検査時間が長くなるという課題がある。 そのため、光散乱分光法(Light Scattering Spectroscopy)、蛍光イメージング、OCT(Optical Coherence Tomography)といった新たな光診断技術が提案されており、今まで以上に組織の性状を詳細に観測する試みが多くなされてきている。
その中でも、ラマン分光法は、個々の分子に固有の情報(所謂、分子の指紋)を光学的に検出する手法として注目されており、生体組織を構成するタンパク質やDNAを、それらの分子構造の違いに応じて同定することが原理的に可能であるため、たとえば、粘膜に発生したポリープが腫瘍或いは非腫瘍であるとの鑑別、診断に有効であると考えられている。
以上のようにラマン分光法は、分子構造に基づいた組織の診断を行える可能性を秘めている。
しかし、生体組織のような蛍光発光する被観測対象物から良質のラマン散乱光を得るためには、ラマン散乱光が蛍光に比べて非常に微弱であるという背景から、被観測対象物としての生体組織からの反射光から蛍光(成分)を除去することが不可欠となる。
従来から被観測対象から得られる反射光に対して蛍光とラマン散乱光を分離する試みがなされており、特開2004−61411号公報では、非線形ラマン分光法を用いることによりラマン散乱光と蛍光を空間的に分離している。
さらに、特開平10−148573号公報では、電子制御型波長可変レーザ(Electronically Tuned Tunable Laser:以下ETTレーザと呼ぶ)を用いて励起波長を高速掃引し、被写体信号の時間変化する成分をラマン散乱光、そうでないものを蛍光として観測光からラマン散乱光と蛍光を分離している。
特開2004−61411号公報 特開平10−148573号公報 Martin G.Shim,Louis−Michel Wong Kee Song,Norman E.Marcon and Brian C.Wilson,"In vivo Near−infrared Raman Spectroscopy:Demonstration of Feasibility During Clinical Gastrointestinal Endoscopy," Photochem. Photobiol., 72(1), 146−150, (2000) A.Mahadevan−Jansen,Michele Follen Mitchell,Nirmala Ramanujam,Urs Utzinger and Rebecca Richards−Kortum,"Development of a Fiber Optics Probe to Measure NIR Raman Spectra of Cervical Tissue In Vivo," Photochem. Photobiol.,68(3), 427−431, (1998)
上記の特許文献1及び2の従来技術においては、尖頭値の高いピコ秒・フェムト秒パルスレーザ装置(超短パルスレーザ装置)、或いは高速かつ広範囲の波長掃引が可能なETTレーザが必要になる。しかし、超短パルスレーザ装置やETTレーザを用いる場合、システム全体が煩雑になることや、コスト面で課題が残るため、これらの技術は必ずしも一般に広く普及するとは言い難い。
また、上記特許文献1及び2の従来技術では、レーザ装置を用いているため、生体イメージングを想定する場合には、レーザの2次元スキャニングが必要であり、画像生成に多大な時間を要するものと考えられる。
(発明の目的)
本発明は、上述した点に鑑みてなされたもので、従来技術と比較して安価かつ簡便に、生体組織のような蛍光発光する被観測対象物から蛍光とラマン散乱光を分離できるラマン散乱光観測装置を提供することを目的とする。
また、本発明は、従来技術と比較して安価かつ簡便に、蛍光発光する被観測対象物から蛍光とラマン散乱光を分離でき、かつ2次元スキャニングを要せず、短時間でのラマンイメージングを実現可能とするラマン散乱光観測装置を提供することを目的とする。
本発明のラマン散乱光観測装置は、少なくとも第1の波長を中心波長としたインコヒーレントな第1のバンドパス光及び前記第1の波長とは異なる値の第2の波長を中心波長としたインコヒーレントな第2のバンドパス光を時間を隔てて出射する光源装置と、
前記第1及び第2のバンドパス光が時間を隔てて照射された被観測対象物から蛍光成分を含むラマン散乱光が入射され、前記第1の波長及び前記第2の波長とは異なり、前記被観測対象物のラマン散乱光成分を選択的に通過するように設定された第3の波長を通過波長バンドとしたフィルタ手段と、
前記フィルタ手段により通過された光を検出する検出手段と、
前記検出手段から出力される複数の検出信号に対する信号処理を行う信号処理装置とを備え、
前記信号処理装置は、前記第1のバンドパス光が照射された際に前記フィルタ手段を介して前記検出手段により検出された第1の検出信号と、前記第2のバンドパス光が照射された際に前記フィルタ手段を介して前記検出手段により検出された第2の検出信号との差分処理を行うことを特徴とする。
上記構成により、従来例のような超短パルスレーザ装置やETTレーザといった高価なレーザ装置を必要とせず、安価かつ簡便な光源装置を用いて、差分処理により蛍光とラマン散乱光を分離してラマン散乱光の観測ができるようにしている。
本発明によれば、蛍光発光する被観測対象物から蛍光とラマン散乱光を分離してラマン散乱光の観測ができる。また、2次元スキャニングを要せずに短時間でラマンイメージを取得も可能となる場合がある。
以下、図面を参照して本発明の実施例を説明する。
図1から図5は本発明の実施例1に係り、図1は、本発明の実施例1のラマン散乱光観測装置の全体構成を示し、図2は回転フィルタの構成を示し、図3は回転フィルタに設けたフィルタの透過率特性を示し、図4はバンドパスフィルタの透過率特性を示し、図5(A)は2つのバンドパス光により蛍光成分を含むラマン散乱光がそれぞれ検出される様子の模式図を示し、図5(B)は検出される2つのラマン散乱光に対して差分処理した結果を示す。
図1に示すように本発明の実施例1のラマン散乱光観測装置1は、蛍光発光する被観測対象物としての生体2に照射する励起光(以下単に光と略記)を発生する光源装置3と、生体2で放射される(或いは散乱される)ラマン散乱光を検出する検出装置4と、この検出装置4により検出された検出信号に対する信号処理を行う信号処理装置5と、ラマン散乱光の検出結果を表示する表示デバイス6とから構成される。
光源装置3は、ハロゲンランプ、キセノンランプや発光ダイオード(LEDと略記)等のインコヒーレントな光を発生する光源11と、熱線となる遠赤外光をカットする熱線カットフィルタ12と、光源11からの光をコリメートして平行な光束にするコリメートレンズ13と、平行な光束中に配置され、回転することにより狭帯域の2つのバンドパス光を時間を隔てて交互に生成する回転フィルタ14と、この回転フィルタ14の回転を制御する制御装置15とを有する。
図2は回転フィルタ14の1実施形態を示す。この回転フィルタ14は、回転される回転板の周方向における例えば対向する2箇所部分に扇形状の狭帯域透過フィルタF1、F2が設けてある。
そして、制御装置15による回転フィルタ14に対する制御信号に同期して、フィルタF1、F2が光路中に交互に配置されることにより、比較的に短い時間を隔てて中心波長の値が異なる、インコヒーレントな2つの狭帯域バンドパス光が被観測対象物としての生体2へ順次照射される。
図3はフィルタF1、F2の分光透過特性を示す。
フィルタF1、F2は、中心波長がλ、λとした狭帯域光をそれぞれ透過するように設定される。また、図5を参照して後述するように中心波長λ及びλ間の波長差、つまりλ−λ(=Δλ)の値が蛍光成分のスペクトル値が変化しない程度に規定される。 また、検出装置4は、生体2からのラマン散乱光を含む光をコリメートするコリメートレンズ21と、このコリメートレンズ21によりコリメートされた平行な光束中に配置され、ラマン散乱光成分が選択的に通過するようにその通過波長バンドが設定されたフィルタ手段としてのバンドパスフィルタ22と、このバンドパスフィルタ22を透過した光を集光する集光レンズ23と、この集光された光を検出し、光電変換する検出器24とにより構成されている。検出器24は、フォトダイオード等、受光した光を検出して光電変換する。
コリメートレンズ21によりコリメートされ、バンドパスフィルタ22へ導光される生体2から放射若しくは散乱される光は、バンドパスフィルタ22を通した段階において、生体2の組織を構成する分子等に特有のラマン散乱光成分が抽出される。そして、このバンドパスフィルタ22を透過した光は、集光レンズ23により検出器24に集光される。 上記のようにバンドパスフィルタ22の通過波長バンドは、生体2で発生するラマン散乱光を選択的に通過するように、生体2に照射されるバンドパス光の中心波長λ、λとは異なる波長に設定されている。
従って、生体2で反射された通常の反射光は、バンドパスフィルタ22を通した段階において除去される。なお、後述するようにバンドパスフィルタ22を通した段階において、生体2の自家蛍光のスペクトル成分が(ラマン散乱光成分に対する)ノイズとして混入する。そして、この蛍光成分のノイズは、信号処理装置5での差分処理により有効に除去されることになる。
図4はバンドパスフィルタ22の分光透過特性例を示す(図4では簡単化のため、符号F3で示している)。このバンドパスフィルタ22は、生体2を構成する分子等に特有のラマン散乱光を通過するように中心波長がλとした狭い通過波長バンドに設定されている。
また、このバンドパスフィルタ22の中心波長λ3は、光源装置3の回転フィルタ14に取り付けた狭帯域透過フィルタF1、F2によるバンドパス光の中心波長λ、λよりも例えば、長波長側にシフトした波長位置に設定されており、生体2の組織、より具体的には生体2の組織を構成する(ターゲットとなる)分子のラマンストークス線を通すように設定されている。
本実施例では、1つの分子のラマンストークス線を通すようにバンドパスフィルタ22の通過波長バンドが設定されているが、後述する実施例のように複数種類の分子に対応して、通過波長バンドが複数となるように、バンドパスフィルタ22を複数或いは通過波長バンドを可変設定する構成にしても良い。
信号処理装置5は、検出器24から出力される電気信号としての検出信号を増幅する増幅器25と、この増幅器25で増幅された信号をディジタル信号に変換するA/D変換回路26と、このA/D変換回路26の出力信号を一時的に蓄える対となる信号メモリ27、28と、信号メモリ27と28からの各出力信号に対する差分演算を行う差分処理回路29と、差分処理回路29から出力されるディジタル信号をアナログ信号へ変換するD/A変換回路30とを備えて構成される。
このような構成による本実施例の作用を説明する。
なお、D/A変換回路30からの出力信号の形態は、例えば数値の信号であり、これらは表示デバイス6上において表示される。なお、後述するように検出装置4におけるコリメータレンズ21の代わりに結像レンズ系を採用し、かつ検出器24として撮像素子を採用することにより、ラマン散乱光の2次元画像信号を得ることができ、表示デバイス6にラマンイメージングを表示することもできる。
本実施例においては、差分処理回路29による差分処理により、生体2からの蛍光成分を軽減して、SNR(S/N)の良好なラマン散乱光の観測を可能にする。一般に、生体2に照射する照射光の波長(ラマン散乱光を得るための励起波長)λを、波長Δλだけ変化させた場合、Δλの値が小さい時には、ラマンバンド(ラマンストークス線)の出現する波長は、Δλだけシフトし、これに対して蛍光強度は殆ど変化しない特徴を示す。
図5(A)と図5(B)は、蛍光の影響を軽減してラマン散乱光を得る作用の原理の説明図である。
図5(A)に示すように生体2に照射される中心波長λの光と、それとはΔλだけ異なる中心波長λの光を、時分割的に生体2へ照射することにより、生体2からは各々照射された時間を隔ててラマン散乱光成分と蛍光成分の和のスペクトルI(λ)、I(λ)が各々発生する。
図5(A)において、2点鎖線で示すブロードなスペクトル部分は、蛍光成分FLを示し、急峻なピークを持つスペクトル部分がラマン散乱光成分に相当する。これは上記した性質を模式的に表している。
また、Δλが小さい値であれば、ある波長区間λ−Δλ/2〜λ+Δλ/2において時間変化する成分はラマン散乱成分であるため、上記の波長域で検出される検出強度の差分処理した結果に相当するラマン散乱強度Iは、生体2から発生するラマン散乱成分にほぼ等しくなる。
このような差分処理を適切に行うために、バンドパスフィルタ22を以下のように設定する。図5(A)に示すように、バンドパスフィルタ22の通過バンドを、生体2に照射される中心波長λの光が照射された場合にラマン散乱光が発生する中心波長λの波長位置で、かつラマン散乱光成分を通す通過バンド幅Δλに設定する。
このように設定した場合、図5(A)において点線で示すように、生体2に中心波長λ2の光を照射した場合には、その場合のラマン散乱光成分は、バンドパスフィルタ22の通過バンドから外れた波長位置で、蛍光成分FLのみがバンドパスフィルタ22の通過バンド内に入ることになる。
このように設定した状態で、検出器24により検出されるラマン散乱光成分と蛍光成分の和のスペクトルI(λ)、I(λ)に相当する信号を信号メモリ27、28に格納する。そして、信号メモリ27、28に格納された信号を差分処理回路29に出力し、差分処理回路29においてこれらスペクトルI(λ)、I(λ)に相当する信号に対する差分処理を行うことにより、その差分処理の結果に相当するラマン散乱強度Iを得る。得られたラマン散乱強度Iを表示デバイス6で表示する。
観測されるラマン散乱強度Iは[数式1]により求まる。
[数式1]
Figure 2007071606
[数式1]の計算過程において、I(λ)−I(λ)の値が負となる成分に関しては計算に加えないものとして考える。
MG.Shimらによる非特許文献1によれば、In vivoにおける被観測対象物としての食道粘膜や大腸粘膜のラマンスペクトルを測定した結果、800cm−1〜1800cm−1の波数帯域に正常と腫瘍の違いを現す特長的なラマンバンドが出現すると記載されている。
例えば、1620cm−1のAmino Acidや1585cm−1のNucleotideがその代表例である。また、子宮頚部における正常組織と前癌病変のIn vivoラマンスペクトルの差異も、上記と同様の波数帯域に現れることが非特許文献2に記載されている。
さらに、生体2のような蛍光発光体からの蛍光成分を抑制するためには、近赤外域の波長を持つ励起光を使用することが望ましく、強い蛍光発光体に対するラマン測定においては、700nm〜1000nm付近の波長を持つ励起光源が使用されることが多い。
したがって、図3のλ、λは各々おおよそ700nm〜1000nm、図4のλは食道や大腸の生体組織によるラマンシフト量を考えて、凡そ1300nm〜2200nm程度の波長の値を持つものとして考える。
以上のように、信号メモリ27、28からの出力信号に対する差分処理を差分処理回路29にて行うことで、生体2のラマン散乱光を蛍光成分から分離して観測することが可能となる。従って、得られたラマン散乱光の観測結果により、診断を行いたい被観測対象物(被診断対象物)としての生体2に対して、その分子構造に基づいた診断に利用できる。 また、本実施例によれば、簡単な構成で実現できると共に、従来例のような極短パスルレーザ装置等の高価なレーザ装置を必要としないで安価に実現することができる。
つまり、安価なハロゲンランプ等の光源11を用い、回転フィルタ14を回転させることにより、時間を隔てて値が異なる2つの波長のバンドパス光を生成し、生体2に照射することができる。そして、生体2からの蛍光を含むラマン散乱光をバンドパスフィルタ22により抽出して、検出器24で電気信号に変換し、差分処理回路29での差分処理により、蛍光成分の信号を分離してラマン散乱光による信号成分を得ることができる。
なお、上述した構成において、図1に示すレンズ21及び23により結像レンズ系を構成し、かつ検出器24として撮像を行う(換言すると検出信号強度の2次元マップを得る)撮像素子を用いることにより、ラマン散乱光によるイメージング装置を形成しても良い。 この場合には、信号メモリ27及び28も撮像素子により撮像される1フレーム分の画像データ(検出信号データの2次元マップ)を格納することができるフレームメモリで構成する。
また、差分処理回路29は、フレームメモリ(信号メモリ27及び28)に格納された同じ画素の信号に対して差分処理を行う。そして、差分処理したラマン散乱強度Iに対応する信号を、画像表示する機能を持つ表示デバイス6で表示する。
なお、差分処理回路29の内部或いは外部に差分処理したデータを格納するメモリを設けるようにしても良い。このようにすることにより、2次元的な広がりを持って生体2にバンドパス光を照射することにより、その照射する光を2次元的に走査することを行うことなく、2次元的な広がりを持って散乱されるラマン散乱光による画像情報を得ることができる。
次に本発明の実施例2を図6及び図7を参照して説明する。図6は本発明の実施例2のラマン散乱光観測装置1Bの構成を示し、図7は内視鏡31の先端側の構成を示す。本実施例は、体腔内に挿入される内視鏡31を用いたラマン散乱光観測装置1Bの構成例である。より具体的には、実施例1における検出装置4を内視鏡31の先端側に設けた構成にしている。
図6に示すラマン散乱光観測装置1Bは、照明光を発生する光源装置3Bと、光源装置3Bで発生した光を導光し、体腔内の被観測対象部位2Bに照射すると共に、被観測対象部位2Bからの散乱光を検出する検出装置4Bを設けた内視鏡31と、検出装置4Bの信号を取り込み、信号処理する信号処理装置5と、表示デバイス6とから構成される。
光源装置3Bは、図1の光源装置3において、回転フィルタ14を通した光を集光する集光レンズ32と、内視鏡31のライトガイド33の入射端が着脱自在に接続されるライトガイド着脱部34とを備えた構成となっている。
そして、回転フィルタ14を透過した光は、集光レンズ32によりライトガイド脱着部34に着脱自在に装着されるライトガイド33の入射端面に集光して入射される。このライトガイド33の入射端面に入射された光は、体腔内に挿入される内視鏡31の挿入部35の長手方向に挿通されたライトガイド33により導光された後、ライトガイド33の先端面から、この先端面に設けられた照明レンズ36(図7参照)を経て、体腔内の被観測対象部位2B側に照射される。
図7に示すように挿入部35の先端部37には、照明レンズ36が取り付けられた照明窓に隣接する部分に、検出装置4Bが収納されている。この検出装置4Bは、図1に示した検出装置4と同じ構成であり、従って同じ構成要素には同じ符号を付け、その説明を省略する。
そして、この検出装置4Bにより、被観測対象部位2Bで散乱された光における蛍光成分を含むラマン散乱光成分を検出する。この検出装置4Bにおける検出器24は、挿入部35内を挿通された信号ケーブル38の一端と接続され、この信号ケーブル38の他端は、信号処理装置5に設けられた信号ケーブル着脱部39に着脱自在に接続される。
そして、検出器24により検出された信号は、この信号ケーブル38により信号ケーブル着脱部39を経て信号処理装置5内の増幅器25に入力される。
この増幅器25以降の構成及び信号処理の動作は、実施例1で説明したものと同様である。また、この内視鏡31には鉗子などの処置具を挿通可能とするチャンネル40が設けてある。
本実施例の基本構成は実施例1のそれと類似するが、図1の検出装置4に相当する部分を内視鏡31の先端部37に小型化して設けている点で大きく異なる。本実施例によれば、挿入部35を体腔内、例えば食道や大腸等、空間的に狭い領域に挿入してラマン散乱光観測を行うことができる。その他、実施例1と同様に簡単な構成かつ安価にラマン散乱光の観測ができる。
また、本実施例においても検出装置4Bを2次元画像情報が得られるような光学系及び撮像素子を採用することにより、実施例1で説明したようにラマン散乱光による画像情報を得ることが可能になる。
つまり、光源装置3Bで発生されたバンドパス光は、内視鏡31を経て被観測対象部位2B側に空間的な広がりを持って照射される。この照射により、被観測対象部位2B側から放射される蛍光成分を含むラマン散乱光を、バンドパスフィルタ22により抽出し、撮像素子に結像する。
撮像素子の検出信号、つまり被観測対象部位2Bの空間位置情報に対応した2次元画像信号に対して信号処理装置5により差分処理を行い、2次元画像信号に混入している蛍光成分を除去する。そして、表示デバイス6にてラマン散乱光による画像表示を行うことができる。
次に図8を参照して本発明の実施例3を説明する。本実施例は、実施例2における一部の構成を変更した構成である。具体的には、内視鏡31の先端部37には、図7に示した検出装置4Bとは異なる構成の検出装置4Cを設けている。
以下、この部分について重点的に説明する。図8に示すように、本実施例では内視鏡31の挿入部35の先端部37に設けた凹部には、検出装置4Cが収納されている。この検出装置4Cは、バンドパスフィルタ22を使用せずにラマン散乱光観測を可能とする点において実施例2の装置構成と異なるものである。
この検出装置4Cは、被観測対象部位2Bからの反射光をコリメートするレンズ41と、コリメートされた光を分光するためのプリズム42と、分光された光を反射するためのミラー43と、ミラー43による反射光を絞る絞り44と、この絞り44を通った光を集光するレンズ45と、このレンズ45で集光された光を検出する検出器46とを備えて構成される。
この検出器46により光電変換された信号は、信号ケーブル38を経て図6に示した信号処理装置5に入力される。その他の構成は実施例2と同様の構成である。
本実施例では、被観測対象部位2Bからの反射光をレンズ41によりコリメートし、そのコリメートされた光を分光用のプリズム42を用いて分光し、分光された光をミラー43で反射させる。そして、検出対象とするラマン散乱光に対応する波長の光が反射される方位に開口するように配置された絞り44により、そのラマン散乱光成分の光を抽出し、検出器46にて検出する。
この検出器46の出力信号に対しては実施例2等と同様の処理が行われる。本実施例は、実施例2と同様の効果を有するが、以下のようによりSNRの良いラマン散乱情報を得ることができる。
実施例2等においてラマン散乱光の検出に用いていたバンドパスフィルタ22は、その原理上、フィルタを通過させることで分離対象の波長の光を分離するが、分離対象となる波長の光も一部吸収するため、少なからず透過光のエネルギーが減衰してしまう。そのために、ラマン散乱光に対する検出信号が弱くなり、ラマン成分のSNR(S/N比)が低くなる可能性がある。
一方、本実施例に用いている分光用のプリズム42は、光を殆ど吸収しないため、バンドパスフィルタ22の方式に比べてロス成分を抑制できる効果がある。なお、内視鏡31の先端部37内の凹部に収納するため、プリズム42のサイズが例えば数mm程度の微小プリズムを用いると良い。その他、実施例1と同様に簡単な構成かつ安価にラマン散乱光の観測ができる。
なお、本実施例では、分光用プリズム42を用いて分光するため、分光用プリズム42に入射される光をコリメートすることが必要となり、このために2次元の画像情報を得るには適さない。
次に図9及び図10を参照して本発明の実施例4を説明する。実施例4は、実施例2の内視鏡31の先端部37に設けた検出装置4Bとはその構成が異なるため、この部分について重点的に説明する。図9は、波長の異なる2つの(ラマンバンドの)ラマン散乱光を観測するラマン散乱光観測装置1Dの概略の構成を示し、図10は内視鏡31の挿入部の先端側の構成を示す。
図9に示すラマン散乱光観測装置1Dは、光源装置3Dと、検出装置4Dを設けた内視鏡31と、信号処理装置5D及び表示デバイス6とから構成される。内視鏡31における挿入部35の先端部37には、図10に示す検出装置4Dが設けられている。
図9に示す光源装置3Dは、例えば図1の光源装置3において、回転フィルタ14にさらに1対のフィルタF1′、F2′を設けたものである。この場合、回転フィルタ14における周方向には、90°の位置にフィルタF1,F2,F1′、F2′が配置されている。図9では対向するフィルタF1,F1′がしめされている。
この場合、フィルタF1とF2は、上述したものであり、フィルタF1′とF2′は、フィルタF1とF2の波長とは異なる波長で、フィルタF1及びF2と同様に機能するように設定されるものである。
つまり、上述したようにフィルタF1及びF2とを用いてそれぞれバンドパス光を照射することにより、それに対応したバンドパスフィルタ22を用いてある波長(具体的にはλ3)のラマン散乱光を抽出(通過)できるようにする。
さらに本実施例では、他方のフィルタF1′とF2′とを用いてそれぞれバンドパス光を照射することにより、以下に説明するように、それに対応したバンドパスフィルタ22bを用いて、他の波長のラマン散乱光を抽出できるようにする。例えば、バンドパスフィルタ22では病変部における癌組織の分子のラマンバンドを通過するようにその中心波長λが設定されるとすると、バンドパスフィルタ22bでは病変部における正常組織の分子のラマンバンドを通過するようにその中心波長λ′が設定される。
図10に示すように先端部37に設けられた検出装置4Dは、図7の検出装置4Bにおいて、レンズ21とバンドパスフィルタ22との間に、ビームスプリッタとして機能するハーフミラー47が配置されている。また、このハーフミラー47で反射された光は、バンドパスフィルタ22bに入射され、このバンドパスフィルタ22bを透過した光は、レンズ23bで集光されて検出器24bにより検出される構成にしている。
より詳細に説明すると、体腔内の被観測対象部位2Bからの散乱光は、レンズ21によりコリメート光にされ、このコリメート光はハーフミラー47に入射される。このハーフミラー47に入射されされた光は、透過成分と反射された反射成分に分離される。分離された透過成分はバンドパスフィルタ22と22bを経て検出対象となるラマン散乱光が通過する。そして、それぞれレンズ23、23bにより集光されて検出器24、24bに入射される構成となっている。
実施例2の場合と同様に、検出器24で検出された信号も信号ケーブル38を経て、信号処理装置5Dに入力される。また、検出器24bで検出された信号も信号ケーブル38bを経て信号処理装置5Dに入力される。なお、図9及び図10中では、簡単化のため信号ケーブル38及び38bを1本のラインで示している。
図6の信号処理装置5においては、検出器24で検出された検出信号に対する処理を行うものであったが、図10に示す信号処理装置5Dは、さらに検出器24bで検出された検出信号に対しても同様の処理を行う構成にしている。
検出器24と検出器24bから出力される各検出信号は、信号処理装置5D内の増幅器25、25bによりそれぞれ増幅された後、それぞれA/D変換回路26、26bに入力され、ディジタル信号に変換される。A/D変換回路26、26bの出力信号は、それぞれ対となる信号メモリ27、28;27b、28bに制御装置15からの同期信号に同期して順次記憶される。
対となる信号メモリ27、28;27b、28bから出力される各信号ペアに対してそれぞれ[数式1]に基づいた差分処理が差分処理回路29において行われる。
差分処理回路29からの出力信号は、D/A変換回路30、30bにおいてアナログ信号に変換された後に、表示デバイス6上で表示される。
本実施例は実施例1〜実施例3とは異なり、複数のラマンバンドを観測することが可能なため、被観測対象部位2Bの性状をより詳細に観察できることが期待できる。
また、本実施例においても検出装置4Dにおいて結像光学系及び撮像素子を採用することにより、複数の波長によるラマン散乱光の画像情報を得ることができる。
図11は変形例における信号処理装置5Eを示す。
図9の信号処理装置5Dを図11に示す信号処理装置5Eに置き換えることで、ラマン散乱光に基づくRGBイメージングを実現する。なお、この場合には、図10の検出装置4Dにおいて、レンズ21,23、23bは、結像光学系を構成し、検出器24、24bは撮像素子で構成される。
この信号処理装置5Eは、図9の信号処理装置5Dにおいて、差分処理回路29から出力される各画素位置(i,j)の出力信号(aij,cij)をその要素として持つベクトルfij=(aij,cij(tは転置を表す)に対して色変換を行い、RGB信号として出力する色信号処理回路48を設けている。
色信号処理回路48により生成されたRGBの色信号は、D/A変換回路49a、49b、49cによりそれぞれアナログの色信号に変換された後、表示デバイス6に出力され、この表示デバイス6の表示面で擬似カラー表示されるようにしている。
この変形例における動作は、差分処理回路29による差分処理までは図9の場合と同様の処理が行われる。差分処理回路29から出力される2つの出力信号(aij、cij)を各要素にもつ2次元ベクトルfij=(aij, cijに対して[数式2]の3×2のマトリクスSによる演算を色信号処理回路48において行うことでラマン散乱光観測結果に基づく位置i,jにおけるRGB画素値oij=(rij, gij, bijを得る。
最終的に、oij=(rij, gij, bijをラマン散乱光に基づくRGBイメージとして、表示デバイス6上で表示する。
[数式2]
Figure 2007071606
本変形例によれば、ラマン散乱光による画像情報を擬似カラー表示することにより、より識別或いは診断し易い状態で表示することができる。
次に本発明の実施例5を図12を参照して説明する。本実施例は、液晶チューナブルフィルタ(Liquid Crystal Tunable Filter:以下LCTFと呼ぶ)51を光源装置3Fに使用した実施例である。図12は、実施例5のラマン散乱光観測装置1Fの全体構成を示す。
図12に示す実施例5のラマン散乱光観測装置1Fは、光源装置3Fと、検出装置4Dを設けた内視鏡31と、信号処理装置5E及び表示デバイス6とから構成される。
光源装置3Fは、例えば図9の光源装置3Bにおいて、回転フィルタ14の代わりにLCTF51を用いている。その他の構成は、例えば図11の変形例の構成と同様である。なお、本実施例における光源装置3F以外の構成としては、実施例1〜実施例4におけるいずれの構成にしても良い。
LCTF51は、瞬間的に任意の中心波長をもつ半値幅数nm程度のバンドパス光を生成することができる。波長チューニング速度は、数十ms〜数百msと短時間(高速)にでき、また、波長走査レンジは可視域から近赤外域と広範囲にできる。
本実施例は、上述した回転フィルタ14を用いた方式と比べて、装置構成はやや複雑となるが、多数のバンドパス光を広い波長帯にて生成可能であることから、被観測対象部位2Bから多数のラマンバンドを取得できる点で大きなメリットがある。
なお、多数のラマンバンドを取得しようとする場合には、検出装置側も多数のラマンバンドを得る構成にする必要がある。また、LCTF51を用いることでラマンスペクトルの測定も可能になる。その他、本実施例によれば、実施例1〜実施例4における効果も有する。
次に図13及び図14を参照して本発明の実施例6を説明する。図13は、本発明の実施例6のラマン散乱光観測装置を示し、図14は内視鏡の先端側の構成を示す。
本実施例のラマン散乱光観測装置1Gは、光源装置3Gと、光学式内視鏡(ファイバスコープ)31Gと、検出装置4Gと、信号処理装置5Gと、ラマン散乱光の検出結果を表示する表示デバイス6とから構成される。
光源装置3Gは、図12に示す光源装置3Fのように回転フィルタ14の代わりにLCTF51等による波長可変フィルタ装置52Aを用いている。この光源装置3Gにおけるレンズ32によりライトガイド33の入射端にバンドパス光が供給(入射)される。そして、ライトガイド33の先端面から、図14に示すように照明レンズ36を経て体腔内の被観測対象部位2Bにバンドパス光が照射される。
このファイバスコープ31Gにおける挿入部35の先端部37には、照明窓に隣接して設けられた観察窓には、図14に示すように対物レンズ53が取り付けてあり、その結像位置にはイメージガイド(光学像伝送手段)としてオプティカルファイババンドル(以下単にオプティカルファイバと略記)54の先端面が配置されている。
そして、被観測対象部位2B側で散乱された光は、この対物レンズ53により、オプティカルファイバ54の先端面に結像され、このオプティカルファイバ54によりその後端面に伝送される。このオプティカルファイバ54の後端面は、検出装置4Gに設けられたオプティカルファイバ着脱部55に着脱自在に接続される。
なお、オプティカルファイバ54は、光伝送中に、このオプティカルファイバ54から生起される蛍光ノイズの要因となる水酸基の含有量が少ない石英を使用して形成することが望ましい。また、このファイバスコープ31Gにも、チャンネル40が設けてある。 本実施例におけるファイバスコープ31Gには、検出装置やバンドパスフィルタ等の分光素子が含まれておらず、これらはファイバスコープ31Gの外部に設けられた検出装置4Gの内部に設置されている。
図13に示す検出装置4Gは、図1に示した検出装置4においてバンドパスフィルタ22の代わりにLCTF等の可変波長フィルタ装置52Bを採用している。つまり、オプティカルファイバ54の後端面に伝送された光をコリメートするレンズ21、可変波長フィルタ装置52B、集光するレンズ23及び検出器24からなる。
LCTF以外の波長可変を可能とする可変波長フィルタ装置として、音響光学フィルタ、可変ファブリペロー干渉計に基づく可変波長フィルタ、また、電気光学結晶による波長可変フィルタ等があるが、波長可変速度や口径の点でLCTFが優位である。
なお、可変波長フィルタ装置52Bの波長チューニングは、可変波長フィルタ装置52Aの動作を司る制御装置15からの制御信号に同期して行われる。
上記検出器24の出力信号は、信号処理装置5Gに入力される。この信号処理装置5Gとしては、例えば図1に示した信号処理装置5を採用することができる。
このような構成による本実施例においては、通常の光学式内視鏡、具体的にはファイバスコープ31Gを採用してラマン散乱光観測ができる。
また、検出装置4Gの可変波長フィルタ装置52Bとして、例えばLCTFを用いることで、被観測対象物から発生するラマンスペクトルから殆ど瞬間的に任意波長のラマン成分を抽出することが可能である。
この場合には、バンドパスフィルタ22を使用する実施例1から実施例5と比べて装置構成はやや複雑となるが、波長選択の速度と自由度の点で優れている。
検出器24以降の信号処理フローに関しては実施例2と同様である。さらに、図13の信号処理装置5Gを図11に示す信号処理装置5Eに置き換えることで、ラマン散乱光に基づくRGBイメージングを実現することも可能である。
次に図15を参照して本発明の実施例7を説明する。食道等の粘膜の拍動が激しい部位を被観測対象にした場合、検出器と被観測対象部位との相対的な位置関係が変化することが容易に想像される。これにより、例えば、同一の被観測対象部位を図2の回転フィルタF1とF2を用いて撮影した場合、2枚のモノクロ画像間において空間的な位置ずれが発生することが予想される。
また、検出器と被観測対象部位の位置関係の変化により、被観測対象部位から観測される検出光強度は、2枚の画像間の対応する位置において変化することが予測される。
このため、図15に示す本実施例における信号処理装置5Hは、上記の検出光強度のばらつきを差分処理回路29の前段部にて補正する補正手段を有する。
図15に示すように差分処理回路29の前段部には、検出光強度のばらつきをする補正処理回路61、及び補正係数供給部62からなる補正部63が設けてある。本実施例は、実施例1〜実施例6の信号処理装置として図13の装置構成を適用できる。以下では具体的に説明する例として、例えば実施例1に適用した場合で説明する。
図16は、検出器と被観測対象との相対的な位置関係が変化することで発生する検出光強度(主に蛍光強度)のばらつきを補正する手法を説明するための概略図である。
光源装置から照射される中心波長λの光と、それとは一定波長異なる中心波長λの光を時分割的に被観測対象物となる生体2へ照射することにより、生体2からは各々時間を隔ててラマン散乱光成分と蛍光成分の和のスペクトルI’(λ)、I’(λ)が発生する。 ここで、図16に示すように、検出器と被観測対象との相対的な位置関係の変化により、波長区間λ−Δλ /2〜λ +Δλ/2において、I’(λ)とI’(λ)に内在する蛍光強度(具体的には実線で示す蛍光強度成分FL1,点線で示す蛍光強度成分FL2)が変化する。
そしてこのように相対的な位置関係の変化のために蛍光強度が変化しても、この乖離成分を殆ど同じ値にするための補正係数αを[数式3−1]のように用いることにより、測定条件の変化に起因する測定値のばらつきにロバストなラマン散乱強度Iを取得することが可能となる。
具体的な処理としては、まず補正係数αが制御装置16からの制御信号に同期して補正係数供給部62から補正処理回路61へ供給される。次に、供給された補正係数αを用いた[数式3−2]の補正処理が補正処理回路61において行われる。さらに、[数式3−1]の差分処理が差分処理回路29にて実行され、最終的に、差分処理回路29からの出力信号Iが色信号処理回路48、もしくは、D/A変換回路へ伝送される。
ここで補正係数αの数値については、被観測対象物となる生体組織により異なるものと考えられるが、タンパク質溶液からのラマン散乱光強度が蛍光強度に比べて100分の1以下となる事例があることから、I/I Rが0.99以上の値となるようにαを設定すればよい。
[数式3−1]
Figure 2007071606
[数式3−2]
Figure 2007071606
本実施例によれば、食道等の被観測対象物が拍動の影響がある部位のように、検出器と被観測対象部位との相対的な位置関係が変化するような場合にも、その影響を軽減して、被観測対象物によるラマン散乱光の観測が可能となる。
次に図17を参照して本発明の実施例8を説明する。本実施形態は検出器と被観測対象物との相対的な位置関係の変化による、撮影画像間の空間的な位置ずれを補正する信号処理回路を備える。「位置ずれ」とは画像間の拡大、縮小、平行移動、回転に関するものと定義する。
図17は、本発明の実施例8における信号処理装置5Iの構成を示す。本実施例における信号処理装置5Iにおいては、位置ずれを補正する位置ずれ補正処理回路65が、差分処理回路29の前段部に設けられている。換言すると、信号処理装置5Iには、検出信号強度の2次元マップの空間的な位置ずれを補正する補正処理手段が設けてある。
本実施例は、実施例1〜実施例6のいずれかの信号処理装置として、図17に示す構成を取るものとする。
位置ずれ補正処理回路65における補正処理手法の例として、線形画像変換、及び、非線形画像変換に基づく画像間の自動重ね合わせ処理が考えられる。
具体的には、線形変形と非線形ワーピングを組み合わせた処理を行うことにより、対象となる2枚の画像の位置ずれが解消するような画像変形が位置ずれ補正処理回路65にて行われる。
なお、図18に示すように、位置ずれ補正処理回路65の後段部において、実施例7で記述した検出光強度のばらつき成分を補正するための補正処理回路61、及び補正係数供給部62からなる補正部63を備えた信号処理装置5Jとしても良い。図18の信号処理装置5Jの構成を用いることで、より安定したラマン散乱光検出が可能となる。
本実施例によれば、検出器と被観測対象物との相対的な位置関係の変化による、撮影画像間の空間的な位置ずれを補正することができる。その他、実施例1〜実施例6の効果を有する。
なお、上述した各実施例を部分的に組み合わせる等して構成される実施例等も本発明に属する。
[付記]
1.請求項1において、前記検出手段は、前記フィルタ手段を通過した光を結像する光学系と、その結像位置に配置された撮像素子とにより構成される。
蛍光を発生する生体組織のような被観測対象物に対して波長が異なる励起光を時間を隔てて順次照射し、その場合のラマン散乱光の波長を通すように設定したフィルタ手段を介して検出器で検出し、ラマン散乱光成分に混入する蛍光成分を差分処理により除去して、ラマン散乱光成分を簡単に分離抽出できるようにした。
本発明の実施例1のラマン散乱光観測装置の構成図。 図1の回転フィルタの構成を示す図。 図1の回転フィルタの透過率特性を説明する図。 図1のバンドパスフィルタの透過率特性を説明する図。 図1の装置により観測される2つのラマン散乱光の模式図と2つのラマン散乱光の差分処理結果を示す図。 実施例2に関するラマン散乱光観測装置の構成図。 実施例2に関する内視鏡先端部の構成を示す図。 実施例3に関する内視鏡先端部の構成を示す図。 実施例4に関するラマン散乱光観測装置の構成図。 実施例4に関する内視鏡先端部の構成を示す図。 実施例4に関する信号処理装置の変形例の構成図。 実施例5に関する液晶チューナブルフィルタを光源装置に使用したラマン散乱光観測装置を説明する図。 実施例6に関する内視鏡先端部の構成を示す図。 実施例6に関する内視鏡先端部の構成を示す図。 実施例7における蛍光成分を補正するための補正処理回路を備える信号処理装置を示す図。 検出器と被観測対象との相対的な位置関係が変化する場合に図13のラマン散乱光観測装置で観測される2つのラマン散乱光の模式図。 位置ずれを補正する機能を有する信号処理装置の構成を示す図。 蛍光成分のばらつきと位置ずれを補正する信号処理装置の構成を示す図。
符号の説明
1…ラマン散乱光観測装置
2…生体
3…光源装置
4…検出装置
5…信号処理装置
6…表示デバイス
11…光源
14…回転フィルタ
22…バンドパスフィルタ
24…検出器
26…A/D変換回路
27、28…信号メモリ
29…差分処理回路
30…D/A変換回路
31…内視鏡
15…制御装置

Claims (7)

  1. 少なくとも第1の波長を中心波長としたインコヒーレントな第1のバンドパス光及び前記第1の波長とは異なる値の第2の波長を中心波長としたインコヒーレントな第2のバンドパス光を時間を隔てて出射する光源装置と、
    前記第1及び第2のバンドパス光が時間を隔てて照射された被観測対象物から蛍光成分を含むラマン散乱光が入射され、前記第1の波長及び前記第2の波長とは異なり、前記被観測対象物のラマン散乱光成分を選択的に通過するように設定された第3の波長を通過波長バンドとしたフィルタ手段と、
    前記フィルタ手段により通過された光を検出する検出手段と、
    前記検出手段から出力される複数の検出信号に対する信号処理を行う信号処理装置とを備え、
    前記信号処理装置は、前記第1のバンドパス光が照射された際に前記フィルタ手段を介して前記検出手段により検出された第1の検出信号と、前記第2のバンドパス光が照射された際に前記フィルタ手段を介して前記検出手段により検出された第2の検出信号との差分処理を行うことを特徴とするラマン散乱光観測装置。
  2. 前記光源装置から出射する前記第1及び第2のバンドパス光は、該第1及び第2のバンドパス光により発生する各蛍光成分のスペクトルの値が殆ど変化しないように前記第1及び第2のバンドパス光の中心波長間の値が規定されていることを特徴とする請求項1に記載のラマン散乱光観測装置。
  3. 前記信号処理装置は、第1のバンドパス光の照射によって前記被観測対象物により放射されるラマン散乱光成分と蛍光成分を含む検出信号強度と、第1のバンドパス光とは時間を隔てて出射される第2のバンドパス光によって前記被観測対象物により放射されるラマン散乱光成分と蛍光成分を含む検出信号強度とのラマン散乱光成分以外の乖離成分を抑制する補正処理を、前記差分処理に加えて行うことを特徴とする請求項1または請求項2に記載のラマン散乱光観測装置。
  4. 前記信号処理装置は、前記第1のバンドパス光が照射された前記被観測対象物により放射されるラマン散乱光成分と蛍光成分を含む検出信号強度の2次元マップと、前記第1のバンドパス光とは時間を隔てて照射される第2のバンドパス光により被観測対象物から放射されるラマン散乱光成分と蛍光成分を含む検出信号強度の2次元マップに対して、各々の2次元マップの空間的な位置ずれを補正するための補正処理を行うことを特徴とする請求項1から請求項3のいずれか1つに記載のラマン散乱光観測装置。
  5. 前記被観測対象物からのラマン散乱光を透過させる前記フィルタ手段は、前記被観測対象物と前記検出手段の間に少なくとも1枚以上備えることを特徴とする請求項1から請求項4のいずれか1つに記載のラマン散乱光観測装置。
  6. 請求項1記載の光源装置は、少なくとも前記第1及び第2のバンドパス光を生成する複数枚の狭帯域透過フィルタを有することを特徴とする請求項1から請求項5のいずれか1つに記載のラマン散乱光観測装置。
  7. 前記被観測対象物に対して空間的な広がりを持つ光を照射する内視鏡を有することを特徴とする請求項1から請求項6のいずれか1つに記載のラマン散乱光観測装置。
JP2005257035A 2005-09-05 2005-09-05 ラマン散乱光観測装置 Expired - Fee Related JP4749805B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005257035A JP4749805B2 (ja) 2005-09-05 2005-09-05 ラマン散乱光観測装置
US11/818,294 US20080007716A1 (en) 2005-09-05 2007-06-14 Raman scattering light observation apparatus and endoscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257035A JP4749805B2 (ja) 2005-09-05 2005-09-05 ラマン散乱光観測装置

Publications (2)

Publication Number Publication Date
JP2007071606A true JP2007071606A (ja) 2007-03-22
JP4749805B2 JP4749805B2 (ja) 2011-08-17

Family

ID=37933179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257035A Expired - Fee Related JP4749805B2 (ja) 2005-09-05 2005-09-05 ラマン散乱光観測装置

Country Status (2)

Country Link
US (1) US20080007716A1 (ja)
JP (1) JP4749805B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136578A (ja) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd 医療用顕微鏡
JP2009136581A (ja) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd 医療機器
JP2009136577A (ja) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd 医療用スタンド装置
WO2012169539A1 (ja) 2011-06-07 2012-12-13 ナノフォトン株式会社 ラマン顕微鏡、及びラマン分光測定方法
JP2015148535A (ja) * 2014-02-07 2015-08-20 コニカミノルタ株式会社 ラマン散乱光測定方法及びラマン散乱光測定装置
CN112161966A (zh) * 2020-09-29 2021-01-01 中国科学院长春光学精密机械与物理研究所 一种含有荧光光谱的样本拉曼光谱的分离方法和装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952719B2 (en) * 2007-06-08 2011-05-31 Prescient Medical, Inc. Optical catheter configurations combining raman spectroscopy with optical fiber-based low coherence reflectometry
US20100113906A1 (en) * 2008-11-06 2010-05-06 Prescient Medical, Inc. Hybrid basket catheters
US8812087B2 (en) * 2009-06-16 2014-08-19 Technion Research & Development Foundation Limited Method and system of spectrally encoded imaging
US8804133B2 (en) * 2009-06-16 2014-08-12 Technion Research & Development Foundation Limited Method and system of adjusting a field of view of an interferometric imaging device
KR101207345B1 (ko) * 2010-08-05 2012-12-05 한국표준과학연구원 자동보정 기능을 갖는 광섬유 분포 온도 센서 시스템 및 이를 이용한 온도 측정방법
US9833145B2 (en) 2010-08-11 2017-12-05 Snu R&Db Foundation Method for simultaneously detecting fluorescence and raman signals for multiple fluorescence and raman signal targets, and medical imaging device for simultaneously detecting multiple targets using the method
KR101207695B1 (ko) * 2010-08-11 2012-12-03 서울대학교산학협력단 형광 및 라만 신호 표적에 대한 형광 및 라만 신호 동시검출방법 및 이를 이용한 표적 동시검출용 의학영상장치
US10322194B2 (en) 2012-08-31 2019-06-18 Sloan-Kettering Institute For Cancer Research Particles, methods and uses thereof
US10105456B2 (en) 2012-12-19 2018-10-23 Sloan-Kettering Institute For Cancer Research Multimodal particles, methods and uses thereof
JP6635791B2 (ja) 2013-02-20 2020-01-29 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ 広視野ラマン撮像装置および関連方法
US20140350534A1 (en) * 2013-02-20 2014-11-27 Sloan-Kettering Institute For Cancer Research Raman based ablation/resection systems and methods
EP2904961B1 (en) * 2013-04-19 2018-01-03 Olympus Corporation Endoscope device
US10912947B2 (en) 2014-03-04 2021-02-09 Memorial Sloan Kettering Cancer Center Systems and methods for treatment of disease via application of mechanical force by controlled rotation of nanoparticles inside cells
WO2016018896A1 (en) 2014-07-28 2016-02-04 Memorial Sloan Kettering Cancer Center Metal(loid) chalcogen nanoparticles as universal binders for medical isotopes
EP3317035A1 (en) 2015-07-01 2018-05-09 Memorial Sloan Kettering Cancer Center Anisotropic particles, methods and uses thereof
US10113953B2 (en) * 2016-08-22 2018-10-30 Institut National D'optique Method and device for determining the presence of a spill of a petroleum product by the detection of a petroleum-derived volatile organic compound
KR102025823B1 (ko) 2017-09-18 2019-09-25 스페클립스 주식회사 타겟에 조사되는 레이저 에너지를 조절할 수 있는 진단용 레이저 핸드피스용 팁
US10492690B2 (en) 2017-07-28 2019-12-03 Speclipse, Inc. Tip for laser handpiece
CN109425572B (zh) * 2017-08-30 2023-07-25 三星电子株式会社 用于光谱仪的收集光学系统和拉曼光谱系统
KR20190031779A (ko) 2017-09-18 2019-03-27 스페클립스 주식회사 타겟에 조사되는 레이저 에너지를 조절할 수 있는 진단용 레이저 핸드피스용 팁

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179388A (ja) * 1975-01-06 1976-07-10 Hitachi Ltd Ramanbunkohohooyobisochi
JPS622128A (ja) * 1985-06-27 1987-01-08 Toa Medical Electronics Co Ltd 螢光偏光測定装置
JP2002136469A (ja) * 2000-10-31 2002-05-14 Machida Endscope Co Ltd 血管内壁の付着物質の分析システム
JP2005040175A (ja) * 2003-07-23 2005-02-17 Olympus Corp 生体組織の光散乱観測内視鏡装置及び観測方法
WO2005038419A2 (en) * 2003-10-17 2005-04-28 Intel Corporation A method and device for detecting small numbers of molecules using surface-enhanced coherent anti-stokes raman spectroscopy
JP2005514137A (ja) * 2002-12-19 2005-05-19 ザ・ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション 黄斑色素のラマン画像を作成する方法と装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048959A (en) * 1990-06-01 1991-09-17 The Regents Of The University Of Michigan Spectrographic imaging system
US6008889A (en) * 1997-04-16 1999-12-28 Zeng; Haishan Spectrometer system for diagnosis of skin disease

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179388A (ja) * 1975-01-06 1976-07-10 Hitachi Ltd Ramanbunkohohooyobisochi
JPS622128A (ja) * 1985-06-27 1987-01-08 Toa Medical Electronics Co Ltd 螢光偏光測定装置
JP2002136469A (ja) * 2000-10-31 2002-05-14 Machida Endscope Co Ltd 血管内壁の付着物質の分析システム
JP2005514137A (ja) * 2002-12-19 2005-05-19 ザ・ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション 黄斑色素のラマン画像を作成する方法と装置
JP2005040175A (ja) * 2003-07-23 2005-02-17 Olympus Corp 生体組織の光散乱観測内視鏡装置及び観測方法
WO2005038419A2 (en) * 2003-10-17 2005-04-28 Intel Corporation A method and device for detecting small numbers of molecules using surface-enhanced coherent anti-stokes raman spectroscopy
JP2007509322A (ja) * 2003-10-17 2007-04-12 インテル・コーポレーション 表面増感コヒーレント反ストークスラマン分光を用いた少数の分子を検出する方法および装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136578A (ja) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd 医療用顕微鏡
JP2009136581A (ja) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd 医療機器
JP2009136577A (ja) * 2007-12-07 2009-06-25 Mitaka Koki Co Ltd 医療用スタンド装置
WO2012169539A1 (ja) 2011-06-07 2012-12-13 ナノフォトン株式会社 ラマン顕微鏡、及びラマン分光測定方法
US9188538B2 (en) 2011-06-07 2015-11-17 Nanophoton Corporation Raman microscope and Raman spectrometric measuring method
JP2015148535A (ja) * 2014-02-07 2015-08-20 コニカミノルタ株式会社 ラマン散乱光測定方法及びラマン散乱光測定装置
CN112161966A (zh) * 2020-09-29 2021-01-01 中国科学院长春光学精密机械与物理研究所 一种含有荧光光谱的样本拉曼光谱的分离方法和装置

Also Published As

Publication number Publication date
US20080007716A1 (en) 2008-01-10
JP4749805B2 (ja) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4749805B2 (ja) ラマン散乱光観測装置
US10874333B2 (en) Systems and methods for diagnosis of middle ear conditions and detection of analytes in the tympanic membrane
US8188446B2 (en) Fluorescence imaging apparatus
JP4133319B2 (ja) コンパクトな蛍光内視鏡映像システム
US9456737B2 (en) In-vivo imaging device and method for performing spectral analysis
US6678398B2 (en) Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process
JP5073579B2 (ja) 撮像装置
JP2017529514A (ja) マルチスペクトルイメージングのための方法及び手段
JPS6053918A (ja) 内視鏡装置
JP2006526767A (ja) 多重の励起−発光対と、同時多チャンネル画像検出器とを用いる、蛍光結像方法と装置
JP2006061683A (ja) 内視鏡装置
JP2006296635A (ja) 内視鏡装置
JP5721940B2 (ja) 光スペクトル検出方法
JPH08224240A (ja) 蛍光診断装置
US20140163389A1 (en) In vivo detection of eosinophils
US11229400B2 (en) Discrimination of calculi and tissues with molecular chemical imaging
JPWO2012132571A1 (ja) 診断システム
JP4877550B2 (ja) 生体組織を検知し、特徴づけるための装置
AU2017346249B2 (en) Multi-wavelength endoscopic system and image processing method using same
WO2018070474A1 (ja) 内視鏡システム
AU9119498A (en) Detection of cancer using cellular autofluorescence
US10610088B2 (en) Multi-wavelength endoscopic system and image processing method using same
JP5341707B2 (ja) 生体組織識別装置及び方法
Clancy et al. Flexible multimode endoscope for tissue reflectance and autofluorescence hyperspectral imaging
KR20180066645A (ko) 형광 내시경 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R151 Written notification of patent or utility model registration

Ref document number: 4749805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees