JP2007064360A - 流体軸受装置、それを用いたスピンドルモータ - Google Patents

流体軸受装置、それを用いたスピンドルモータ Download PDF

Info

Publication number
JP2007064360A
JP2007064360A JP2005251219A JP2005251219A JP2007064360A JP 2007064360 A JP2007064360 A JP 2007064360A JP 2005251219 A JP2005251219 A JP 2005251219A JP 2005251219 A JP2005251219 A JP 2005251219A JP 2007064360 A JP2007064360 A JP 2007064360A
Authority
JP
Japan
Prior art keywords
sleeve
bearing device
shaft
bearing
bearing space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005251219A
Other languages
English (en)
Inventor
Kaoru Uenosono
薫 上之園
Hiroo Yoshikawa
洋生 吉川
Akira Ninomiya
章 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005251219A priority Critical patent/JP2007064360A/ja
Publication of JP2007064360A publication Critical patent/JP2007064360A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

【課題】 循環機構を備えた流体軸受装置において、油温の変化によるシャフトの浮上量の変動を抑制し、シャフトの回転精度を向上させる。
【解決手段】 流体軸受装置40は、ベースプレート20に固定されたスリーブ42と、ロータ30に固定されスリーブ42の内周側に相対回転自在に設けられたシャフト41と、スリーブ42の端部に固定されたシールプレート44と、スリーブ42、シャフト41およびシールプレート44の間に形成された軸受空間60と、軸受空間60に充填された潤滑油46と、スリーブ42内周面およびシャフト41外周面のいずれか一方に形成される動圧発生用溝41a、41bを有し、更に循環機構50と循環制御部52を有している。
【選択図】図3

Description

本発明は、流体軸受装置、特に潤滑油の循環機構を備えた流体軸受装置およびそれを用いたスピンドルモータに関する。
近年、ディスク等を用いた記録装置等はそのメモリー容量が増大し、またデータの転送速度が高速化しているため、この種の記録装置に用いられるディスク回転装置等は高速、高精度回転が必要となり、その回転主軸部には流体軸受装置が用いられている。
従来の流体軸受装置は、筒状のスリーブと、スリーブの内周側に相対回転自在に配置されたシャフトと、スリーブおよびシャフトの間に形成され潤滑流体としての潤滑油が充填された軸受空間と、軸受空間内に設けられスリーブおよびシャフトのいずれか一方に形成された少なくとも1つの第1動圧発生用溝を有するラジアル軸受部と、シャフトに固定されたスラスト部材であるスラストフランジと、スラストフランジに形成された複数の第2動圧発生用溝を有するスラスト軸受部とを備えている。
この流体軸受装置では、スラスト軸受部で発生する動圧によりシャフトの浮上力を得ている。また、ラジアル軸受部は、半径方向に動圧力を発生させるとともに、周辺の潤滑油をスラスト軸受部側へ押し込む、いわゆるポンピング力を発生させる。このポンピング力により、スラストフランジ周辺の圧力が高くなる。スラストフランジ下面は、スラストフランジ上面よりもシャフトの断面積だけ面積が大きい。そのため、スラストフランジ周辺の圧力が高くなると、スラストフランジ上面および下面の面積差により軸方向上側の力が生じシャフトの浮上力が大きくなる。この結果、ラジアル軸受部のポンピング作用がない場合に比べて、シャフトの浮上量を大きく、そしてより安定したものとすることができる。
しかし、スラスト軸受で発生する動圧およびラジアル軸受のポンピング力は、潤滑油の粘性により変動する。一般的に潤滑油等の潤滑流体の粘性は、潤滑流体の温度により変化する。すなわち、ポンピング力は潤滑流体の温度により変動する。図8に油温(潤滑流体の温度)とスラスト軸受で発生する動圧(浮上力)との関係、図9に油温(潤滑流体の温度)とラジアル軸受のポンピング力との関係を示す。図8および図9は、スリーブおよびシャフトのラジアル隙間が2.0〔μm〕、2.5〔μm〕、3.0〔μm〕の場合であってスリーブが後述する循環孔(連通孔)を有していない場合の計算結果である。図8および図9に示すように、スラスト軸受で発生する動圧およびラジアル軸受のポンピング力は、油温が上昇すると小さくなる。これは、流体軸受装置に用いられる油温の上昇により潤滑油が低粘度になる特性を有しており、そして動圧およびラジアル軸受部のポンピング力が潤滑油の粘度の低下により小さくなる傾向を有しているためである。したがって、この流体軸受装置では、油温が上昇するとシャフトの浮上量は小さくなり、油温が低下するとシャフトの浮上量は大きくなる。このように、従来の流体軸受装置では油温によりシャフトの浮上量が変動する。
そこで、シャフトの浮上量の変動を防止するために、循環孔を備えている流体軸受装置が提案されている(例えば、特許文献1を参照。)。
特開2003−247547号公報
特許文献1に記載の流体軸受装置は、有底円筒状のスリーブと、スリーブの内周側に相対回転自在に配置されたシャフトと、スリーブおよびシャフトの間に形成された軸受空間と、軸受空間内に設けられスリーブおよびシャフトのいずれか一方に形成された複数の第1動圧発生用溝を有するラジアル軸受部と、スリーブの内周に軸方向に沿って設けられた潤滑油溜まりと、潤滑油溜まりを連結する潤滑油の循環部とを備えている。この場合、循環孔により大気圧とスリーブの底部周辺の圧力とがほぼ等しくなる。そのため、ラジアル軸受部でポンピング力が発生するにも関わらずスリーブの底部周辺の圧力が大気圧よりも高くならず、ポンピング作用がシャフトの浮上力に影響しない。すなわち、スラスト軸受部で発生する動圧のみが油温により変動するため、循環孔を備えていない場合に比べてシャフトの浮上量の変動を小さくすることができる。
以上に述べた循環機構付き流体軸受装置では、シャフトの浮上量の変動を小さくすることができるが、油温が高い場合はシャフトの浮上量が小さくなることを避けられない。この結果、シャフトと周辺部材とが接触しやすくなり、軸受の破損を引き起こすおそれがある。
本発明の課題は、循環機構を備えた流体軸受装置において、油温の変化によるシャフトの浮上量の変動を抑制し、シャフトの回転精度を向上させることにある。
請求項1に記載の流体軸受装置は、静止部材に対して回転部材を回転可能に支持するための流体軸受装置であって、静止部材に固定されたスリーブと、回転部材に固定されスリーブの内周側に相対回転自在に設けられたシャフトと、スリーブの端部に固定されたシールプレートと、スリーブ、シャフトおよびシールプレートの間に形成された軸受空間と、軸受空間に充填された潤滑流体と、スリーブ内周面およびシャフト外周面のいずれか一方に形成されスリーブおよびシャフトの相対回転により半径方向の動圧力および軸方向のポンピング力を発生させるための少なくとも1つの第1動圧発生用溝とを有するラジアル軸受部と、ラジアル軸受部のポンピング力により軸受空間の軸方向シールプレート側へ押し込まれた潤滑流体を軸受空間の軸方向シールプレートと反対側へ循環させるための循環機構とを備えている。循環機構は、軸受空間の軸方向一方側と他方側とを連結するスリーブに形成された少なくとも1つの連通孔と、潤滑流体の温度の変化に応じて連通孔の流路断面積を制御するための循環制御部とを有している。
この流体軸受装置では、循環機構が循環制御部を有しているため、例えば潤滑流体の温度が上昇した場合に連通孔の流路断面積を小さくすることができる。流路断面積を小さくすると、潤滑流体が循環することで循環制御部において圧力損失が生じる。循環制御部の二次側である軸受空間の軸方向他方側の圧力は大気圧とほぼ等しいため、軸受空間の軸方向一方側の圧力を圧力損失の分だけ大気圧よりも高く保つことができる。この結果、潤滑流体の粘性が低下しラジアル軸受のポンピング力が低下した場合であっても、軸受空間の軸方向一方側の圧力を高く保つことができ、シャフトの浮上量を確保することができる。
また、この流体軸受装置では、例えば潤滑流体の温度が低下した場合に連通孔の流路断面積を大きくすることができる。この場合、循環制御部において圧力損失はほとんど生じないため、軸受空間の軸方向一方側および他方側の圧力は大気圧にほぼ等しくなる。この結果、潤滑流体の温度が低くなり潤滑流体の粘性が高くなった場合であっても、シャフトの浮上量が必要以上に大きくならない。以上に述べたように、この流体軸受装置では、潤滑流体の温度の変化によるシャフトの浮上量の変動を抑制することができ、シャフトの回転精度を向上させることができる。 請求項2に記載の流体軸受装置は、請求項1において、循環制御部が連通孔内に設けられた少なくとも1つの制御部材を有している。
この流体軸受装置では、循環制御部が制御部材を有しているため、制御部材の材料として線膨張係数(または熱膨張係数)の大きい材料を選定することで、潤滑流体の温度の変化に応じて制御部材の体積を大きく変化させることができ、連通孔の流路断面積を変化させることができる。また、循環制御部を簡単な構造により実現することができる。
請求項3に記載の流体軸受装置は、請求項2において、制御部材が球状の部材である。
この流体軸受装置では、制御部材が球状の部材であるため、循環制御部を簡単な構造により実現することができる。
請求項4に記載の流体軸受装置は、請求項2において、制御部材が円柱状の部材である。
この流体軸受装置では、制御部材が円柱状の部材であるため、循環制御部を簡単な構造により実現することができる。
請求項5に記載の流体軸受装置は、請求項2から4のいずれかにおいて、制御部材の線膨張係数が5.0×10-5〔1/K〕以上である。
この流体軸受装置では、制御部材の線膨張係数が上記のように比較的高い範囲であるため、潤滑流体の温度とともに制御部材の温度が上昇した場合に制御部材の熱膨張により連通孔の流路断面積を小さくすることができる。この結果、潤滑流体の粘性が低下しラジアル軸受のポンピング力が低下した場合であっても、軸受空間内の圧力を高く保つことでシャフトの浮上量を安定させることができる。
請求項6に記載の流体軸受装置は、請求項2において、制御部材が弾性率が比較的高い中空の球状部材からなる第1部材と、第1部材の内部に封入された液体または気体からなる第2部材とを有している。
この流体軸受装置では、第2部材が熱膨張すると第1部材が第2部材とともに延び、第1および第2部材の体積が増加する。したがって、熱膨張係数が大きい液体または気体材料を第2部材として選定することで、線膨張係数が大きい固体材料を選定した場合と同等の効果を得ることができる。
請求項7に記載の流体軸受装置は、請求項6において、第2部材の熱膨張係数が1.3×10-3〔1/K〕以上である。
この流体軸受装置では、第2部材の熱膨張係数が上記のように比較的高い範囲であるため、潤滑流体の温度とともに制御部材の温度が上昇した場合に第2部材の熱膨張により連通孔の流路断面積を小さくすることができる。この結果、潤滑流体の粘性が低下しラジアル軸受のポンピング力が低下した場合であっても、軸受空間内の圧力を高く保つことでシャフトの浮上量を確保することができる。
請求項8に記載の流体軸受装置は、請求項1から7のいずれかにおいて、第1動圧発生用溝が軸方向に対して傾斜する第1溝部と、第1溝部の端部から軸方向に対して第1溝部と反対側に傾斜する第2溝部とから構成されている。第1溝部の軸方向長さは、第2溝部の軸方向長さよりも長い。
この流体軸受装置では、第1溝部の軸方向長さが第2溝部の軸方向長さよりも長いため、ラジアル軸受部により確実にポンピング力を発生させることができる。
請求項9に記載の流体軸受装置は、請求項1から8のいずれかにおいて、シャフトに固定もしくは一体に形成されシールプレートと軸方向に対向するスラスト部材と、軸受空間内に設けられスラスト部材、シールプレートおよびスリーブの少なくともいずれか1つに形成された第2動圧発生用溝を有するスラスト軸受部とをさらに備えている。軸受空間は、スリーブおよびシャフトの間に形成された第1の軸受空間と、スラスト部材、シールプレートおよびスリーブの間に形成され第1の軸受空間の軸方向一方側と連通する第2の軸受空間とを有している。循環機構は、第2の軸受空間と第1の軸受空間の軸方向他方側とを連結している。
この流体軸受装置では、潤滑流体の温度の上昇によりスラスト軸受部で発生する動圧が小さくなっても、循環制御部により連通孔の流路断面積を小さくすることでスラスト軸受部周辺の圧力を高く保つことができる。この結果、潤滑流体の温度が高い場合においてラジアル軸受のポンピング力によりシャフトの浮上量を確保することができる。
請求項10に記載の流体軸受装置は、請求項1から9のいずれかにおいて、スリーブの軸方向他方側に固定された環状のカバー部材をさらに備えている。循環機構は、スリーブおよびカバー部材の間に形成され軸受空間と連通する第3の軸受空間とをさらに有している。
請求項11に記載の流体軸受装置は、請求項10において、第3の軸受空間が第1の軸受空間と連通している。
この流体軸受装置では、第3の軸受空間が第1の軸受空間と連通しているため、潤滑流体内に空気が混入した場合に第3の軸受空間に空気を溜めることができ、潤滑流体に混入した空気を除去することができる。
請求項12に記載の流体軸受装置は、請求項10または11において、カバー部材が第3の軸受空間内の空気を排気するための少なくとも1つの排気孔を有している。
この流体軸受装置では、第3の軸受空間に溜まった余剰空気を排気孔から排気することができ、潤滑流体に混入した空気をより確実に除去することができる。
請求項13に記載のスピンドルモータは、静止部材としてのハウジングと、ハウジングに固定されステータコイルが巻回される環状のステータと、ステータの内周側に収容されロータマグネットを有する回転部材としてのロータと、ハウジング対してロータを回転自在に支持するための請求項1から12のいずれかに記載の流体軸受装置とを備えている。
このスピンドルモータでは、請求項1から12のいずれかに記載の流体軸受装置を備えているため、流体軸受装置において潤滑流体の温度の変化によるシャフトの浮上量の変動を抑制することができ、ロータの回転精度を向上させることができる。
本発明に係る流体軸受装置では、循環機構が循環制御部を有しているため、油温の変化によるシャフトの浮上量の変動を抑制することができ、シャフトの回転精度を向上させることができる。
本発明の各実施形態を図1から図9を参照しながら説明する。異なる実施形態において同じ符号を付している場合は、それらが同じ構成であることを意味している。
図1に、本発明の一実施形態としてのスピンドルモータ1の縦断面概略図を示す。図1に示すO−Oは、スピンドルモータ1の回転軸線である。本実施形態の説明では、便宜上、図面の上下方向を「軸方向上側」、「軸方向下側」等と表現するが、スピンドルモータ1の実際の取り付け状態を限定するものではない。また、各請求項で用いている「軸方向一方側」および「軸方向他方側」は、それぞれ「軸方向下側」および「軸方向上側」として記載する
スピンドルモータ1は主に、ベースプレート2(静止部材)と、ロータ3(回転部材)と、流体軸受装置4とから構成されている。以下に、各部の詳細について説明する。
ベースプレート2は、スピンドルモータ1の静止側の部分を構成しており、例えば記録ディスク装置のハウジングに固定されている。ベースプレート2は、ブラケット部21を有し、ステータ22が装着されている。ブラケット部21は、ベースプレート2の主要部を構成する環状の部材であり、内周側に軸方向上側に延びる筒状部21aを有している。ステータ22は、磁気回路を構成するためのもので、筒状部21aの外周側に固定されている。筒状部21aの内周側には、後述する流体軸受装置4が固定されている。
ロータ3は、磁気回路部で発生する回転力により回転駆動される部分であり、ロータハブ31と、ディスク載置部32と、ロータマグネット34とから構成されている。ロータハブ31は、ロータ3の主要部を構成する円板状の部分であり、後述するシャフト41と締結されている。ディスク載置部32は、記録ディスクを載置するためのものであり、ロータハブ31の外周側かつ軸方向下側に配置されている。本実施形態では、ロータハブ31とディスク載置部32とは一体成形されている。
ロータマグネット34は、前述のステータ22と半径方向に対向して配置されている。ロータマグネット34とステータ22とにより、ロータを回転駆動するための磁気回路部が構成されている。ステータ22のコイルに通電することでロータマグネット34に回転力が発生し、ロータ3が回転駆動される。
図2に流体軸受装置4の縦断面概略図を示す。流体軸受装置4は、ベースプレート2に対してロータ3を回転自在に支持するためのもので、スリーブ42と、シャフト41と、シールプレート44と、スラストフランジ43(スラスト部材)と、カバー部材45と、循環機構5とから構成されている。
スリーブ42は、流体軸受装置4の静止側の部材であり、ベースプレート2の筒状部21aの内周側に挿嵌された筒状の部材である。スリーブ42は、さらにスリーブ本体42aと、筒状突出部42bと、凹部42cと、固定部42dと、少なくとも1つの第1動圧発生用溝71a、71bとを有している。スリーブ本体42aは、スリーブ42の主要部を構成する筒状の部分である。スリーブ本体42aの内周面には、第1動圧発生用溝71a、71bが成形されている。第1動圧発生用溝71a、71bは、例えばヘリングボーン状の溝であり、円周方向に均等に配置されている。本実施形態では、第1動圧発生用溝71a、71bは軸方向に並設されている。また第1動圧発生用溝71a、71bは、軸方向上側および下側の長さが異なっている。具体的には図2に示すように、L1>L2、L3>L4となっている。これを動圧溝の非対称性という。動圧溝の非対称性は、第1動圧発生用溝71a、71bのどちらか一方でもよく、第1動圧発生用溝71aを非対称(L1>L2)にして第1動圧発生用溝71bを対称(L3=L4)にする場合が多い。この動圧溝の非対称性により、ラジアル軸受部71にて軸方向のポンピング力を発生させることができる。
筒状突出部42bは、スリーブ本体42aの端部から軸方向に突出する環状の部分である。凹部42cは、スリーブ本体42aの内周側に形成された環状の空間であり、第1動圧発生用溝71a、71bの軸方向間に配置されている。固定部42dは、筒状突出部42bの端部から軸方向に突出する環状の部分である。固定部42dと筒状突出部42bとの間には、後述するシールプレート44の外周部が挟み込まれており、スリーブ42とシールプレート44とがシールされた状態で固定されている。また、スリーブ42の軸方向上側の端部には、環状のカバー部材45が固定されている。カバー部材45は、軸方向上側に後述する第3油室63と軸受外部とを連通する少なくとも1つの排気孔45aを有している。
シャフト41は、流体軸受装置4の回転側の部材であり、スリーブ42の内周側に配置された軸状の部材である。シャフト41の端部には、前述のロータハブ31が接着等により固定されている。なお、前述の第1動圧発生用溝71a、71bは、スリーブ42の内周面ではなくシャフト41の外周面に成形されていてもよい。
スラストフランジ43は、流体軸受装置4の回転側の部材であり、シャフト41の端部に固定されている。スラストフランジ43は、スリーブ42の筒状突出部42bの内周側に配置されている。具体的には、スラストフランジ43は、スリーブ42とシールプレート44との間に形成された空間に微小隙間を介して配置されている。スラストフランジ43は、シールプレート44およびスリーブ42と軸方向に対向する面に、複数の第2動圧発生用溝72a、72bを有している。第2動圧発生用溝72a、72bは、例えばスパイラル形状やヘリングボーン形状を有している。
流体軸受装置4は、潤滑油46が充填されている複数の油室を備えている。具体的には、シャフト41、スリーブ42、シールプレート44およびスラストフランジ43の間には、軸受空間6が形成されている。具体的には、軸受空間6は、第1の軸受空間である第1油室61と、第2の軸受空間である第2油室62とから構成されている。第1油室61は、主にシャフト41とスリーブ42との間に形成された空間であり、シャフト41とカバー部材45との半径方向間に形成された空間も含んでいる。第2油室62は、スリーブ42、シールプレート44およびスラストフランジ43の間に形成された空間である。第2油室62は、第1油室61の軸方向下側(軸方向一方側)と連通している。潤滑油46は第1油室61および第2油室62に充填されており、第1油室61はカバー部材45の周辺まで潤滑油46で満たされている。
以上に述べたように、この流体軸受装置4では、第1動圧発生用溝71a、71bを有するシャフト41、スリーブ42およびその間に介在する潤滑油46により、ロータ3を軸方向に支持するラジアル軸受部71が構成されている。また、第2動圧発生用溝72a、72bを有するスラストフランジ43、スリーブ42、シールプレート44およびその間に介在する潤滑油46により、ロータ3を径方向に支持するスラスト軸受部72が構成されている。
本発明に係る流体軸受装置4は、さらに循環機構5を備えている。以下に、循環機構5の詳細について説明する。
図2に示すように、循環機構5は、第2油室62と第1油室61の軸方向上側(軸方向他方側)とを連結している。具体的には、循環機構5は、軸受空間6の軸方向下側の潤滑油46を軸方向上側へ循環させるための機構であり、第3の軸受空間である第3油室63と、少なくとも1つの連通孔51と、少なくとも1つの(連通孔と同数でない場合もある)循環制御部52とを有している。
第3油室63は、スリーブ42およびカバー部材45の軸方向間に形成された環状の空間であり、内周側が第1油室61の軸方向上側と連通している。連通孔51は、軸受空間6の軸方向下側と軸方向上側、より具体的には、第2油室62の軸方向下側と第3油室63の外周側とを連結するためのものである。連通孔51は、スリーブ42に形成された軸方向に延びる油路であり、スリーブ42を軸方向に貫通している。本実施形態では、連通孔51は円周方向に均等に配置された円形断面の流路である。
循環制御部52は、潤滑油46の油温の変化に応じて連通孔51の流路断面積を制御するためのもので、各連通孔51にそれぞれ設けられている。具体的には、循環制御部52は、連通孔51内に設けられた制御部材52aを有している。制御部材52aは、温度変化により体積が大きく変化する材料、すなわち線膨張係数の大きい材料からなる球状の部材である。制御部材52aは連通孔51内であればどの位置でもよいが、図2では潤滑油46に比べて制御部材52aの比重が小さく制御部材52aが潤滑油46に浮いている状態を示している。なお、制御部材52aの比重が潤滑油46の比重よりも大きい場合は、制御部材52aは連通孔51の軸方向下側に沈んだ状態となる。
図3(a)に油温が低い場合の制御部材52aの状態図、図3(b)に油温が高い場合の制御部材52aの状態図を示す。例えば油温が上昇した場合、制御部材52aの体積は熱膨張により増加し、連通孔51の流路断面積が小さくなる(図3(b))。また油温が低下した場合、制御部材52aの体積は熱収縮により減少し、連通孔51の流路断面積が大きくなる(図3(a))。このように、制御部材52aとして線膨張係数が大きい材料を選定することで、油温の変化に応じて連通孔51の流路断面積を変化させることができ、シャフト41の浮上量の変動を抑制することができる。
ここで、循環制御部52の動作および作用効果について以下に詳細に説明する。図4に油温とシャフト41の浮上量との関係を示す。図4は、連通孔51の径がφ0.4〔mm〕、スラスト軸受部72の軸方向のスラスト隙間の合計が21〔μm〕の場合の計算結果を示している。また、シャフト41の浮上量とは、シールプレート44とスラストフランジ43との軸方向間の隙間を意味している。
図4の計算結果は、流体軸受装置4の構成が条件Aから条件Dの4パターンの場合についてのものである。具体的には、条件Aは流体軸受装置4が循環機構5を備えていない場合(◆)、条件Bは流体軸受装置4が循環機構5を備えているが循環機構5が循環制御部52を有していない場合(■)、条件Cは循環機構5および循環制御部52を備えている場合であって循環制御が理想的な場合(*)、そして条件Dは循環機構5および循環制御部52を備えている場合であって循環制御が現実的な場合(×)をそれぞれ示している。また図4の太線は、シャフト41の最適浮上量(浮上量=10.5〔μm〕)を示している。
循環機構5がない場合は、ラジアル軸受部71のポンピング力により第2油室62内の圧力が大気圧よりも大きくなる。また前述のように、油温が低下すると潤滑油46の粘度が高くなり、ラジアル軸受部71のポンピング力は高くなる(図8)。図8の計算結果は、スリーブが連通孔を有していない場合のものであるが、連通孔を有している場合であっても同じ傾向を有している。したがって、油温が低下すると第2油室62内の圧力が高くなり、シャフト41の浮上量が必要以上に大きくなる。例えば、図4に示すように、油温が0〔℃〕の場合は条件Aにおけるシャフトの浮上量が18.5〔μm〕となり、最適浮上量を大きく超えていることが分かる。
一方、油温が上昇すると粘度が低くなり、ラジアル軸受部71のポンピング力およびスラスト軸受部72で発生する動圧が小さくなる。この結果、図4に示すように条件Aにおけるシャフト41の浮上量は最適浮上量よりも小さくなる。
それに対して、循環機構5がある場合、第2油室62内の圧力が大気圧と同じになるため、ラジアル軸受部71のポンピング力によりシャフトが浮上しない。したがって、油温が低い場合は条件Bにおけるシャフト41の浮上量は最適浮上量と同じかそれより若干小さい値となるが、油温が高い場合は条件Bにおけるシャフト41の浮上量はさらに最適浮上量よりも小さくなる。
以上のように、油温が低い場合は、ラジアル軸受部71のポンピング力によるシャフトの浮上量は0が好ましく、条件Bのように流体軸受装置が循環機構を備えている方がよい。一方、油温が高い場合は、ラジアル軸受部71のポンピング力によりシャフトの浮上力をアシストする方が好ましく、条件Aのように流体軸受装置が循環機構を備えていない方がよい。
この両方の状態を実現するためには、油温が低い場合は制御部材52aの連通孔51の流路断面積が完全に連通し、油温が上昇するにしたがって連通孔51の流路断面積が小さくなり、そして油温が高い場合(例えば100℃)には完全に連通孔51を塞ぐ機構が必要となる。この状態は図4の条件Cの計算結果に相当し、図4に示すように、油温が低い場合は条件Cにおけるシャフト41の浮上量は条件Bと同じとなり、油温が高い場合には条件Cにおけるシャフト41の浮上量は条件Aと同じでとなる。
しかし、油温の変化に応じて連通孔51を完全に解放および閉塞する機構は、スピンドルモータ用の小型の流体動圧軸受においては、実際には実現が困難である。したがって、循環制御部52がこの動作に近い動作を行うために、この流体軸受装置4では循環制御部52の制御部材52aとして線膨張係数の大きい材料を選定し、油温が高い場合は連通孔51を完全に閉塞し、油温が低い場合は連通孔51の流路断面積をφ2.0だけ確保したものについて考える。図4に示すように、油温が低い場合は、シャフト41の浮上量が最適浮上量を若干超えてはいるものの、循環機構5によりシャフト41の浮上量は条件Aに比べて小さくなる。条件Bおよび条件Dにおいてシャフト41の浮上量に差があるのは、制御部材52aにより若干流路断面積が小さくなり、第2油室62の内圧が高くなっているためである。また油温が高い場合は、制御部材52aが熱膨張することにより連通孔51が閉塞される。この場合、条件Dにおけるシャフト41の浮上量は循環機構5がない条件Aと同じ浮上量となる。以上に述べたように、条件Dにおいても条件Cに近い効果を得ることができる。
以上に述べた条件Dにおけるシャフト41の浮上量を実現するためには、制御部材52aは100℃でφ0.4〔mm〕、−30℃でφ0.346〔mm〕の条件を満たす必要がある。この条件を線膨張係数に換算すると、制御部材52aの線膨張係数は1.3×10-3〔/K〕となる。この条件に近い材料で入手可能なものとしては、例えばウルテム(PEI)(5.6×10-5〔/K〕)、ABS樹脂(8.75×10-5〔/K〕)およびテフロン(4.5×10-5〜12×10-5〔/K〕)等が挙げられる。なお、制御部材52aの線膨張係数が大きくなればなるほど、条件Dの状態が条件Cの理想の状態に近づく。したがって、これらの線膨張係数および材料は単なる例示に過ぎず、さらに線膨張係数が大きい材料があればその材料を選定することができる。しかし、入手可能な材料等を考慮すると、固体材料の場合、実際には線膨張係数は5.0×10-5〔1/K〕以上が好ましく、さらに1.3×10-3〔/K〕以上が好ましい。
スピンドルモータ1の動作について説明する。スピンドルモータ1のステータ22のコイルに通電すると、磁気回路によりロータ3が回転する。ロータ3とともにシャフト41が回転すると、ラジアル軸受部71でシャフト41を半径方向に支持するための支持圧が発生すると同時に、潤滑油46を軸方向下側へ押し込むように軸方向のポンピング力が発生する。これにより、シャフト41は、ラジアル軸受部71で発生した支持圧により半径方向に支持され、同時に潤滑油46にポンピング力(循環力)が与えられる。またシャフト41が回転すると、スラスト軸受部72で軸方向の支持圧が発生する。これにより、スラスト軸受部72で発生した支持圧によりシャフト41は軸方向上側へ浮上する。なお、潤滑油46のポンピング力(循環力)がスラスト軸受部72で発生するように構成することもできる。
ここで、潤滑油46の油温が低い場合は、前述のように循環制御部52の制御部材52aにより連通孔51が閉塞されない。そのため、ラジアル軸受部71で軸方向のポンピング力が発生しても、第2油室62内の油圧が大気圧と同じとなる。この結果、スラスト軸受部72で発生した支持圧でのみシャフト41は浮上し、最適浮上量を維持することができる。
また、潤滑油46の油温が高い場合は、前述のように循環制御部52の制御部材52aの体積が熱膨張により増加し、制御部材52aにより連通孔51が閉塞される。そのため、ラジアル軸受部71で発生したポンピング力により第2油室62内の圧力が高くなる。この結果、スラスト軸受部72で発生した支持圧に加えて、シャフト41にはスラストフランジ43の上面および下面の面積差により生じる軸方向上側への力が作用する。これにより、油温が高くスラスト軸受部72の支持圧が小さい場合でも、シャフト41の浮上量をラジアル軸受部71のポンピング力によりアシストすることができ、最適浮上量に近い浮上量を確保することができる。
以上のように、この流体軸受装置4では、循環機構5が循環制御部52を有しているため、油温の変化によるシャフト41の浮上量の変動を抑制することができ、シャフト41の回転精度を向上させることができる。
なお、本実施形態の変形例として、例えば図5(a)に示すように、制御部材52bが円柱状の部材である場合も考えられる。また図5(b)に示すように、潤滑油46の流れを考慮して制御部材52cの上流側の形状が円錐状等になっていてもよい。この場合であっても、油温が高くなったときに制御部材52b、52cが熱膨張し連通孔51が閉塞されるため、前述と同様の作用効果を得ることができる。
また前述の第1実施形態では、制御部材52aが1種類の材料から構成されているが、2種類の材料から構成されている場合も考えられる。具体的には、図6に示すように、制御部材152aは弾性率が比較的高く耐油性を有する中空の球状部材からなる第1部材152bと、第1部材152bの内部に封入された熱膨張係数が大きい液体または気体からなる第2部材152cとから構成されていてもよい。第1部材としては、例えば弾性率が比較的高いニトリルゴム等が考えられる。また線膨張係数が高い液体材料としては、例えばアセトン(1.43×10-3〔/K〕)、ジエチルエーテル(1.63×10-3〔/K〕)等が考えられる。また熱膨張係数が高い気体材料としては、例えば空気(3.671×10-3〔/K〕、100〔℃〕、1〔atm〕)が考えられる。
この場合、第1部材152bの弾性率が高いため、第2部材152cの体積が熱膨張により増加した場合は第2部材152cとともに第1部材152bが熱膨張および弾性変形し、制御部材152aの体積が増加する。これにより、前述の第1実施形態と同様の作用効果を得ることができる。
また、第2実施形態の変形例として、図7(a)に示すように例えば制御部材152dの第1部材152eが中空の球状部材ではなく中空の円柱状の部材であったり、あるいは図7(b)に示すように制御部材152gの第1部材152hが楕円形断面の細長い形状の中空の部材であってもよい。この場合であっても、前述の第1実施形態と同様の作用効果を得ることができる。
なお、制御部材52aの線膨張係数が大きくなればなるほど、条件Dの状態が条件Cの理想の状態に近づく。したがって、これらの線膨張係数および材料は単なる例示に過ぎず、さらに線膨張係数が大きい材料があればその材料を選定することができる。しかし、入手可能な材料等を考慮すると、液体または気体の場合、実際には線膨張係数が5.0×10-5〔1/K〕以上が好ましく、さらに1.3×10-3〔/K〕以上が好ましい。
以下に、その他の実施形態について説明する。本発明はかかる上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
前述の実施形態では、流体軸受装置4がスラストフランジ43およびスラスト軸受部72を備えているが、これに限定されない。例えば、特許文献1に記載の流体軸受装置のようにスラストフランジおよびスラスト軸受部を備えていない場合であっても、シャフトの下面に圧力が加わりシャフトに浮上力が作用するため、本発明は成立する。
循環制御部の連通孔および制御部材の形状は、前述の実施形態に限定されない。制御部材の熱膨張により連通孔の流路断面積を制御することができれば、他の形状であってもよい。また、制御部材の材料も前述の実施形態に限定されない。
また、制御部材の線膨張係数が大きくなればなるほど、循環制御部での流路断面積の制御は理想の状態に近づく。したがって、前述の実施形態で示した線膨張係数および材料は単なる例示に過ぎず、さらに線膨張係数が大きい材料があればその材料を選定することができる。
さらに、前述の実施形態では、1つの連通孔に1つの制御部材が設けられているが、これに限定されない。例えば、1つの連通孔に2つの制御部材が直列に配置されていてもよい。この場合、制御部材による圧力損失が大きくなるため、油温が上昇した場合により確実に軸受空間6内の圧力を高めることができる。
本発明の第1実施形態としてのスピンドルモータ1の縦断面概略図。 本発明の第1実施形態としての流体軸受装置4の縦断面概略図。 制御部材52aの温度変化による状態変化が分かる図。 油温とシャフト41の浮上量との関係図。 第1実施形態の変形例。 本発明の第2実施形態としての流体軸受装置104の循環制御部152周辺の縦断面概略図。 第2実施形態の変形例。 油温とラジアル軸受部のポンピング力との関係図。 油温とシャフトの浮上力との関係図。
符号の説明
1 スピンドルモータ
2 ベースプレート
3 ロータ
4 流体軸受装置
41 シャフト
71a、71b 第1動圧発生用溝
42 スリーブ
42a スリーブ本体
42b 筒状突出部
42c 凹部
42d 固定部
43 スラストフランジ
72a、72b 第2動圧発生用溝
44 シールプレート
45 カバー部材
5 循環機構
51 連通孔
52 循環制御部
52a 制御部材
6 軸受空間
61 第1油室(第1の軸受空間)
62 第2油室(第2の軸受空間)
63 第3油室(第3の軸受空間)
71 ラジアル軸受部
72 スラスト軸受部

Claims (13)

  1. 静止部材に対して回転部材を回転可能に支持するための流体軸受装置であって、
    前記静止部材に固定されたスリーブと、
    前記回転部材に固定され、前記スリーブの内周側に相対回転自在に設けられたシャフトと、
    前記スリーブの端部に固定されたシールプレートと、
    前記スリーブ、シャフトおよびシールプレートの間に形成された軸受空間と、
    前記軸受空間に充填された潤滑流体と、前記スリーブ内周面およびシャフト外周面のいずれか一方に形成され前記スリーブおよびシャフトの相対回転により半径方向の動圧力および軸方向のポンピング力を発生させるための少なくとも1つの第1動圧発生用溝とを有するラジアル軸受部と、
    前記ラジアル軸受部のポンピング力により前記軸受空間の軸方向前記シールプレート側へ押し込まれた前記潤滑流体を前記軸受空間の軸方向前記シールプレートと反対側へ循環させるための循環機構とを備え、
    前記循環機構は、前記軸受空間の軸方向一方側と他方側とを連結する前記スリーブに形成された少なくとも1つの連通孔と、前記潤滑流体の温度の変化に応じて前記連通孔の流路断面積を制御するための循環制御部とを有している、
    流体軸受装置。
  2. 前記循環制御部は、前記連通孔内に設けられた少なくとも1つの制御部材を有している、
    請求項1に記載の流体軸受装置。
  3. 前記制御部材は、球状の部材である、
    請求項2に記載の流体軸受装置。
  4. 前記制御部材は、円柱状の部材である、
    請求項2に記載の流体軸受装置。
  5. 前記制御部材の線膨張係数は、5.0×10-5〔1/K〕以上である、
    請求項2から4のいずれかに記載の流体軸受装置。
  6. 前記制御部材は、弾性率が比較的高い中空の球状部材からなる第1部材と、前記第1部材の内部に封入された液体または気体からなる第2部材とを有している、
    請求項2に記載の流体軸受装置。
  7. 前記第2部材の熱膨張係数は、1.3×10-3〔1/K〕以上である、
    請求項6に記載の流体軸受装置。
  8. 前記第1動圧発生用溝は、軸方向に対して傾斜する第1溝部と、前記第1溝部の端部から軸方向に対して前記第1溝部と反対側に傾斜する第2溝部とから構成され、
    第1溝部の軸方向長さは、第2溝部の軸方向長さよりも長い、
    請求項1から7のいずれかに記載の流体軸受装置。
  9. 前記シャフトに固定もしくは一体に形成され、前記シールプレートと軸方向に対向するスラスト部材と、
    前記軸受空間内に設けられ、前記スラスト部材、シールプレートおよびスリーブの少なくともいずれか1つに形成された複数の第2動圧発生用溝を有するスラスト軸受部とをさらに備え、
    前記軸受空間は、前記スリーブおよびシャフトの間に形成された第1の軸受空間と、前記スラスト部材、シールプレートおよびスリーブの間に形成され前記第1の軸受空間の軸方向一方側と連通する第2の軸受空間とを有し、
    前記循環機構は、前記第2の軸受空間と前記第1の軸受空間の軸方向他方側とを連結する、
    請求項1から8のいずれかに記載の流体軸受装置。
  10. 前記スリーブの軸方向他方側に固定された環状のカバー部材をさらに備え、
    前記循環機構は、前記スリーブおよびカバー部材の間に形成され前記軸受空間と連通する第3の軸受空間をさらに有している、
    請求項1から9のいずれかに記載の流体軸受装置。
  11. 前記第3の軸受空間は、前記第1の軸受空間と連通している、
    請求項10に記載の流体軸受装置。
  12. 前記カバー部材は、前記第3の軸受空間内の空気を排気するための少なくとも1つの排気孔を有している、
    請求項10または11に記載の流体軸受装置。
  13. 静止部材としてのハウジングと、ハウジングに固定されステータコイルが巻回される環状のステータと、ステータの内周側に収容されロータマグネットを有する回転部材としてのロータと、ハウジング対してロータを回転自在に支持するための請求項1から12のいずれかに記載の流体軸受装置と、
    を備えたスピンドルモータ。
JP2005251219A 2005-08-31 2005-08-31 流体軸受装置、それを用いたスピンドルモータ Pending JP2007064360A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251219A JP2007064360A (ja) 2005-08-31 2005-08-31 流体軸受装置、それを用いたスピンドルモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251219A JP2007064360A (ja) 2005-08-31 2005-08-31 流体軸受装置、それを用いたスピンドルモータ

Publications (1)

Publication Number Publication Date
JP2007064360A true JP2007064360A (ja) 2007-03-15

Family

ID=37926777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251219A Pending JP2007064360A (ja) 2005-08-31 2005-08-31 流体軸受装置、それを用いたスピンドルモータ

Country Status (1)

Country Link
JP (1) JP2007064360A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218994B1 (ko) * 2010-10-04 2013-01-04 삼성전기주식회사 유체 동압 베어링 어셈블리 및 이를 포함하는 모터
CN103291739A (zh) * 2012-02-24 2013-09-11 富瑞精密组件(昆山)有限公司 轴承装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218994B1 (ko) * 2010-10-04 2013-01-04 삼성전기주식회사 유체 동압 베어링 어셈블리 및 이를 포함하는 모터
CN103291739A (zh) * 2012-02-24 2013-09-11 富瑞精密组件(昆山)有限公司 轴承装置
CN103291739B (zh) * 2012-02-24 2016-12-14 富瑞精密组件(昆山)有限公司 轴承装置

Similar Documents

Publication Publication Date Title
JP5401637B2 (ja) 流体動圧軸受装置、スピンドルモータ、及びディスク駆動装置
US6307291B1 (en) Hydraulic dynamic bearing and spindle motor and rotary assembly provided
JP2004019705A (ja) スピンドルモータ及びこれを備えたディスク駆動装置
JP4625407B2 (ja) 流体軸受装置及びディスク回転装置
JP5812351B2 (ja) 軸受機構、モータおよびディスク駆動装置
KR102020251B1 (ko) 유체 동압 베어링 장치 및 이것을 구비하는 모터
US8743505B2 (en) Fluid dynamic bearing apparatus with specific minute gap structure with spindle motor and disk drive apparatus including same
US20110019303A1 (en) Fluid dynamic bearing apparatus, spindle motor, and disk drive apparatus
US20060147134A1 (en) Spindle motor having hydronamic pressure bearing
JP2000186717A (ja) 流体動圧軸受、スピンドルモ―タ、及び回転体装置
JP2008157453A (ja) 軸方向の予圧を付与された流体動圧軸受装置
JP2005315357A (ja) 動圧軸受、スピンドルモータ及び記録ディスク装置
JP4788163B2 (ja) 流体動圧軸受及びスピンドルモータ
JP2007024267A (ja) 流体軸受装置およびこれを備えたモータ
JP2007064360A (ja) 流体軸受装置、それを用いたスピンドルモータ
JP4194610B2 (ja) 動圧軸受装置
JP5220359B2 (ja) 動圧軸受装置
JP3955946B2 (ja) 動圧軸受、スピンドルモータ、及び記録ディスク駆動装置
JP2013172569A (ja) 回転機器
JP3984449B2 (ja) 流体動圧軸受及びこれを用いたスピンドルモータ並びにこのスピンドルモータを用いたディスク駆動装置
JP2006038073A (ja) オイル動圧軸受、モータおよびディスク装置
JP3549367B2 (ja) 動圧流体軸受装置及び電動機
JP2004316680A (ja) スピンドルモータ、及びこれを備えた記録ディスク駆動装置
JP3700936B2 (ja) 動圧軸受及びこの動圧軸受を用いたスピンドルモータ並びにこのスピンドルモータを備えた記録ディスク駆動装置
JP2007060731A (ja) スピンドルモータおよび回転装置