JP2007063628A - Apparatus for forming deposition film and method for forming deposition film - Google Patents

Apparatus for forming deposition film and method for forming deposition film Download PDF

Info

Publication number
JP2007063628A
JP2007063628A JP2005251958A JP2005251958A JP2007063628A JP 2007063628 A JP2007063628 A JP 2007063628A JP 2005251958 A JP2005251958 A JP 2005251958A JP 2005251958 A JP2005251958 A JP 2005251958A JP 2007063628 A JP2007063628 A JP 2007063628A
Authority
JP
Japan
Prior art keywords
side wall
deposited film
cylindrical side
frequency power
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005251958A
Other languages
Japanese (ja)
Inventor
Hitoshi Murayama
仁 村山
Shigenori Ueda
重教 植田
Daisuke Tazawa
大介 田澤
Kunimasa Kawamura
邦正 河村
Takahisa Taniguchi
貴久 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005251958A priority Critical patent/JP2007063628A/en
Publication of JP2007063628A publication Critical patent/JP2007063628A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for forming a deposition film which reduces an image defect and simultaneously enhances the uniformity of potential characteristics in an electrophotographic photoconductor, and enhances the stability of them as well. <P>SOLUTION: The apparatus for forming a deposition film has: a reaction vessel 201 which is composed by being sandwiched between a first cylindrical side wall 101 and a second cylindrical side wall 102 surrounding it; a substrate-holding member which is placed in the reaction vessel 201 and holds a substrate 205; a source-gas supply means 210; and a power supply system for supplying a high-frequency power into the reaction vessel. At least one part of the first cylindrical side wall 101 is made from a dielectric substance. On the central axis of the first cylindrical side wall, a first high-frequency electrode 202 is arranged in a state of being separated from the first cylindrical side wall. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、又は光起電力デバイス等における堆積膜形成に用いられる、高周波電力を用いた堆積膜形成装置及び堆積膜形成方法に関する。   The present invention relates to a deposited film forming apparatus and a deposited film forming method using high-frequency power, which are used for forming a deposited film in a semiconductor device, an electrophotographic photosensitive member, an image input line sensor, a photographing device, a photovoltaic device, or the like. .

従来、半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス、その他各種エレクトロニクス素子、光学素子に用いられる堆積膜を形成する方法として、真空蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、光CVD法、プラズマCVD法等、多数知られており、そのための装置も実用に付されている。   Conventionally, as a method of forming a deposited film used for semiconductor devices, electrophotographic photosensitive members, image input line sensors, photographing devices, photovoltaic devices, other various electronic elements, and optical elements, vacuum deposition, sputtering, ion There are many known methods such as a plating method, a thermal CVD method, a photo CVD method, a plasma CVD method, etc., and an apparatus therefor is also put into practical use.

中でもプラズマCVD法、すなわち、直流または高周波あるいはマイクロ波グロー放電により原料ガスを分解し、基板上に薄膜状の堆積膜を形成する方法が、現在実用化されており、そのための装置も各種提案されている(例えば特許文献1参照)。なお、プラズマCVD法は、電子写真用水素化アモルファスシリコン(以下、「a−Si:H」と表記する)堆積膜の形成等に好適である。   In particular, a plasma CVD method, that is, a method of decomposing a source gas by direct current, high frequency, or microwave glow discharge to form a thin deposited film on a substrate has been put into practical use, and various apparatuses for that purpose have been proposed. (See, for example, Patent Document 1). The plasma CVD method is suitable for forming a hydrogenated amorphous silicon (hereinafter referred to as “a-Si: H”) deposited film for electrophotography.

図5は、VHF帯の高周波電力を用いた電子写真用a−Si:H堆積膜形成装置の一例を示した概略図であり、図5(a)は概略断面図、図5(b)は図5(a)の切断線A−A’に沿う概略断面図である。   FIG. 5 is a schematic view showing an example of an a-Si: H deposited film forming apparatus for electrophotography using high-frequency power in the VHF band. FIG. 5 (a) is a schematic sectional view, and FIG. FIG. 6 is a schematic cross-sectional view taken along a cutting line AA ′ in FIG.

反応容器201の下部には排気口209が形成され、排気口209の他端は不図示の排気装置に接続されている。反応容器201の中心部を取り囲むように、堆積膜が形成される6本の円筒状基体205が配置されており、各基体205は互いに平行となっている。また、各円筒状基体205は、回転軸208によって保持され、発熱体207によって加熱されるように設けられている。不図示のモータを駆動することにより、不図示のギアを介して回転軸208が回転し、円筒状基体205が軸を中心として自転するようになっている。   An exhaust port 209 is formed in the lower part of the reaction vessel 201, and the other end of the exhaust port 209 is connected to an exhaust device (not shown). Six cylindrical substrates 205 on which a deposited film is formed are disposed so as to surround the central portion of the reaction vessel 201, and the substrates 205 are parallel to each other. Each cylindrical substrate 205 is provided so as to be held by a rotating shaft 208 and heated by a heating element 207. By driving a motor (not shown), the rotation shaft 208 is rotated via a gear (not shown) so that the cylindrical base body 205 rotates around the shaft.

原料ガスは、原料ガス供給手段210より反応容器201内に供給される。高周波電力は、高周波電源211よりマッチングボックス212を介して第1の高周波電極202より反応容器201内に導入されるようになっている。   The source gas is supplied from the source gas supply means 210 into the reaction vessel 201. The high frequency power is introduced into the reaction vessel 201 from the first high frequency electrode 202 via the matching box 212 from the high frequency power supply 211.

このような装置を用いた堆積膜形成は概略以下のような手順により行なわれる。   Formation of a deposited film using such an apparatus is generally performed by the following procedure.

まず、反応容器201内に円筒状基体205を設置し、不図示の排気装置により排気口209を通して反応容器201内を排気する。続いて、発熱体207により円筒状基体205を所定の温度に加熱・制御する。   First, the cylindrical substrate 205 is installed in the reaction vessel 201, and the inside of the reaction vessel 201 is exhausted through an exhaust port 209 by an exhaust device (not shown). Subsequently, the cylindrical base 205 is heated and controlled to a predetermined temperature by the heating element 207.

円筒状基体205が所定の温度となったところで、原料ガス供給手段210を介して原料ガスを反応容器201内に導入する。原料ガスの流量が設定流量となり、また、反応容器201内の圧力が安定したのを確認した後、高周波電源211の出力を所定値に設定し、続いて、マッチングボックス212内のマッチング回路のインピーダンスを調整する。これによって、高周波電力が第1の高周波電極202を介して効率良く反応容器201内に供給され、反応容器201内にグロー放電が生起し、原料ガスが励起解離して円筒状基体205上に堆積膜が形成される。   When the cylindrical substrate 205 reaches a predetermined temperature, the source gas is introduced into the reaction vessel 201 through the source gas supply means 210. After confirming that the flow rate of the source gas is the set flow rate and that the pressure in the reaction vessel 201 is stable, the output of the high frequency power supply 211 is set to a predetermined value, and then the impedance of the matching circuit in the matching box 212 is set. Adjust. As a result, high-frequency power is efficiently supplied into the reaction vessel 201 via the first high-frequency electrode 202, glow discharge occurs in the reaction vessel 201, and the source gas is excited and dissociated and deposited on the cylindrical substrate 205. A film is formed.

所望の膜厚の形成が行なわれた後、高周波電力の供給を止め、続いて原料ガスの供給を停止して堆積膜の形成を終える。同様の操作を複数回繰り返すことによって、基体205に所望の多層構造の光受容層が形成される。堆積膜形成中、回転軸208を介して円筒状基体205を不図示のモータにより所定の速度で回転させることにより、円筒状基体205の表面全周に渡って均一な堆積膜が形成されるようになっている。   After the formation of the desired film thickness, the supply of the high frequency power is stopped, and then the supply of the source gas is stopped to finish the formation of the deposited film. By repeating the same operation a plurality of times, a light-receiving layer having a desired multilayer structure is formed on the substrate 205. During the formation of the deposited film, the cylindrical substrate 205 is rotated at a predetermined speed by a motor (not shown) via the rotating shaft 208 so that a uniform deposited film is formed over the entire surface of the cylindrical substrate 205. It has become.

図6は、VHF帯の高周波電力を用いた電子写真用水素化アモルファスシリコン堆積膜形成装置の他の一例を示した概略図である。図6(a)は概略断面図、図6(b)は図6(a)の切断線A−A’に沿う概略断面図である。   FIG. 6 is a schematic diagram showing another example of an apparatus for forming a hydrogenated amorphous silicon deposited film for electrophotography using high-frequency power in the VHF band. FIG. 6A is a schematic cross-sectional view, and FIG. 6B is a schematic cross-sectional view taken along a cutting line A-A ′ in FIG.

図6の装置においては、第2の高周波電極213が反応容器201の外部に複数配置され、高周波電力が、誘電体壁203を透過して第2の高周波電極213からも反応容器201内に導入されるようになっている。   In the apparatus of FIG. 6, a plurality of second high-frequency electrodes 213 are arranged outside the reaction vessel 201, and high-frequency power is introduced into the reaction vessel 201 from the second high-frequency electrode 213 through the dielectric wall 203. It has come to be.

なお、第2の高周波電極213への高周波電力の供給は、第2の高周波電源214より第2のマッチングボックス215を介してなされる。また、第2の高周波電極213を取り囲むように高周波シールド204が設けられ、外部への電力の漏洩を防止する構成となっている。   The high-frequency power is supplied to the second high-frequency electrode 213 from the second high-frequency power source 214 via the second matching box 215. In addition, a high frequency shield 204 is provided so as to surround the second high frequency electrode 213, so that leakage of electric power to the outside is prevented.

このような装置を用いた堆積膜形成は、第2の高周波電源214及び第2のマッチングボックス215の制御を、各々高周波電源211及びマッチングボックス212の制御と同時並行的に行いながら実施される。その他の動作は、図5の装置を用いた場合と同様にして行うことができる。   Formation of a deposited film using such an apparatus is performed while controlling the second high-frequency power source 214 and the second matching box 215 in parallel with the control of the high-frequency power source 211 and the matching box 212, respectively. Other operations can be performed in the same manner as in the case of using the apparatus of FIG.

図6のような装置を用いた場合、高周波電力が反応容器201の内部と外部との両方から供給されるので、反応容器201内の電力密度の調整をより適正に行うことが可能となり、その結果、形成される電子写真用感光体の特性向上が可能となる。   When the apparatus as shown in FIG. 6 is used, high-frequency power is supplied from both inside and outside the reaction vessel 201, so that the power density in the reaction vessel 201 can be adjusted more appropriately. As a result, the characteristics of the formed electrophotographic photoreceptor can be improved.

ところで、高周波電力としてVHF帯の周波数の高周波電力を用いる場合、電力むらが比較的生じやすい。したがって、これを改善するために図7に示すような、2つの異なる周波数の高周波電力を用いた電子写真用水素化アモルファスシリコン堆積膜形成装置も開発され、更にはこのような装置を用いた場合の堆積膜形成法もさまざまに改善されている(例えば特許文献2参照)。   By the way, when high-frequency power having a frequency in the VHF band is used as high-frequency power, power unevenness is relatively likely to occur. Therefore, in order to improve this, an apparatus for forming a hydrogenated amorphous silicon deposited film for electrophotography using high-frequency power of two different frequencies as shown in FIG. 7 has also been developed, and further when such an apparatus is used. The deposited film forming method is improved in various ways (see, for example, Patent Document 2).

以下、これについて図7を参照して説明する。図7において、図7(a)は概略断面図、図7(b)は図7(a)の切断線A−A’に沿う概略断面図である。   This will be described below with reference to FIG. 7A is a schematic cross-sectional view, and FIG. 7B is a schematic cross-sectional view taken along a cutting line A-A ′ in FIG. 7A.

図7の装置においては、高周波電源211より出力される高周波電力とは異なる周波数の高周波電力を出力可能な重畳高周波電源217が設けられている。また、同様にして、第2の高周波電源214より出力される高周波電力とは異なる周波数の高周波電力を出力可能な第2の重畳高周波電源216が設けられている。   In the apparatus of FIG. 7, a superimposed high frequency power source 217 capable of outputting high frequency power having a frequency different from the high frequency power output from the high frequency power source 211 is provided. Similarly, a second superimposed high-frequency power source 216 capable of outputting high-frequency power having a frequency different from that of the high-frequency power output from the second high-frequency power source 214 is provided.

高周波電源211及び重畳高周波電源217より出力された各々の高周波電力は、マッチングボックス212内で合成された後、第1の高周波電極202へと供給される。同様に、第2の高周波電源214及び第2の重畳高周波電源216より出力された各々の高周波電力は、マッチングボックス215内で合成された後、第2の高周波電極213へ供給される。   The high frequency powers output from the high frequency power supply 211 and the superimposed high frequency power supply 217 are combined in the matching box 212 and then supplied to the first high frequency electrode 202. Similarly, the high-frequency powers output from the second high-frequency power source 214 and the second superimposed high-frequency power source 216 are combined in the matching box 215 and then supplied to the second high-frequency electrode 213.

マッチングボックス212内には、高周波電源211より入力された高周波電力のマッチング調整を行うためのマッチング回路と、重畳高周波電源217より入力された高周波電力のマッチング調整を行うためのマッチング回路とが設けられており、各々独立に調整可能となっている。同様に、マッチングボックス215内にも、第2の高周波電源214より入力された高周波電力のマッチング調整を行うためのマッチング回路と、第2の重畳高周波電源216より入力された高周波電力のマッチング調整を行うためのマッチング回路とが設けられており、各々独立に調整可能となっている。   In the matching box 212, a matching circuit for performing matching adjustment of the high frequency power input from the high frequency power supply 211 and a matching circuit for performing matching adjustment of the high frequency power input from the superimposed high frequency power supply 217 are provided. Each can be adjusted independently. Similarly, a matching circuit for performing matching adjustment of high-frequency power input from the second high-frequency power source 214 and matching adjustment of high-frequency power input from the second superimposed high-frequency power source 216 are also performed in the matching box 215. And a matching circuit for performing the adjustment, each of which can be adjusted independently.

このような装置を用いて堆積膜を形成するには、高周波電源211から高周波電力を出力するのと同時並行的に重畳高周波電源217からも高周波電力を出力し、かつ、第2の高周波電源214から高周波電力を出力するのと同時並行的に第2の重畳高周波電源216からも高周波電力を出力する。また、マッチング調整は、高周波電源211、重畳高周波電源217、第2の高周波電源214、及び第2の重畳高周波電源216のそれぞれから出力される高周波電力に対して、各々独立して行われる。このような高周波電力の出力及びマッチング調整以外に関しては、図6に示した装置を用いた場合と同様にして堆積膜の形成を行うことができる。
特開平11−092932号公報 特開2003−268557号公報
In order to form a deposited film using such an apparatus, high-frequency power is output from the superimposed high-frequency power source 217 simultaneously with the output of high-frequency power from the high-frequency power source 211, and the second high-frequency power source 214 is output. The high-frequency power is also output from the second superimposed high-frequency power source 216 in parallel with the output of the high-frequency power from. The matching adjustment is performed independently for the high-frequency power output from each of the high-frequency power source 211, the superimposed high-frequency power source 217, the second high-frequency power source 214, and the second superimposed high-frequency power source 216. Except for such high-frequency power output and matching adjustment, a deposited film can be formed in the same manner as in the case of using the apparatus shown in FIG.
Japanese Patent Application Laid-Open No. 11-092932 JP 2003-268557 A

上述したような従来の装置及び処理方法であっても、現在実用上問題のないレベルの電子写真用感光体は製造可能である。しかしながら、更なる高画質化に対して改善の余地を残しているのが現状である。特に、画像欠陥の抑制、電位特性の均一性向上に関しては、近年の更なる高画質化の要求に応えるためには早急に達成することが求められている。   Even with the conventional apparatus and processing method as described above, it is possible to produce electrophotographic photoreceptors at a level where there is no practical problem at present. However, there is still room for improvement for higher image quality. In particular, the suppression of image defects and the improvement of the uniformity of potential characteristics are required to be promptly achieved in order to meet the recent demand for higher image quality.

例えば図7に示した装置を用いて電子写真感光体を形成する場合、電位特性の均一性を更に向上させる手段として、高周波電力を高めることが有効である。しかしながら、高周波電力を高めると反応容器201内に設置された第1の高周波電極202上に堆積した堆積膜の膜剥れが顕著となり、構造欠陥に起因した画像欠陥レベルの低下を伴ってしまう場合がある。逆に、画像欠陥レベルを向上させるために高周波電力を低下させると電位特性の均一性が悪化してしまう場合がある。このため、画像欠陥レベル、電位特性の均一性を同時に向上可能な堆積膜形成装置及び堆積膜形成方法の実現が課題として残されていた。   For example, when an electrophotographic photosensitive member is formed using the apparatus shown in FIG. 7, it is effective to increase the high frequency power as a means for further improving the uniformity of the potential characteristics. However, when the high-frequency power is increased, the film peeling of the deposited film deposited on the first high-frequency electrode 202 installed in the reaction vessel 201 becomes remarkable, which is accompanied by a decrease in the image defect level due to the structural defect. There is. Conversely, when the high frequency power is reduced to improve the image defect level, the uniformity of the potential characteristics may be deteriorated. For this reason, the realization of the deposited film forming apparatus and the deposited film forming method capable of simultaneously improving the uniformity of the image defect level and the potential characteristic remains as a problem.

現状の電子写真用感光体形成においては、画像欠陥レベル及び電位特性の均一性レベルのバランスを考慮して堆積膜形成時の高周波電力値が設定される。しかし、画像欠陥レベル及び電位特性の均一性レベルに対する高周波電力の影響度が高いため、高周波電力のずれ又はばらつきによる画像欠陥レベルの悪化や電位特性の均一性レベルの悪化が生じやすかった。このため、良品率向上の観点から、画像欠陥レベル、電気的特性の均一性レベルの安定性を向上することが課題として残されていた。   In the current electrophotographic photoreceptor formation, the high frequency power value at the time of forming the deposited film is set in consideration of the balance between the image defect level and the uniformity level of the potential characteristics. However, since the influence of the high frequency power on the image defect level and the uniformity level of the potential characteristic is high, the image defect level is deteriorated or the uniformity level of the potential characteristic is easily deteriorated due to the deviation or variation of the high frequency power. For this reason, from the viewpoint of improving the yield rate, it has been left as a problem to improve the stability of the image defect level and the uniformity level of the electrical characteristics.

本発明は上記課題の解決を目的とするものである。すなわち、画像欠陥レベルの向上と、電位特性の均一性向上とを同時に実現可能であり、また、これらの安定性向上が可能な堆積膜形成装置及び堆積膜形成方法を提供することを目的とする。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a deposited film forming apparatus and a deposited film forming method capable of simultaneously improving the image defect level and improving the uniformity of the potential characteristics and capable of improving the stability of these. .

本発明者らは上記目的を達成すべく鋭意検討を行った結果、電位特性の均一性を向上するには高周波電極表面の電力密度が高い方が好ましく、一方、画像欠陥レベルを向上するにはプラズマが接する高周波電力導入部での電力密度が低い方が好ましいとの知見を得た。この知見を基に更に検討を進めた結果、反応容器の構成及び反応容器と高周波電極の配置関係の工夫により画像欠陥レベルの向上と、電位特性の均一化とを同時に向上させることが可能であり、また、これらの安定性向上が可能であることを見いだし、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention preferably have a high power density on the surface of the high-frequency electrode in order to improve the uniformity of the potential characteristics, while to improve the image defect level. It was found that it is preferable that the power density in the high-frequency power introduction portion that is in contact with the plasma is low. As a result of further investigation based on this knowledge, it is possible to improve the image defect level and make the potential characteristics uniform simultaneously by devising the configuration of the reaction vessel and the arrangement relationship between the reaction vessel and the high-frequency electrode. In addition, the inventors have found that the stability can be improved and have completed the present invention.

すなわち、本発明は、第1の円筒状側壁と、前記第1の円筒状側壁を取り囲む第2の円筒状側壁との間に構成された減圧可能な反応容器と、前記反応容器内に配置され、基体を保持する基体保持部材と、前記反応容器内に原料ガスを供給するための原料ガス供給手段と、前記反応容器内に高周波電力を供給するための電力供給系と、を備える堆積膜形成装置において、前記第1の円筒状側壁の少なくとも一部が誘電体により構成されると共に、前記電力供給系として、前記第1の円筒状側壁の中心軸上に第1の高周波電極が前記第1の円筒状側壁と離間して配置されていることを特徴とする。   That is, the present invention includes a reaction vessel that is configured between a first cylindrical side wall and a second cylindrical side wall that surrounds the first cylindrical side wall, and is disposed in the reaction vessel. A deposited film comprising: a substrate holding member for holding the substrate; a source gas supply means for supplying a source gas into the reaction vessel; and a power supply system for supplying high-frequency power into the reaction vessel. In the device, at least a part of the first cylindrical side wall is made of a dielectric, and a first high-frequency electrode is provided on the central axis of the first cylindrical side wall as the power supply system. It is characterized in that it is arranged apart from the cylindrical side wall.

また、本発明は、第1の円筒状側壁と、第1の円筒状側壁を取り囲む第2の円筒状側壁との間に構成された減圧可能な反応容器内に基体を配置し、前記反応容器内に原料ガスを供給し、高周波電力導入手段から前記反応容器内に高周波電力を導入して前記原料ガスを分解して前記基体上に堆積膜を形成する堆積膜形成方法において、前記高周波電力は、前記第1の円筒状側壁により囲まれ、かつ、前記第1の円筒状側壁と離間して配置された第1の高周波電極から、前記第1の円筒状側壁の少なくとも一部を構成する誘電体部材を透過して前記反応容器に導入される特徴とする。   In the present invention, a substrate is disposed in a depressurizable reaction vessel formed between a first cylindrical side wall and a second cylindrical side wall surrounding the first cylindrical side wall, and the reaction vessel In the deposited film forming method of supplying a raw material gas into the reaction vessel and introducing high frequency power into the reaction vessel from a high frequency power introducing means to decompose the raw material gas to form a deposited film on the substrate, the high frequency power is A dielectric comprising at least a part of the first cylindrical side wall from a first high-frequency electrode surrounded by the first cylindrical side wall and spaced apart from the first cylindrical side wall It is characterized by being introduced into the reaction vessel through the body member.

このような本発明によれば、画像欠陥レベル、電位特性の均一性を同時に向上させることが可能であり、また、これらの安定性向上が可能となる。   According to the present invention as described above, it is possible to simultaneously improve the uniformity of the image defect level and the potential characteristic, and to improve the stability thereof.

高周波電力を反応容器内に導入する場合、高周波電極上には用いる高周波電力の波長に応じた電力むらが生じ、本発明者らは検討の結果、電力むらによる堆積膜への影響は高周波電極上における高周波電力密度が小さいほど顕在化しやすいことを見いだした。すなわち、高周波電極上における高周波電力密度が小さいほど形成される堆積膜の均一性が悪化しやすいことを見いだした。この観点から高周波電極としてはその表面積ができるだけ小さいことが好ましく、円筒状又は円柱状の高周波電極を用いる場合にはその直径ができるだけ小さいことが好ましい。   When high-frequency power is introduced into the reaction vessel, power unevenness is generated on the high-frequency electrode according to the wavelength of the high-frequency power used. We found that the smaller the high-frequency power density, the easier it becomes. That is, it has been found that the uniformity of the deposited film formed tends to deteriorate as the high-frequency power density on the high-frequency electrode decreases. From this viewpoint, it is preferable that the surface area of the high-frequency electrode is as small as possible. When a cylindrical or columnar high-frequency electrode is used, the diameter is preferably as small as possible.

一方、本発明者らは更なる検討により、反応容器壁面に付着する堆積膜は高周波電力導入部で膜剥れが生じやすく、更には高周波電力導入部表面での電力密度が高いほど膜剥れが顕著となりやすいことを見いだした。すなわち、高周波電力導入部表面での電力密度が高いほど形成される堆積膜における欠陥が増加しやすく、電子写真用感光体形成の場合は画像欠陥が増加しやすいことを見いだした。そして、従来の原料ガス利用効率向上を目的として高周波電極表面積を小さくし高周波電極表面への膜付着を可能な限り減少させるという考え方ないし設計が膜剥れ抑制や画像欠陥抑制の障壁となっていたことをつきとめた。   On the other hand, the inventors of the present invention have further studied that the deposited film adhering to the reaction vessel wall surface is more likely to be peeled off at the high frequency power introducing portion, and further, the higher the power density at the surface of the high frequency power introducing portion is, the more the film is peeled off. Has been found to be prominent. That is, it has been found that the higher the power density on the surface of the high-frequency power introduction portion, the more likely the defects in the deposited film to be formed, and in the case of forming an electrophotographic photoreceptor, the image defects are likely to increase. The idea or design of reducing the surface area of the high-frequency electrode and reducing the film adhesion to the surface of the high-frequency electrode as much as possible for the purpose of improving the efficiency of utilization of the raw material gas has been a barrier to film peeling suppression and image defect suppression. I found out.

ここまでの知見を基に、電力むらの抑制、膜剥れの抑制を同時に実現する方法を考えると、例えば図5に示した構成の装置の場合、第1の高周波電極202を導電性部材で構成された部分とその外部を覆う誘電体部材とで構成し、導電性部材の直径を小さく、誘電体部材を厚くして直径を大きくすることが考えられる。これは、導電性部材表面での電力密度を高くし、また、反応容器201への電力導入部となる誘電体部材表面での電力密度を低くすることで電力むらの抑制と処理中の堆積膜の膜剥れ抑制の両立を目指すものである。   Based on the knowledge so far, considering a method for simultaneously suppressing power unevenness and film peeling, for example, in the case of the apparatus having the configuration shown in FIG. 5, the first high-frequency electrode 202 is made of a conductive member. It is conceivable that the conductive member is composed of a configured part and a dielectric member covering the outside thereof, the diameter of the conductive member is reduced, and the diameter is increased by increasing the thickness of the dielectric member. This increases the power density on the surface of the conductive member, and also reduces the power density on the surface of the dielectric member serving as the power introduction part to the reaction vessel 201, thereby suppressing power unevenness and the deposited film being processed. It aims at coexistence of film peeling suppression.

しかしながら、このような構成とした場合、実際には高周波電力が誘電体部材を透過する際の電力損失が大きくなり、この電力損失に付随して誘電体部材が昇温してしまう。この結果、誘電体部材が損傷したり、誘電体部材表面に付着した堆積膜が却って膜剥れを生じやすくなってしまう場合があることが解った。   However, with such a configuration, in reality, the power loss when high-frequency power passes through the dielectric member increases, and the dielectric member heats up accompanying this power loss. As a result, it has been found that the dielectric member may be damaged or the deposited film attached to the surface of the dielectric member may be easily peeled off.

また、他の構成として、第1の高周波電極202を導電性部材で構成された部分とその外部を覆う筒状の誘電体部材とで構成し、導電性部材の直径を小さく、筒状の誘電体部材の直径を大きく設定し、更に筒状の誘電体部材の厚さを薄くすることが考えられる。しかしながら、この場合、実際には導電性部材と筒状の誘電体部材の間で放電が生じやすく、この放電での電力の損失により、堆積膜特性に弊害をもたらしてしまう場合があることが解った。また、導電性部材と筒状の誘電体部材との間で生じた放電が不安定で反応容器内全体の放電も不安定化してしまう場合があることが解った。   As another configuration, the first high-frequency electrode 202 is composed of a portion made of a conductive member and a cylindrical dielectric member covering the outside thereof, and the diameter of the conductive member is made small so that the cylindrical dielectric member is formed. It is conceivable to increase the diameter of the body member and further reduce the thickness of the cylindrical dielectric member. However, in this case, it is actually understood that a discharge is likely to occur between the conductive member and the cylindrical dielectric member, and the loss of power in this discharge may adversely affect the deposited film characteristics. It was. Further, it has been found that the discharge generated between the conductive member and the cylindrical dielectric member is unstable and the discharge in the entire reaction vessel may be unstable.

以上のような更なる知見をもとに本発明者らは更に検討を進めた結果、反応容器の一部を、少なくとも一部が誘電体で構成された第1の円筒状側壁と、第1の円筒状側壁を取り囲む第2の円筒状側壁とで構成し、第1の高周波電極を第1の円筒状側壁の中心軸上に、第1の円筒状側壁と離間して配置することで上述したような弊害が抑制されることを見出した。これにより、膜剥れの抑制と電力むらの抑制とが両立し、またこれらの安定性向上が可能となり、本発明の目的である画像欠陥レベルの向上、及び電位特性の均一性の向上の同時実現、及び、これらの安定性向上が可能となることをつきとめた。なお、反応容器の具体的な構成例としては、上記第1の円筒状側壁及び第2の円筒状側壁と、それらの上下端にそれぞれ配置される上壁及び下壁とで構成されるものであってもよい。   As a result of further investigation by the present inventors based on the further knowledge as described above, a part of the reaction vessel is divided into a first cylindrical side wall made of at least a part of a dielectric, And a second cylindrical side wall surrounding the cylindrical side wall, and the first high-frequency electrode is disposed on the central axis of the first cylindrical side wall and spaced apart from the first cylindrical side wall. It was found that such harmful effects are suppressed. As a result, the suppression of film peeling and the suppression of power non-uniformity can be achieved at the same time, and the stability can be improved. Simultaneously, the improvement of the image defect level and the improvement of the uniformity of the potential characteristics, which are the objects of the present invention. It has been found that this can be realized and the stability of these can be improved. In addition, as a specific structural example of the reaction vessel, the reaction vessel is configured by the first cylindrical side wall and the second cylindrical side wall, and an upper wall and a lower wall respectively disposed at upper and lower ends thereof. There may be.

上述したように、本発明によれば、反応容器の一部を、第1の円筒状側壁とそれを取り囲む第2の円筒状側壁とで構成するようにし、第1の高周波電極を第1の円筒状側壁の中心軸上に、第1の円筒状側壁とは離間した状態で配置することで、堆積膜形成中の膜剥れ及び電力むらが抑制され、その結果、構造欠陥レベルの向上、及び電位特性の均一性の向上を同時に実現することができ、また、これらの安定性も向上させることができる。   As described above, according to the present invention, a part of the reaction vessel is constituted by the first cylindrical side wall and the second cylindrical side wall surrounding the first cylindrical side wall, and the first high-frequency electrode is the first high-frequency electrode. By disposing on the central axis of the cylindrical side wall in a state of being separated from the first cylindrical side wall, film peeling and power unevenness during formation of the deposited film are suppressed, and as a result, the level of structural defect is improved. In addition, the uniformity of the potential characteristics can be improved at the same time, and the stability thereof can also be improved.

本発明について、以下、図を用いて詳述する。   The present invention will be described in detail below with reference to the drawings.

図1は、本発明に用いることができる堆積膜形成装置の概略構成図の一例である。   FIG. 1 is an example of a schematic configuration diagram of a deposited film forming apparatus that can be used in the present invention.

図1において、101は第1の円筒状側壁、102は第2の円筒状側壁であり、第1の円筒状側壁101、第2の円筒状側壁102、及び上壁、下壁で囲まれた反応容器201内は減圧可能となっている。第1の円筒状側壁101の少なくとも一部は誘電体により構成され、第1の円筒状側壁101の中心軸上には、第1の円筒状側壁101と離間して第1の高周波電極202が配置されている。高周波電力は、第1の高周波電極202から、第1の円筒状側壁101の誘電体部を通じて反応容器201内に導入される。   In FIG. 1, 101 is a first cylindrical side wall, 102 is a second cylindrical side wall, and is surrounded by the first cylindrical side wall 101, the second cylindrical side wall 102, and the upper and lower walls. The inside of the reaction vessel 201 can be depressurized. At least a part of the first cylindrical side wall 101 is made of a dielectric, and a first high-frequency electrode 202 is separated from the first cylindrical side wall 101 on the central axis of the first cylindrical side wall 101. Has been placed. High frequency power is introduced from the first high frequency electrode 202 into the reaction vessel 201 through the dielectric portion of the first cylindrical side wall 101.

なお、第1の円筒状側壁101により囲まれた空間、すなわち第1の高周波電極202が設置される空間は大気状態となっている。このように、第1の高周波電極202と第1の円筒状側壁101との間が大気状態とされているので、これらの間での放電の生起が抑制され、第1の高周波電極202と第1の円筒状側壁101の間での放電生起に起因する堆積膜特性への弊害が抑制される。また、第1の円筒状側壁101の上部及び下部には不図示の電磁シールドが設けられ、第1の高周波電極202から放射される高周波電力が反応容器外部へ漏洩しないようになっている。   Note that the space surrounded by the first cylindrical side wall 101, that is, the space where the first high-frequency electrode 202 is installed is in an atmospheric state. Thus, since the space between the first high-frequency electrode 202 and the first cylindrical side wall 101 is in the atmospheric state, the occurrence of discharge between them is suppressed, and the first high-frequency electrode 202 and the first cylindrical side wall 101 are The adverse effect on the deposited film characteristics caused by the occurrence of discharge between the one cylindrical side wall 101 is suppressed. In addition, electromagnetic shields (not shown) are provided above and below the first cylindrical side wall 101 so that high frequency power radiated from the first high frequency electrode 202 does not leak outside the reaction vessel.

上記以外の構成に関しては図5に示した従来の装置構成と同様であり、また、図1に示した装置を用いた堆積膜形成も図5に示した従来の装置を用いた場合と同様にして行うことができる。   The configuration other than the above is the same as that of the conventional apparatus shown in FIG. 5, and the deposited film formation using the apparatus shown in FIG. 1 is performed in the same manner as in the case of using the conventional apparatus shown in FIG. Can be done.

本発明では、まず、第1の高周波電極202の表面積と、第1の円筒状側壁101の外径とを適宜設定することで、第1の高周波電極202表面での電力密度を高くし、また、反応容器201への電力導入部となる第1の円筒状側壁101の外周面での電力密度を低くすることが可能となる。また、第1の円筒状側壁101の少なくとも一部を構成する誘電体の厚さを適切に設定することで、誘電体部での電力損失を抑制することが可能となり、そこでの昇温を抑制し、処理中の膜剥れ抑制が可能となる。   In the present invention, first, by appropriately setting the surface area of the first high-frequency electrode 202 and the outer diameter of the first cylindrical side wall 101, the power density on the surface of the first high-frequency electrode 202 is increased, In addition, it is possible to reduce the power density on the outer peripheral surface of the first cylindrical side wall 101 serving as a power introduction part to the reaction vessel 201. In addition, by appropriately setting the thickness of the dielectric that forms at least a part of the first cylindrical side wall 101, it is possible to suppress power loss in the dielectric portion, thereby suppressing the temperature rise there. In addition, film peeling during processing can be suppressed.

第1の高周波電極202を構成する材料としては導電性材料であれば特に制限はなく、アルミニウム、ニッケル、チタン、銀、金、SUS等を用いることができる。また、第1の高周波電極202は、全体がこのような導電性材料で構成されている必要はなく、例えば樹脂、セラミック等の非導電性材料を母体としてその表面に導電性材料を設ける構成としても良い。また、導電性材料の表面を樹脂、セラミック等の非導電性材料で覆う構成としても良い。導電性材料の表面を非導電性材料で覆う場合、非導電性材料での高周波電力の損失を抑制するために誘電損失の小さな材料を用いることが好ましい。   The material forming the first high-frequency electrode 202 is not particularly limited as long as it is a conductive material, and aluminum, nickel, titanium, silver, gold, SUS, or the like can be used. The first high-frequency electrode 202 does not need to be entirely made of such a conductive material. For example, the first high-frequency electrode 202 has a structure in which a conductive material is provided on the surface of a non-conductive material such as a resin or ceramic. Also good. Alternatively, the surface of the conductive material may be covered with a nonconductive material such as resin or ceramic. When the surface of the conductive material is covered with a non-conductive material, it is preferable to use a material with a small dielectric loss in order to suppress the loss of high-frequency power in the non-conductive material.

本発明では、第1の円筒状側壁101は、その少なくとも一部が誘電体材料で構成されていることが必要である。第1の円筒状側壁101は反応容器201の一部を構成するため、大気を遮断可能な減圧容器壁となりうるものであることが必要である。また、第1の円筒状側壁101は反応容器内への高周波電力導入部を兼ねるため、誘電損失が小さくそこでの高周波電力の損失が少ない材料であることが好ましい。具体的には、アルミナ、酸化ケイ素、窒化ホウ素、窒化ケイ素、又は窒化炭素等のセラミックス材料が好ましく用いられる。   In the present invention, it is necessary that at least a part of the first cylindrical side wall 101 is made of a dielectric material. Since the first cylindrical side wall 101 constitutes a part of the reaction vessel 201, the first cylindrical side wall 101 needs to be a decompression vessel wall capable of blocking the atmosphere. In addition, since the first cylindrical side wall 101 also serves as a high-frequency power introduction part into the reaction vessel, it is preferable that the first cylindrical side wall 101 be made of a material having a small dielectric loss and a small loss of high-frequency power there. Specifically, ceramic materials such as alumina, silicon oxide, boron nitride, silicon nitride, or carbon nitride are preferably used.

高周波電力の周波数が50MHz以上250MHz以下のVHF帯の高周波電力を用いる場合、特に顕著な効果を得ることができる。VHF帯の高周波電力においては、プラズマに接する部分での波長が10cm程度から数m程度となる場合が多く、装置寸法、基板寸法と同程度となる場合が多いため、高周波電力が被処理特性の均一性に及ぼす影響が顕在化しやすい。しかし、本実施形態においては、膜剥れが顕著となるのを抑制しながらも高周波電力密度の均一性を向上するのでVHF帯の高周波電力においても被処理特性の均一性を良好に保つことができる。このため、VHF帯の高周波電力を用いた場合の特徴である、高処理速度、高処理特性と構造欠陥の抑制、処理特性の均一性を同時に得ることが可能となり、被処理体の特性向上、及び処理コストの低減が可能となる。   When using high frequency power in the VHF band with a frequency of the high frequency power of 50 MHz or more and 250 MHz or less, a particularly remarkable effect can be obtained. In the high frequency power in the VHF band, the wavelength at the part in contact with the plasma is often about 10 cm to several meters, and is often the same as the device size and the substrate size. The effect on uniformity is likely to manifest. However, in this embodiment, the uniformity of the high frequency power density is improved while suppressing the exfoliation of the film, so that the uniformity of the processed property can be kept good even in the high frequency power in the VHF band. it can. For this reason, it becomes possible to simultaneously obtain high processing speed, high processing characteristics and suppression of structural defects, and uniformity of processing characteristics, which are characteristics when using high frequency power in the VHF band, In addition, the processing cost can be reduced.

次に、第1の円筒状側壁101と第2の円筒状側壁102とは、各々の中心軸が同一となるように配置されていることが好ましい。反応容器201内での高周波電力の均一性が向上し、ひいては堆積膜特性の均一性が向上するためである。   Next, it is preferable that the first cylindrical side wall 101 and the second cylindrical side wall 102 are arranged so that their central axes are the same. This is because the uniformity of the high frequency power in the reaction vessel 201 is improved, and as a result, the uniformity of the deposited film characteristics is improved.

更に、第1の円筒状側壁101及び前記第2の円筒状側壁102の中心軸上に中心を持つ円周上に、基体205(言い換えればそれを保持する基体保持部材)を複数配置することが、処理特性の均一性を維持しながらも処理能力を向上させることができる点でより好ましい。   Furthermore, a plurality of base bodies 205 (in other words, base body holding members for holding them) may be arranged on a circumference having centers on the central axes of the first cylindrical side wall 101 and the second cylindrical side wall 102. It is more preferable in that the processing capability can be improved while maintaining the uniformity of the processing characteristics.

本発明は上記構成の他にも、第2の円筒状側壁の少なくとも一部を誘電体で構成し、かつ、第2の円筒状側壁の外部に配置した第2の高周波電極からも反応容器内に高周波電力を導入する構成としてもよい。これにより、被処理特性の均一性をより向上させることが可能となる。   In the present invention, in addition to the above-described configuration, at least a part of the second cylindrical side wall is made of a dielectric, and the second high-frequency electrode disposed outside the second cylindrical side wall can also be used in the reaction vessel. It is good also as a structure which introduces high frequency electric power into. This makes it possible to further improve the uniformity of the characteristics to be processed.

以下、これについて図2を参照して説明する。図2は本発明に係る装置の一例を示した概略図であって、図2(a)は概略断面図、図2(b)は図2(a)の切断線A−A’に沿う概略断面図である。   This will be described below with reference to FIG. 2A and 2B are schematic views showing an example of an apparatus according to the present invention. FIG. 2A is a schematic cross-sectional view, and FIG. 2B is a schematic view taken along a cutting line AA ′ in FIG. It is sectional drawing.

図2の装置においては、第2の高周波電極213が反応容器201の外部に複数配置され、高周波電力は、反応容器201の一部を形成する誘電体壁である第2の円筒状側壁203を透過して第2の高周波電極213からも反応容器201内に導入可能な構成となっている。   In the apparatus of FIG. 2, a plurality of second high-frequency electrodes 213 are arranged outside the reaction vessel 201, and the high-frequency power passes through the second cylindrical side wall 203 that is a dielectric wall that forms a part of the reaction vessel 201. It is configured to be able to penetrate and be introduced into the reaction vessel 201 also from the second high-frequency electrode 213.

なお、第2の高周波電極213への高周波電力の供給は、第2の高周波電源214及び第2の重畳高周波電源216より第2のマッチングボックス215を介してなされる。また、第2の高周波電極213を取り囲むように高周波シールド204が設けられ、外部への電力の漏洩を防止する構成となっている。   The high-frequency power is supplied to the second high-frequency electrode 213 from the second high-frequency power source 214 and the second superimposed high-frequency power source 216 via the second matching box 215. In addition, a high frequency shield 204 is provided so as to surround the second high frequency electrode 213, so that leakage of electric power to the outside is prevented.

このような、第2の円筒状側壁203の少なくとも一部を誘電体で構成し、第2の円筒状側壁203の外部に配置した第2の高周波電極213からも反応容器201中に高周波電力を導入する構成とした場合、第1の円筒状側壁101における誘電材料と第2の円筒状側壁203における誘電材料とを、必要に応じて異なる材料とすることで本発明の効果をより顕著に得ることができる場合がある。これは、誘電材料を変えることで、それに伴って誘電率が変わり、反応容器201の内部側から導入される高周波電力の導入効率と、反応容器201の外部側から導入される高周波電力の導入効率とが調整されるためではないかと推察される。   Such a second cylindrical side wall 203 is made of at least a part of a dielectric, and high-frequency power is also fed into the reaction vessel 201 from the second high-frequency electrode 213 disposed outside the second cylindrical side wall 203. In the case of the configuration to be introduced, the dielectric material in the first cylindrical side wall 101 and the dielectric material in the second cylindrical side wall 203 are made different materials as necessary, thereby obtaining the effect of the present invention more remarkably. There are cases where it is possible. This is because by changing the dielectric material, the dielectric constant changes accordingly, the introduction efficiency of the high frequency power introduced from the inside of the reaction vessel 201, and the introduction efficiency of the high frequency power introduced from the outside of the reaction vessel 201 It is inferred that this is because of the adjustment.

なお、本発明における高周波電極の形状としては特に制限はないものの、対称性の観点、不要な電極表面積を削減するといった観点から円筒状または円柱状であることがより好ましい。   In addition, although there is no restriction | limiting in particular as a shape of the high frequency electrode in this invention, It is more preferable that it is a cylindrical shape or a column shape from a viewpoint of a viewpoint of symmetry and a reduction of an unnecessary electrode surface area.

更に、第1の高周波電極の外径を第1の円筒状側壁の外径の1/3以下とすることが本発明の効果をより顕著に得る上で好ましい。このような寸法比率とすることで、高周波電極表面での電力密度と、反応容器への高周波電力導入部となる誘電体部材表面での電力密度とのバランスが好ましい条件になるものと推察される。   Furthermore, it is preferable that the outer diameter of the first high-frequency electrode is 1/3 or less of the outer diameter of the first cylindrical side wall in order to obtain the effects of the present invention more remarkably. By setting such a dimensional ratio, it is presumed that a preferable condition is a balance between the power density on the surface of the high-frequency electrode and the power density on the surface of the dielectric member serving as the high-frequency power introduction part to the reaction vessel. .

また、第1の円筒状側壁の外径は円筒状基体の外径の1/2以上であることが好ましい。堆積膜形成条件は、膜の密着性の観点から、基体上での膜剥れ抑制に最も効果的な条件を用いるのが一般的である。第1の円筒状側壁の外径が円筒状基体の外径の1/2よりも小さい場合、円筒状基体の曲率に対して第1の円筒状側壁の曲率が大きすぎて膜剥れに対して不利な条件となってしまう場合がある。したがって、第1の円筒状側壁の外径を円筒状基体の外径の1/2以上とすることで、このような曲率の違いによる膜剥れの発生が抑制されて良好な堆積膜形成が可能となる。   The outer diameter of the first cylindrical side wall is preferably 1/2 or more than the outer diameter of the cylindrical substrate. As the deposited film forming conditions, the most effective conditions for suppressing film peeling on the substrate are generally used from the viewpoint of film adhesion. When the outer diameter of the first cylindrical side wall is smaller than 1/2 of the outer diameter of the cylindrical substrate, the curvature of the first cylindrical side wall is too large with respect to the film peeling due to the curvature of the first cylindrical side wall. May be disadvantageous. Therefore, by setting the outer diameter of the first cylindrical side wall to be 1/2 or more of the outer diameter of the cylindrical base body, the occurrence of film peeling due to such a difference in curvature is suppressed, and a good deposited film can be formed. It becomes possible.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited at all by these.

〔実施例1〕
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー(基体)205上に、高周波電源211の発振周波数を100MHz、重畳高周波電源217の発振周波数を55MHzとして、表1に示す条件で堆積膜を形成した。堆積膜は、電荷注入阻止層、光導電層、及び表面層からなるアモルファスシリコン感光体(a−Si感光体)であり、概略以下の手順で作製した。
[Example 1]
Using the deposited film forming apparatus shown in FIG. 1, on a cylindrical aluminum cylinder (base) 205 having a diameter of 80 mm and a length of 358 mm, the oscillation frequency of the high frequency power supply 211 is 100 MHz and the oscillation frequency of the superimposed high frequency power supply 217 is 55 MHz. A deposited film was formed under the conditions shown in 1. The deposited film was an amorphous silicon photoconductor (a-Si photoconductor) composed of a charge injection blocking layer, a photoconductive layer, and a surface layer, and was prepared by the following procedure.

なお、第1の高周波電極202は直径30mm、長さ50cmのSUS304製円柱とした。また、第1の円筒状側壁101は外径90mm、厚さ5mmのアルミナ製円筒であり、プラズマに接する外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。高周波電力に関し、高周波電源211からの電力と重畳高周波電源217からの電力とは同じ値とし、それらの合計が表1に示す値となるようにした。   The first high-frequency electrode 202 was a SUS304 cylinder having a diameter of 30 mm and a length of 50 cm. The first cylindrical side wall 101 is an alumina cylinder having an outer diameter of 90 mm and a thickness of 5 mm, and the outer peripheral surface in contact with the plasma is blasted so that Rzjis (JIS B0601: '01) is Rzjis = 20 μm. Regarding the high-frequency power, the power from the high-frequency power source 211 and the power from the superimposed high-frequency power source 217 were set to the same value, and the sum of them was the value shown in Table 1.

まず、反応容器201内に円筒状アルミニウムシリンダー205を設置し、不図示の排気装置により排気口209を通して反応容器201内を排気した。続いて、回転軸208を介して円筒状アルミニウムシリンダー205を不図示のモータにより3rpmの速度で回転させた。また、原料ガス供給手段210より反応容器201中にArを500ml/min(normal)で供給しながら、発熱体207により円筒状アルミニウムシリンダー205を250℃に加熱・制御し、その状態を2時間維持した。   First, a cylindrical aluminum cylinder 205 was installed in the reaction vessel 201, and the inside of the reaction vessel 201 was exhausted through an exhaust port 209 by an exhaust device (not shown). Subsequently, the cylindrical aluminum cylinder 205 was rotated at a speed of 3 rpm by a motor (not shown) via the rotating shaft 208. Also, while supplying Ar into the reaction vessel 201 from the source gas supply means 210 at 500 ml / min (normal), the heating element 207 heats and controls the cylindrical aluminum cylinder 205 to 250 ° C., and maintains this state for 2 hours. did.

次いで、Arの供給を停止し、反応容器201内を不図示の排気装置により排気口209を通して排気した後、原料ガス供給手段210を介して、表1に示した電荷注入阻止層形成に用いる原料ガスを導入した。原料ガスの流量が設定流量となったことを確認した後、排気口209と不図示の排気装置の間に設けられた不図示の圧力調整バルブのコンダクタンスを調整して反応容器201内の圧力を所定の圧力に設定した。圧力が安定したのを確認した後、高周波電源211及び重畳高周波電源217の出力の合計が表1に示した値となるよう設定し、マッチングボックス212を介して第1の高周波電極202へ高周波電力を供給した。   Next, the supply of Ar is stopped, the inside of the reaction vessel 201 is exhausted through an exhaust port 209 by an exhaust device (not shown), and then the raw material used for forming the charge injection blocking layer shown in Table 1 through the raw material gas supply means 210 Gas was introduced. After confirming that the flow rate of the source gas has reached the set flow rate, the conductance of a pressure adjustment valve (not shown) provided between the exhaust port 209 and an exhaust device (not shown) is adjusted to adjust the pressure in the reaction vessel 201. The predetermined pressure was set. After confirming that the pressure has stabilized, the sum of the outputs of the high frequency power supply 211 and the superimposed high frequency power supply 217 is set to the value shown in Table 1, and the high frequency power is supplied to the first high frequency electrode 202 via the matching box 212. Supplied.

第1の高周波電極202より放射された高周波電力は第1の円筒状側壁101を透過して反応容器201内に導入され、原料ガスを励起解離することにより、円筒状アルミニウムシリンダー205上に電荷注入阻止層を形成した。所定の膜厚の形成が行なわれた後、高周波電力の供給を止め、続いて原料ガスの供給を停止して電荷注入阻止層の形成を終えた。その後、同様の操作を複数回繰り返すことによって、光導電層と表面層とを順次形成した。   The high frequency power radiated from the first high frequency electrode 202 passes through the first cylindrical side wall 101 and is introduced into the reaction vessel 201, and charge is injected onto the cylindrical aluminum cylinder 205 by exciting and dissociating the source gas. A blocking layer was formed. After the formation of the predetermined film thickness, the supply of the high frequency power was stopped, and then the supply of the source gas was stopped to finish the formation of the charge injection blocking layer. Thereafter, a photoconductive layer and a surface layer were sequentially formed by repeating the same operation a plurality of times.

〔比較例1〕
図3に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー205上に、高周波電源211の発振周波数を100MHz、重畳高周波電源217の発振周波数を55MHzとして、表1に示す条件で堆積膜を形成した。堆積膜は、実施例1と同様、電荷注入阻止層、光導電層、及び表面層からなるa−Si感光体であり、形成手順も実施例1と同様である。
[Comparative Example 1]
Using the deposited film forming apparatus shown in FIG. 3, on a cylindrical aluminum cylinder 205 having a diameter of 80 mm and a length of 358 mm, the oscillation frequency of the high-frequency power source 211 is 100 MHz, and the oscillation frequency of the superimposed high-frequency power source 217 is 55 MHz. A deposited film was formed under the conditions. The deposited film is an a-Si photoreceptor including a charge injection blocking layer, a photoconductive layer, and a surface layer, as in the first embodiment, and the formation procedure is the same as in the first embodiment.

図3に示す堆積膜形成装置は図5に示す従来の堆積膜形成装置に重畳高周波電源217を追加した構成のものである。実施例1同様、高周波電力は高周波電源211からの電力と重畳高周波電源217からの電力は同じ値とし、それらの合計が表1に示す値となるようにした。   The deposited film forming apparatus shown in FIG. 3 has a configuration in which a superimposed high frequency power source 217 is added to the conventional deposited film forming apparatus shown in FIG. As in Example 1, the high-frequency power is the same as the power from the high-frequency power source 211 and the power from the superimposed high-frequency power source 217, and the sum of them is the value shown in Table 1.

第1の高周波電極202は、直径30mm、長さ50cmのSUS304製円柱の外部を、内径33mm、外径37mmのアルミナ製円筒により覆う構成とした。アルミナ製円筒の外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。   The first high-frequency electrode 202 was configured to cover the outside of a SUS304 cylinder having a diameter of 30 mm and a length of 50 cm with an alumina cylinder having an inner diameter of 33 mm and an outer diameter of 37 mm. Rzjis (JIS B0601: '01) was set to Rzjis = 20 μm by blasting the outer peripheral surface of the alumina cylinder.

このようにして実施例1、比較例1で作製されたa−Si感光体を本テスト用に改造されたキヤノン製の複写機iR6010に設置し、a−Si感光体の特性評価を行なった。評価項目は、「画像濃度むら」、「光メモリー」、「特性ばらつき」、及び「画像欠陥」の4項目とし、以下の具体的評価法により各項目の評価を行なった。   Thus, the a-Si photosensitive member produced in Example 1 and Comparative Example 1 was placed in a Canon copying machine iR6010 modified for this test, and the characteristics of the a-Si photosensitive member were evaluated. The evaluation items were “image density unevenness”, “optical memory”, “characteristic variation”, and “image defect”, and each item was evaluated by the following specific evaluation method.

「画像濃度むら」…まず、現像器位置での暗部電位が所定の値となるよう主帯電器電流を調整した後、原稿に反射濃度0.1以下の白紙を用い、現像器位置での明部電位が所定の値となるよう像露光光量を調整した。 次いで反射濃度0.3のA3サイズの中間調原稿を原稿台に置き、コピーしたときに得られたコピー画像上全領域における反射濃度の最高値と最低値の差により評価した。評価結果は同時に形成された全感光体の平均値とした。したがって、数値が小さいほど良好である。なお、画像濃度の測定は、画像濃度計:Macbeth RD914を用いた。   “Image density unevenness”: First, the main charger current is adjusted so that the dark portion potential at the developer position becomes a predetermined value, and then a white paper having a reflection density of 0.1 or less is used for the original, and the light at the developer position is determined. The image exposure light amount was adjusted so that the partial potential was a predetermined value. Next, an A3 size halftone original having a reflection density of 0.3 was placed on the original platen, and evaluation was made based on the difference between the highest value and the lowest value of the reflection density in the entire area on the copy image obtained when copying. The evaluation result was the average value of all the photoreceptors formed at the same time. Therefore, the smaller the value, the better. The image density was measured using an image densitometer: Macbeth RD914.

「光メモリー」…現像器位置における暗部電位が所定の値となるよう、主帯電器の電流値を調整した後、反射濃度0.1以下の白紙を原稿とした際の明部電位が所定の値となるよう像露光光量を調整する。この状態で反射濃度0.3のA3サイズの中間調原稿に反射濃度1.5、直径10mmの黒丸を図4のように貼り付けた本テスト用のチャートを黒丸が貼り付けられた方向を原稿先端側として原稿台に置いてコピーする。得られたコピー画像において、中間調コピー上に認められる黒丸のメモリー像の反射濃度と黒丸のメモリー像に隣接した中間調部分の反射濃度との差を測定した。なお、図4において、501は反射濃度0.3のA3サイズの中間調原稿、502は反射濃度1.5、直径10mmの黒丸である。黒丸502は20mm間隔で列状に2列並べられており、列と列は20mm間隔とした。このような測定を感光体母線方向全領域にわたって行い、その中の最大反射濃度差を光メモリーの値とした。評価結果は同時に形成された全感光体の平均値とした。したがって、数値が小さいほど光メモリーが良好であることを示す。なお、画像濃度の測定は、画像濃度計:Macbeth RD914を用いた。   “Optical memory”: After adjusting the current value of the main charger so that the dark portion potential at the developing device position becomes a predetermined value, the bright portion potential when a blank paper having a reflection density of 0.1 or less is used as a predetermined value. The image exposure light amount is adjusted so as to be a value. In this state, the test chart in which a black circle having a reflection density of 1.5 and a diameter of 10 mm is attached to an A3 size halftone original having a reflection density of 0.3 as shown in FIG. Place it on the platen as the leading edge and copy. In the obtained copy image, the difference between the reflection density of the black circle memory image observed on the halftone copy and the reflection density of the halftone portion adjacent to the black circle memory image was measured. In FIG. 4, 501 is an A3 size halftone original having a reflection density of 0.3, and 502 is a black circle having a reflection density of 1.5 and a diameter of 10 mm. The black circles 502 are arranged in two rows at intervals of 20 mm, and the rows are arranged at intervals of 20 mm. Such a measurement was performed over the entire region in the direction of the photoreceptor bus, and the maximum reflection density difference among them was used as the value of the optical memory. The evaluation result was the average value of all the photoreceptors formed at the same time. Therefore, the smaller the value, the better the optical memory. The image density was measured using an image densitometer: Macbeth RD914.

「特性ばらつき」…「光メモリー」評価の過程で得られた全感光体の光メモリーの値から最大値・最小値を求め、次いで、((最大値)/(最小値)−1)の値を求めて「特性ばらつき」の値とした。従って、数値が小さいほど特性ばらつきが小さく良好であることを示す。   “Characteristic variation”: The maximum value / minimum value is obtained from the optical memory values of all the photoconductors obtained in the process of evaluating “optical memory”, and then the value of ((maximum value) / (minimum value) −1) Was determined as the value of “characteristic variation”. Therefore, the smaller the numerical value, the smaller the characteristic variation and the better.

「画像欠陥」…反射濃度1.5のA3サイズのベタ黒原稿を原稿台に置き、コピーしたときに得られたコピー画像の同一面積内にある直径0.1mm以上の白点を数え、その数により評価した。したがって、数値が小さいほど良好である。なお、画像濃度の測定は、画像濃度計:Macbeth RD914を用いた。   “Image defect”: A3 size solid black document with a reflection density of 1.5 is placed on the document table, and white spots with a diameter of 0.1 mm or more within the same area of the copy image obtained by copying are counted. Evaluated by number. Therefore, the smaller the value, the better. The image density was measured using an image densitometer: Macbeth RD914.

評価結果を表2に示す。表2において、評価結果は、比較例1の評価結果を基準とし、「画像濃度むら」に関しては、最大反射濃度差が1/4未満まで良化したものを◎、1/4以上1/2未満まで良化したものを◎〜〇、1/2以上3/4未満まで良化したものを〇、3/4以上7/8未満の良化を〇〜△、7/8以上9/8未満を△、9/8以上を×で示した。   The evaluation results are shown in Table 2. In Table 2, the evaluation result is based on the evaluation result of Comparative Example 1, and regarding “image density unevenness”, the maximum reflection density difference is improved to less than 1/4, ◎, 1/4 or more and 1/2 Better to less than less than ◎ to 〇, better to less than 1/2 to less than 3/4 ◯, better to 3/4 to less than 7/8 ○ to △, 7/8 to 9/8 Less than Δ was indicated by Δ, and 9/8 or more was indicated by ×.

「光メモリー」に関しては、最大反射濃度差が1/4未満まで良化したものを◎、1/4以上1/2未満まで良化したものを◎〜〇、1/2以上3/4未満まで良化したものを〇、3/4以上7/8未満の良化を〇〜△、7/8以上9/8未満を△、9/8以上を×で示した。   As for “optical memory”, those whose maximum reflection density difference is improved to less than ¼ are ◎, those which are improved to 1/4 or more and less than 1/2 are ◎ to ○, 1/2 or more and less than 3/4. The improvement was ◯, 3/4 or more and less than 7/8, ◯ to Δ, 7/8 or more and less than 9/8 was shown as Δ, and 9/8 or more was shown as ×.

「特性ばらつき」については1/4未満まで良化したものを◎、1/4以上1/2未満まで良化したものを◎〜〇、1/2以上3/4未満まで良化したものを〇、3/4以上7/8未満まで良化したものを〇〜△、7/8以上9/8未満のものを△、9/8以上のものを×で示した。   “Characteristic variation” is improved to less than 1/4, ◎, improved from 1/4 to less than 1/2, ◎ to ○, improved from 1/2 to less than 3/4. ◯ 3 to more than 7/8 improved, △ to Δ, 7/8 to less than 9/8, Δ, 9/8 or more ×.

「画像欠陥」に関しては、直径0.1mm以上の白点の数が1/4未満まで良化したものを◎、1/4以上1/2未満まで良化したものを◎〜〇、1/2以上3/4未満まで良化したものを〇、3/4以上7/8未満の良化を〇〜△、7/8以上9/8未満を△、9/8以上を×で示した。   Regarding “image defects”, those in which the number of white spots having a diameter of 0.1 mm or more was improved to less than ¼, and those in which the number of white spots was improved to from ¼ to less than 1/2 were ◎ to 〇, 1 / Improved from 2 to less than 3/4, ◯, improved from 3/4 to less than 7/8, ◯ to Δ, 7/8 to less than 9/8, and 9/8 or more to ×. .

表2より、実施例1で作製されたa−Si感光体は特に「特性ばらつき」及び「画像欠陥」に優れた良好なものであることが確認され、本発明の効果が確認された。   From Table 2, it was confirmed that the a-Si photoreceptor produced in Example 1 was particularly excellent in “characteristic variation” and “image defect”, and the effects of the present invention were confirmed.

Figure 2007063628
Figure 2007063628

Figure 2007063628
Figure 2007063628

〔実施例2〕
図1に示す堆積膜形成装置を改造し、直径30mm、長さ358mmの円筒状アルミニウムシリンダー205を同一円周上に12本設置する構成とし、高周波電源211の発振周波数を90MHz、重畳高周波電源217の発振周波数を60MHzとした。そして、表3に示す条件で電荷注入阻止層、第一光導電層、第二光導電層及び表面層からなるa−Si感光体を実施例1と同様の手順により作製した。
[Example 2]
The deposited film forming apparatus shown in FIG. 1 is modified so that 12 cylindrical aluminum cylinders 205 having a diameter of 30 mm and a length of 358 mm are installed on the same circumference, the oscillation frequency of the high-frequency power source 211 is 90 MHz, and the superimposed high-frequency power source 217. The oscillation frequency was set to 60 MHz. Then, an a-Si photoreceptor comprising a charge injection blocking layer, a first photoconductive layer, a second photoconductive layer, and a surface layer under the conditions shown in Table 3 was prepared in the same procedure as in Example 1.

なお、高周波電力は高周波電源211からの電力と重畳高周波電源217からの電力は同じ値とし、それらの合計が表3に示す値となるようにした。第1の高周波電極202は直径30mm、長さ50cmのSUS304製円柱とした。また、第1の円筒状側壁101は外径90mm、厚さ5mmのアルミナ製円筒であり、プラズマに接する外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。   Note that the high-frequency power is the same as the power from the high-frequency power supply 211 and the power from the superimposed high-frequency power supply 217, and the sum of them is the value shown in Table 3. The first high-frequency electrode 202 was a SUS304 cylinder having a diameter of 30 mm and a length of 50 cm. The first cylindrical side wall 101 is an alumina cylinder having an outer diameter of 90 mm and a thickness of 5 mm, and the outer peripheral surface in contact with the plasma is blasted so that Rzjis (JIS B0601: '01) is Rzjis = 20 μm.

〔比較例2〕
図5に示す堆積膜形成装置を改造し、直径30mm、長さ358mmの円筒状アルミニウムシリンダー205を同一円周上に12本設置する構成とし、高周波電源211の発振周波数を90MHz、重畳高周波電源217の発振周波数を60MHzとした。そして、表3に示す条件で電荷注入阻止層、第一光導電層、第二光導電層及び表面層からなるa−Si感光体を実施例1と同様の手順により作製した。
[Comparative Example 2]
The deposited film forming apparatus shown in FIG. 5 is modified so that 12 cylindrical aluminum cylinders 205 having a diameter of 30 mm and a length of 358 mm are installed on the same circumference, the oscillation frequency of the high frequency power supply 211 is 90 MHz, and the superimposed high frequency power supply 217 The oscillation frequency was set to 60 MHz. Then, an a-Si photoreceptor comprising a charge injection blocking layer, a first photoconductive layer, a second photoconductive layer, and a surface layer under the conditions shown in Table 3 was prepared in the same procedure as in Example 1.

なお、高周波電力は高周波電源211からの電力と重畳高周波電源217からの電力は同じ値とし、それらの合計が表3に示す値となるようにした。第1の高周波電極202は直径75mm、長さ50cmのSUS304製円柱の外部を内径80mm、外径90mmのアルミナ製円筒により覆う構成とした。アルミナ製円筒の外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。   Note that the high-frequency power is the same as the power from the high-frequency power supply 211 and the power from the superimposed high-frequency power supply 217, and the sum of them is the value shown in Table 3. The first high-frequency electrode 202 is configured to cover the outside of a SUS304 cylinder having a diameter of 75 mm and a length of 50 cm with an alumina cylinder having an inner diameter of 80 mm and an outer diameter of 90 mm. Rzjis (JIS B0601: '01) was set to Rzjis = 20 μm by blasting the outer peripheral surface of the alumina cylinder.

上記実施例2、比較例2で作製されたa−Si感光体を、本テスト用に改造されたキヤノン製の複写機GP55に設置し、a−Si感光体の特性評価を行なった。評価項目は、「画像濃度むら」、「光メモリー」、「特性ばらつき」、及び「画像欠陥」の4項目とし、実施例1と同様の具体的評価法により各項目の評価を行なった。評価結果を表4に示す。表4において、評価結果は、比較例2の評価結果を基準とし、実施例1と比較例1の比較の際と同様の指標で示した。   The a-Si photosensitive member produced in Example 2 and Comparative Example 2 was installed in a Canon copying machine GP55 modified for this test, and the characteristics of the a-Si photosensitive member were evaluated. The evaluation items were four items of “image density unevenness”, “optical memory”, “characteristic variation”, and “image defect”, and each item was evaluated by the same specific evaluation method as in Example 1. The evaluation results are shown in Table 4. In Table 4, the evaluation results are indicated by the same index as in the comparison between Example 1 and Comparative Example 1 with the evaluation result of Comparative Example 2 as a reference.

表4より、実施例2で作製されたa−Si感光体は特に「画像濃度むら」、「光メモリー」、及び「特性ばらつき」に優れた良好なものであることが確認され、本発明の効果が確認された。   From Table 4, it was confirmed that the a-Si photosensitive member produced in Example 2 was excellent especially in “image density unevenness”, “optical memory”, and “characteristic variation”. The effect was confirmed.

Figure 2007063628
Figure 2007063628

Figure 2007063628
Figure 2007063628

〔実施例3〕
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー205上に、高周波電源211の発振周波数を150MHz、重畳高周波電源217の発振周波数を60MHzとして表5に示す条件で電荷注入阻止層、第一光導電層、第二光導電層、及び表面層からなるa−Si感光体を実施例1と同様の手順により作製した。
Example 3
Using the deposited film forming apparatus shown in FIG. 1, on a cylindrical aluminum cylinder 205 having a diameter of 80 mm and a length of 358 mm, the oscillation frequency of the high-frequency power source 211 is 150 MHz and the oscillation frequency of the superimposed high-frequency power source 217 is 60 MHz. Thus, an a-Si photosensitive member comprising a charge injection blocking layer, a first photoconductive layer, a second photoconductive layer, and a surface layer was prepared in the same procedure as in Example 1.

なお、高周波電力は高周波電源211からの電力と重畳高周波電源217からの電力は同じ値とし、それらの合計が表5に示す値となるようにした。本実施例においては、第1の高周波電極202の直径、及び第1の円筒状側壁101の外径を表6に示す4条件として、各々の条件においてa−Si感光体の作製を行った。なお、いずれの条件においても第1の高周波電極202の長さは50cm、第1の円筒状側壁101の厚さは5mmとした。第1の円筒状側壁101のプラズマに接する外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。   The high-frequency power is the same as the power from the high-frequency power supply 211 and the power from the superimposed high-frequency power supply 217, and the sum of these values is the value shown in Table 5. In this example, the a-Si photosensitive member was manufactured under the four conditions shown in Table 6 with respect to the diameter of the first high-frequency electrode 202 and the outer diameter of the first cylindrical side wall 101. Note that the length of the first high-frequency electrode 202 was 50 cm and the thickness of the first cylindrical side wall 101 was 5 mm under any conditions. Rzjis (JIS B0601: '01) was set to Rzjis = 20 μm on the outer peripheral surface in contact with plasma of the first cylindrical side wall 101 by blasting.

〔比較例3〕
図5に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー205上に、高周波電源211の発振周波数を150MHz、重畳高周波電源217の発振周波数を60MHzとして表5に示す条件で電荷注入阻止層、第一光導電層、第二光導電層、及び表面層からなるa−Si感光体を実施例1と同様の手順により作製した。
[Comparative Example 3]
5 using the deposited film forming apparatus shown in FIG. 5 on a cylindrical aluminum cylinder 205 having a diameter of 80 mm and a length of 358 mm, the oscillation frequency of the high frequency power supply 211 is 150 MHz, and the oscillation frequency of the superimposed high frequency power supply 217 is 60 MHz. Thus, an a-Si photosensitive member comprising a charge injection blocking layer, a first photoconductive layer, a second photoconductive layer, and a surface layer was prepared in the same procedure as in Example 1.

なお、高周波電力は高周波電源211からの電力と重畳高周波電源217からの電力は同じ値とし、それらの合計が表5に示す値となるようにした。第1の高周波電極202は直径40mm、長さ50cmのSUS304製円柱の外部を内径45mm、外径55mmのアルミナ製円筒により覆う構成とした。アルミナ製円筒の外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。   The high-frequency power is the same as the power from the high-frequency power supply 211 and the power from the superimposed high-frequency power supply 217, and the sum of these values is the value shown in Table 5. The first high-frequency electrode 202 was configured to cover the outside of a SUS304 cylinder having a diameter of 40 mm and a length of 50 cm with an alumina cylinder having an inner diameter of 45 mm and an outer diameter of 55 mm. Rzjis (JIS B0601: '01) was set to Rzjis = 20 μm by blasting the outer peripheral surface of the alumina cylinder.

上記実施例3、比較例3で作製されたa−Si感光体を、本テスト用に改造されたキヤノン製の複写機iR6010に設置し、a−Si感光体の特性評価を行なった。評価項目は、「画像濃度むら」、「光メモリー」、「特性ばらつき」、及び「画像欠陥」の4項目とし、実施例1と同様の具体的評価法により各項目の評価を行なった。評価結果を表7に示す。表7において、評価結果は、比較例3の評価結果を基準とし、実施例1と比較例1の比較の際と同様の指標で示した。   The a-Si photoreceptors prepared in Example 3 and Comparative Example 3 were installed in a Canon copier iR6010 modified for this test, and the characteristics of the a-Si photoreceptor were evaluated. The evaluation items were four items of “image density unevenness”, “optical memory”, “characteristic variation”, and “image defect”, and each item was evaluated by the same specific evaluation method as in Example 1. Table 7 shows the evaluation results. In Table 7, the evaluation results are indicated by the same index as in the comparison between Example 1 and Comparative Example 1 with the evaluation result of Comparative Example 3 as a reference.

表7より、実施例3で作製されたa−Si感光体はいずれの条件においても良好な特性を示し、第1の高周波電極の外径が第1の円筒状側壁の外径の1/3以下の場合(条件2〜4)に特に顕著な効果を得る事が可能であることが確認された。また、高周波電極の表面積を小さくすることにより(条件4)更なる効果が得られることが確認された。   From Table 7, the a-Si photosensitive member produced in Example 3 showed good characteristics under any conditions, and the outer diameter of the first high-frequency electrode was 1/3 of the outer diameter of the first cylindrical side wall. It was confirmed that particularly remarkable effects can be obtained in the following cases (conditions 2 to 4). Moreover, it was confirmed that the further effect is acquired by reducing the surface area of a high frequency electrode (condition 4).

Figure 2007063628
Figure 2007063628

Figure 2007063628
Figure 2007063628

Figure 2007063628
Figure 2007063628

〔実施例4〕
図2に示す堆積膜形成装置を用い、直径30mm、長さ358mmの円筒状アルミニウムシリンダー205上に、高周波電源211、第2の高周波電源214の発振周波数を共に120MHz、重畳電源217、第2の重畳電源216の発振周波数を共に70MHzとして表8に示す条件で電荷輸送層、電荷発生層、及び表面層からなるa−Si感光体を作製した。
Example 4
The deposited film forming apparatus shown in FIG. 2 is used. On the cylindrical aluminum cylinder 205 having a diameter of 30 mm and a length of 358 mm, the oscillation frequency of the high-frequency power source 211 and the second high-frequency power source 214 is 120 MHz, the superimposed power source 217 and the second power source. An a-Si photosensitive member comprising a charge transport layer, a charge generation layer, and a surface layer was produced under the conditions shown in Table 8 with the oscillation frequency of the superimposed power source 216 being 70 MHz.

なお、高周波電源211からの電力を重畳高周波電源217からの電力の2/3倍とし、これらの電力の合計を表8中の内部高周波電力の値とした。また、第2の高周波電源214からの電力を第2の重畳高周波電源216からの電力の2/3倍とし、これらの電力の合計を表8中の外部高周波電力の値とした。他の具体的作製手順は第2の高周波電源214、第2の重畳高周波電源216、及び第2のマッチングボックス215の制御を各々、高周波電源211、重畳高周波電源217、及びマッチングボックス212の制御と同時並行的に行う以外は実施例1と同様にして行った。   The power from the high frequency power supply 211 was set to 2/3 times the power from the superimposed high frequency power supply 217, and the total of these powers was the value of the internal high frequency power in Table 8. The power from the second high-frequency power source 214 was set to 2/3 times the power from the second superimposed high-frequency power source 216, and the total of these powers was the value of the external high-frequency power in Table 8. Another specific manufacturing procedure is to control the second high-frequency power source 214, the second superimposed high-frequency power source 216, and the second matching box 215, respectively, and control the high-frequency power source 211, the superimposed high-frequency power source 217, and the matching box 212. The same procedure as in Example 1 was performed except that the processes were performed simultaneously.

第1の高周波電極202は直径20mm、長さ50cmのSUS304製円柱とした。また、第1の円筒状側壁101は外径100mm、厚さ5mmのアルミナ製円筒であり、プラズマに接する外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。   The first high-frequency electrode 202 was a SUS304 cylinder having a diameter of 20 mm and a length of 50 cm. The first cylindrical side wall 101 is an alumina cylinder having an outer diameter of 100 mm and a thickness of 5 mm, and the outer peripheral surface in contact with the plasma is blasted so that Rzjis (JIS B0601: '01) is Rzjis = 20 μm.

第2の高周波電極213は直径20mm、長さ50cmのSUS304製円柱とし、第2の円筒状側壁203は外径500mm、厚さ12mmのアルミナ製円筒で構成し、プラズマに接する内周面はブラスト加工によりRz=20μmとした。第2の高周波電極213の中心軸と第2の円筒状側壁203の外周面との距離は30mmとした。   The second high-frequency electrode 213 is an SUS304 cylinder having a diameter of 20 mm and a length of 50 cm, the second cylindrical side wall 203 is formed of an alumina cylinder having an outer diameter of 500 mm and a thickness of 12 mm, and the inner peripheral surface in contact with the plasma is blasted. By processing, Rz = 20 μm. The distance between the central axis of the second high-frequency electrode 213 and the outer peripheral surface of the second cylindrical side wall 203 was 30 mm.

〔比較例4〕
図7に示す堆積膜形成装置を用い、直径30mm、長さ358mmの円筒状アルミニウムシリンダー205上に、高周波電源211、第2の高周波電源214の発振周波数を共に120MHz、重畳電源217、第2の重畳電源216の発振周波数を共に70MHzとして表8に示す条件で電荷輸送層、電荷発生層、及び表面層からなるa−Si感光体を作製した。
[Comparative Example 4]
Using the deposited film forming apparatus shown in FIG. 7, on the cylindrical aluminum cylinder 205 having a diameter of 30 mm and a length of 358 mm, the oscillation frequencies of the high-frequency power supply 211 and the second high-frequency power supply 214 are both 120 MHz, the superimposed power supply 217 and the second power supply. An a-Si photosensitive member comprising a charge transport layer, a charge generation layer, and a surface layer was produced under the conditions shown in Table 8 with the oscillation frequency of the superimposed power source 216 being 70 MHz.

なお、高周波電源211からの電力を重畳高周波電源217からの電力の2/3倍とし、これらの電力の合計を表8中の内部高周波電力の値とした。また、第2の高周波電源214からの電力を第2の重畳高周波電源216からの電力の2/3倍とし、これらの電力の合計を表8中の外部高周波電力の値とした。他の具体的作製手順は実施例4と同様の手順により行った。   The power from the high frequency power supply 211 was set to 2/3 times the power from the superimposed high frequency power supply 217, and the total of these powers was the value of the internal high frequency power in Table 8. The power from the second high-frequency power source 214 was set to 2/3 times the power from the second superimposed high-frequency power source 216, and the total of these powers was the value of the external high-frequency power in Table 8. Other specific production procedures were performed in the same manner as in Example 4.

第1の高周波電極202は直径30mm、長さ50cmのSUS304製円柱の外部を内径35mm、外径45mmのアルミナ製円筒により覆う構成とした。アルミナ製円筒の外周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。   The first high-frequency electrode 202 was configured to cover the outside of a SUS304 cylinder having a diameter of 30 mm and a length of 50 cm with an alumina cylinder having an inner diameter of 35 mm and an outer diameter of 45 mm. Rzjis (JIS B0601: '01) was set to Rzjis = 20 μm by blasting the outer peripheral surface of the alumina cylinder.

第2の高周波電極213は直径20mm、長さ50cmのSUS304製円柱とし、第2の円筒状側壁203は外径500mm、厚さ12mmのアルミナ製円筒で構成し、プラズマに接する内周面はブラスト加工によりRzjis(JIS B0601:’01)をRzjis=20μmとした。第2の高周波電極213の中心軸と第2の円筒状側壁203の外周面との距離は30mmとした。   The second high-frequency electrode 213 is an SUS304 cylinder having a diameter of 20 mm and a length of 50 cm, the second cylindrical side wall 203 is formed of an alumina cylinder having an outer diameter of 500 mm and a thickness of 12 mm, and the inner peripheral surface in contact with the plasma is blasted. By processing, Rzjis (JIS B0601: '01) was set to Rzjis = 20 μm. The distance between the central axis of the second high-frequency electrode 213 and the outer peripheral surface of the second cylindrical side wall 203 was 30 mm.

上記実施例4、比較例4で作製されたa−Si感光体を本テスト用に改造されたキヤノン製の複写機GP55に設置し、感光体の特性評価を行なった。評価項目は、「画像濃度むら」、「光メモリー」、「特性ばらつき」、及び「画像欠陥」の4項目とし、実施例1と同様の具体的評価法により各項目の評価を行なった。評価結果を表9に示す。表9において、評価結果は、比較例4の評価結果を基準とし、実施例1と比較例1の比較の際と同様の指標で示した。   The a-Si photosensitive member produced in Example 4 and Comparative Example 4 was installed in a Canon copying machine GP55 modified for this test, and the characteristics of the photosensitive member were evaluated. The evaluation items were four items of “image density unevenness”, “optical memory”, “characteristic variation”, and “image defect”, and each item was evaluated by the same specific evaluation method as in Example 1. Table 9 shows the evaluation results. In Table 9, the evaluation results are indicated by the same index as in the comparison between Example 1 and Comparative Example 1, with the evaluation result of Comparative Example 4 as a reference.

表9より、実施例4で作製されたa−Si感光体はいずれの項目においても良好な特性を示し、本発明の効果が確認された。   From Table 9, the a-Si photosensitive member produced in Example 4 showed good characteristics in all items, and the effect of the present invention was confirmed.

Figure 2007063628
Figure 2007063628

Figure 2007063628
Figure 2007063628

〔実施例5〕
実施例4における第1の円筒状側壁101を窒化ホウ素製円筒とする以外は実施例4と同様にして、表8に示す条件で電荷輸送層、電荷発生層、及び表面層からなるa−Si感光体を作製した。
Example 5
A-Si comprising a charge transport layer, a charge generation layer, and a surface layer under the conditions shown in Table 8 in the same manner as in Example 4 except that the first cylindrical side wall 101 in Example 4 is a boron nitride cylinder. A photoconductor was prepared.

実施例5で作製されたa−Si感光体を実施例4と同様にしてa−Si感光体の特性評価を行った。評価結果を表10に示す。表10において、評価結果は、比較例4の評価結果を基準とし、実施例1と比較例1の比較の際と同様の指標で示した。   The characteristics of the a-Si photosensitive member produced in Example 5 were evaluated in the same manner as in Example 4. Table 10 shows the evaluation results. In Table 10, the evaluation results are indicated by the same index as in the comparison between Example 1 and Comparative Example 1 with the evaluation result of Comparative Example 4 as a reference.

表10より、実施例5で作製されたa−Si感光体はいずれの項目においても特に良好な特性を示し、本発明の効果が確認された。   From Table 10, the a-Si photoreceptor produced in Example 5 showed particularly good characteristics in all items, and the effects of the present invention were confirmed.

Figure 2007063628
Figure 2007063628

本発明の一実施形態による堆積膜形成装置の概略構成図の一例である。It is an example of the schematic block diagram of the deposited film formation apparatus by one Embodiment of this invention. 本発明の他の実施形態による堆積膜形成装置の概略構成図の一例である。It is an example of the schematic block diagram of the deposited film formation apparatus by other embodiment of this invention. 比較例として構成した従来型の堆積膜形成装置の概略構成図の一例である。It is an example of the schematic block diagram of the conventional deposited film formation apparatus comprised as a comparative example. 光メモリーの評価に用いた原稿を模式的に示した図である。It is the figure which showed typically the original document used for evaluation of optical memory. 従来の堆積膜形成装置の一例を示す図である。It is a figure which shows an example of the conventional deposited film formation apparatus. 従来の堆積膜形成装置の他の例を示す図である。It is a figure which shows the other example of the conventional deposited film formation apparatus. 従来の堆積膜形成装置の更に他の例を示す図である。It is a figure which shows the further another example of the conventional deposited film formation apparatus.

符号の説明Explanation of symbols

101 第1の円筒状側壁
102 第2の円筒状側壁
202 第1の高周波電源
205 円筒状基体
210 原料ガス供給手段
211 高周波電源
212 マッチングボックス
DESCRIPTION OF SYMBOLS 101 1st cylindrical side wall 102 2nd cylindrical side wall 202 1st high frequency power supply 205 Cylindrical base | substrate 210 Source gas supply means 211 High frequency power supply 212 Matching box

Claims (16)

第1の円筒状側壁と、前記第1の円筒状側壁を取り囲む第2の円筒状側壁との間に構成された減圧可能な反応容器と、
前記反応容器内に配置され、基体を保持する基体保持部材と、
前記反応容器内に原料ガスを供給するための原料ガス供給手段と、
前記反応容器内に高周波電力を供給するための電力供給系と、を備える堆積膜形成装置において、
前記第1の円筒状側壁の少なくとも一部が誘電体により構成されると共に、前記電力供給系として、前記第1の円筒状側壁の中心軸上に第1の高周波電極が前記第1の円筒状側壁と離間して配置されていることを特徴とする堆積膜形成装置。
A depressurizable reaction vessel configured between a first cylindrical side wall and a second cylindrical side wall surrounding the first cylindrical side wall;
A substrate holding member disposed in the reaction vessel and holding the substrate;
Source gas supply means for supplying source gas into the reaction vessel;
In a deposited film forming apparatus comprising: a power supply system for supplying high-frequency power into the reaction vessel;
At least a part of the first cylindrical side wall is made of a dielectric, and a first high-frequency electrode is formed on the central axis of the first cylindrical side wall as the first cylindrical shape as the power supply system. A deposited film forming apparatus, wherein the deposited film forming apparatus is disposed apart from a side wall.
請求項1に記載の堆積膜形成装置において、前記高周波電力の周波数が50MHz以上250MHz以下であることを特徴とする堆積膜形成装置。   2. The deposited film forming apparatus according to claim 1, wherein the frequency of the high-frequency power is 50 MHz or more and 250 MHz or less. 請求項1又は2に記載の堆積膜形成装置において、前記第1の円筒状側壁と前記第2の円筒状側壁が同一の中心軸を有するように配置されており、前記基体保持部材は、前記中心軸上に中心を持つ円周上に複数配置されていることを特徴とする堆積膜形成装置。   3. The deposited film forming apparatus according to claim 1, wherein the first cylindrical side wall and the second cylindrical side wall are disposed so as to have the same central axis, and the base body holding member includes: A deposited film forming apparatus, wherein a plurality of films are arranged on a circle having a center on a central axis. 請求項1から3のいずれか1項に記載の堆積膜形成装置において、前記第2の円筒状側壁の外部に配置された第2の高周波電極を更に有し、かつ、前記第2の円筒状側壁の少なくとも一部は誘電体により構成され、第2の高周波電極から前記反応容器内に高周波電力が導入できるように構成されていることを特徴とする堆積膜形成装置。   4. The deposited film forming apparatus according to claim 1, further comprising a second high-frequency electrode disposed outside the second cylindrical side wall, and the second cylindrical shape. 5. At least a part of the side wall is made of a dielectric, and is configured so that high-frequency power can be introduced into the reaction vessel from a second high-frequency electrode. 請求項4に記載の堆積膜形成装置において、前記第1の円筒状側壁の少なくとも一部を構成する前記誘電体の材料と、前記第2の円筒状側壁の少なくとも一部を構成する前記誘電体の材料とが異なることを特徴とする堆積膜形成装置。   5. The deposited film forming apparatus according to claim 4, wherein the dielectric material constituting at least part of the first cylindrical side wall and the dielectric constituting at least part of the second cylindrical side wall. A deposited film forming apparatus characterized in that the material is different. 請求項1から5のいずれか1項に記載の堆積膜形成装置において、前記第1の高周波電極が円筒状又は円柱状であることを特徴とする堆積膜形成装置。   6. The deposited film forming apparatus according to claim 1, wherein the first high-frequency electrode is cylindrical or columnar. 請求項1から6のいずれか1項に記載の堆積膜形成装置において、前記第1の高周波電極の外径が、前記第1の円筒状側壁の外径の1/3以下であることを特徴とする堆積膜形成装置。   7. The deposited film forming apparatus according to claim 1, wherein an outer diameter of the first high-frequency electrode is 1/3 or less of an outer diameter of the first cylindrical side wall. A deposited film forming apparatus. 請求項1から7のいずれか1項に記載の堆積膜形成装置において、前記基体が円筒状であり、前記第1の円筒状側壁の外径が前記基体の外径の1/2以上であることを特徴とする堆積膜形成装置。   8. The deposited film forming apparatus according to claim 1, wherein the base body is cylindrical, and an outer diameter of the first cylindrical side wall is equal to or more than 1/2 of an outer diameter of the base body. A deposited film forming apparatus. 第1の円筒状側壁と、第1の円筒状側壁を取り囲む第2の円筒状側壁との間に構成された減圧可能な反応容器内に基体を配置し、前記反応容器内に原料ガスを供給し、高周波電力導入手段から前記反応容器内に高周波電力を導入して前記原料ガスを分解して前記基体上に堆積膜を形成する堆積膜形成方法において、
前記高周波電力は、前記第1の円筒状側壁により囲まれ、かつ、前記第1の円筒状側壁と離間して配置された第1の高周波電極から、前記第1の円筒状側壁の少なくとも一部を構成する誘電体部材を透過して前記反応容器内に導入される特徴とする堆積膜形成方法。
A substrate is disposed in a depressurizable reaction vessel configured between a first cylindrical side wall and a second cylindrical side wall surrounding the first cylindrical side wall, and a source gas is supplied into the reaction vessel. In the deposited film forming method of introducing a high frequency power from the high frequency power introducing means into the reaction vessel to decompose the source gas to form a deposited film on the substrate,
The high-frequency power is at least part of the first cylindrical side wall from a first high-frequency electrode surrounded by the first cylindrical side wall and spaced apart from the first cylindrical side wall. A method for forming a deposited film, wherein the deposited dielectric material is introduced into the reaction vessel through the dielectric member.
請求項9に記載の堆積膜形成方法において、前記高周波電力の周波数が50MHz以上250MHz以下であることを特徴とする堆積膜形成方法。   The deposited film forming method according to claim 9, wherein the frequency of the high-frequency power is 50 MHz to 250 MHz. 請求項9又は10に記載の堆積膜形成方法において、前記第1の円筒状側壁と前記第2の円筒状側壁が同一の中心軸を有するように配置され、前記中心軸上に中心を持つ円周上に配置された複数の前記基体に対して堆積膜を形成することを特徴とする堆積膜形成方法。   The deposited film forming method according to claim 9 or 10, wherein the first cylindrical side wall and the second cylindrical side wall are arranged so as to have the same central axis and have a center on the central axis. A deposited film forming method, comprising forming deposited films on a plurality of the substrates arranged on a circumference. 請求項9から11のいずれか1項に記載の堆積膜形成方法において、高周波電力を、前記反応容器の外部に配置された第2の高周波電極から、前記第2の円筒状側壁の少なくとも一部を構成する誘電体部材を透過させて前記反応容器内に導入することを特徴とする堆積膜形成方法。   12. The deposited film forming method according to claim 9, wherein high-frequency power is supplied from a second high-frequency electrode disposed outside the reaction vessel to at least a part of the second cylindrical side wall. A method for forming a deposited film, comprising: passing through a dielectric member constituting the material and introducing the dielectric member into the reaction vessel. 請求項12に記載の堆積膜形成方法において、前記第1の円筒状側壁の少なくとも一部を構成する前記誘電体部材と、前記第2の円筒状側壁の少なくとも一部を構成する前記誘電体部材とが異なることを特徴とする堆積膜形成方法。   13. The deposited film forming method according to claim 12, wherein the dielectric member constituting at least part of the first cylindrical side wall and the dielectric member constituting at least part of the second cylindrical side wall. And a deposited film forming method, wherein: 請求項9から13のいずれか1項に記載の堆積膜形成方法において、円筒状又は円柱状の前記第1の高周波電極から前記反応容器内に高周波電力を導入することを特徴とする堆積膜形成方法。   14. The deposited film forming method according to claim 9, wherein high-frequency power is introduced into the reaction vessel from the cylindrical or columnar first high-frequency electrode. Method. 請求項9から14のいずれか1項に記載の堆積膜形成方法において、前記第1の円筒状側壁の外径に対して1/3以下の外径の前記第1の高周波電極から前記反応容器内に高周波電力を導入することを特徴とする堆積膜形成方法。   The deposited film forming method according to any one of claims 9 to 14, wherein the reaction vessel includes the first high-frequency electrode having an outer diameter of 1/3 or less of the outer diameter of the first cylindrical side wall. A method for forming a deposited film, wherein high-frequency power is introduced into the inside. 請求項9から15のいずれか1項に記載の堆積膜形成方法において、前記基体が円筒状であり、前記第1の円筒状側壁の外径が前記基体の外径の1/2以上であることを特徴とする堆積膜形成方法。   The deposited film forming method according to any one of claims 9 to 15, wherein the base is cylindrical, and an outer diameter of the first cylindrical side wall is 1/2 or more of an outer diameter of the base. A method for forming a deposited film.
JP2005251958A 2005-08-31 2005-08-31 Apparatus for forming deposition film and method for forming deposition film Pending JP2007063628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251958A JP2007063628A (en) 2005-08-31 2005-08-31 Apparatus for forming deposition film and method for forming deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251958A JP2007063628A (en) 2005-08-31 2005-08-31 Apparatus for forming deposition film and method for forming deposition film

Publications (1)

Publication Number Publication Date
JP2007063628A true JP2007063628A (en) 2007-03-15

Family

ID=37926157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251958A Pending JP2007063628A (en) 2005-08-31 2005-08-31 Apparatus for forming deposition film and method for forming deposition film

Country Status (1)

Country Link
JP (1) JP2007063628A (en)

Similar Documents

Publication Publication Date Title
JP3897582B2 (en) Vacuum processing method, vacuum processing apparatus, semiconductor device manufacturing method, and semiconductor device
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP4109861B2 (en) Vacuum processing method
JP2007063628A (en) Apparatus for forming deposition film and method for forming deposition film
JP2005133128A (en) Apparatus and method for plasma treatment
JP2005163165A (en) Deposition film forming system and deposition film forming method
JP2003024772A (en) Plasma processing apparatus and plasma processing method
JP2005015884A (en) Vacuum treatment system
JP2005142150A (en) Plasma processing apparatus and plasma processing method
JP2005068455A (en) Method and apparatus for forming deposition film
JP2004149825A (en) Vacuum treatment system, and vacuum treatment method
JP2005015876A (en) Deposited film formation device, and deposited film formation method
JP2005163163A (en) Deposition film formation device, and deposition film formation method
JP2006091102A (en) Method for manufacturing electrophotographic photoreceptor
JP2005163166A (en) Deposition film forming system and deposition film forming method
JP2003027245A (en) Vacuum treatment method, and vacuum treatment device
JP2003034872A (en) Method and apparatus for vacuum treatment
JP2005068454A (en) Method for forming deposition film
JP2002038273A (en) Apparatus and method for plasma treatment
JP2008179863A (en) Apparatus for forming deposition film
JP2007297660A (en) Deposited film formation device and deposited film formation method
JP2003041369A (en) Method and apparatus for vacuum treatment
JP2008179862A (en) Apparatus and method for forming deposited film
JP2005163164A (en) Deposited film forming apparatus and deposited film forming method
JP2005163162A (en) Apparatus and method for forming deposition film