JP2005068454A - Method for forming deposition film - Google Patents

Method for forming deposition film Download PDF

Info

Publication number
JP2005068454A
JP2005068454A JP2003209313A JP2003209313A JP2005068454A JP 2005068454 A JP2005068454 A JP 2005068454A JP 2003209313 A JP2003209313 A JP 2003209313A JP 2003209313 A JP2003209313 A JP 2003209313A JP 2005068454 A JP2005068454 A JP 2005068454A
Authority
JP
Japan
Prior art keywords
frequency power
reaction vessel
high frequency
deposited film
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209313A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
重教 植田
Makoto Aoki
誠 青木
Tomohito Ozawa
智仁 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003209313A priority Critical patent/JP2005068454A/en
Publication of JP2005068454A publication Critical patent/JP2005068454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a deposition film, which improves productivity and the uniformity/reproducibility of the characteristics of the deposited film while maintaining adequate film characteristics, in the process of forming the deposition film with the use of a high-frequency power. <P>SOLUTION: In the process for forming the deposition film on a cylindrical substrate by setting a cylindrical substrate in a cylindrical reaction vessel capable of being depressurized, at least one part of which is composed of a dielectric material, supplying a source gas into the cylindrical reaction vessel and decomposing the gas with the high-frequency power introduced from a high-frequency power-introducing means, the method for forming the deposition film comprises arranging the first high-frequency power-introducing means in the cylindrical reaction vessel, and further setting the second high-frequency power-introducing means outside the cylindrical reaction vessel, connecting independent high-frequency sources to each of the first and second high-frequency power-introducing means, and starting the introduction of the high-frequency power into the reaction vessel at different times. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は基体上に堆積膜、とりわけ機能性膜、特に半導体デバイス、電子写真用感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等に用いる堆積膜の形成方法に関する。
【0002】
【従来の技術】
従来、半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等を形成するための真空処理方法には、プラズマCVD法、イオンプレーティング法、プラズマエッチング法等、高周波電力により生成されるプラズマを用いた堆積膜形成方法が知られており、そのための装置も数多く実用化されている。
【0003】
例えば、プラズマCVD法を用いた堆積膜形成方法、つまり、高周波電力のグロー放電により原料ガスを分解し、その分解種を被処理基体上に堆積させることによって堆積膜を形成する方法が好適な堆積膜形成手段として実用化されている。この方法を用いた例として、原料ガスにシランガスを用いてアモルファスシリコン(以下「a−Si」と記す)薄膜の形成が知られており、そのための装置も各種提案されている。
【0004】
このようなプラズマCVD法を用いたa−Si薄膜の堆積膜形成装置として、VHF帯の周波数を用いたVHFプラズマCVD法(以下「VHF−PCVD」と記す)による従来の堆積膜形成装置、具体的には電子写真用感光体形成装置の一例を示す模式的な構成図を図3に示す。図4(a)は、従来の電子写真用感光体形成装置の縦断面を示す模式図であり、図4(b)は、図4(a)に示す電子写真用感光体形成装置横断面図を示す模式図である。反応容器401の底面には排気口416が形成されており、排気口416の他端には不図示の排気手段が接続されている。円筒状基体402は反応容器401の中心部を取り囲むように配置されており、回転軸413によって保持され、ヒータ411により加熱されるように構成されている。モータ414の駆動により減速ギア415を介して回転軸413が回転し、円筒状基体402が回転するようになっている。
【0005】
原料ガスは、不図示の原料ガス供給手段から原料ガス導入管412を経て反応容器401内へ導入される。VHF帯の高周波電力は、高周波電源409から高周波マッチングボックス406を経てカソード電極404から反応容器401内へ導入される。この際、円筒状基体402が回転軸413を介してアース電位に維持されているため、アノード電極として作用する。
【0006】
このような従来の電子写真用感光体形成装置を用いた堆積膜の形成は、以下のような手順で行なわれる。まず、反応容器401内に円筒状基体402を設置し、不図示の排気装置により排気口416を通じて反応容器内を排気する。続いて、ヒータ411により円筒状基体402の温度を20℃から450℃の所定の温度になるよう制御する。
【0007】
円筒状基体402が所定の温度になったところで、原料ガス供給手段から原料ガス導入管412を介して反応容器401内に原料ガスを導入する。原料ガスが所定の流量となり、反応容器401内の圧力が安定したところで、高周波電源409から高周波マッチングボックス406を介してカソード電極404から反応容器401内にVHF帯の高周波電力を導入する。これにより、グロー放電を生起し、原料ガスが励起、解離して円筒状基体402上に堆積膜が形成される。所望の膜厚の形成が行われた後、高周波電力の供給を止め、反応容器401へのガスの流入を止め、堆積膜の形成を終える。同様の操作を複数回操り返すことによって、所望の多層構造の光受容層を形成することができる。堆積膜形成中に、回転軸413を介して円筒状基体402をモータ414により所定の速度で回転させることにより、円筒状基体402の表面の全周に堆積膜が形成される。
【0008】
このような電子写真感光体形成装置により高品質な堆積膜の形成が行われているが、更なる品質向上のために電子写真感光体形成方法及び装置の改良が進められている。
【0009】
例えば一部が誘電体で構成された遮蔽板の内部に複数の円筒状基体を同一円周上に等間隔で配置し、電極を該遮蔽板の内外に配置して円筒状基体上に堆積膜を形成する堆積膜形成方法及び装置の技術に関して開示されている(特許文献1参照)。この堆積膜形成方法及び装置を用いて円筒状基体上に堆積膜を形成することにより、画像欠陥の低減効果が得られることが示されている。
【0010】
更に非導電性材料で構成された反応容器内に複数の円筒状基体を同一円周上に等間隔で配置し、カソード電極を該反応容器の内外に配置して円筒状基体上に堆積膜を形成する堆積膜形成方法及び装置の技術に関して開示されている(特許文献2参照)。この堆積膜形成方法及び装置を用いて円筒状基体上に堆積膜を形成することにより、堆積膜特性の均一性向上の効果が得られることが示されている。
【0011】
【特許文献1】
特開平11−026388号公報
【特許文献2】
特開平11−092932号公報
【0012】
【発明が解決しようとする課題】
上記従来の方法及び装置により、良好な堆積膜が形成される。しかしながら、これら堆積膜を用いた製品に対する市場の要求レベルは日々高まっており、この要求に応えるべく、より高品質の堆積膜が求められるようになっている。
【0013】
例えば、電子写真感光体の場合、電子写真装置のプロセススピード向上、装置の小型化、低価格化等の要求は非常に高く、これらを実現可能な感光体特性、具体的には帯電能、感度等の向上、あるいは生産コストの低減、生産時の良品率向上が不可欠となっている。
【0014】
また、近年その普及が目覚しいデジタル電子写真装置やカラー電子写真装置においては、文字原稿のみならず、写真、絵、デザイン画等のコピーも頻繁に成されるため、従来以上に画像濃度むらの低減が求められるようになっている。また同時に、画像上に白点或いは黒点等の画像欠陥を引き起こす球状突起等の構造欠陥についても、従来以上の低減が求められている。
【0015】
このような構造欠陥は、堆積膜形成前から被処理物上に付着したダスト等の異物を起源として成長したもののほか、堆積膜形成途中に装置内に形成された堆積膜が、膜中の内部応力により微小な膜剥れが発生し、放電空間内に膜片となって拡散、その一部が基体上に付着したものが起源として成長したものが存在する。そのため、成膜前の基体は厳密に洗浄され、クリーンルームなどのダスト管理された環境で反応容器内に運搬することにより、基体にダストが付着することを極力避けるようにしてきた。また、反応容器内に形成された堆積膜が剥れるのを防止するために、反応容器内壁や反応容器内の構成部品等の表面に対して、粗面化する処理や、表面エネルギーの大きいセラミック材で被覆する処理等を施してきた。また、膜中の内部応力を極力低減することを目指し、堆積膜形成条件、堆積膜積層構成の最適化も成されてきた。しかしながら、前述の通り市場からの画像レベルに対する要求は非常に高く、このような構造欠陥の許容レベル(構造欠陥数、構造欠陥のサイズ)も厳しくなってきている。こうした状況下で更なる構造欠陥抑制技術の向上を目指し、とくに形成された堆積膜が剥がれないように改善が強く望まれている。
【0016】
また、形成される堆積膜特性の均一性・再現性という点においても改善の余地が残されている。堆積膜特性の均一性・再現性が不十分であると、堆積膜特性のばらつき、製品品質の低下、良品率の低下につながってしまう。特に、複数の堆積膜の積層構成よりなる部材形成の場合、この特性のばらつきにより、ある層の膜特性が低下すると、他の層とのマッチングも悪化するため部材全体として大きく影響を受けることとなってしまう。また、電子写真感光体のように大面積の部材においては、局所的な膜質低下であっても、その部分のみを除去することができないため、その影響は大きい。このように、堆積膜特性の均一性・再現性を向上し、堆積膜特性のばらつきを抑制することは、堆積膜全体としての特性向上、堆積膜形成コストの低下に大きく貢献するものである。
【0017】
このように、画像欠陥を引き起こす球状突起の低減、堆積膜特性の均一性・再現性向上が可能な、堆積膜形成方法を実現することは、製品品質の向上、生産コストの低下を達成可能とするものであり、現在の市場での要求に応えていく上で必要不可欠のものとなっている。
【0018】
【発明の目的】
本発明は上記課題の解決を目的とするものである。即ち、本発明は減圧可能な反応容器中に円筒状基体を設置し、該反応容器中に供給した原料ガスを高周波電力導入手段より導入された高周波電力により分解し、該円筒状基体上に堆積膜を形成する高周波−PCVD法による堆積膜形成において、良好な膜特性を維持しながら、画像上に白点或いは黒点等の画像欠陥を引き起こす球状突起の低減を達成し、更に堆積膜特性の均一性・再現性向上が可能な、堆積膜形成方法を提供することにある。
【0019】
【課題を解決するための手段及び作用】
本発明者らは上記目的を達成すべく鋭意検討を行った結果、堆積膜形成方法において、高周波電力の導入方法が堆積膜特性、堆積膜特性の均一性・再現性、堆積膜の生産性に大きな影響を及ぼすことを見出した。
【0020】
即ち、本発明は少なくとも一部が誘電体材料で構成された減圧可能な円筒状反応容器内に円筒状基体が設置され、該円筒状反応容器内に供給した原料ガスを高周波電力導入手段から導入された高周波電力により分解し、該円筒状基体上に堆積膜を形成する堆積膜形成方法に於いて、該円筒状反応容器の内部に第1の高周波電力導入手段を設け、更に該円筒状反応容器の外部に第2の高周波電力導入手段が設定され該第1高周波電力導入手段と第2高周波電力導入手段には、それぞれ独立した高周波電源が接続され高周波電力の導入開始時間に時間差を設ける事を特徴とする堆積膜形成方法に関する。
【0021】
更に本発明は第1高周波電力導入手段に高周波電力を導入した後に第2高周波電力導入手段に高周波電力を導入する事が望ましい。
【0022】
更に本発明は第1高周波電力導入手段に高周波電力を導入し、円筒状反応容器内にプラズマが形成された後に第2高周波電力導入手段に高周波電力を導入する事が望ましい。
【0023】
更に本発明は前記第1の高周波電力供給手段及び第2の高周波電力供給手段のそれぞれに周波数の異なる複数の高周波電力を導入し、該第1の高周波電力供給手段に導入する該複数の高周波電力における電力値の上位2つのうち一方の高周波電力の周波数をf1、電力値をP1、他方の高周波電力の周波数をf2、電力値をP2とし、該第2の高周波電力供給手段に導入する該複数の高周波電力における電力値の上位2つのうち一方の高周波電力の周波数をf1’、電力値をP1’、他方の高周波電力の周波数をf2’、電力値をP2’としたときに、下記式(A)〜(D)を満たす事が望ましい。
【0024】
10MHz≦f2<f1≦250MHz…(A)
0.1≦P2/(P1+P2)≦0.9…(B)
10MHz≦f2’<f1’≦250MHz…(C)
0.1≦P2’/(P1’+P2’)≦0.9…(D)
更に本発明は前記堆積膜が少なくともシリコン原子を母体とする非単結晶材料で構成された電子写真用感光体である事が望ましい。
【0025】
このような本発明によれば、単一の基体上、或いは複数の基体上に、良好な特性を有する堆積膜を均一に、再現性良く形成し、更に球状突起の発生を抑制する事が可能である。
【0026】
【発明の実施の形態】
図を用いて本発明を詳述する。図1は本発明に用いることができるa−Si系感光体堆積膜製造装置の一例を示した模式的な概略垂直断面図である。図1(a)は概略垂直断面図、図1(b)は図1(a)の概略水平断面図である。
【0027】
反応容器117の底面には排気口116が形成され、排気管の他端は不図示の排気装置に接続されている。堆積膜の形成される円筒状基体102は、同一円周上に等間隔で互いに平行に配置され、該円筒状基体102を取り囲むように少なくとも一部が誘電体材料で構成された円筒状反応容器(以後、反応容器と記す)117が配置されている。円筒状基体102は回転軸113によって保持され、モータ114を駆動すると、減速ギア115を介して回転軸113が回転し、円筒状基体102は回転する。また、円筒状基体102は発熱体111によって加熱可能となっている。
【0028】
同一円周上に配置された円筒状基体102の配置円内には、第1の高周波電力導入手段104が設置され、第1の高周波電源109、110から出力された高周波電力は、第1のマッチングボックス106を経て、第1の高周波電力導入手段104から成膜空間となる反応容器117内に供給される。
【0029】
また、反応容器117の外側には、第2の高周波電力導入手段103が同一円周上に等間隔に設置され、第2の高周波電源107、108から出力された高周波電力は、第2のマッチングボックス105を経て、第2の高周波電力導入手段103から成膜空間となる反応容器117内に供給される。
【0030】
反応容器117内には原料ガス導入手段112が設置され、原料ガス導入手段の他端には不図示の原料ガス供給手段が接続されている。原料ガス供給手段から所望の原料ガスを原料ガス導入手段を介して反応容器117中に供給する。
【0031】
このような装置を用いた堆積膜の形成は、例えば概略以下のようにして行われる。
【0032】
まず、円筒状基体102を反応容器117内に設置し、不図示の排気装置により排気口116を通して反応容器101内を排気する。続いて、発熱体111により円筒状基体102を所定の温度に加熱・制御する。
【0033】
円筒状基体102が所定の温度となったところで、原料ガス供給手段112を介して、原料ガスを反応容器117内に導入する。原料ガスの流量が設定流量となり、また、反応容器117内の圧力が安定したのを確認した後、第1の高周波電源109、110から第1のマッチングボックス106を介して第1のカソード電極104へ所定の高周波電力を供給する。同様に、第2の高周波電源107、108から第2のマッチングボックス105を介して第2のカソード電極103へ所定の高周波電力を供給する。この際、2つの独立した高周波電力制御が必要となるが、この高周波電力導入の手順は、第1の高周波電力導入手段104からの印加する電力を所定の値に設定した後、第2の高周波電力導入手段103からの印加する電力を所定の値に設定する事が望ましい。上記方法で反応容器117内に導入された高周波電力によって、反応容器117内にグロー放電が生起し、原料ガスは励起・解離して円筒状基体102上に堆積膜が形成される。
【0034】
所望の膜厚の形成が行なわれた後、高周波電力の導入を止め、続いて原料ガスの供給を停止して堆積膜の形成を終える。多層構造の堆積膜を形成する場合には、同様の操作を複数回繰り返す。この場合、各層間においては、上述したように1つの層の形成が終了した時点で一旦放電を完全に停止し、次層のガス流量、圧力に設定が変更された後、再度放電を生起して次層の形成を行ってもよいし、あるいは、1つの層の形成終了後一定時間でガス流量、圧力、高周波電力を次層の設定値に徐々に変化させることにより連続的に複数層を形成してもよい。但し、層の積層に際し一旦放電を停止し、再度放電を開始する場合に於いても上述した放電の開始操作を行えばよい。
【0035】
また堆積膜の形成中、必要に応じて、回転軸113を介して円筒状基体102をモータ114により所定の速度で回転させてもよい。
【0036】
本発明においては、周波数の異なる複数の高周波電力を円筒状反応容器の内外に設置された高周波電力導入手段により印加し、それぞれの高周波導入手段への高周波印加開始時間を独立に制御することで、反応容器内全体に十分な密度をもった均一なプラズマが生成可能となる。
【0037】
本発明において、円筒状基体102の配置円内に設置された第1の高周波電力導入手段104と円筒状反応容器117の配置円外に設置された第2の高周波電力導入手段103に印加する高周波電力の印加開始時間に時間差を設けることで、円筒状反応容器117内の放電空間におけるプラズマの状態を均一にすることが可能になる。
【0038】
これは、第1の高周波電力導入手段104と第2の高周波電力導入手段103に同時に高周波電力を印加した場合、プラズマの形成初期段階に於いて反応容器117の内壁近傍或いは、円筒状基体102近傍周や同一円周上に設置された円筒状基体102の配置円内でプラズマが形成される放電空間内でのプラズマの局在化が発生する場合があり堆積膜形成の再現性のバラツキ及びロット間のバラツキなどが発生する場合がある。更にプラズマ形成の初期段階で一旦プラズマが局在化すると放電空間内にプラズマを均一に制御することが困難である。プラズマが局在化したまま堆積膜の形成を行った場合、堆積膜の膜厚ムラや膜の応力バランスを損ない膜剥れが発生する場合がある。これは高周波電力導入手段近傍で電力の吸収が大きいため反応容器断面方向で第1及び第2の電力導入手段から遠ざかるほど電力のムラが発生してしまい第1及び第2の電力導入手段に同時に高周波電力を印加すると放電空間内での電力バランスが不安定となりプラズマが局在化するものと考えられる。
【0039】
本発明に於いて放電空間内に設けた第1の高周波電力導入手段に高周波電力を供給した後に第2の高周波電力導入手段に高周波電力を印加することが望ましい。これは放電空間内に設けた第1の高周波電力導入手段に先に高周波電力を印加した場合、反応容器外に設けた第2高周波電力導入手段から先に高周波電力を供給した時よりも更にプラズマの形成が安定し比較的に低い電力で放電空間にプラズマが均一に広がるためである。
【0040】
更に本発明に於いて第1の高周波電力導入手段に高周波電力を印加することにより反応容器内の放電空間内でプラズマが形成された後に第2の高周波電力導入手段に高周波電力を印加することで均一なプラズマが維持されたまま放電空間内に効率良くパワーが供給され効果的である。
【0041】
本発明に於いて第1の高周波電力導入手段又は第2の高周波電力導入手段のいずれか一方に高周波電力を印加しプラズマが形成された後に残りの一方の高周波電力導入手段に高周波電力を印加するが、プラズマ形成の判断に関しては反応容器内の内部圧力(内圧)をモニターし原料ガスが分解されることによる内圧の変化でプラズマの形成を検知する手段が一般的であるが反応容器内に温度検知手段を設け温度変化でプラズマの形成を検知しても良い。更に反応容器に窓を設け直接プラズマの形成を確認しても良い。
【0042】
本発明に於いては、以下のような方法により更に顕著な効果を得ることができる。
【0043】
図1のような複数の異なる周波数の高周波電力を第1の高周波電力導入手段104及び第2の高周波電力導入手段103により印加することで、第1及び第2の高周波電力導入手段から導入される高周波電力によって生じる定在波を抑制し、反応容器垂直方向におけるプラズマの分布を更に均一化することが可能なため、円筒状基体長手方向の膜特性及び均一性が向上し、突起集中が減少する。
【0044】
反応容器中への複数の高周波電力の供給は、同一の電極から行うことが必要である。異なる周波数の高周波電力を各々別の電極から供給した場合、電極ごとに高周波電力の周波数に依存した定在波が生じてしまう。この結果、電極近傍のプラズマ特性は、この定在波に応じた分布形状をもってしまい、生成活性種の種類・比率や、イオンのエネルギーが位置によって異なってしまう。
【0045】
本発明において、電極に供給する複数の高周波電力の関係、即ち、周波数ならびに電力比率は実際に真空処理特性の均一性を確認しながら決定すればよいが、それぞれの高周波の周波数の差があまりにも小さいと、実質的に同一周波数の高周波電力を印加した場合と同等となってしまい、各々の定在波の節位置、腹位置が近いため十分な定在波抑制効果が得られなくなってしまう。また、その差が大きすぎると、周波数が小さい方の高周波電力の高周波電界定在波の波長が、周波数が大きい方の高周波電力の高周波電界定在波の波長に対して大きすぎて、これもまた十分な定在波抑制効果が得られない。
【0046】
本発明においては、電極に供給する複数の高周波波電力は、周波数が10MHz以上250MHz以下の高周波電力を少なくとも2つ含むことが本発明の効果を得る上で必要である。
【0047】
上記周波数が10MHzより低くなると、高速な処理速度を得ることが困難になる。より好ましくは30MHz以上とすることが堆積速度の点で好ましい。
【0048】
一方周波数が250MHzよりも高くなると、高周波電力の進行方向への減衰が顕著となって、周波数の異なる高周波電力との減衰率のずれが顕著となってしまい、十分な均一化効果が得られなくなってしまう。よって250MHz以下にすることで重畳効果が有効に得られるため、好ましい。
【0049】
また、電極に供給する高周波電力の電力比率に関しては、上記周波数の2つの高周波電力を供給する場合、第1の高周波電力をP1、これより周波数の低い第2の高周波電力をP2としたときに、電力の総和(P1+P2)に対する第2の高周波電力P2の比率を0.1以上0.9以下の範囲とすることが、本発明の効果を得る上で好ましい。
【0050】
第2の高周波電力が電力の総和に対してこの範囲よりも小さいと、高周波電界は第1の高周波電力に起因する成分が支配的となってしまい定在波抑制効果がみられない。一方、第2の高周波電力を大きくするに従って、第2の高周波電力が反応容器中での原料ガス分解に及ぼす影響が高まり、第2の高周波電力を単独で用いた場合に近くなり、定在波抑制効果が小さくなる。したがって、少なくとも一方の高周波電力が、2つの合計電力に対して10%以上にすることが定在波抑制効果を確実に得るうえで必要である。
【0051】
以上の様に2つの高周波電力を組み合わせた場合に本発明の効果は十分に得られるが、さらに第3の高周波電力を組み合わせることも可能である。第3の高周波電力の範囲としては、第1、第2の高周波電力が適切な範囲に設定されている限りにおいては特に制限はないが、以下のようにすることができる。
【0052】
第3の高周波電力(周波数f3、電力P3)が、f1、f2と同様に10MHz以上250MHz以下の範囲にある場合には、第1の高周波電力(P1、f1)、第2の高周波電力(P2、f2)を組み合わせた場合と同様のメカニズムが期待できる。このとき、P1〜P3の中で、電力値の上位2つをP1、P2と再定義すれば、P3は最も電力値が低いことになる。この場合には、P3によるマッチング不整合が起こりにくく、且つP3による定在波抑制効果が加わるため、P1、P2を組み合わせた際よりもさらにムラが抑制される場合がある。
【0053】
また、本発明においては、円筒状基体は単一でも良いが生産性の面で円筒状基体を複数設置してもよい。但し、複数の円筒状基体を設置する場合においては、反応容器が円筒状であり、かつ、各々の高周波電力導入手段、ガス供給管と、各々の円筒状基体が、反応容器と同一の中心軸である円周上にそれぞれ等間隔に配置されることによりより顕著な効果を得ることができる。これは、円筒状基体、反応容器、高周波電力導入手段の位置関係を極力対称とすることにより、各基体に対する処理均一性が向上するためと推察される。
【0054】
さらに本発明の構成は、電子写真感光体ならびにその製造の場合により効果的である。電子写真感光体は、大面積の基体への堆積膜形成が必要であり、さらにその全領域にわたって構造欠陥が存在しない必要がある。そのため本発明によれば、基体上に膜厚、膜質共に均一で良好な特性の堆積膜を得ることができるため電子写真特性の向上ならびに生産性の向上に伴うコスト低減の上で極めて効果的である。
【0055】
また、第1の高周波電力導入手段104及び第2の高周波電力導入手段103の形状としては特に制限はないが、第1の高周波電力導入手段104及び第2の高周波電力導入手段103からの膜剥れ防止の観点から、可能な限り曲面により構成されていることが好ましく、特に円筒状が好ましい。
【0056】
また、第1の高周波電力導入手段104の表面は、膜の密着性を向上し、膜剥れを防止し、成膜中のダストを抑制する目的から、粗面化されていることが望ましい。
【0057】
更に、膜の密着性向上の観点から、第1の高周波電力導入手段104の表面はセラミックス材で被覆されていることが効果的である。被覆の具体的手段に特に制限はないが、例えば、セラミックス等の筒材により、第1の高周波電力導入手段104を覆うように装着してもよい。具体的なセラミックス材料としては、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コージェライト、ジルコン−コージェライト、酸化珪素、酸化ベリリウムマイカ系セラミックス等が挙げられる。また、上記材料をCVD法、溶射等の表面コーティング法により、第1の高周波電力導入手段104の表面をコーティングしてもよい。コーティング法の中でも溶射は、コスト面から、あるいはコーティング対象物の大きさ・形状の制限を受けにくいため好ましい。第1の高周波電力導入手段104の表面を被覆するセラミックス材の厚さは特に制限はないが、耐久性および均一性を増すため、また高周波電力吸収量、製造コストの面から1μm〜10mmが好ましく、10μm〜5mmがより好ましい。
【0058】
また、反応容器117の形状に関しては、原料ガスが分解される成膜空間が,円柱状領域に制限されるように壁面が設けられていることが好ましい。このような成膜空間壁の表面は、膜はがれ防止のため、第1の高周波電力導入手段104の表面と同様に、粗面化、セラミックスによる被覆、加熱・冷却を行うことが効果的である。
【0059】
さらに図1において、117は円筒状反応容器であり、少なくとも一部が誘電体材料で構成されている。具体的な誘電体材料としては、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コージェライト、ジルコン−コージェライド酸化珪素、酸化ベリリウムマイカ系セラミックス等が挙げられる。これらのうち、高周波電力の吸収が少ないという点から、特にアルミナが好適である。
【0060】
また、一定電位に維持された円筒状導電性シールド118を、円筒状反応容器117外に設置された第2の高周波電力導入手段103を取り囲むように設ける事が、放出される高周波電力の均一性を向上する上で好適である
更に、原料ガス供給手段112の数、設置位置は特に制限はないが、反応容器内へ均一に原料ガスを供給できるように設置することが効果的である。
【0061】
図2は本発明に用いることができるa−Si系感光体堆積膜製造装置の一例を示した模式的な概略垂直断面図である。図2(a)は概略垂直断面図、図2(b)は図2(a)の概略水平断面図である。
【0062】
反応容器217の底面には排気口216が形成され、排気管の他端は不図示の排気装置に接続されている。堆積膜の形成される円筒状基体202は、少なくとも一部が誘電体材料で構成された円筒状反応容器(以後、反応容器と記す)217の中央に1本配置されている構成である。円筒状基体202は回転軸213によって保持され、モータ214を駆動すると、減速ギア215を介して回転軸213が回転し、円筒状基体202は回転する。また、円筒状基体202の内側に設けた不図示の発熱体によって円筒状基体202は加熱可能となっている。
【0063】
円筒状基体202を取り囲むように同一円周上に等間隔に配置された第1の高周波電力導入手段204が設置され、第1の高周波電源209、210から出力された高周波電力は、第1のマッチングボックス206を経て、第1の高周波電力導入手段204から成膜空間となる反応容器217内に供給される。
【0064】
また、反応容器217の外側には、第2の高周波電力導入手段203が同一円周上に等間隔に設置され、第2の高周波電源207、208から出力された高周波電力は、第2のマッチングボックス205を経て、第2の高周波電力導入手段203から成膜空間となる反応容器217内に供給される。
【0065】
反応容器217内には原料ガス導入手段212が設置され、原料ガス導入手段の他端には不図示の原料ガス供給手段が接続されている。原料ガス供給手段から所望の原料ガスを原料ガス導入手段を介して反応容器217中に供給する。
【0066】
このような装置を用いた堆積膜の形成は、図1の装置で説明した方法と同様の操作で行うことができる。
【0067】
図3は本発明に用いることができるa−Si系感光体堆積膜製造装置の一例を示した模式的な概略垂直断面図である。図3(a)は概略垂直断面図、図3(b)は図3(a)の概略水平断面図である。
【0068】
なお、図3の装置は第1の高周波電力導入手段104及び第2の高周波電力導入手段103それぞれに高周波電力を印加するための高周波電源が単一であること以外は図1の装置と同様である。但し、高周波電源107及び109の周波数は同一の周波数を使用する。図1に示した装置と同様の部分については同一の符合とし説明を省略する。
【0069】
このような本発明を用いることにより、例えば図5に示すようなa−Si系電子写真用光感光体が形成可能である。
【0070】
図5(a)に示す電子写真用感光体500は、導電性基板501の上に、水素原子またはハロゲン原子を構成要素として含むアモルファスシリコン(以下「a−Si:H,X」と表記する。)を有する光導電性を有する光導電層502が設けられている。
【0071】
図5(b)に示す電子写真用感光体500は、導電性基体501の上に、a−Si:H,Xからなり光導電性を有する光導電層502と、アモルファスシリコン系(又はアモルファス炭素系)表面層503が設けられて構成されている。
【0072】
図5(c)に示す電子写真用感光体500は、導電性基体501の上に、アモルファスシリコン系電荷注入阻止層504と、a−Si:H,Xからなり光導電性を有する光導電層502と、アモルファスシリコン系(又はアモルファス炭素系)表面層503が設けられて構成されている。
【0073】
図5(d)に示す電子写真用感光体500は、導電性基体501の上に、光導電層502が設けられている。この光導電層502はa−Si:H,Xからなる電荷発生層505及び電荷輸送層506とからなり、その上にアモルファスシリコン系(又はアモルファス炭素系)表面層503が設けられている。
【0074】
【実施例】
以下、実施例により本発明を更に詳しく説明する。
【0075】
(実施例1)
図3に示す堆積膜形成装置を用い円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー102)上に表1に示す条件で、阻止層、光導電層、表面層の順に成膜を行い、6本の電子写真感光体を同時に作成した。このとき、第1の高周波電源109より周波数が105MHzの高周波電力をマッチングボックス106を介して第1の高周波電力導入手段104に印加することにより反応容器117内にプラズマを一旦、形成された後に第2の高周波電源107より周波数が105MHzの高周波電力を、マッチングボックス105を介して第2の高周波電力導入手段103に印加し高周波電力を反応容器117内に供給した。またプラズマ形成の判断は反応容器の内部圧力の変動により判断し内圧が安定した段階で第2の高周波電力導入手段103に高周波電力を印加した。
【0076】
また、反応容器117は円筒状のアルミナセラミック材で構成され内面をブラスト加工を施した。更に高周波電力導入手段104及び103は直径20mmの円柱状とし、特に第1の高周波電力導入手段104の表面にはアルミナ材溶射を施した。
【0077】
【表1】

Figure 2005068454
【0078】
上記条件で作製した電子写真感光体の球状突起数、帯電能ムラ、感度ムラ及び、それぞれのロット内バラツキを下記の条件により測定した。
【0079】
(球状突起数)
球状突起数の測定は、30mm×251mmの範囲内にある長径10μm以上の球状突起の数を測定した。測定場所は電子写真感光体の中央を0mm、垂直方向上を+、垂直方向下を−とし、電子写真感光体の長手方向+130mm、+90mm、0mm、−90mm、−130mmの位置を中心とし、幅30mmを周方向で一周(251mm)にある計5箇所の球状突起数の合計を求めた。同様に6本の電子写真感光体の球状突起数を測定し、6本の平均を球状突起数とした。従って、球状突起数が少ないほど良好であることを示す。
【0080】
更に6本間の0mm位置での球状突起数を比較し最小値と最大値の差を球状突起のロット内バラツキとした。
【0081】
(帯電能ムラ)
帯電能ムラの測定は、作製した電子写真感光体を電子写真装置(評価用に改造したキヤノン製iR5000)にセットして電位特性の評価を行った。その際、プロセススピード265mm/sec、前露光量(波長660nmのLED)4lux・sec、帯電器の電流値1000μAの条件にて電子写真装置の現像器位置にセットした表面電位計(TREK社のModel 344)の電位センサーにより像露光(波長655nmの半導体レーザー)を照射しない状態での感光体の表面電位を測定し、それを帯電能とした。測定場所は、電子写真感光体の長手方向+130mm、+90mm、0mm、−90mm、−130mmの位置で帯電能を測定し、測定値の最大値と最小値の差を求め、6本の電子写真感光体の平均を帯電能ムラとした。従って、帯電能ムラが小さいほど良好であることを示す。
【0082】
更に6本間の0mm位置での帯電能を比較し最小値と最大値の差を帯電能のロット内バラツキとした。
【0083】
(感度ムラ)
感度ムラの測定は、帯電能ムラ測定と同じ条件で表面電位が400V(暗電位)になるように帯電器の電流値を調整した後、像露光(波長655nmの半導体レーザー)を照射し、像露光光源の光量を調整して、表面電位が50V(明電位)となるようにし、そのときの露光量を感度とした。測定場所は電子写真感光体の長手方向+130mm、+90mm、0mm、−90mm、−130mmの位置で感度を測定し、測定値の最大値と最小値の差を感度ムラとした。6本の電子写真感光体の平均を感度ムラとした。従って、この長手方向の感度ムラが小さいほど良好であることを示す。
【0084】
更に6本間の0mm位置での感度を比較し最小値と最大値の差を感度のロット内バラツキとした。
【0085】
(比較例1)
図3に示す堆積膜形成装置を用い円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー102)上に表1に示す条件で、阻止層、光導電層、表面層の順に成膜を行い、6本の電子写真感光体を同時に作成した。このとき、第1の高周波電源109より周波数が105MHzの高周波電力を、マッチングボックス106を介して第1の高周波電力導入手段104に、また第2の高周波電源107より周波数が105MHzの高周波電力をマッチングボックス105を介して第2の高周波電力導入手段103に同時に印加し高周波電力を反応容器117内に供給すること以外は実施例1と同様の方法で行った。
【0086】
上記条件により作製した電子写真感光体の球状突起数、帯電能ムラ、感度ムラ及び、それぞれのロット内バラツキを実施例1と同様に求め、その結果を表2及び表3に示す。
【0087】
【表2】
Figure 2005068454
【0088】
【表3】
Figure 2005068454
【0089】
表2及び表3より、第1の高周波電力導入手段と第2の高周波電力導入手段に対する高周波電力の印加開始時間に時間差を設けることにより球状突起数、帯電能ムラ、感度ムラ、ロット内バラツキが改善されることが判明した。
【0090】
(実施例2)
図1に示す堆積膜形成装置を用い円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー102)上に表4に示す条件で、阻止層、光導電層、表面層の順に成膜を行い、6本の電子写真感光体を同時に作成した。このとき、第1の高周波電源109より周波数が105MHzの高周波電力を、また110からは周波数が60MHzの高周波電力をマッチングボックス106を介して第1の高周波電力導入手段104に印加することにより反応容器117内にプラズマを一旦、形成された後に第2の高周波電源107より周波数が105MHzの高周波電力を、また108からは周波数が60MHzの高周波電力をマッチングボックス105を介して第2の高周波電力導入手段103に印加し高周波電力を反応容器117内に供給した。またプラズマ形成の判断は反応容器の内部圧力の変動により判断し内圧が安定した段階で第2の高周波電力導入手段103に高周波電力を印加した。
【0091】
また、反応容器117は円筒状のアルミナセラミック材で構成され内面をブラスト加工を施した。更に高周波電力導入手段104及び103は直径20mmの円柱状とし、特に第1の高周波電力導入手段104の表面にはアルミナ材溶射を施した。
【0092】
【表4】
Figure 2005068454
【0093】
上記条件で作製した電子写真感光体の球状突起数、帯電能ムラ、感度ムラ及び、それぞれのロット内バラツキを実施例1と同様の方法で測定した。
【0094】
(比較例2)
図1に示す堆積膜形成装置を用い円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー102)上に表4に示す条件で、阻止層、光導電層、表面層の順に成膜を行い、6本の電子写真感光体を同時に作成した。このとき、第1の高周波電力導入手段104及び第2の高周波電力導入手段103に高周波電力を同時に印加し反応容器117内にプラズマを形成したこと以外は実施例2と同様の方法とした。
【0095】
上記条件により作製した電子写真感光体の球状突起数、帯電能ムラ、感度ムラ及び、それぞれのロット内バラツキを実施例1と同様に求め、その結果を表5及び表6に示す。
【0096】
(実施例3)
実施例2と同様に図1に示す堆積膜形成装置を用い円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー102)上に表4に示す条件で、阻止層、光導電層、表面層の順に成膜を行い、6本の電子写真感光体を同時に作成した。このとき、第2の高周波電源107より周波数が105MHzの高周波電力を、また108からは周波数が60MHzの高周波電力をマッチングボックス105を介して第2の高周波電力導入手段103に印加することにより反応容器117内にプラズマを一旦、形成された後に第1の高周波電源109より周波数が105MHzの高周波電力を、また110からは周波数が60MHzの高周波電力をマッチングボックス106を介して第1の高周波電力導入手段104に印加し高周波電力を反応容器117内に供給した。またプラズマ形成の判断は反応容器の内部圧力の変動により判断し内圧が安定した段階で第1の高周波電力導入手段104に高周波電力を印加した。
【0097】
また、反応容器117は円筒状のアルミナセラミック材で構成され内面をブラスト加工を施した。更に高周波電力導入手段104及び103は直径20mmの円柱状とし、特に第1の高周波電力導入手段104の表面にはアルミナ材溶射を施した。
【0098】
実施例2、実施例3及び比較例2によって得られた球状突起数、帯電能ムラ、感度ムラ及びそれぞれのロット内バラツキについて、比較例2の各測定値を100として相対評価を行った。この結果を表5及び表6に示す。
【0099】
【表5】
Figure 2005068454
【0100】
【表6】
Figure 2005068454
【0101】
表5及び表6より、第1の高周波電力導入手段、第2の高周波電力導入手段それぞれに対し周波数の異なる複数の高周波電力が印加可能な構成で更に反応容器内に第1の高周波電力導入手段、反応容器外に第2の高周波電力導入手段を設け、更に第1の高周波電力導入手段と第2の高周波電力導入手段に対する高周波電力の印加開始時間に時間差を設けることにより球状突起数、帯電能ムラ、感度ムラ、ロット内バラツキが改善されることが判明した。
【0102】
また反応容器内の第1の高周波電力導入手段、次いで反応容器外の第2の高周波電力導入手段の順に周波数の異なる高周波電力を印加することが更に効果的であることが判明した。
【0103】
(実施例4)
図2に示す堆積膜形成装置を用い円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー102)上に表7に示す条件で、阻止層、光導電層、表面層の順に成膜を行い、10ロット計10本の電子写真感光体を作成した。
【0104】
このとき、第1の高周波電源209より周波数が105MHzの高周波電力を、また210からは周波数が60MHzの高周波電力をマッチングボックス206を介して第1の高周波電力導入手段204に印加することにより反応容器217内にプラズマを一旦、形成された後に第2の高周波電源207より周波数が105MHzの高周波電力を、また208からは周波数が60MHzの高周波電力をマッチングボックス205を介して第2の高周波電力導入手段203に印加し高周波電力を反応容器217内に供給した。
【0105】
またプラズマ形成の判断は反応容器の内部圧力の変動により判断し内圧が安定した段階で第2の高周波電力導入手段203に高周波電力を印加した。
【0106】
また、反応容器217は円筒状のアルミナセラミック材で構成され内面をブラスト加工を施した。更に高周波電力導入手段204及び203は直径20mmの円柱状とし、特に第1の高周波電力導入手段204の表面にはアルミナ材溶射を施した。
【0107】
【表7】
Figure 2005068454
【0108】
上記条件で作製した電子写真感光体の球状突起数、帯電能及び、感度それぞれのロットバラツキを下記の条件により測定した。
【0109】
(球状突起数)
球状突起数の測定は、30mm×251mmの範囲内にある長径10μm以上の球状突起の数を測定した。測定場所は電子写真感光体の中央を0mm、垂直方向上を+、垂直方向下を−とし、電子写真感光体の長手方向+130mm、+90mm、0mm、−90mm、−130mmの位置を中心とし、幅30mmを周方向で一周(251mm)にある計5箇所の球状突起数の合計を求め球状突起数とした。従って、球状突起数が少ないほど良好であることを示す。
【0110】
更に10本間の球状突起数を比較し最小値と最大値の差を球状突起のロットバラツキとした。
【0111】
(帯電能ムラ)
帯電能ムラの測定は、作製した電子写真感光体を電子写真装置(評価用に改造したキヤノン製iR5000)にセットして電位特性の評価を行った。その際、プロセススピード265mm/sec、前露光量(波長660nmのLED)4lux・sec、帯電器の電流値1000μAの条件にて電子写真装置の現像器位置にセットした表面電位計(TREK社のModel 344)の電位センサーにより像露光(波長655nmの半導体レーザー)を照射しない状態での感光体の表面電位を測定し、それを帯電能とした。測定場所は、電子写真感光体の長手方向+130mm、+90mm、0mm、−90mm、−130mmの位置で帯電能を測定し、平均を帯電能とした。従って、帯電能ムラが小さいほど良好であることを示す。
【0112】
更に10本間の帯電能を比較し最小値と最大値の差を帯電能のロットバラツキとした。
【0113】
(感度ムラ)
感度ムラの測定は、帯電能ムラ測定と同じ条件で表面電位が400V(暗電位)になるように帯電器の電流値を調整した後、像露光(波長655nmの半導体レーザー)を照射し、像露光光源の光量を調整して、表面電位が50V(明電位)となるようにし、そのときの露光量を感度とした。測定場所は電子写真感光体の長手方向+130mm、+90mm、0mm、−90mm、−130mmの位置で感度を測定し、平均を感度とした。従って、この長手方向の感度ムラが小さいほど良好であることを示す。
【0114】
更に10本間の感度を比較し最小値と最大値の差を感度のロットバラツキとした。
【0115】
(比較例3)
実施例4と同様に図2に示す堆積膜形成装置を用い円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー102)上に表7に示す条件で、阻止層、光導電層、表面層の順に成膜を行い、10ロット計10本の電子写真感光体を作成した後、実施例4で同様の方法で球状突起数、帯電能、感度の評価を行った。
【0116】
但し、第1の高周波電力導入手段204及び第2の高周波電力導入手段203に対し高周波電力の印加開始時間に時差を設けず同時に印加した。
【0117】
実施例4及び比較例3によって得られた球状突起数、帯電能、感度それぞれのロットバラツキについて、比較例3の各測定値を100として相対評価を行った。この結果を表8に示す。
【0118】
【表8】
Figure 2005068454
【0119】
表8より、第1の高周波電力導入手段、第2の高周波電力導入手段それぞれに対し周波数の異なる複数の高周波電力が印加可能な構成で更に反応容器内に第1の高周波電力導入手段、反応容器外に第2の高周波電力導入手段を設け、更に第1の高周波電力導入手段と第2の高周波電力導入手段に対する高周波電力の印加開始時間に時間差を設けることにより球状突起数、帯電能、感度のロットバラツキが改善されることが判明した。
【0120】
【発明の効果】
以上説明したように本発明によれば、高周波−PCVD法による堆積膜形成において、画像欠陥が低減し、基体間・ロット間での特性ばらつきが抑制され、均一性・再現性が高く、安定した堆積膜形成が可能となる。また、堆積膜形成時間の短縮、原料ガス利用効率の向上が達成され、生産コストの低下が実現可能となる。
【0121】
この結果、特性の優れた半導体デバイス、電子写真用光受容部材等を低コストで安定して生産することが可能となる。
【図面の簡単な説明】
【図1】本発明に用いることができる堆積膜形成装置の一例を示した模式的な構成図である。
【図2】本発明に用いることができる堆積膜形成装置の一例を示した模式的な構成図である。
【図3】本発明に用いることができる堆積膜形成装置の一例を示した模式的な構成図である。
【図4】従来のVHF帯の周波数を用いたVHFプラズマCVD法堆積膜形成装置の一例を示した模式的な構成図である。
【図5】本発明により形成可能な電子写真用光受容部材の層構成の例を示した図である。
【符号の説明】
101、201・・・反応容器の蓋
102、202、402・・・円筒状基体
103、203・・・第2高周波電力導入手段
104、204・・・・・・第2高周波電力導入手段
105、205・・・・・・第2のマッチングボックス
106、206・・・・・・第1のマッチングボックス
107、108、207、208・・・第2の高周波電源
109、110、209、210・・・第1の高周波電源
111、311、411・・・ヒーター
112、212、412・・原料ガス供給手段
113、213、413・・回転軸
114、214、414・・モータ
115、215、415・・減速ギア
116、216、416・・排気口
117、217、401・・反応容器
118、218・・・導電性シールド
405・・マッチングボックス
409・・・高周波電源
500・・・電子写真用感光体
501・・・導電性基体
502・・・光導電層
503・・・表面層
504・・・電荷注入阻止層
505・・・電荷発生層
506・・・電荷輸送層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a deposited film on a substrate, especially a functional film, particularly a deposited film used for a semiconductor device, an electrophotographic photoreceptor, an image input line sensor, a photographing device, a photovoltaic device and the like.
[0002]
[Prior art]
Conventionally, vacuum processing methods for forming semiconductor devices, electrophotographic photoreceptors, image input line sensors, imaging devices, photovoltaic devices, etc. include plasma CVD, ion plating, plasma etching, etc. A deposition film forming method using plasma generated by electric power is known, and many apparatuses for this purpose have been put into practical use.
[0003]
For example, a deposition film forming method using the plasma CVD method, that is, a method of forming a deposited film by decomposing a source gas by glow discharge of high-frequency power and depositing the decomposed species on a substrate to be processed is preferable. It has been put into practical use as a film forming means. As an example using this method, formation of an amorphous silicon (hereinafter referred to as “a-Si”) thin film using silane gas as a source gas is known, and various apparatuses for that purpose have been proposed.
[0004]
As an apparatus for forming a deposited film of an a-Si thin film using such a plasma CVD method, a conventional deposited film forming apparatus using a VHF plasma CVD method (hereinafter referred to as “VHF-PCVD”) using a frequency in the VHF band, Specifically, FIG. 3 shows a schematic configuration diagram showing an example of an electrophotographic photoreceptor forming apparatus. 4A is a schematic view showing a longitudinal section of a conventional electrophotographic photoreceptor forming apparatus, and FIG. 4B is a cross-sectional view of the electrophotographic photoreceptor forming apparatus shown in FIG. 4A. It is a schematic diagram which shows. An exhaust port 416 is formed on the bottom surface of the reaction vessel 401, and an exhaust unit (not shown) is connected to the other end of the exhaust port 416. The cylindrical substrate 402 is disposed so as to surround the central portion of the reaction vessel 401, and is configured to be held by a rotating shaft 413 and heated by a heater 411. By driving the motor 414, the rotating shaft 413 is rotated via the reduction gear 415, and the cylindrical base body 402 is rotated.
[0005]
The source gas is introduced into the reaction vessel 401 through a source gas introduction pipe 412 from a source gas supply means (not shown). High-frequency power in the VHF band is introduced from the cathode electrode 404 into the reaction vessel 401 via the high-frequency matching box 406 from the high-frequency power source 409. At this time, since the cylindrical base body 402 is maintained at the ground potential via the rotating shaft 413, it functions as an anode electrode.
[0006]
Formation of a deposited film using such a conventional electrophotographic photoreceptor forming apparatus is performed in the following procedure. First, the cylindrical substrate 402 is installed in the reaction vessel 401, and the inside of the reaction vessel is exhausted through an exhaust port 416 by an exhaust device (not shown). Subsequently, the heater 411 controls the temperature of the cylindrical base body 402 to a predetermined temperature of 20 ° C. to 450 ° C.
[0007]
When the cylindrical substrate 402 reaches a predetermined temperature, the source gas is introduced into the reaction vessel 401 from the source gas supply means via the source gas introduction pipe 412. When the source gas reaches a predetermined flow rate and the pressure in the reaction vessel 401 is stabilized, high-frequency power in the VHF band is introduced from the cathode electrode 404 into the reaction vessel 401 via the high-frequency matching box 406 from the high-frequency power source 409. As a result, glow discharge occurs, and the source gas is excited and dissociated to form a deposited film on the cylindrical substrate 402. After the desired film thickness is formed, the supply of high-frequency power is stopped, the gas flow into the reaction vessel 401 is stopped, and the formation of the deposited film is completed. By repeating the same operation a plurality of times, a light-receiving layer having a desired multilayer structure can be formed. During the formation of the deposited film, the cylindrical substrate 402 is rotated at a predetermined speed by the motor 414 via the rotating shaft 413, so that the deposited film is formed on the entire surface of the cylindrical substrate 402.
[0008]
A high-quality deposited film is formed by such an electrophotographic photosensitive member forming apparatus, but the electrophotographic photosensitive member forming method and apparatus are being improved for further quality improvement.
[0009]
For example, a plurality of cylindrical substrates are arranged at equal intervals on the same circumference inside a shielding plate partially made of a dielectric, and electrodes are arranged on the inside and outside of the shielding plate to deposit a film on the cylindrical substrate. The technology of the deposited film forming method and apparatus for forming the film is disclosed (see Patent Document 1). It has been shown that an image defect reduction effect can be obtained by forming a deposited film on a cylindrical substrate using this deposited film forming method and apparatus.
[0010]
Further, a plurality of cylindrical substrates are arranged on the same circumference at equal intervals in a reaction vessel made of a non-conductive material, and cathode electrodes are arranged inside and outside the reaction vessel to deposit a deposited film on the cylindrical substrate. The technique of the deposited film formation method and apparatus to form is disclosed (refer patent document 2). It has been shown that the effect of improving the uniformity of deposited film characteristics can be obtained by forming a deposited film on a cylindrical substrate using this deposited film forming method and apparatus.
[0011]
[Patent Document 1]
JP-A-11-026388
[Patent Document 2]
Japanese Patent Application Laid-Open No. 11-092932
[0012]
[Problems to be solved by the invention]
A good deposited film is formed by the conventional method and apparatus. However, the level of market demand for products using these deposited films is increasing day by day, and higher quality deposited films are required to meet this demand.
[0013]
For example, in the case of an electrophotographic photoreceptor, there are very high demands for improving the process speed of the electrophotographic apparatus, reducing the size of the apparatus, and reducing the price, and the characteristics of the photoreceptor that can realize these, specifically charging ability, sensitivity, etc. It is indispensable to improve the production cost, reduce production costs, and improve the yield rate during production.
[0014]
In recent years, digital electrophotographic devices and color electrophotographic devices, which have been widely used, often make copies of not only text originals but also photographs, pictures, design drawings, etc., so that image density unevenness can be reduced more than before. Is now required. At the same time, structural defects such as spherical protrusions that cause image defects such as white spots or black spots on the image are required to be reduced more than ever.
[0015]
Such structural defects include those grown from foreign substances such as dust adhering to the object to be processed before the formation of the deposited film, as well as the deposited film formed in the apparatus during the formation of the deposited film inside the film. There is a thin film peeled off due to the stress, diffused as a film piece in the discharge space, and a part of which has grown on the substrate. For this reason, the substrate before film formation is strictly cleaned, and transported into the reaction vessel in a dust-controlled environment such as a clean room, so as to prevent dust from adhering to the substrate as much as possible. In addition, in order to prevent the deposited film formed in the reaction vessel from peeling off, the surface of the reaction vessel inner wall or the surface of the components in the reaction vessel is roughened, or a ceramic having a large surface energy. It has been treated with a material. In addition, with the aim of reducing the internal stress in the film as much as possible, optimization of the deposited film formation conditions and the deposited film stack structure has been made. However, as described above, the demand for the image level from the market is very high, and the permissible level of such structural defects (the number of structural defects and the size of the structural defects) is becoming stricter. Under these circumstances, aiming for further improvement of the structural defect suppression technology, there is a strong demand for improvement so that the formed deposited film is not peeled off.
[0016]
There is also room for improvement in terms of the uniformity and reproducibility of the characteristics of the deposited film formed. If the uniformity and reproducibility of the deposited film characteristics are insufficient, it will lead to variations in the deposited film characteristics, a decrease in product quality, and a decrease in the yield rate. In particular, in the case of forming a member consisting of a stacked structure of a plurality of deposited films, if the film characteristics of a certain layer deteriorate due to this characteristic variation, matching with other layers also deteriorates and the entire member is greatly affected. turn into. Further, in a member having a large area such as an electrophotographic photosensitive member, even if the film quality is locally deteriorated, only the portion cannot be removed, so that the influence is great. Thus, improving the uniformity and reproducibility of the deposited film characteristics and suppressing the variation in the deposited film characteristics greatly contributes to improving the characteristics of the deposited film as a whole and lowering the cost of forming the deposited film.
[0017]
In this way, realizing a deposited film formation method that can reduce spherical protrusions that cause image defects and improve the uniformity and reproducibility of deposited film properties can improve product quality and reduce production costs. It is indispensable for meeting the current market demands.
[0018]
OBJECT OF THE INVENTION
The present invention aims to solve the above problems. That is, in the present invention, a cylindrical substrate is installed in a reaction vessel that can be depressurized, and the raw material gas supplied into the reaction vessel is decomposed by the high-frequency power introduced from the high-frequency power introducing means, and deposited on the cylindrical substrate. In deposition film formation by high frequency-PCVD method to form a film, while maintaining good film characteristics, it achieves reduction of spherical projections that cause image defects such as white spots or black spots on the image, and uniform deposition film characteristics It is an object of the present invention to provide a deposited film forming method capable of improving the property and reproducibility.
[0019]
[Means and Actions for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that, in the deposited film forming method, the method of introducing high-frequency power is effective for deposited film characteristics, uniformity / reproducibility of deposited film characteristics, and productivity of deposited films. I found that it had a big influence.
[0020]
That is, in the present invention, a cylindrical substrate is placed in a depressurizable cylindrical reaction vessel at least partially made of a dielectric material, and the source gas supplied into the cylindrical reaction vessel is introduced from the high-frequency power introducing means. In the deposited film forming method in which the deposited high-frequency power is decomposed to form a deposited film on the cylindrical substrate, first cylindrical high-frequency power introducing means is provided inside the cylindrical reaction vessel, and the cylindrical reaction is further performed. A second high-frequency power introduction means is set outside the container, and independent high-frequency power sources are connected to the first high-frequency power introduction means and the second high-frequency power introduction means so that a time difference is provided in the introduction start time of the high-frequency power. The present invention relates to a method for forming a deposited film.
[0021]
Further, in the present invention, it is desirable that the high frequency power is introduced into the second high frequency power introduction means after the high frequency power is introduced into the first high frequency power introduction means.
[0022]
Further, in the present invention, it is desirable that high frequency power is introduced into the first high frequency power introduction means, and the high frequency power is introduced into the second high frequency power introduction means after the plasma is formed in the cylindrical reaction vessel.
[0023]
Furthermore, the present invention introduces a plurality of high frequency powers having different frequencies into each of the first high frequency power supply means and the second high frequency power supply means, and the plurality of high frequency powers to be introduced into the first high frequency power supply means. The frequency of one high-frequency power of the top two power values at f1 is f1, the power value is P1, the frequency of the other high-frequency power is f2, and the power value is P2. When the frequency of one high frequency power among the top two power values of the high frequency power is f1 ′, the power value is P1 ′, the frequency of the other high frequency power is f2 ′, and the power value is P2 ′, the following formula ( It is desirable to satisfy A) to (D).
[0024]
10 MHz ≦ f2 <f1 ≦ 250 MHz (A)
0.1 ≦ P2 / (P1 + P2) ≦ 0.9 (B)
10 MHz ≦ f2 ′ <f1 ′ ≦ 250 MHz (C)
0.1 ≦ P2 ′ / (P1 ′ + P2 ′) ≦ 0.9 (D)
Further, in the present invention, it is desirable that the deposited film is an electrophotographic photoreceptor composed of a non-single crystal material having at least silicon atoms as a base.
[0025]
According to the present invention as described above, it is possible to form a deposited film having good characteristics uniformly and with good reproducibility on a single substrate or a plurality of substrates, and to further suppress the occurrence of spherical protrusions. It is.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic vertical cross-sectional view showing an example of an a-Si photoconductor deposited film manufacturing apparatus that can be used in the present invention. 1A is a schematic vertical sectional view, and FIG. 1B is a schematic horizontal sectional view of FIG.
[0027]
An exhaust port 116 is formed on the bottom surface of the reaction vessel 117, and the other end of the exhaust pipe is connected to an exhaust device (not shown). Cylindrical substrates 102 on which the deposited film is formed are arranged in parallel to each other at equal intervals on the same circumference, and at least a part of the cylindrical reaction vessel is made of a dielectric material so as to surround the cylindrical substrate 102. 117 (hereinafter referred to as reaction vessel) is arranged. The cylindrical base 102 is held by a rotating shaft 113, and when the motor 114 is driven, the rotating shaft 113 rotates via the reduction gear 115, and the cylindrical base 102 rotates. The cylindrical substrate 102 can be heated by a heating element 111.
[0028]
The first high-frequency power introducing means 104 is installed in the arrangement circle of the cylindrical base body 102 arranged on the same circumference, and the high-frequency power output from the first high-frequency power sources 109 and 110 is the first Through the matching box 106, the first high frequency power introducing means 104 supplies the film into the reaction vessel 117 serving as a film formation space.
[0029]
In addition, the second high frequency power introduction means 103 is installed on the same circumference at equal intervals outside the reaction vessel 117, and the high frequency power output from the second high frequency power sources 107 and 108 is the second matching. Through the box 105, the second high frequency power introducing means 103 supplies the reaction vessel 117 as a film forming space.
[0030]
A source gas introduction unit 112 is installed in the reaction vessel 117, and a source gas supply unit (not shown) is connected to the other end of the source gas introduction unit. A desired source gas is supplied from the source gas supply means into the reaction vessel 117 via the source gas introduction means.
[0031]
Formation of a deposited film using such an apparatus is performed, for example, as follows.
[0032]
First, the cylindrical substrate 102 is installed in the reaction vessel 117, and the inside of the reaction vessel 101 is exhausted through the exhaust port 116 by an exhaust device (not shown). Subsequently, the cylindrical base 102 is heated and controlled to a predetermined temperature by the heating element 111.
[0033]
When the cylindrical substrate 102 reaches a predetermined temperature, the source gas is introduced into the reaction vessel 117 via the source gas supply means 112. After confirming that the flow rate of the source gas becomes the set flow rate and that the pressure in the reaction vessel 117 is stable, the first cathode electrode 104 is passed from the first high-frequency power sources 109 and 110 through the first matching box 106. A predetermined high-frequency power is supplied to Similarly, predetermined high frequency power is supplied from the second high frequency power supplies 107 and 108 to the second cathode electrode 103 via the second matching box 105. At this time, two independent high-frequency power controls are required. This high-frequency power introduction procedure is performed by setting the power applied from the first high-frequency power introduction means 104 to a predetermined value and then the second high-frequency power introduction procedure. It is desirable to set the power applied from the power introduction means 103 to a predetermined value. Glow discharge occurs in the reaction vessel 117 by the high frequency power introduced into the reaction vessel 117 by the above method, and the source gas is excited and dissociated to form a deposited film on the cylindrical substrate 102.
[0034]
After the formation of the desired film thickness, the introduction of the high frequency power is stopped, and then the supply of the raw material gas is stopped to finish the formation of the deposited film. When forming a multi-layered deposited film, the same operation is repeated a plurality of times. In this case, in each layer, as described above, once the formation of one layer is completed, the discharge is once stopped completely, and after the setting is changed to the gas flow rate and pressure of the next layer, the discharge occurs again. The next layer may be formed, or a plurality of layers may be continuously formed by gradually changing the gas flow rate, pressure, and high frequency power to the set values of the next layer within a certain time after the formation of one layer is completed. It may be formed. However, the discharge start operation described above may be performed when the discharge is once stopped and the discharge is started again when the layers are stacked.
[0035]
Further, during the formation of the deposited film, the cylindrical substrate 102 may be rotated at a predetermined speed by the motor 114 via the rotating shaft 113 as necessary.
[0036]
In the present invention, a plurality of high-frequency power having different frequencies is applied by high-frequency power introducing means installed inside and outside the cylindrical reaction vessel, and by independently controlling the high-frequency application start time to each high-frequency introducing means, Uniform plasma having a sufficient density can be generated in the entire reaction vessel.
[0037]
In the present invention, the high frequency power applied to the first high frequency power introduction means 104 installed in the arrangement circle of the cylindrical substrate 102 and the second high frequency power introduction means 103 installed outside the arrangement circle of the cylindrical reaction vessel 117. By providing a time difference in the power application start time, the plasma state in the discharge space within the cylindrical reaction vessel 117 can be made uniform.
[0038]
This is because when high-frequency power is simultaneously applied to the first high-frequency power introduction means 104 and the second high-frequency power introduction means 103, the vicinity of the inner wall of the reaction vessel 117 or the vicinity of the cylindrical substrate 102 in the initial stage of plasma formation. Plasma localization may occur in the discharge space in which plasma is formed within the arrangement circle of the cylindrical substrate 102 installed on the circumference or on the same circumference. There may be some variation between the two. Furthermore, once the plasma is localized in the initial stage of plasma formation, it is difficult to uniformly control the plasma in the discharge space. When the deposited film is formed while the plasma is localized, the film thickness unevenness of the deposited film or the stress balance of the film may be impaired, and film peeling may occur. This is because power absorption is large in the vicinity of the high-frequency power introduction means, and power unevenness occurs as the distance from the first and second power introduction means increases in the cross-sectional direction of the reaction vessel, and the first and second power introduction means simultaneously. It is considered that when high frequency power is applied, the power balance in the discharge space becomes unstable and the plasma is localized.
[0039]
In the present invention, it is desirable to apply the high frequency power to the second high frequency power introducing means after supplying the high frequency power to the first high frequency power introducing means provided in the discharge space. This is because when high-frequency power is first applied to the first high-frequency power introducing means provided in the discharge space, plasma is further increased than when high-frequency power is first supplied from the second high-frequency power introducing means provided outside the reaction vessel. This is because the formation of the plasma is stable and the plasma spreads uniformly in the discharge space with a relatively low power.
[0040]
Further, in the present invention, by applying high-frequency power to the first high-frequency power introducing means by applying high-frequency power to the second high-frequency power introducing means after plasma is formed in the discharge space in the reaction vessel. Power is efficiently supplied into the discharge space while maintaining a uniform plasma, which is effective.
[0041]
In the present invention, high-frequency power is applied to either the first high-frequency power introduction means or the second high-frequency power introduction means, and after the plasma is formed, high-frequency power is applied to the remaining one high-frequency power introduction means. However, regarding the determination of plasma formation, there is generally a means for monitoring the internal pressure (internal pressure) in the reaction vessel and detecting the formation of plasma by the change in internal pressure due to decomposition of the raw material gas. Detection means may be provided to detect the formation of plasma by temperature change. Further, a window may be provided in the reaction vessel to confirm the formation of plasma directly.
[0042]
In the present invention, a more remarkable effect can be obtained by the following method.
[0043]
A plurality of high-frequency powers having different frequencies as shown in FIG. 1 are applied from the first and second high-frequency power introduction means by applying them by the first high-frequency power introduction means 104 and the second high-frequency power introduction means 103. Since the standing wave generated by the high frequency power can be suppressed and the plasma distribution in the vertical direction of the reaction vessel can be made more uniform, the film characteristics and uniformity in the longitudinal direction of the cylindrical substrate are improved, and the concentration of protrusions is reduced. To do.
[0044]
It is necessary to supply a plurality of high-frequency powers into the reaction vessel from the same electrode. When high-frequency power having different frequencies is supplied from different electrodes, a standing wave depending on the frequency of the high-frequency power is generated for each electrode. As a result, the plasma characteristics in the vicinity of the electrode have a distribution shape corresponding to the standing wave, and the type / ratio of the generated active species and the energy of ions vary depending on the position.
[0045]
In the present invention, the relationship between the plurality of high frequency powers supplied to the electrodes, that is, the frequency and the power ratio may be determined while actually confirming the uniformity of the vacuum processing characteristics. If it is small, it becomes substantially the same as when high-frequency power of the same frequency is applied, and since the node position and antinode position of each standing wave are close, a sufficient standing wave suppressing effect cannot be obtained. If the difference is too large, the wavelength of the high-frequency electric field standing wave of the high-frequency power having the smaller frequency is too large for the wavelength of the high-frequency electric field standing wave of the high-frequency power having the larger frequency. Further, a sufficient standing wave suppressing effect cannot be obtained.
[0046]
In the present invention, it is necessary for obtaining the effect of the present invention that the plurality of high-frequency wave powers supplied to the electrodes include at least two high-frequency powers having a frequency of 10 MHz to 250 MHz.
[0047]
When the frequency is lower than 10 MHz, it is difficult to obtain a high processing speed. More preferably, it is 30 MHz or more from the viewpoint of the deposition rate.
[0048]
On the other hand, if the frequency is higher than 250 MHz, the attenuation of the high-frequency power in the traveling direction becomes remarkable, and the deviation of the attenuation rate from the high-frequency power having a different frequency becomes remarkable, so that a sufficient uniformizing effect cannot be obtained. End up. Therefore, it is preferable to set the frequency to 250 MHz or less because the superposition effect can be effectively obtained.
[0049]
Further, regarding the power ratio of the high-frequency power supplied to the electrodes, when supplying two high-frequency powers of the above frequency, P1 is the first high-frequency power and P2 is the second high-frequency power having a frequency lower than this. The ratio of the second high-frequency power P2 to the total power (P1 + P2) is preferably in the range of 0.1 to 0.9 in order to obtain the effects of the present invention.
[0050]
When the second high-frequency power is smaller than this range with respect to the total power, the high-frequency electric field is dominated by the component due to the first high-frequency power, and the standing wave suppressing effect is not observed. On the other hand, as the second high-frequency power is increased, the influence of the second high-frequency power on the raw material gas decomposition in the reaction vessel is increased, becoming closer to the case where the second high-frequency power is used alone. The suppression effect is reduced. Therefore, at least one of the high-frequency powers is required to be 10% or more with respect to the two total powers in order to obtain the standing wave suppressing effect with certainty.
[0051]
As described above, when the two high-frequency powers are combined, the effect of the present invention can be sufficiently obtained, but it is also possible to combine the third high-frequency power. The range of the third high-frequency power is not particularly limited as long as the first and second high-frequency powers are set in appropriate ranges, but can be as follows.
[0052]
When the third high-frequency power (frequency f3, power P3) is in the range of 10 MHz to 250 MHz similarly to f1 and f2, the first high-frequency power (P1, f1) and the second high-frequency power (P2) , F2) can be expected to have the same mechanism. At this time, if the top two power values of P1 to P3 are redefined as P1 and P2, P3 has the lowest power value. In this case, matching mismatch due to P3 hardly occurs, and the standing wave suppression effect due to P3 is added, so that unevenness may be further suppressed than when P1 and P2 are combined.
[0053]
In the present invention, a single cylindrical substrate may be used, but a plurality of cylindrical substrates may be installed in terms of productivity. However, in the case of installing a plurality of cylindrical substrates, the reaction vessel is cylindrical, and each high-frequency power introduction means, gas supply pipe, and each cylindrical substrate has the same central axis as the reaction vessel. A more remarkable effect can be obtained by arranging them at equal intervals on the circumference. This is presumed to be because processing uniformity for each substrate is improved by making the positional relationship of the cylindrical substrate, the reaction vessel, and the high-frequency power introducing means as symmetrical as possible.
[0054]
Furthermore, the constitution of the present invention is more effective in the case of an electrophotographic photosensitive member and its production. The electrophotographic photosensitive member needs to form a deposited film on a large-area substrate, and further, there must be no structural defect over the entire region. Therefore, according to the present invention, it is possible to obtain a deposited film having a uniform film thickness and film quality on the substrate and having good characteristics. Therefore, the present invention is extremely effective in improving the electrophotographic characteristics and reducing the cost accompanying the improvement in productivity. is there.
[0055]
Further, the shape of the first high-frequency power introducing means 104 and the second high-frequency power introducing means 103 is not particularly limited, but the film peeling from the first high-frequency power introducing means 104 and the second high-frequency power introducing means 103 is not limited. From the viewpoint of preventing this, it is preferable that the curved surface is formed as much as possible, and a cylindrical shape is particularly preferable.
[0056]
Further, the surface of the first high-frequency power introducing means 104 is desirably roughened for the purpose of improving film adhesion, preventing film peeling, and suppressing dust during film formation.
[0057]
Furthermore, from the viewpoint of improving the adhesion of the film, it is effective that the surface of the first high-frequency power introducing means 104 is covered with a ceramic material. The specific means for covering is not particularly limited, but for example, the first high-frequency power introducing means 104 may be mounted so as to cover with a cylindrical material such as ceramics. Specific examples of the ceramic material include alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, cordierite, zircon cordierite, silicon oxide, and beryllium mica-based ceramics. Further, the surface of the first high-frequency power introducing means 104 may be coated with the above material by a surface coating method such as CVD or thermal spraying. Among the coating methods, thermal spraying is preferable from the viewpoint of cost or because it is difficult to be limited by the size and shape of the coating object. The thickness of the ceramic material covering the surface of the first high-frequency power introducing means 104 is not particularly limited, but is preferably 1 μm to 10 mm from the viewpoint of increasing the durability and uniformity, and the amount of high-frequency power absorption and manufacturing cost. 10 μm to 5 mm is more preferable.
[0058]
Further, regarding the shape of the reaction vessel 117, it is preferable that a wall surface is provided so that the film formation space where the source gas is decomposed is limited to a cylindrical region. In order to prevent the film from peeling off, it is effective to perform roughening, coating with ceramics, heating and cooling in the same manner as the surface of the first high-frequency power introducing means 104 in order to prevent film peeling. .
[0059]
Further, in FIG. 1, 117 is a cylindrical reaction vessel, and at least a part thereof is made of a dielectric material. Specific examples of the dielectric material include alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, cordierite, zircon cordieride silicon oxide, and beryllium mica ceramics. Of these, alumina is particularly preferred because it absorbs less high frequency power.
[0060]
In addition, providing the cylindrical conductive shield 118 maintained at a constant potential so as to surround the second high-frequency power introducing means 103 installed outside the cylindrical reaction vessel 117 makes it possible to make the emitted high-frequency power uniform. It is suitable for improving
Further, the number and installation positions of the source gas supply means 112 are not particularly limited, but it is effective to install them so that the source gas can be supplied uniformly into the reaction vessel.
[0061]
FIG. 2 is a schematic vertical cross-sectional view showing an example of an a-Si-based photoreceptor deposited film manufacturing apparatus that can be used in the present invention. 2A is a schematic vertical sectional view, and FIG. 2B is a schematic horizontal sectional view of FIG.
[0062]
An exhaust port 216 is formed in the bottom surface of the reaction vessel 217, and the other end of the exhaust pipe is connected to an exhaust device (not shown). One cylindrical substrate 202 on which the deposited film is formed is arranged at the center of a cylindrical reaction vessel (hereinafter referred to as reaction vessel) 217 at least partially made of a dielectric material. The cylindrical base body 202 is held by a rotating shaft 213. When the motor 214 is driven, the rotating shaft 213 rotates via the reduction gear 215, and the cylindrical base body 202 rotates. Further, the cylindrical base body 202 can be heated by a heating element (not shown) provided inside the cylindrical base body 202.
[0063]
First high frequency power introduction means 204 arranged at equal intervals on the same circumference so as to surround the cylindrical base body 202 are installed, and the high frequency power output from the first high frequency power supplies 209 and 210 is the first high frequency power. Via the matching box 206, the first high-frequency power introducing means 204 supplies the film into the reaction vessel 217 serving as a film formation space.
[0064]
In addition, second high-frequency power introduction means 203 are installed on the same circumference at equal intervals outside the reaction vessel 217, and the high-frequency power output from the second high-frequency power sources 207 and 208 is the second matching. Via the box 205, the second high-frequency power introduction means 203 supplies the reaction vessel 217 as a film formation space.
[0065]
A source gas introduction unit 212 is installed in the reaction vessel 217, and a source gas supply unit (not shown) is connected to the other end of the source gas introduction unit. A desired source gas is supplied from the source gas supply means into the reaction vessel 217 via the source gas introduction means.
[0066]
Formation of a deposited film using such an apparatus can be performed by an operation similar to the method described in the apparatus of FIG.
[0067]
FIG. 3 is a schematic vertical cross-sectional view showing an example of an a-Si photoconductor deposited film manufacturing apparatus that can be used in the present invention. 3A is a schematic vertical sectional view, and FIG. 3B is a schematic horizontal sectional view of FIG.
[0068]
The apparatus of FIG. 3 is the same as the apparatus of FIG. 1 except that there is a single high-frequency power source for applying high-frequency power to each of the first high-frequency power introducing means 104 and the second high-frequency power introducing means 103. is there. However, the high frequency power supplies 107 and 109 use the same frequency. The same parts as those in the apparatus shown in FIG.
[0069]
By using the present invention as described above, for example, an a-Si electrophotographic photoconductor as shown in FIG. 5 can be formed.
[0070]
The electrophotographic photoreceptor 500 shown in FIG. 5A is expressed as amorphous silicon (hereinafter “a-Si: H, X”) containing a hydrogen atom or a halogen atom as a constituent element on a conductive substrate 501. And a photoconductive layer 502 having photoconductivity.
[0071]
An electrophotographic photoreceptor 500 shown in FIG. 5B includes a photoconductive layer 502 made of a-Si: H, X and having photoconductivity on an electroconductive substrate 501, and an amorphous silicon (or amorphous carbon). System) is provided with a surface layer 503.
[0072]
An electrophotographic photoreceptor 500 shown in FIG. 5C has an amorphous silicon-based charge injection blocking layer 504 and a photoconductive layer made of a-Si: H, X and having photoconductivity on a conductive substrate 501. 502 and an amorphous silicon-based (or amorphous carbon-based) surface layer 503 are provided.
[0073]
In the electrophotographic photoreceptor 500 shown in FIG. 5D, a photoconductive layer 502 is provided on a conductive substrate 501. The photoconductive layer 502 includes a charge generation layer 505 and a charge transport layer 506 made of a-Si: H, X, and an amorphous silicon (or amorphous carbon) surface layer 503 is provided thereon.
[0074]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0075]
(Example 1)
Using the deposited film forming apparatus shown in FIG. 3, a blocking layer, a photoconductive layer, and a surface are formed on a cylindrical substrate (cylindrical aluminum cylinder 102 having a mirror finish with a diameter of 80 mm and a length of 358 mm) under the conditions shown in Table 1. Film formation was performed in the order of the layers, and six electrophotographic photosensitive members were formed simultaneously. At this time, the plasma is once formed in the reaction vessel 117 by applying high-frequency power having a frequency of 105 MHz from the first high-frequency power source 109 to the first high-frequency power introducing means 104 through the matching box 106, and then A high frequency power having a frequency of 105 MHz was applied from the second high frequency power source 107 to the second high frequency power introducing means 103 via the matching box 105 to supply the high frequency power into the reaction vessel 117. The plasma formation was determined based on the fluctuation of the internal pressure of the reaction vessel, and high frequency power was applied to the second high frequency power introducing means 103 when the internal pressure was stabilized.
[0076]
The reaction vessel 117 was made of a cylindrical alumina ceramic material, and the inner surface was blasted. Further, the high frequency power introducing means 104 and 103 were formed in a columnar shape having a diameter of 20 mm, and in particular, the surface of the first high frequency power introducing means 104 was sprayed with an alumina material.
[0077]
[Table 1]
Figure 2005068454
[0078]
The number of spherical protrusions, charging ability unevenness, sensitivity unevenness, and variation within each lot of the electrophotographic photosensitive member produced under the above conditions were measured under the following conditions.
[0079]
(Number of spherical protrusions)
The number of spherical protrusions was measured by measuring the number of spherical protrusions having a major axis of 10 μm or more in the range of 30 mm × 251 mm. The measurement location is 0 mm at the center of the electrophotographic photosensitive member, + at the top in the vertical direction, − at the bottom in the vertical direction, and centered on the position of the longitudinal direction of the electrophotographic photosensitive member +130 mm, +90 mm, 0 mm, −90 mm, −130 mm The total number of spherical protrusions in a total of five locations in a circumferential direction (251 mm) of 30 mm was determined. Similarly, the number of spherical protrusions of the six electrophotographic photosensitive members was measured, and the average of the six was used as the number of spherical protrusions. Therefore, the smaller the number of spherical protrusions, the better.
[0080]
Further, the number of spherical projections at the 0 mm position between the six pieces was compared, and the difference between the minimum value and the maximum value was defined as the variation in the lot of spherical projections.
[0081]
(Charging capacity unevenness)
For measuring the charging performance unevenness, the produced electrophotographic photosensitive member was set in an electrophotographic apparatus (Canon iR5000 modified for evaluation), and potential characteristics were evaluated. At that time, a surface potential meter (Model of TREK Co., Ltd.) set at the position of the developer of the electrophotographic apparatus under the conditions of a process speed of 265 mm / sec, a pre-exposure amount (LED having a wavelength of 660 nm) of 4 lux · sec, and a charger current value of 1000 μA. The surface potential of the photoreceptor in a state where no image exposure (semiconductor laser with a wavelength of 655 nm) was irradiated was measured by the potential sensor 344), and this was defined as charging ability. The measurement location was measured by measuring the charging ability at positions of +130 mm, +90 mm, 0 mm, −90 mm, and −130 mm in the longitudinal direction of the electrophotographic photosensitive member, and obtaining the difference between the maximum value and the minimum value of the six electrophotographic photosensitive members. The average of the body was defined as uneven charging ability. Therefore, the smaller the charging performance unevenness, the better.
[0082]
Further, the charging ability at the 0 mm position between the 6 pieces was compared, and the difference between the minimum value and the maximum value was determined as the variation in charging ability within the lot.
[0083]
(Uneven sensitivity)
In the measurement of sensitivity unevenness, the current value of the charger is adjusted so that the surface potential is 400 V (dark potential) under the same conditions as the measurement of uneven charging performance, and then image exposure (semiconductor laser with a wavelength of 655 nm) is irradiated to image The light quantity of the exposure light source was adjusted so that the surface potential was 50 V (bright potential), and the exposure amount at that time was defined as sensitivity. Sensitivity was measured at positions of +130 mm, +90 mm, 0 mm, −90 mm, and −130 mm in the longitudinal direction of the electrophotographic photosensitive member, and the difference between the maximum value and the minimum value was defined as uneven sensitivity. The average of the six electrophotographic photosensitive members was defined as sensitivity unevenness. Therefore, the smaller the sensitivity unevenness in the longitudinal direction, the better.
[0084]
Furthermore, the sensitivity at the 0 mm position between the 6 pieces was compared, and the difference between the minimum value and the maximum value was defined as the variation in sensitivity within the lot.
[0085]
(Comparative Example 1)
Using the deposited film forming apparatus shown in FIG. 3, a blocking layer, a photoconductive layer, and a surface are formed on a cylindrical substrate (cylindrical aluminum cylinder 102 having a mirror finish with a diameter of 80 mm and a length of 358 mm) under the conditions shown in Table 1. Film formation was performed in the order of the layers, and six electrophotographic photosensitive members were formed simultaneously. At this time, high-frequency power having a frequency of 105 MHz from the first high-frequency power source 109 is matched with the first high-frequency power introduction means 104 via the matching box 106, and high-frequency power having a frequency of 105 MHz is matched from the second high-frequency power source 107. The same operation as in Example 1 was performed except that the high-frequency power was simultaneously applied to the second high-frequency power introducing means 103 via the box 105 and supplied to the reaction vessel 117.
[0086]
The number of spherical protrusions, charging ability unevenness, sensitivity unevenness and in-lot variation of the electrophotographic photosensitive member produced under the above conditions were determined in the same manner as in Example 1, and the results are shown in Tables 2 and 3.
[0087]
[Table 2]
Figure 2005068454
[0088]
[Table 3]
Figure 2005068454
[0089]
From Table 2 and Table 3, by providing a time difference in the application start time of the high-frequency power to the first high-frequency power introduction means and the second high-frequency power introduction means, the number of spherical protrusions, charging capability unevenness, sensitivity unevenness, and in-lot variation are reduced. It turned out to be improved.
[0090]
(Example 2)
Using the deposited film forming apparatus shown in FIG. 1, on the cylindrical substrate (cylindrical aluminum cylinder 102 having a diameter of 80 mm and length of 358 mm), the blocking layer, photoconductive layer, surface Film formation was performed in the order of the layers, and six electrophotographic photosensitive members were formed simultaneously. At this time, a high frequency power having a frequency of 105 MHz is applied from the first high frequency power source 109 and a high frequency power having a frequency of 60 MHz from 110 is applied to the first high frequency power introducing means 104 through the matching box 106 to thereby react the reaction vessel. The second high-frequency power introducing means via the matching box 105 is supplied with high-frequency power having a frequency of 105 MHz from the second high-frequency power source 107 and high-frequency power having a frequency of 60 MHz from 108 after the plasma is once formed in 117. The high frequency power was applied to the reaction vessel 117. The plasma formation was determined based on the fluctuation of the internal pressure of the reaction vessel, and high frequency power was applied to the second high frequency power introducing means 103 when the internal pressure was stabilized.
[0091]
The reaction vessel 117 was made of a cylindrical alumina ceramic material, and the inner surface was blasted. Further, the high frequency power introducing means 104 and 103 were formed in a columnar shape having a diameter of 20 mm, and in particular, the surface of the first high frequency power introducing means 104 was sprayed with an alumina material.
[0092]
[Table 4]
Figure 2005068454
[0093]
The number of spherical protrusions, charging ability unevenness, sensitivity unevenness and in-lot variation of the electrophotographic photosensitive member produced under the above conditions were measured in the same manner as in Example 1.
[0094]
(Comparative Example 2)
Using the deposited film forming apparatus shown in FIG. 1, on the cylindrical substrate (cylindrical aluminum cylinder 102 having a diameter of 80 mm and length of 358 mm), the blocking layer, photoconductive layer, surface Film formation was performed in the order of the layers, and six electrophotographic photosensitive members were formed simultaneously. At this time, the same method as in Example 2 was used except that high-frequency power was simultaneously applied to the first high-frequency power introduction means 104 and the second high-frequency power introduction means 103 to form plasma in the reaction vessel 117.
[0095]
The number of spherical protrusions, charging ability unevenness, sensitivity unevenness and in-lot variation of the electrophotographic photosensitive member produced under the above conditions were determined in the same manner as in Example 1, and the results are shown in Tables 5 and 6.
[0096]
(Example 3)
In the same manner as in Example 2, using the deposited film forming apparatus shown in FIG. 1, the blocking layer was formed on the cylindrical substrate (cylindrical aluminum cylinder 102 having a diameter of 80 mm and a length of 358 mm) with the conditions shown in Table 4. Then, a photoconductive layer and a surface layer were formed in this order, and six electrophotographic photosensitive members were simultaneously formed. At this time, a high frequency power having a frequency of 105 MHz is applied from the second high frequency power source 107 and a high frequency power having a frequency of 60 MHz is applied from the second high frequency power source 107 to the second high frequency power introducing means 103 via the matching box 105. The first high-frequency power introducing means via the matching box 106 is supplied with the high-frequency power having a frequency of 105 MHz from the first high-frequency power source 109 and the high-frequency power having a frequency of 60 MHz from 110 after the plasma is once formed in 117. The high-frequency power was applied to the reaction vessel 117 and supplied to the reaction vessel 117. In addition, the plasma formation was determined based on the fluctuation of the internal pressure of the reaction vessel, and high frequency power was applied to the first high frequency power introducing means 104 when the internal pressure was stabilized.
[0097]
The reaction vessel 117 was made of a cylindrical alumina ceramic material, and the inner surface was blasted. Further, the high frequency power introducing means 104 and 103 were formed in a columnar shape having a diameter of 20 mm, and in particular, the surface of the first high frequency power introducing means 104 was sprayed with an alumina material.
[0098]
For the number of spherical protrusions, charging ability unevenness, sensitivity unevenness and variation in each lot obtained in Example 2, Example 3 and Comparative Example 2, each measurement value of Comparative Example 2 was set to 100 and relative evaluation was performed. The results are shown in Tables 5 and 6.
[0099]
[Table 5]
Figure 2005068454
[0100]
[Table 6]
Figure 2005068454
[0101]
From Tables 5 and 6, the first high-frequency power introduction means and the second high-frequency power introduction means can be applied with a plurality of high-frequency powers having different frequencies. The second high-frequency power introducing means is provided outside the reaction vessel, and the time of application of the high-frequency power to the first high-frequency power introducing means and the second high-frequency power introducing means is set to be different from each other, so that the number of spherical protrusions and the charging ability are increased. It was found that unevenness, sensitivity unevenness, and in-lot variation were improved.
[0102]
It has also been found that it is more effective to apply high-frequency power having different frequencies in the order of the first high-frequency power introducing means inside the reaction vessel and then the second high-frequency power introducing means outside the reaction vessel.
[0103]
Example 4
Using the deposited film forming apparatus shown in FIG. 2, on the cylindrical substrate (cylindrical aluminum cylinder 102 having a diameter of 80 mm and a length of 358 mm), the blocking layer, photoconductive layer, surface Film formation was performed in the order of the layers, and a total of 10 electrophotographic photoreceptors were prepared for 10 lots.
[0104]
At this time, a high frequency power having a frequency of 105 MHz is applied from the first high frequency power source 209 and a high frequency power having a frequency of 60 MHz from 210 is applied to the first high frequency power introducing means 204 through the matching box 206 to thereby react the reaction vessel. After the plasma is once formed in 217, the second high-frequency power is introduced from the second high-frequency power source 207 through the matching box 205 to the second high-frequency power from the second high-frequency power source 207 and from the second high-frequency power through the matching box 205. The high frequency power was applied to the reaction vessel 217 by being applied to 203.
[0105]
In addition, the plasma formation was determined based on fluctuations in the internal pressure of the reaction vessel, and high frequency power was applied to the second high frequency power introducing means 203 when the internal pressure was stabilized.
[0106]
The reaction vessel 217 was made of a cylindrical alumina ceramic material, and the inner surface was blasted. Further, the high frequency power introducing means 204 and 203 were formed in a cylindrical shape having a diameter of 20 mm, and in particular, the surface of the first high frequency power introducing means 204 was sprayed with an alumina material.
[0107]
[Table 7]
Figure 2005068454
[0108]
The lot variation of the number of spherical protrusions, charging ability and sensitivity of the electrophotographic photosensitive member produced under the above conditions was measured under the following conditions.
[0109]
(Number of spherical protrusions)
The number of spherical protrusions was measured by measuring the number of spherical protrusions having a major axis of 10 μm or more in the range of 30 mm × 251 mm. The measurement location is 0 mm at the center of the electrophotographic photosensitive member, + at the top in the vertical direction, − at the bottom in the vertical direction, and centered on the position of the longitudinal direction of the electrophotographic photosensitive member +130 mm, +90 mm, 0 mm, −90 mm, −130 mm. The total number of spherical projections at a total of five locations in a circumferential direction (251 mm) of 30 mm was determined and used as the number of spherical projections. Therefore, the smaller the number of spherical protrusions, the better.
[0110]
Further, the number of spherical protrusions between the ten pieces was compared, and the difference between the minimum value and the maximum value was determined as the lot variation of the spherical protrusions.
[0111]
(Charging capacity unevenness)
For measuring the charging performance unevenness, the produced electrophotographic photosensitive member was set in an electrophotographic apparatus (Canon iR5000 modified for evaluation), and potential characteristics were evaluated. At that time, a surface potential meter (Model of TREK Co., Ltd.) set at the position of the developer of the electrophotographic apparatus under the conditions of a process speed of 265 mm / sec, a pre-exposure amount (LED with a wavelength of 660 nm) 4 lux · sec, and a current value of the charger of 1000 μA The surface potential of the photoreceptor in a state where no image exposure (semiconductor laser with a wavelength of 655 nm) was irradiated was measured by the potential sensor 344), and this was defined as charging ability. As the measurement location, the charging ability was measured at positions of +130 mm, +90 mm, 0 mm, −90 mm, and −130 mm in the longitudinal direction of the electrophotographic photosensitive member, and the average was defined as the charging ability. Therefore, the smaller the charging performance unevenness, the better.
[0112]
Further, the charging ability between the ten wires was compared, and the difference between the minimum value and the maximum value was determined as the lot variation of the charging ability.
[0113]
(Uneven sensitivity)
In the measurement of sensitivity unevenness, the current value of the charger is adjusted so that the surface potential is 400 V (dark potential) under the same conditions as the measurement of uneven charging performance, and then image exposure (semiconductor laser with a wavelength of 655 nm) is irradiated to image The light quantity of the exposure light source was adjusted so that the surface potential was 50 V (bright potential), and the exposure amount at that time was defined as sensitivity. Sensitivity was measured at positions of +130 mm, +90 mm, 0 mm, −90 mm, and −130 mm in the longitudinal direction of the electrophotographic photosensitive member, and the average was taken as the sensitivity. Therefore, the smaller the sensitivity unevenness in the longitudinal direction, the better.
[0114]
Furthermore, the sensitivity between the 10 lines was compared, and the difference between the minimum value and the maximum value was determined as the sensitivity lot variation.
[0115]
(Comparative Example 3)
In the same manner as in Example 4, the blocking layer was formed on the cylindrical substrate (cylindrical aluminum cylinder 102 having a diameter of 80 mm and a length of 358 mm) using the deposited film forming apparatus shown in FIG. The film was formed in the order of the photoconductive layer and the surface layer, and a total of 10 lots of 10 electrophotographic photoreceptors were prepared. Then, the number of spherical protrusions, charging ability and sensitivity were evaluated in the same manner as in Example 4. .
[0116]
However, the first high frequency power introduction means 204 and the second high frequency power introduction means 203 were simultaneously applied without providing a time difference in the application start time of the high frequency power.
[0117]
With respect to the lot variations of the number of spherical protrusions, the charging ability, and the sensitivity obtained in Example 4 and Comparative Example 3, each measurement value of Comparative Example 3 was set to 100, and relative evaluation was performed. The results are shown in Table 8.
[0118]
[Table 8]
Figure 2005068454
[0119]
From Table 8, the first high-frequency power introduction means and the second high-frequency power introduction means can be applied with a plurality of different high-frequency powers, and the first high-frequency power introduction means and the reaction container are further provided in the reaction vessel. The second high-frequency power introducing means is provided outside, and further, by providing a time difference in the application start time of the high-frequency power with respect to the first high-frequency power introducing means and the second high-frequency power introducing means, the number of spherical protrusions, charging ability, sensitivity It was found that lot variation was improved.
[0120]
【The invention's effect】
As described above, according to the present invention, in the formation of a deposited film by the high-frequency-PCVD method, image defects are reduced, characteristic variations between substrates and lots are suppressed, and uniformity and reproducibility are high and stable. A deposited film can be formed. Further, the deposition film formation time can be shortened and the utilization efficiency of the raw material gas can be improved, and the production cost can be reduced.
[0121]
As a result, it is possible to stably produce semiconductor devices having excellent characteristics, light receiving members for electrophotography, and the like at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a deposited film forming apparatus that can be used in the present invention.
FIG. 2 is a schematic configuration diagram showing an example of a deposited film forming apparatus that can be used in the present invention.
FIG. 3 is a schematic configuration diagram showing an example of a deposited film forming apparatus that can be used in the present invention.
FIG. 4 is a schematic configuration diagram showing an example of a VHF plasma CVD deposition film forming apparatus using a conventional VHF band frequency.
FIG. 5 is a diagram showing an example of the layer structure of an electrophotographic light-receiving member that can be formed according to the present invention.
[Explanation of symbols]
101, 201 ... Lid of reaction vessel
102, 202, 402 ... cylindrical base
103, 203 ... second high frequency power introducing means
104, 204... Second high frequency power introducing means
105, 205... Second matching box
106, 206... First matching box
107, 108, 207, 208 ... second high frequency power supply
109, 110, 209, 210... First high frequency power source
111, 311, 411 ... heater
112, 212, 412 ... Raw material gas supply means
113, 213, 413 .. Rotating shaft
114, 214, 414 .. Motor
115, 215, 415 ... Reduction gear
116, 216, 416 .. exhaust port
117, 217, 401 .. Reaction vessel
118, 218 ... conductive shield
405 ・ ・ Matching box
409 ... high frequency power supply
500 ... Photoconductor for electrophotography
501 ... Conductive substrate
502 ... Photoconductive layer
503 ... Surface layer
504 ... Charge injection blocking layer
505 ... Charge generation layer
506 ... Charge transport layer

Claims (5)

少なくとも一部が誘電体材料で構成された減圧可能な円筒状反応容器内に円筒状基体が設置され、該円筒状反応容器内に供給した原料ガスを高周波電力導入手段から導入された高周波電力により分解し、該円筒状基体上に堆積膜を形成する堆積膜形成方法に於いて、該円筒状反応容器の内部に第1の高周波電力導入手段を設け、更に該円筒状反応容器の外部に第2の高周波電力導入手段が設定され該第1高周波電力導入手段と第2高周波電力導入手段には、それぞれ独立した高周波電源が接続され高周波電力の導入開始時間に時間差を設ける事を特徴とする堆積膜形成方法。A cylindrical substrate is installed in a cylindrical reaction vessel capable of depressurization at least partially made of a dielectric material, and the raw material gas supplied into the cylindrical reaction vessel is fed by high-frequency power introduced from high-frequency power introduction means. In the deposited film forming method of decomposing and forming a deposited film on the cylindrical substrate, a first high-frequency power introducing means is provided inside the cylindrical reaction vessel, and further a first high-frequency power introducing means is provided outside the cylindrical reaction vessel. Two high-frequency power introduction means are set, and the first high-frequency power introduction means and the second high-frequency power introduction means are connected to independent high-frequency power sources, respectively, and a time difference is provided in the introduction start time of the high-frequency power. Film forming method. 第1高周波電力導入手段に高周波電力を導入した後に第2高周波電力導入手段に高周波電力を導入する事を特徴とする請求項1に記載の堆積膜形成方法。2. The deposited film forming method according to claim 1, wherein the high frequency power is introduced into the second high frequency power introduction means after the high frequency power is introduced into the first high frequency power introduction means. 第1高周波電力導入手段に高周波電力を導入し、円筒状反応容器内にプラズマが形成された後に第2高周波電力導入手段に高周波電力を導入する事を特徴とする請求項1及至2に記載の堆積膜形成方法。3. The high frequency power is introduced into the first high frequency power introducing means, and the high frequency power is introduced into the second high frequency power introducing means after the plasma is formed in the cylindrical reaction vessel. Deposited film forming method. 前記第1の高周波電力供給手段及び第2の高周波電力供給手段のそれぞれに周波数の異なる複数の高周波電力を導入し、該第1の高周波電力供給手段に導入する該複数の高周波電力における電力値の上位2つのうち一方の高周波電力の周波数をf1、電力値をP1、他方の高周波電力の周波数をf2、電力値をP2とし、該第2の高周波電力供給手段に導入する該複数の高周波電力における電力値の上位2つのうち一方の高周波電力の周波数をf1’、電力値をP1’、他方の高周波電力の周波数をf2’、電力値をP2’としたときに、下記式(A)〜(D)を満たす事を特徴とする請求項1及至3に記載の堆積膜形成方法。
10MHz≦f2<f1≦250MHz …(A)
0.1≦P2/(P1+P2)≦0.9…(B)
10MHz≦f2’<f1’≦250MHz…(C)
0.1≦P2’/(P1’+P2’)≦0.9…(D)
A plurality of high frequency powers having different frequencies are introduced into each of the first high frequency power supply unit and the second high frequency power supply unit, and the power values of the plurality of high frequency powers to be introduced into the first high frequency power supply unit The frequency of one of the upper two high frequency powers is f1, the power value is P1, the frequency of the other high frequency power is f2, and the power value is P2. When the frequency of one high frequency power of the upper two power values is f1 ′, the power value is P1 ′, the frequency of the other high frequency power is f2 ′, and the power value is P2 ′, the following formulas (A) to ( The method for forming a deposited film according to any one of claims 1 to 3, wherein D) is satisfied.
10 MHz ≦ f2 <f1 ≦ 250 MHz (A)
0.1 ≦ P2 / (P1 + P2) ≦ 0.9 (B)
10 MHz ≦ f2 ′ <f1 ′ ≦ 250 MHz (C)
0.1 ≦ P2 ′ / (P1 ′ + P2 ′) ≦ 0.9 (D)
前記堆積膜が少なくともシリコン原子を母体とする非単結晶材料で構成された電子写真用感光体である事を特徴とする請求項1及至4に記載の堆積膜形成方法。5. The method for forming a deposited film according to claim 1, wherein the deposited film is an electrophotographic photoreceptor composed of a non-single crystal material having at least silicon atoms as a base material.
JP2003209313A 2003-08-28 2003-08-28 Method for forming deposition film Pending JP2005068454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209313A JP2005068454A (en) 2003-08-28 2003-08-28 Method for forming deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209313A JP2005068454A (en) 2003-08-28 2003-08-28 Method for forming deposition film

Publications (1)

Publication Number Publication Date
JP2005068454A true JP2005068454A (en) 2005-03-17

Family

ID=34402295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209313A Pending JP2005068454A (en) 2003-08-28 2003-08-28 Method for forming deposition film

Country Status (1)

Country Link
JP (1) JP2005068454A (en)

Similar Documents

Publication Publication Date Title
JP3897582B2 (en) Vacuum processing method, vacuum processing apparatus, semiconductor device manufacturing method, and semiconductor device
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP3696983B2 (en) Plasma processing method and plasma processing apparatus
JP4109861B2 (en) Vacuum processing method
JP5058511B2 (en) Deposited film forming equipment
JP2005068454A (en) Method for forming deposition film
JP4298401B2 (en) Deposited film forming apparatus and deposited film forming method
JP2005068455A (en) Method and apparatus for forming deposition film
JPH1126388A (en) Forming equipment for deposition film and forming method for deposition film
JP2008214659A (en) Method for forming deposition film
JP2005163165A (en) Deposition film forming system and deposition film forming method
JP2005163163A (en) Deposition film formation device, and deposition film formation method
JP2009030088A (en) Device for forming deposition film
JP2003041369A (en) Method and apparatus for vacuum treatment
JP2004149825A (en) Vacuum treatment system, and vacuum treatment method
JP2003313668A (en) Process for fabricating semiconductor device
JP2005015877A (en) Apparatus and method for forming deposition film
JP2005015878A (en) Deposition film formation device, and deposition film formation method
JP2006091102A (en) Method for manufacturing electrophotographic photoreceptor
JP2006009040A (en) Film deposition apparatus and film deposition method
JP2007297660A (en) Deposited film formation device and deposited film formation method
JPH0943884A (en) Formation of electrophotographic photoreceptor
JP2005163164A (en) Deposited film forming apparatus and deposited film forming method
JP2004126277A (en) Apparatus and method for forming deposited film
JP2005163166A (en) Deposition film forming system and deposition film forming method