JP2005163164A - Deposited film forming apparatus and deposited film forming method - Google Patents

Deposited film forming apparatus and deposited film forming method Download PDF

Info

Publication number
JP2005163164A
JP2005163164A JP2003407946A JP2003407946A JP2005163164A JP 2005163164 A JP2005163164 A JP 2005163164A JP 2003407946 A JP2003407946 A JP 2003407946A JP 2003407946 A JP2003407946 A JP 2003407946A JP 2005163164 A JP2005163164 A JP 2005163164A
Authority
JP
Japan
Prior art keywords
deposited film
film forming
forming apparatus
cylindrical
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407946A
Other languages
Japanese (ja)
Inventor
Yoshio Seki
好雄 瀬木
Junichiro Hashizume
淳一郎 橋爪
Tatsuji Okamura
竜次 岡村
Tetsuya Karaki
哲也 唐木
Nobufumi Tsuchida
伸史 土田
Takashi Otsuka
崇志 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003407946A priority Critical patent/JP2005163164A/en
Publication of JP2005163164A publication Critical patent/JP2005163164A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposited film forming apparatus and deposited film forming method which realize large reduction of the occurrence of spherical projections without sacrificing electrical characteristics and further realize shortening of the deposited film forming time, improvement of the efficiency of use of gaseous raw materials and reduction of a production cost. <P>SOLUTION: The deposited film forming apparatus and deposited film forming method for forming the deposited films having good characteristics on a plurality of cylindrical substrates by arranging the plurality of substrates at equal intervals on the same circumference, arranging high-frequency electric power introducing means outside a reaction vessel, and introducing the high-frequency electric power therein, are characterized in that the cylindrical substrates constituted by combining conductive members and insulating members are installed within a region enclosed by the cylindrical substrates arranged on the same circumference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基体上に堆積膜を形成する装置および方法に関する。とりわけ機能性膜、特に半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等に用いる堆積膜形成装置および堆積膜形成方法に関する。   The present invention relates to an apparatus and method for forming a deposited film on a substrate. More particularly, the present invention relates to a deposited film forming apparatus and a deposited film forming method used for a functional film, particularly a semiconductor device, an electrophotographic photosensitive member, an image input line sensor, a photographing device, a photovoltaic device, and the like.

従来、半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス、その他各種エレクトロニクス素子、光学素子等の形成に用いる堆積膜形成方法として、プラズマCVD法、イオンプレーティング法、プラズマエッチング法等、高周波電力によって生起されたプラズマを用いた方法が多数知られており、そのための装置も実用に付されている。   Conventionally, as a deposition film forming method used for forming semiconductor devices, electrophotographic photosensitive members, line sensors for image input, photographing devices, photovoltaic devices, other various electronic elements, optical elements, etc., plasma CVD method, ion plating method Many methods using plasma generated by high-frequency power, such as a plasma etching method, are known, and an apparatus therefor has been put into practical use.

例えばプラズマCVD法、すなわち、原料ガスを高周波グロー放電により分解し、基板上に薄膜状の堆積膜を形成する方法は好適な堆積膜形成手段として実用化されており、例えば電子写真用アモルファスシリコン(以下、「a-Si」と表記する)堆積膜の形成等に利用され、そのための装置も各種提案されている。   For example, a plasma CVD method, that is, a method of decomposing a source gas by high-frequency glow discharge and forming a thin film-like deposited film on a substrate has been put to practical use as a suitable deposited film forming means. In the following, it is used for the formation of a deposited film and the like, and various apparatuses have been proposed.

特に、VHF帯の高周波電力を用いたプラズマCVD(以下、「VHF-PCVD」と略記する。)法が注目を浴びており、このVHF-PCVD法を用いた各種堆積膜の開発が積極的に進められている。これは、VHF-PCVD法では堆積膜の堆積速度が比較的速く、また高品質な堆積膜が得られるため、製品の低コスト化、高品質化を同時に達成し得るものと期待されるためである。そして、複数のa-Si系電子写真用の感光体を同時に形成できて、生産性が高い堆積膜形成装置の開発が進められている。   In particular, plasma CVD (hereinafter abbreviated as “VHF-PCVD”) using high-frequency power in the VHF band is attracting attention, and the development of various deposited films using this VHF-PCVD method is active. It is being advanced. This is because the VHF-PCVD method has a relatively high deposition rate, and a high-quality deposited film can be obtained, so that it is expected that the cost of the product and the quality can be improved at the same time. is there. Development of a deposited film forming apparatus capable of simultaneously forming a plurality of a-Si electrophotographic photoreceptors and having high productivity is in progress.

例えば、反応容器の一部を誘電体部材とし、カソード電極を反応容器の外側に複数配置することで、大面積で均質な高周波放電が容易に達成され、大面積基体へのプラズマ処理を均一且つ高速に行うことが可能になる装置が開示されている。(例えば、特許文献1参照)
このような堆積膜形成装置の一例として、図2に模式的な構成図を示す。
For example, by arranging a part of the reaction vessel as a dielectric member and arranging a plurality of cathode electrodes on the outside of the reaction vessel, uniform high-frequency discharge can be easily achieved in a large area, and plasma treatment on a large area substrate can be performed uniformly and An apparatus that can be performed at high speed is disclosed. (For example, see Patent Document 1)
FIG. 2 shows a schematic configuration diagram as an example of such a deposited film forming apparatus.

図2(a)は概略断面図、図2(b)は図2(a)の切断線A-A’に沿う概略断面図である。反応容器201は誘電体部材201(a)と上蓋201(b)から成る。反応容器201の下部には排気配管209が接続され、排気配管209の他端は不図示の排気装置(例えば真空ポンプ)に接続されている。反応容器201の中心部を取り囲むように、堆積膜の形成される複数の円筒状基体205が互いに平行になるように同一円周上に配置されている。複数の円筒状基体205は基体加熱用ヒーター207を内蔵した基体支持体206によって各々保持されている。そして、反応容器201内にはSiH4、GeH4、H2、CH4、B2H6、PH3、Ar、He等のガスボンベからなる不図示のガス供給装置に接続されたガス供給手段210があり、反応容器201の外には高周波電力導入手段202が設置されている。高周波電力導入手段202には、高周波電源203がマッチングボックス204と高周波電力分岐手段212を介して接続されている。さらに、円筒状基体205は各々の回転機構208によって、回転可能になっている。
特開平9-310181号公報
2A is a schematic cross-sectional view, and FIG. 2B is a schematic cross-sectional view taken along a cutting line AA ′ in FIG. 2A. The reaction vessel 201 includes a dielectric member 201 (a) and an upper lid 201 (b). An exhaust pipe 209 is connected to the lower part of the reaction vessel 201, and the other end of the exhaust pipe 209 is connected to an exhaust device (not shown) (for example, a vacuum pump). A plurality of cylindrical substrates 205 on which deposited films are formed are arranged on the same circumference so as to be parallel to each other so as to surround the central portion of the reaction vessel 201. The plurality of cylindrical substrates 205 are each held by a substrate support 206 having a substrate heating heater 207 incorporated therein. In the reaction vessel 201, there is a gas supply means 210 connected to a gas supply device (not shown) composed of gas cylinders such as SiH4, GeH4, H2, CH4, B2H6, PH3, Ar, and He. Is provided with high-frequency power introducing means 202. A high frequency power supply 203 is connected to the high frequency power introducing means 202 via a matching box 204 and a high frequency power branching means 212. Further, the cylindrical base body 205 can be rotated by each rotation mechanism 208.
JP 9-310181 A

このような従来の堆積膜形成装置及び方法により、膜堆積速度の向上による基体処理時間の短縮、同時処理可能基体数の増加、堆積膜特性の均一性・再現性の向上が達成され、生産コストの安い、実用的な特性と均一性を持つ電子写真感光体を得ることが可能になった。また真空反応容器内の清掃を厳格に行えばある程度欠陥の少ない電子写真感光体を得ることは可能である。     With such a conventional deposited film forming apparatus and method, it is possible to shorten the substrate processing time by increasing the film deposition rate, increase the number of simultaneously processable substrates, and improve the uniformity and reproducibility of the deposited film characteristics. It has become possible to obtain an electrophotographic photosensitive member that is inexpensive and has practical characteristics and uniformity. Further, if the inside of the vacuum reaction vessel is strictly cleaned, it is possible to obtain an electrophotographic photosensitive member having a certain number of defects.

しかしながら、これらの堆積膜を用いた製品に対する市場の要求レベルは日々高まっており、この要求に応えるべく、より高品質の堆積膜が求められるようになっている。   However, the level of market demand for products using these deposited films is increasing day by day, and higher quality deposited films are being demanded to meet this demand.

すなわち、近年、急激に需要が広がっているカラー複写機においては、これまで以上に画像欠陥に対する要求が厳しい。ところが、電子写真感光体のように大面積で比較的厚い堆積膜が要求される製品においては、その感光体の製造工程が長時間に渡るために製造工程中にダストが発生しやすく、且つ、堆積面の面積が広いため、自ずとダストが付着する確率も高まる傾向がある。このダスト起因の堆積膜の異常成長は画像欠陥に直結するため、極力なくすことが必要となってきた。   In other words, in recent years, demand for image defects is more severe than ever in color copying machines, for which demand is rapidly expanding. However, in a product that requires a relatively thick deposited film with a large area, such as an electrophotographic photosensitive member, dust is easily generated during the manufacturing process because the manufacturing process of the photosensitive member takes a long time, and Since the area of the deposition surface is large, the probability of dust adhering tends to increase. Since the abnormal growth of the deposited film due to dust is directly connected to the image defect, it is necessary to eliminate it as much as possible.

従って、膜堆積速度が速く、光学的及び電気的諸特性の要求を満足し、かつ電子写真プロセスによる画像形成時に画像欠陥が少ない堆積膜を高収率で得るためには、改善すべき問題が残存していた。   Therefore, in order to obtain a deposited film with a high yield in which the film deposition rate is high, the requirements of optical and electrical characteristics are satisfied, and the image formation by the electrophotographic process is small, there is a problem to be improved. It remained.

上記の感光体の製造工程で発生する堆積膜の異常成長とは次のようなものである。   The abnormal growth of the deposited film that occurs in the manufacturing process of the photosensitive member is as follows.

a-Si膜は基体表面に数μmオーダーのダストが付着していた場合、成膜中にそのダストを核として異常成長、いわゆる「球状突起」が成長してしまうという性質を持っている。球状突起はダストを起点とした円錐形を逆転させた形をしており、正常堆積部分と球状突起部分の界面では局在準位が非常に多いために低抵抗化し、帯電電荷が界面を通って基体側に抜けてしまう。このため、球状突起のある部分は、画像上ではべた黒画像で白い点となって現れる(反転現像の場合はべた白画像に黒い点となって現れる)。このいわゆる「ポチ」と呼ばれる画像欠陥は年々規格が厳しくなっており、大きさによってはA3用紙に数個存在していても不良として扱われることがある。さらには、カラー複写機に搭載される場合にはさらに規格は厳しくなり、A3用紙に1個存在していても不良となる場合がある。   The a-Si film has the property that, when dust of the order of several μm adheres to the substrate surface, abnormal growth, that is, so-called “spherical protrusions” grow with the dust as a nucleus during film formation. Spherical protrusions have a shape that is a reversal of the conical shape starting from dust, and there are many localized levels at the interface between the normal deposition part and the spherical protrusion part, so the resistance decreases, and the charged charge passes through the interface. Will come off to the substrate side. For this reason, the part with the spherical protrusion appears as a white point in the solid black image on the image (in the case of reversal development, it appears as a black point in the solid white image). The so-called “pochi” image defect has a stricter standard every year, and depending on the size, even if there are several A3 sheets, they may be treated as defective. Furthermore, the standard becomes more stringent when mounted on a color copying machine, and even if one is present on A3 paper, it may be defective.

この球状突起は、ダストを起点としているため、使用する基体は成膜前に精密に洗浄され、成膜装置に設置する行程は全てクリーンルームあるいは真空下で作業が行われる。このようにして、成膜開始前に基体上に付着するダストは極力少なくするよう努力されてきており、効果を上げてきた。しかし、球状突起の発生原因は基体上に付着したダストのみではない。すなわち、a-Si感光体を製造する場合、要求される膜厚が数μmから数10μmと非常に厚いため、成膜時間は数時間から数十時間に及び、この間にa-Si膜は基体のみではなく、反応炉壁や反応炉内の構造物にも堆積する。これらの炉壁、構造物は基体のように管理された表面や温度を有していないため、場合によっては密着力が弱く、長時間に渡る成膜中に膜剥がれを起こす場合があった。成膜中に僅かでも剥がれが発生すると、それがダストとなり、堆積中の感光体表面に付着し、これが起点となって球状突起の異常成長が発生してしまう。従って、高い歩留まりを維持していくためには、成膜前の基体の管理のみならず、成膜中における成膜炉内の膜剥がれの防止についても慎重な管理が必要とされ、a-Si感光体の製造を難しいものにしていた。   Since these spherical protrusions start from dust, the substrate to be used is precisely cleaned before film formation, and all the steps to be installed in the film formation apparatus are performed in a clean room or under vacuum. In this way, efforts have been made to reduce the amount of dust adhering to the substrate before the start of film formation, and the effect has been improved. However, the cause of the generation of the spherical protrusion is not only the dust adhering to the substrate. That is, when an a-Si photoconductor is manufactured, the required film thickness is very large, from several μm to several tens of μm, and therefore the film formation time ranges from several hours to several tens of hours. In addition to this, it also deposits on the reactor wall and the structures in the reactor. Since these furnace walls and structures do not have a controlled surface or temperature like the substrate, the adhesion is weak in some cases, and film peeling may occur during film formation over a long period of time. If even a slight peeling occurs during the film formation, it becomes dust and adheres to the surface of the photoreceptor being deposited, and this causes the abnormal growth of the spherical projections. Therefore, in order to maintain a high yield, careful management is required not only for management of the substrate before film formation but also for prevention of film peeling in the film formation furnace during film formation. The manufacture of the photoreceptor was difficult.

[発明の目的]
本発明の目的は、上述のごとき従来の電子写真感光体における諸問題、具体的には球状突起に起因する画像欠陥を、電気的特性を犠牲にすることなく克服して、安価に安定して歩留まり良く製造し得る、高画質の使いやすい電子写真感光体の製造を可能にする堆積膜形成装置、及び堆積膜形成方法を提供することにある。
[Object of the invention]
The object of the present invention is to overcome various problems in the conventional electrophotographic photosensitive member as described above, specifically, image defects caused by spherical protrusions without sacrificing electrical characteristics, and stably at low cost. It is an object of the present invention to provide a deposited film forming apparatus and a deposited film forming method capable of manufacturing an electrophotographic photosensitive member with high image quality that can be manufactured with high yield.

本発明者らは上記目的を達成すべく鋭意検討を行った結果、複数の円筒状基体を同一円周上に等間隔に配置し、高周波電力導入手段を反応容器の外部に配置して高周波電力を導入することで、基体上に良好な特性を有する堆積膜を形成することが可能となる堆積膜形成装置及び方法において、同一円周上に配置された円筒状基体に囲まれた領域の内部に、導電性部材と絶縁性部材とを組み合せた構成の円筒状部材を設置することによって大幅に球状突起の発生を減らすことが可能であることを見出し、本発明を完成させるに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have arranged a plurality of cylindrical substrates at equal intervals on the same circumference, and arranged high-frequency power introduction means outside the reaction vessel. In the deposited film forming apparatus and method that can form a deposited film having good characteristics on the substrate by introducing the inside of the region surrounded by the cylindrical substrate disposed on the same circumference In addition, it has been found that it is possible to significantly reduce the occurrence of spherical projections by installing a cylindrical member having a combination of a conductive member and an insulating member, and the present invention has been completed. is there.

即ち、本発明は、少なくとも一部が誘電体部材で構成された減圧可能な反応容器と、該反応容器内部に同一円周上に配置された複数の円筒状基体と、原料ガス導入手段と、該反応容器の外部に配置された複数の高周波電力導入手段とを有し、該高周波電力導入手段に高周波電力を印加し、該反応容器内にグロー放電を発生させることにより、該反応容器内に導入された原料ガスを分解し、該複数の円筒状基体上に堆積膜を形成する堆積膜形成装置において、該円筒状基体が配置される配置円内に導電性部材と絶縁性部材とを組み合せた構成の円筒状部材を有することを特徴とする堆積膜形成装置及び方法に関する。   That is, the present invention comprises a reaction vessel that can be depressurized, at least partly composed of a dielectric member, a plurality of cylindrical substrates disposed on the same circumference inside the reaction vessel, a raw material gas introduction means, A plurality of high-frequency power introduction means arranged outside the reaction vessel, and applying high-frequency power to the high-frequency power introduction means to generate glow discharge in the reaction vessel, In a deposition film forming apparatus that decomposes the introduced source gas and forms a deposition film on the plurality of cylindrical substrates, the conductive member and the insulating member are combined in the arrangement circle in which the cylindrical substrate is disposed. The present invention relates to a deposited film forming apparatus and method having a cylindrical member having the above-described configuration.

本発明によれば、複数の基体上に、良好な特性を有する堆積膜を均一に再現性良く、高い膜堆積速度で形成できると同時に、球状突起に起因する画像欠陥を極めて少なくすることが可能である。   According to the present invention, a deposited film having good characteristics can be formed on a plurality of substrates uniformly with good reproducibility and at a high film deposition rate, and at the same time, image defects caused by spherical projections can be extremely reduced. It is.

上記の効果が得られる本発明の形態について、以下、詳述する。   The embodiment of the present invention capable of obtaining the above effects will be described in detail below.

本発明者らは、複数の円筒状基体を同一円周上に等間隔に配置し、高周波電力導入手段を反応容器の外部に配置した堆積膜形成装置において、堆積膜の密着性を向上させてダストの発生を低減する方法を検討したところ、円筒状基体の周りの構成が非対称となっていることに気がついた。この非対称性は、大雑把に言って、円筒状基体の配置円の内側と外側に分けて考えることができ、内側と外側で膜の密着性や応力などが異なっている可能性が考えられた。   In the deposited film forming apparatus in which a plurality of cylindrical substrates are arranged at equal intervals on the same circumference and the high-frequency power introducing means is arranged outside the reaction vessel, the adhesion of the deposited film is improved. When a method for reducing the generation of dust was examined, it was found that the configuration around the cylindrical substrate was asymmetric. Roughly speaking, this asymmetry can be considered by dividing it into the inside and the outside of the arrangement circle of the cylindrical substrate, and there is a possibility that the adhesion and stress of the film are different between the inside and the outside.

そこで、この非対称性がどのような影響を及ぼしているかを確認するために、円筒状基体を静止状態にして成膜を行い、円筒状基体の周方向の球状突起分布を調べた。すると、やはり球状突起数は周方向に均等に発生しているのではなく、円筒状基体の配置円の内側に多く発生していることが判明した。つまり、このような形態の堆積膜形成装置において球状突起を改善し、カラー複写機での使用にも耐えるレベルまで画像欠陥を低減するためには、主に、この内側の球状突起を低減する必要があることが判明した。   Therefore, in order to confirm the influence of this asymmetry, the film was formed with the cylindrical substrate stationary, and the distribution of spherical projections in the circumferential direction of the cylindrical substrate was examined. As a result, it was found that the number of spherical protrusions was not evenly generated in the circumferential direction, but was frequently generated inside the arrangement circle of the cylindrical substrate. In other words, in order to improve the spherical protrusion in the deposited film forming apparatus of such a form and reduce the image defect to a level that can withstand use in a color copying machine, it is necessary to mainly reduce the inner spherical protrusion. Turned out to be.

円筒状基体の配置円の内側で球状突起が多く発生する理由は、現在不明だが、堆積膜形成装置の構造を見たとき、円筒状基体が並んだ円周の外側は堆積膜形成装置の炉壁が面しているのに対して、内部側には炉壁はなく、このような空間の形状の違いが原因となって付着した堆積膜の膜応力の差を発生させ、密着性に影響を与えているのだろうと想像している。   The reason why many spherical protrusions occur inside the arrangement circle of the cylindrical substrate is currently unknown, but when looking at the structure of the deposited film forming apparatus, the outer circumference of the circumference where the cylindrical substrates are arranged is the furnace of the deposited film forming apparatus. While the wall is facing, there is no furnace wall on the inside, and this difference in the shape of the space causes a difference in the film stress of the deposited film, affecting the adhesion. I imagine that would have given.

これに対して、複数の円筒状基体の内部空間に接地された導電性部材(例えば金属部材)からなる円筒状部材を設置した堆積膜形成装置において円筒状基体の周方向の球状突起数分布を調べたところ、内側で球状突起の発生率が低減しており、周方向で球状突起分布はほぼ均等になっていることが判明した。これは、複数の円筒状基体の内部空間に設置した円筒状部材が内部側の炉壁に相当する機能を持ち、擬似的ながら内部と外部の構造が対称になったためではないかと考えている。
しかしながら、円筒状基体の軸方向でみると内側は良化傾向があるものの下部側の方が球状突起の発生率は若干高い傾向が見られた。
また、複数の円筒状基体の内部空間に絶縁性部材からなる円筒状部材を、炉壁〜円筒状基体間の距離と円筒状基体〜円筒状部材の距離をほぼ等しくして設置した堆積膜形成装置において、円筒状基体の周方向の球状突起数分布を調べたところ、同様に内側の球状突起の発生率が低減し周方向で球状突起分布が良化する傾向はあるものの、導電性部材からなる円筒状部材を用いた場合よりは球状突起の発生率は高かった。
また、このときの副作用として、円筒状部材にも堆積膜が付着するため、円筒状基体に堆積する膜の堆積速度が若干低下してしまう現象が現れた。
さらに、複数の円筒状基体の内部空間に下部側が導電性部材、上部側が絶縁性部材と2等分の組み合せからなる円筒状部材を設置した堆積膜形成装置において、同様に円筒状基体の周方向の球状突起数分布を調べたところ、導電性部材で構成された円筒状部材のものより円筒状基体下部側で球状突起の発生率は低減した結果が得られた。
これらの結果から、複数の円筒状基体の内部空間に円筒状部材を配置することで、内部側の炉壁に相当する機能を持ち、擬似的ながら内部と外部の構造が対称となり、空間の形状の違いが原因となって付着した堆積膜の膜応力の差を緩和し膜の密着性を向上した効果により膜剥がれ等による球状突起の発生が抑えられていると推測している。
又、円筒状基体の内部空間はVHFパワーが上部側は高く、電気特性及び画像特性を得るために十分なパワーが投入されており、反面、下部側はパワーが低いと考えられる。
円筒状基体の内部空間に導電性部材からなる円筒状部材にした場合は、アンテナ効果によりVHFパワーの広がりをもたせる装置形態になり、下部側のVHFパワーが高くなったものと考えられる。
さらに、複数の円筒状基体の内部空間に下部側が導電性部材、上部側が絶縁性部材と2等分の組み合せからなる円筒状部材を設置した場合は、下部側によりVHFパワーを集中させるような装置形態となり、円筒状基体下部側で球状突起の発生率が更に低減したものと想像する。
In contrast, in the deposited film forming apparatus in which a cylindrical member made of a conductive member (for example, a metal member) that is grounded is installed in the internal space of a plurality of cylindrical substrates, the number of spherical projections in the circumferential direction of the cylindrical substrate is As a result of the examination, it was found that the incidence of spherical protrusions was reduced on the inner side, and the distribution of spherical protrusions was almost uniform in the circumferential direction. This is thought to be because the cylindrical member installed in the internal space of the plurality of cylindrical bases has a function corresponding to the furnace wall on the inner side, and the internal and external structures are symmetric while being simulated.
However, when viewed in the axial direction of the cylindrical substrate, the inside tends to improve, but the incidence of spherical protrusions tends to be slightly higher on the lower side.
Further, a deposited film is formed by installing a cylindrical member made of an insulating member in an internal space of a plurality of cylindrical substrates, with the distance between the furnace wall and the cylindrical substrate substantially equal to the distance between the cylindrical substrate and the cylindrical member. In the apparatus, the distribution of the number of spherical protrusions in the circumferential direction of the cylindrical substrate was examined. Similarly, although the incidence of the inner spherical protrusions decreased and the distribution of spherical protrusions in the circumferential direction tended to improve, The incidence of spherical protrusions was higher than when using a cylindrical member.
In addition, as a side effect at this time, a deposited film also adheres to the cylindrical member, and thus a phenomenon has occurred in which the deposition rate of the film deposited on the cylindrical substrate is slightly reduced.
Furthermore, in the deposited film forming apparatus in which a cylindrical member comprising a combination of a conductive member on the lower side and an insulating member on the upper side is installed in the internal space of the plurality of cylindrical substrates, the circumferential direction of the cylindrical substrate is similarly When the distribution of the number of spherical protrusions was examined, it was found that the occurrence rate of the spherical protrusions on the lower side of the cylindrical substrate was lower than that of the cylindrical member made of a conductive member.
From these results, by arranging the cylindrical member in the internal space of multiple cylindrical bases, it has a function equivalent to the furnace wall on the inner side, and the internal and external structures are symmetric while being simulated, the shape of the space It is presumed that the occurrence of spherical projections due to film peeling or the like is suppressed by the effect of relaxing the difference in the film stress of the deposited film and improving the adhesion of the film due to the difference in thickness.
Further, the internal space of the cylindrical substrate has a high VHF power on the upper side, and sufficient power is supplied to obtain electrical characteristics and image characteristics. On the other hand, it is considered that the lower side has a low power.
When a cylindrical member made of a conductive member is used in the internal space of the cylindrical base, it is considered that the VHF power is widened by the antenna effect, and the VHF power on the lower side is increased.
Further, in the case where a cylindrical member comprising a combination of a conductive member on the lower side and an insulating member on the upper side is installed in the internal space of the plurality of cylindrical bases, an apparatus that concentrates the VHF power on the lower side It is assumed that the incidence of spherical protrusions is further reduced on the lower side of the cylindrical substrate.

すなわち、上部側はVHFパワーが十分入っている為、空間を埋める効果が得られればよく、下部側はVHFパワーを高くする必要がある。このことから、本発明のように、複数の円筒状基体の内部空間に、下部側を導電性部材、上部側を絶縁性部材とした組み合せの円筒状部材を設置することで、円筒状基体に堆積する膜の堆積速度を低下させること無く、円筒状基体の球状突起を低減させることが可能となり、球状突起に起因する画像欠陥を極めて少なくすることが達成されるものである。   That is, since the VHF power is sufficiently included in the upper side, it is only necessary to obtain an effect of filling the space, and the VHF power needs to be increased on the lower side. Therefore, as in the present invention, by installing a cylindrical member in a combination of a conductive member on the lower side and an insulating member on the upper side in the internal space of the plurality of cylindrical substrates, It is possible to reduce the spherical protrusions of the cylindrical substrate without lowering the deposition rate of the film to be deposited, and it is possible to achieve extremely small image defects due to the spherical protrusions.

又、複数の円筒状基体の内部空間設けられた円筒状部材の上部側の絶縁性部材の長さは、下部側の導電性部材の長さの0.1〜8.5倍にすることが本発明には適している。
また、円筒状部材の下部側の導電性部材で構成された部分は接地されているものである。
又、本発明の検討の中で、球状突起低減効果を維持しながら円筒状部材の直径を小さくすることが可能であることが判明した。一方、堆積速度は円筒状部材の直径を小さくすることで大幅に向上することが確認され、ある程度以下の大きさにすれば、実質、堆積速度の低下は無視しうる程度にまで改善することが確認された。
In the present invention, the length of the insulating member on the upper side of the cylindrical member provided in the internal space of the plurality of cylindrical bases is 0.1 to 8.5 times the length of the conductive member on the lower side. Are suitable.
Moreover, the part comprised by the electroconductive member of the lower part side of a cylindrical member is earth | grounded.
Further, during the examination of the present invention, it has been found that the diameter of the cylindrical member can be reduced while maintaining the spherical protrusion reduction effect. On the other hand, it has been confirmed that the deposition rate is greatly improved by reducing the diameter of the cylindrical member, and if the size is below a certain level, the decrease in the deposition rate can be substantially improved to a negligible level. confirmed.

上記のように、本発明において堆積速度を低下させずに、かつ、球状突起改善効果を維持するためには、円筒状部材の直径をある特定の範囲にする必要がある。すなわち、円筒状部材の直径を、複数の円筒状基体に囲まれた空間に内接する内接円の直径(すなわち複数の円筒状基体の中心軸を結ぶ円の直径から円筒状基体の直径を引いた値)に対して0.1倍〜0.8倍、更に好ましくは0.2倍〜0.5倍とするときに限って、球状突起改善効果と堆積速度維持が両立することが判明した。   As described above, in order to maintain the spherical protrusion improvement effect without reducing the deposition rate in the present invention, the diameter of the cylindrical member needs to be within a certain range. That is, the diameter of the cylindrical member is determined by subtracting the diameter of the cylindrical substrate from the diameter of the inscribed circle inscribed in the space surrounded by the plurality of cylindrical substrates (that is, the diameter of the circle connecting the central axes of the plurality of cylindrical substrates). It was found that the spherical protrusion improvement effect and the deposition rate maintenance are compatible only when the value is 0.1 to 0.8 times, more preferably 0.2 to 0.5 times.

また、下部側を導電性部材、上部側を絶縁性部材とした組み合せの円筒状部材の全長は、堆積膜形成装置の反応容器の高さに対して、0.5倍〜0.98倍が最適であった。   In addition, the overall length of the combined cylindrical member with the conductive member on the lower side and the insulating member on the upper side was optimally 0.5 to 0.98 times the height of the reaction vessel of the deposited film forming apparatus. .

本発明は、以上の経緯によって完成されたものである。   The present invention has been completed by the above process.

以上説明したように本発明によれば、少なくとも一部が誘電体部材で構成された減圧可能な反応容器と、該反応容器内部に同一円周上に配置された複数の円筒状基体と、原料ガス導入手段と、該反応容器の外部に配置された複数の高周波電力導入手段とを有し、該高周波電力導入手段に高周波電力を印加し、該反応容器内にグロー放電を発生させることにより、該反応容器内に導入された原料ガスを分解し、該複数の円筒状基体上に堆積膜を形成する堆積膜形成装置において、
該円筒状基体が配置される配置円内に導電性部材と絶縁性部材とを組み合せた構成の円筒状部材を有することによって、電気的特性を低下させることなく大幅に球状突起の発生を減らすことが可能となった。さらに、堆積膜形成時間の短縮、原料ガス利用効率の向上が達成され、生産コストの低下が実現可能となる。
As described above, according to the present invention, a reaction vessel that can be depressurized, at least partially composed of a dielectric member, a plurality of cylindrical substrates disposed on the same circumference inside the reaction vessel, and a raw material Having a gas introduction means and a plurality of high frequency power introduction means arranged outside the reaction vessel, applying high frequency power to the high frequency power introduction means, and generating glow discharge in the reaction vessel, In a deposited film forming apparatus for decomposing a source gas introduced into the reaction vessel and forming a deposited film on the plurality of cylindrical substrates,
By having a cylindrical member composed of a combination of a conductive member and an insulating member in the arrangement circle in which the cylindrical substrate is disposed, the generation of spherical protrusions can be greatly reduced without deteriorating electrical characteristics. Became possible. Furthermore, the deposition film formation time can be shortened and the utilization efficiency of the raw material gas can be improved, and the production cost can be reduced.

以下、図面を用いて本発明の堆積膜形成装置及び堆積膜形成方法について詳細に説明する。   Hereinafter, a deposited film forming apparatus and a deposited film forming method of the present invention will be described in detail with reference to the drawings.

図1は本発明の堆積膜形成装置及び方法で、複数の電子写真感光体を同時に形成できる生産性の極めて高い装置の一例を模式的に示したものである。   FIG. 1 schematically shows an example of a highly productive apparatus capable of simultaneously forming a plurality of electrophotographic photosensitive members by the deposited film forming apparatus and method of the present invention.

図1(a)は概略断面図、図1(b)は図1(a)の切断線A-A’に沿う概略断面図である。図1に示す堆積膜製造装置は、原料ガスが分解される成膜空間を誘電体部材101(a)と上蓋101(b)から成る反応容器101により円柱状領域に制限し、円柱状成膜空間の中心軸が円筒状基体105配置円の中心を通る構成とし、さらに、円筒状基体105の配置円外に設置された高周波電力導入手段102を誘電体部材101(a)の外部に位置させることにより、原料ガスの利用効率が向上し、同時に、形成される堆積膜中の欠陥を減少させることが可能となる。   FIG. 1A is a schematic cross-sectional view, and FIG. 1B is a schematic cross-sectional view taken along the cutting line A-A ′ of FIG. The deposited film manufacturing apparatus shown in FIG. 1 restricts a film formation space in which a source gas is decomposed to a cylindrical region by a reaction vessel 101 composed of a dielectric member 101 (a) and an upper lid 101 (b). The center axis of the space passes through the center of the cylindrical substrate 105 arrangement circle, and the high-frequency power introduction means 102 installed outside the arrangement circle of the cylindrical substrate 105 is positioned outside the dielectric member 101 (a). As a result, the utilization efficiency of the source gas is improved, and at the same time, defects in the deposited film to be formed can be reduced.

反応容器101の下部には排気配管109が接続され、排気配管109の他端は不図示の排気装置(例えば真空ポンプ)に接続されている。反応容器101の中心部を取り囲むように、堆積膜を形成される複数の円筒状基体105が互いに平行になるように同一円周上に配置されている。複数の円筒状基体105は基体加熱用ヒーター107を内蔵した基体支持体106によって各々保持されている。そして、反応容器101内には概略中央に、上部側を絶縁性部材111(a)、下部側を導電性部材111(b)
とした組み合せの円筒状部材111、SiH4、GeH4、H2、CH4、B2H6、PH3、Ar、He等のガスボンベからなる不図示のガス供給装置に接続されたガス供給手段110があり、反応容器101の外には高周波電力導入手段102が設置されている。高周波電力導入手段102には、高周波電源103がマッチングボックス104と高周波電力分岐手段112を介して接続されている。さらに、円筒状基体105は各々の回転機構108によって、回転可能になっている。
An exhaust pipe 109 is connected to the lower part of the reaction vessel 101, and the other end of the exhaust pipe 109 is connected to an exhaust device (not shown) (for example, a vacuum pump). A plurality of cylindrical substrates 105 on which a deposited film is formed are arranged on the same circumference so as to be parallel to each other so as to surround the central portion of the reaction vessel 101. The plurality of cylindrical substrates 105 are respectively held by a substrate support 106 in which a substrate heating heater 107 is incorporated. In the reaction vessel 101, roughly at the center, the upper side is an insulating member 111 (a), the lower side is a conductive member 111 (b)
There is a gas supply means 110 connected to a gas supply device (not shown) consisting of a gas cylinder such as SiH4, GeH4, H2, CH4, B2H6, PH3, Ar, He, etc. Outside, a high-frequency power introducing means 102 is installed. A high frequency power supply 103 is connected to the high frequency power introducing means 102 through a matching box 104 and a high frequency power branching means 112. Further, the cylindrical base body 105 can be rotated by each rotating mechanism 108.

ここで、円筒状部材111の上部側の絶縁性部材111(a)は絶縁性材料なら何でも使用できるが、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コンジェラート、ジルコン-コンジェラート、酸化珪素酸化ベリリウムマイカ系セラミック等を用いることが好ましい。また、これらの材料中の2種以上からなる複合材料なども好適に用いられる。   Here, the insulating member 111 (a) on the upper side of the cylindrical member 111 can be any insulating material, but alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, congelate, zircon-congelate, oxidation It is preferable to use silicon beryllium mica-based ceramics. In addition, composite materials composed of two or more of these materials are also preferably used.

また、円筒状部材111の下部側の導電性部材111(b)は導電性材料なら何でも使用できるが、アルミニウム、鉄、ステンレス、金、銀、銅、ニッケル、クロム、チタンなど金属材料の場合、加工が容易で耐久性が高く、また再利用の利便性などの点でも好ましい。また、これらの材料中の2種以上からなる複合材料なども好適に用いられる。   In addition, the conductive member 111 (b) on the lower side of the cylindrical member 111 can be any conductive material, but in the case of a metal material such as aluminum, iron, stainless steel, gold, silver, copper, nickel, chromium, titanium, It is preferable in terms of easy processing, high durability, and convenience of reuse. In addition, composite materials composed of two or more of these materials are also preferably used.

円筒状部材111の表面の少なくとも一部は、算術平均粗さ(Ra)が1μm以上20μm以下の範囲であることが好ましい。これは、Raを1μm以上とすることでa-Si堆積膜との接触面積が増加し、密着性に良好な影響を及ぼすからである。一方、Raが大き過ぎると逆にダストを取り込みやすくなり、これが吐き出された際に球状突起の原因になってしまうことがある。よって、Raは1μm以上20μm以下の範囲であることが好ましい。   At least a part of the surface of the cylindrical member 111 preferably has an arithmetic average roughness (Ra) in the range of 1 μm to 20 μm. This is because when Ra is 1 μm or more, the contact area with the a-Si deposited film is increased, and the adhesiveness is favorably affected. On the other hand, if Ra is too large, it becomes easy to take up dust, and this may cause spherical protrusions when discharged. Therefore, Ra is preferably in the range of 1 μm to 20 μm.

さらに、円筒状部材111の表面は、Raを上記の範囲内にすると同時に平均傾斜角(θa)を9度以上20度以下の範囲に制御することが好ましい。θaとは、表面粗さの傾きに相当する指標であり、これを9〜20度の範囲とすることにより表面の凹凸が深くなり、より密着性が向上する。なお、平均傾斜角(θa)とは図3に示すように測定曲線の局部傾斜の絶対値を合計し、平均した値(Δa)の逆正接(θa=tan-1Δa)で表される。 Further, the surface of the cylindrical member 111 is preferably controlled so that Ra is within the above range and the average inclination angle (θa) is in the range of 9 degrees to 20 degrees. θa is an index corresponding to the slope of the surface roughness, and by setting this to a range of 9 to 20 degrees, the unevenness of the surface becomes deep and the adhesion is further improved. As shown in FIG. 3, the average inclination angle (θa) is expressed as an arc tangent (θa = tan −1 Δa) of the average value (Δa) of the total absolute values of the local inclinations of the measurement curve.

また、Raを上記の範囲内にすると同時に局部山頂の平均間隔(S)を30μm以上100μm以下の範囲にすることも好ましい。Sとは、凹凸の凸部の間隔に相当する指標であり、この値を30〜100μmとすることにより、やはり表面の凹凸が深くなり、より密着性が向上する。   It is also preferable to set Ra within the above-mentioned range and at the same time the average interval (S) between the local peaks is in the range of 30 μm to 100 μm. S is an index corresponding to the interval between the convex and concave portions of the concave and convex portions. By setting this value to 30 to 100 μm, the concave and convex portions on the surface are deepened and the adhesion is further improved.

更に、Raとθa、Sをすべて上記の範囲内にすることで、特に密着性の向上が顕著になることが本発明者の実験によって明らかとなった。これは、Ra、θa、Sを一定の範囲にすることで部材と堆積膜との接触面積をより最適な範囲にでき、部材に堆積する膜の応力が緩和されやすい状態になって密着性が増したためであると考えている。   Furthermore, it has been clarified through experiments by the inventors that Ra, θa, and S are all within the above ranges, and the improvement in adhesion is particularly remarkable. This is because by setting Ra, θa, and S within a certain range, the contact area between the member and the deposited film can be made more optimal, and the stress of the film deposited on the member can be easily relaxed, resulting in adhesion. I think this is because of the increase.

本発明で用いた表面粗さの測定はJIS B0601-1994に基づき、Surftest SJ-400(株式会社ミツトヨ)を用いカットオフ0.8mm、基準長さ0.8mm、評価長さ4mmとして測定を行った。   The surface roughness used in the present invention was measured based on JIS B0601-1994 using Surftest SJ-400 (Mitutoyo Co., Ltd.) with a cutoff of 0.8 mm, a reference length of 0.8 mm, and an evaluation length of 4 mm.

円筒状部材111の表面粗さを上記の範囲に制御するためには、ブラスト加工を行ったり、溶射材で被覆すれば良い。ブラスト加工や溶射は、コスト面から、あるいは表面粗さの制御性の高さや、コーティング対象物の大きさ・形状の制限を受けにくいため好ましい。   In order to control the surface roughness of the cylindrical member 111 within the above range, blasting or coating with a thermal spray material may be performed. Blasting and thermal spraying are preferable from the viewpoint of cost, high controllability of surface roughness, and difficulty in being limited by the size and shape of the coating target.

溶射の具体的手段に特に制限はないが、例えばプラズマ溶射、減圧プラズマ溶射、高速フレーム溶射、低温溶射などのコーティング法により表面をコーティングしてもよい。具体的な溶射材料としては、円筒状部材111の上部側の絶縁性部材111(a)は、セラミックス材料が好ましく、具体的には、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コンジェラート、ジルコン-コンジェラート、酸化珪素酸化ベリリウムマイカ系セラミック等の少なくとも一つ以上を含む材料によって構成されていると堆積膜の密着性が高く、球状突起発生防止のために有効であるので好ましい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミは誘電正接や絶縁抵抗等の電気特性にすぐれ、高周波電力の吸収が少ないことからより好ましい。また、円筒状部材111の下部側の導電性部材111(b)はアルミニウム、ニッケル、ステンレス、二酸化チタン、鉄等が挙げられる。   Although the specific means for thermal spraying is not particularly limited, the surface may be coated by a coating method such as plasma spraying, low-pressure plasma spraying, high-speed flame spraying, or low-temperature spraying. As a specific thermal spray material, the insulating member 111 (a) on the upper side of the cylindrical member 111 is preferably a ceramic material, and specifically, alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, and congerate. It is preferable to use a material containing at least one of zircon-congelate, silicon oxide beryllium oxide mica-based ceramic and the like because the adhesion of the deposited film is high and effective for preventing the formation of spherical protrusions. Among these, alumina, boron nitride, and aluminum nitride are more preferable because they are excellent in electrical characteristics such as dielectric loss tangent and insulation resistance, and absorb less high frequency power. Examples of the conductive member 111 (b) on the lower side of the cylindrical member 111 include aluminum, nickel, stainless steel, titanium dioxide, and iron.

円筒状部材111の表面を被覆する溶射材の厚さは特に制限はないが、耐久性および均一性を増すため、また、製造コストの面から1μm〜1mmが好ましく、10μm〜500μmがより好ましい。   The thickness of the thermal spray material covering the surface of the cylindrical member 111 is not particularly limited, but is preferably 1 μm to 1 mm, more preferably 10 μm to 500 μm from the viewpoint of manufacturing cost, in order to increase durability and uniformity.

本発明の堆積膜形成装置101では、円筒状部材111の下部側の導電性部材111(b)は電気的に接地することが必要である。接地することによって、高周波電力導入手段102に対して擬似的な対向電極的な作用をしているものと推測される。逆に、円筒状部材111の下部側の導電性部材111(b)は、接地するだけで充分に本発明の効果を得ることができるため、例えば円筒状部材111の下部側の導電性部材111(b)用に別の高周波電源を用意したり、1台の高周波電源103から高周波電力導入手段102と円筒状部材111の下部側の導電性部材111(b)に出力を分岐して整合を取る、といったコストや手間が一切掛からないため、堆積膜形成装置101自体のコストを低減することができ、ひいては電子写真感光体の製造コスト低減にも結びつくことになる。   In the deposited film forming apparatus 101 of the present invention, the conductive member 111 (b) on the lower side of the cylindrical member 111 needs to be electrically grounded. By grounding, it is presumed that the high-frequency power introducing means 102 is acting as a pseudo counter electrode. On the contrary, since the conductive member 111 (b) on the lower side of the cylindrical member 111 can sufficiently obtain the effects of the present invention by simply grounding, the conductive member 111 on the lower side of the cylindrical member 111, for example. (b) Prepare another high-frequency power source for use, or branch the output from one high-frequency power source 103 to the high-frequency power introducing means 102 and the conductive member 111 (b) on the lower side of the cylindrical member 111 for matching. Therefore, the cost of the deposited film forming apparatus 101 itself can be reduced, which leads to a reduction in manufacturing cost of the electrophotographic photosensitive member.

本発明においては高周波電力の周波数が50〜450MHzの範囲において、画像欠陥の低減効果が特に高くなる。これは、50MHzよりも低い周波数領域においては、プラズマが安定して生成可能な圧力が急激に高まることに起因していると思われる。本発明者らの検討によれば、例えば周波数が13.56MHzの場合には、プラズマが安定して生成可能な圧力は、周波数が50MHz以上の場合と比べ約1桁から半桁高いことが確認されている。このような高い圧力においては、成膜空間中においてポリシラン等のパーティクルが生じ易く、このパーティクルが堆積膜中に取り込まれると球状突起を発生させやすくなる。本発明において、高周波電力の周波数を50MHz以上とすることにより、プラズマ生成圧力を充分低くすることができるため、パーティクルの発生確率は激減し、円筒状基体全周にわたって良好な堆積膜が形成されるものと考えられる。   In the present invention, the effect of reducing image defects is particularly high when the frequency of the high frequency power is in the range of 50 to 450 MHz. This seems to be due to the rapid increase in pressure at which plasma can be stably generated in a frequency region lower than 50 MHz. According to the study by the present inventors, for example, when the frequency is 13.56 MHz, it is confirmed that the pressure at which plasma can be stably generated is about one to half digits higher than that when the frequency is 50 MHz or more. ing. At such a high pressure, particles such as polysilane are easily generated in the film formation space, and when these particles are taken into the deposited film, spherical protrusions are easily generated. In the present invention, since the plasma generation pressure can be sufficiently lowered by setting the frequency of the high frequency power to 50 MHz or more, the generation probability of particles is drastically reduced, and a good deposited film is formed over the entire circumference of the cylindrical substrate. It is considered a thing.

また、450MHzよりも高い周波数領域においては、プラズマの均一性の低下により450MHz以下の場合と比べて膜特性の均一性に差が生じてしまう。このような膜特性の均一性に差ができると、同時に膜の応力にも差が生じ、その境界付近で膜剥がれが生じやすくなる。このため、画像欠陥が悪化しやすい。周波数が450MHzよりも高い周波数領域においては、電力導入手段近傍での電力の吸収が大きく、ここで電子の生成が最も頻繁に為されるため、プラズマ不均一を生じ易く、堆積膜の特性むらにつながりやすい。450MHz以下の周波数においては、電力導入手段近傍での極端な電力吸収が生じにくいため、プラズマ均一性、さらには膜特性の均一性が高くなる。   Further, in a frequency region higher than 450 MHz, the uniformity of the film characteristics is different from the case of 450 MHz or less due to a decrease in plasma uniformity. If there is a difference in the uniformity of such film characteristics, there will also be a difference in the stress of the film at the same time, and film peeling is likely to occur near the boundary. For this reason, image defects are likely to deteriorate. In the frequency region where the frequency is higher than 450 MHz, the power absorption near the power introduction means is large, and electrons are most frequently generated here, so that plasma non-uniformity is likely to occur and the characteristics of the deposited film are uneven. Easy to connect. At frequencies of 450 MHz or less, extreme power absorption in the vicinity of the power introduction means is unlikely to occur, resulting in high plasma uniformity and even film property uniformity.

また、高周波電源103は、装置に適した高周波電力を発生することが出来ればいかなるものでも好適に使用出来る。さらに、高周波電源103の出力変動率には特に制限は無い。   As the high frequency power source 103, any device can be suitably used as long as it can generate high frequency power suitable for the apparatus. Further, the output fluctuation rate of the high frequency power supply 103 is not particularly limited.

本発明で使用されるマッチングボックス104は高周波電源103と負荷の整合を取ることができるものであればいかなる構成のものでも好適に使用出来る。また、整合を取る方法としては、自動的に調整されるものが製造時の煩雑さを避けるために好適であるが、手動で調整されるものであっても本発明の効果に全く影響は無い。また、マッチングボックス104が配置される位置に関しては整合が取れる範囲においてどこに設置してもなんら問題はないが、マッチングボックス104から高周波電力導入手段102までの配線のインダクタンスを出来るだけ小さくするような配置とした方が広い負荷条件で整合を取ることが可能になるため望ましい。   The matching box 104 used in the present invention can be suitably used in any configuration as long as the high frequency power supply 103 and the load can be matched. In addition, as a method of taking the alignment, an automatically adjusted method is preferable in order to avoid complexity at the time of manufacturing, but even if manually adjusted, there is no influence on the effect of the present invention. . In addition, as for the position where the matching box 104 is disposed, there is no problem wherever the matching box 104 can be placed within the range where matching can be achieved, but the layout is made so that the inductance of the wiring from the matching box 104 to the high-frequency power introducing means 102 is made as small as possible. This is desirable because it enables matching under a wide range of load conditions.

高周波電力導入手段102及び高周波電力分岐手段112の材質としては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスなどは熱伝導が良く、電気伝導も良いので好適である。これらの材料中の2種以上からなる複合材料なども好適に用いられる。   Copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chrome, molybdenum, titanium, stainless steel, etc. are good materials for heat conduction and high-frequency power introduction means 102 and high-frequency power branch means 112. It is preferable because it is good. A composite material composed of two or more of these materials is also preferably used.

高周波電力導入手段102の数としては、円筒状基体105と同数もしくは円筒状基体105の1/2とすることが更に好ましい。円筒状基体105の1/2とする場合には、近接する2つの円筒状基体105との距離が等しくなるよう配置することが最適である。複数の高周波電力導入手段102への電力の供給は、例えば、1つの高周波電源103からマッチングボックス104を介した後、電力供給路を高周波電力分岐手段112で分岐させて行うことができる。また例えば、1つの高周波電源103から電力供給路を高周波電力分岐手段112で分岐させた後、複数のマッチングボックスを介して電力供給を行ってもよく、さらには例えば、個々の高周波電力導入手段102ごとに別個の高周波電源およびマッチングボックスを設けてもよいが、全ての高周波電力導入手段102から導入される高周波電力の周波数が完全に一致するという点、装置コストの点、装置の大きさの点から、1つの高周波電源から全ての高周波電力導入手段102に電力供給されることが好ましい。   More preferably, the number of high-frequency power introducing means 102 is the same as the number of cylindrical bases 105 or 1/2 of the cylindrical bases 105. When the half of the cylindrical base body 105 is used, it is optimal that the distance between two adjacent cylindrical base bodies 105 is equal. The supply of power to the plurality of high-frequency power introducing means 102 can be performed, for example, by branching the power supply path by the high-frequency power branching means 112 after passing through the matching box 104 from one high-frequency power supply 103. Further, for example, after a power supply path is branched from one high-frequency power source 103 by the high-frequency power branching means 112, power may be supplied through a plurality of matching boxes, and further, for example, individual high-frequency power introducing means 102 A separate high frequency power supply and a matching box may be provided for each, but the frequency of the high frequency power introduced from all the high frequency power introduction means 102 is completely the same, the cost of the device, the size of the device Therefore, it is preferable that power is supplied to all high-frequency power introducing means 102 from one high-frequency power source.

高周波電力導入手段102としては棒状、筒状、板状等のカソード電極や、同軸構造体の外部導体に開口部を設けそこから電力供給する手段等が用いることができる。   As the high-frequency power introducing means 102, rod-shaped, cylindrical, plate-shaped cathode electrodes, means for providing an opening in the outer conductor of the coaxial structure, and supplying power from there can be used.

本発明で使用される反応容器101の誘電体部材101(a)の材料としては、セラミックス材料が好ましく、具体的には、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コンジェラート、ジルコン-コンジェラート、酸化珪素酸化ベリリウムマイカ系セラミック等の少なくとも一つ以上を含む材料によって構成されていると堆積膜の密着性が高く、球状突起発生防止のために有効であるので好ましい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミは誘電正接や絶縁抵抗等の電気特性にすぐれ、高周波電力の吸収が少ないことからより好ましい。   The material of the dielectric member 101 (a) of the reaction vessel 101 used in the present invention is preferably a ceramic material. Specifically, alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, congelate, zircon- It is preferable to use a material including at least one of congelate, silicon oxide beryllium oxide mica ceramic, etc., because the adhesion of the deposited film is high and effective for preventing the occurrence of spherical protrusions. Among these, alumina, boron nitride, and aluminum nitride are more preferable because they are excellent in electrical characteristics such as dielectric loss tangent and insulation resistance, and absorb less high frequency power.

また、加工の容易さから電子写真感光体を作製する際には、反応容器101の誘電体部材101(a)の形状は円筒形状が好ましいが、必要に応じて楕円形、多角形形状を用いても良く、作製する部材に応じて形状を選択すれば良い。   Further, when producing an electrophotographic photosensitive member from the viewpoint of ease of processing, the shape of the dielectric member 101 (a) of the reaction vessel 101 is preferably a cylindrical shape, but if necessary, an elliptical shape or a polygonal shape is used. The shape may be selected depending on the member to be manufactured.

反応容器101の誘電体部材101(a)表面の少なくとも一部は、球状突起低減効果を増すために算術平均粗さ(Ra)が1μm以上20μm以下の範囲であることが好ましい。また、Raを上記の範囲内にすると同時に平均傾斜角(θa)を9度以上20度以下の範囲に制御する、或いはRaを上記の範囲内にすると同時に局部山頂の平均間隔(S)を30μm以上100μm以下の範囲にすることがより好ましい。さらに、Ra、θa、Sを全て上記の範囲内にすることで画像欠陥改善効果が特に顕著になる。   At least a part of the surface of the dielectric member 101 (a) of the reaction vessel 101 preferably has an arithmetic average roughness (Ra) in the range of 1 μm to 20 μm in order to increase the effect of reducing spherical protrusions. In addition, Ra is controlled within the above range, and the average inclination angle (θa) is controlled within the range of 9 degrees to 20 degrees, or Ra is set within the above range, and at the same time, the average interval (S) between the local peaks is 30 μm. More preferably, it is in the range of 100 μm or less. Further, by making Ra, θa, and S all within the above ranges, the image defect improvement effect becomes particularly remarkable.

反応容器101の上蓋101(b)の材質としては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスなどの材料を用いると導電性で熱伝導が良いので好適である。これらの材料中の2種以上からなる複合材料なども好適に用いられる。   If the material of the top lid 101 (b) of the reaction vessel 101 is copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, stainless steel, etc., it is conductive and can conduct heat. It is preferable because it is good. A composite material composed of two or more of these materials is also preferably used.

円筒状基体105は、使用目的に応じた材質を有するものであれば良い。材質においては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスは電気伝導が良好のため好適である。さらに、これらの材料中の2種以上からなる複合材料も耐熱性が向上するために望ましい。   The cylindrical base 105 only needs to have a material according to the purpose of use. Of the materials, copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, and stainless steel are preferable because of their good electrical conductivity. Furthermore, a composite material composed of two or more of these materials is also desirable for improving heat resistance.

基体加熱用ヒーター107は真空仕様である発熱体であればよく、具体的にはシース状ヒーター、板状ヒーター、セラミックヒーター、カーボンヒーター等の電気抵抗発熱体、ハロゲンランプ、赤外線ランプ等の熱放射ランプ発熱体、液体、気体等を温媒とし熱交換手段による発熱体等が挙げられる。基体加熱用ヒーター107の表面材料としてはステンレス、ニッケル、アルミニウム、銅等の金属類、セラミック、耐熱性高分子樹脂等を使用することができる。   The substrate heating heater 107 may be a heating element having a vacuum specification. Specifically, it is an electric resistance heating element such as a sheathed heater, a plate heater, a ceramic heater, or a carbon heater, and heat radiation such as a halogen lamp or an infrared lamp. Examples include a heating element using a heat exchange means using a lamp heating element, liquid, gas, or the like as a heating medium. As the surface material of the substrate heating heater 107, metals such as stainless steel, nickel, aluminum, and copper, ceramics, heat resistant polymer resins, and the like can be used.

図1の堆積膜形成装置を用いた堆積膜の形成は、例えば概略以下のようにして行われる。   Formation of a deposited film using the deposited film forming apparatus of FIG. 1 is performed, for example, as follows.

まず、基体ホルダー106に保持した円筒状基体105を反応容器101内に設置し、不図示の排気装置により排気口109を通して反応容器101内を排気する。続いて、発熱体107により円筒状基体105を所定の温度に加熱・制御する。   First, the cylindrical substrate 105 held by the substrate holder 106 is installed in the reaction vessel 101, and the inside of the reaction vessel 101 is exhausted through an exhaust port 109 by an exhaust device (not shown). Subsequently, the cylindrical base 105 is heated and controlled to a predetermined temperature by the heating element 107.

円筒状基体105が所定の温度となったところで、原料ガス供給手段110を介して、原料ガスを反応容器101内に導入する。原料ガスの流量が設定流量となり、また、反応容器101内の圧力が安定したのを確認した後、高周波電源103からマッチングボックス104を介して高周波電力導入手段102へ所定の高周波電力を供給する。供給された高周波電力によって、反応容器101内にグロー放電が生起し、原料ガスは励起・解離して円筒状基体105上に堆積膜が形成される。   When the cylindrical substrate 105 reaches a predetermined temperature, the source gas is introduced into the reaction vessel 101 through the source gas supply means 110. After confirming that the flow rate of the raw material gas becomes the set flow rate and the pressure in the reaction vessel 101 is stable, predetermined high frequency power is supplied from the high frequency power source 103 to the high frequency power introducing means 102 via the matching box 104. Glow discharge occurs in the reaction vessel 101 by the supplied high frequency power, and the source gas is excited and dissociated to form a deposited film on the cylindrical substrate 105.

所望の膜厚の形成が行なわれた後、高周波電力の供給を止め、続いて原料ガスの供給を停止して堆積膜の形成を終える。多層構造の堆積膜を形成する場合には、同様の操作を複数回繰り返す。この場合、各層間においては、上述したように1つの層の形成が終了した時点で一旦放電を完全に停止し、次層のガス流量、圧力に設定が変更された後、再度放電を生起して次層の形成を行なってもよいし、あるいは、1つの層の形成終了後一定時間でガス流量、圧力、高周波電力を次層の設定値に徐々に変化させることにより連続的に複数層を形成してもよい。また、各層の間で一旦、反応容器101内の残留ガスを充分真空引きすることで、層と層の間で異なるガス種を使う場合の汚染の心配がなくなるため好ましい。   After the formation of the desired film thickness, the supply of the high frequency power is stopped, and then the supply of the source gas is stopped to finish the formation of the deposited film. When forming a multi-layered deposited film, the same operation is repeated a plurality of times. In this case, in each layer, as described above, once the formation of one layer is completed, the discharge is once stopped completely, and after the setting is changed to the gas flow rate and pressure of the next layer, the discharge occurs again. The next layer may be formed, or a plurality of layers may be continuously formed by gradually changing the gas flow rate, pressure, and high-frequency power to the set values of the next layer within a certain period of time after the formation of one layer. It may be formed. In addition, it is preferable to sufficiently evacuate the residual gas in the reaction vessel 101 once between the layers, because there is no fear of contamination when different gas species are used between the layers.

堆積膜の形成中、必要に応じて円筒状基体105を回転機構108により所定の速度で回転させてもよい。   During the formation of the deposited film, the cylindrical substrate 105 may be rotated at a predetermined speed by the rotation mechanism 108 as necessary.

本発明を用いることにより、例えば図4に示すようなa-Si系電子写真感光体が形成可能である。   By using the present invention, for example, an a-Si electrophotographic photosensitive member as shown in FIG. 4 can be formed.

図4(a)に示す電子写真感光体1200は、支持体1201の上に、水素原子またはハロゲン原子を構成要素として含むアモルファスシリコン(以下「a-Si:H,X」と表記する。)を有する光導電性を有する光導電層1202が設けられている。   An electrophotographic photosensitive member 1200 shown in FIG. 4A includes amorphous silicon (hereinafter referred to as “a-Si: H, X”) containing a hydrogen atom or a halogen atom as a constituent element on a support 1201. A photoconductive layer 1202 having photoconductivity is provided.

図4(b)に示す電子写真感光体1200は、支持体1201の上に、a-Si:H,Xからなり光導電性を有する光導電層1202と、アモルファスシリコン系(又はアモルファス炭素系)表面層1203が設けられて構成されている。   An electrophotographic photosensitive member 1200 shown in FIG. 4B has a photoconductive layer 1202 made of a-Si: H, X and having photoconductivity on a support 1201, and an amorphous silicon type (or amorphous carbon type). A surface layer 1203 is provided.

図4(c)に示す電子写真感光体1200は、支持体1201の上に、アモルファスシリコン系電荷注入阻止層1204と、a-Si:H,Xからなり光導電性を有する光導電層1202と、アモルファスシリコン系(又はアモルファス炭素系)表面層1203が設けられて構成されている。   An electrophotographic photosensitive member 1200 shown in FIG. 4C has an amorphous silicon-based charge injection blocking layer 1204 and a photoconductive layer 1202 made of a-Si: H, X and having photoconductivity on a support 1201. An amorphous silicon (or amorphous carbon) surface layer 1203 is provided.

図4(d)に示す電子写真感光体1200は、支持体1201の上に、光導電層1202が設けられている。この光導電層1202はa-Si:H,Xからなる電荷発生層1205及び電荷輸送層1206とからなり、その上にアモルファスシリコン系(又はアモルファス炭素系)表面層1203が設けられている。   In the electrophotographic photosensitive member 1200 shown in FIG. 4D, a photoconductive layer 1202 is provided on a support 1201. The photoconductive layer 1202 includes a charge generation layer 1205 and a charge transport layer 1206 made of a-Si: H, X, and an amorphous silicon (or amorphous carbon) surface layer 1203 is provided thereon.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれらによりなんら制限されるものではない。
(実施例1)
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー105上に、高周波電源103の発振周波数を105MHzとして表1に示す条件に従い、前述の堆積膜形成方法でa-Si堆積膜から成る電子写真感光体を形成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited at all by these.
(Example 1)
Using the deposited film forming apparatus shown in FIG. 1, the above-described deposited film forming method is performed on a cylindrical aluminum cylinder 105 having a diameter of 80 mm and a length of 358 mm according to the conditions shown in Table 1 with the oscillation frequency of the high frequency power source 103 set to 105 MHz. An electrophotographic photosensitive member comprising a Si deposited film was formed.

円筒状部材は、上部側の材質をアルミナ製、下部側の材質はステンレス製に2等分した物を用い、直径は、円筒状基体に囲まれた領域の直径の0.3倍、長さは、反応容器の高さの0.95倍とした。円筒状部材の表面は、上部側及び下部側共にブラスト加工により、Ra=7±1μm、θa=15±2度、S=50±10μmとした。   The cylindrical member is made by dividing the material on the upper side into alumina and the material on the lower side into two, and the diameter is 0.3 times the diameter of the region surrounded by the cylindrical base, and the length is The height of the reaction vessel was 0.95 times. The surface of the cylindrical member was Ra = 7 ± 1 μm, θa = 15 ± 2 degrees, and S = 50 ± 10 μm by blasting on both the upper side and the lower side.

Figure 2005163164
Figure 2005163164

(比較例1)
図2に示す堆積膜形成装置を用い、実施例1と同様にして表1の条件でa-Si感光体の形成を行った。本比較例では円筒状部材は設けなかったが、その他の成膜条件は実施例1と全く同様とした。
(Comparative Example 1)
Using the deposited film forming apparatus shown in FIG. 2, an a-Si photosensitive member was formed under the conditions shown in Table 1 in the same manner as in Example 1. Although the cylindrical member was not provided in this comparative example, other film forming conditions were exactly the same as those in Example 1.

実施例1、比較例1で作成したa-Si電子写真感光体は、下記の方法で評価を行った。
(球状突起数)
得られた感光体の表面を光学顕微鏡で観察した。そして、10μm以上の大きさの球状突起の数を数え、10cm2当たりの個数を調べた。
The a-Si electrophotographic photosensitive member prepared in Example 1 and Comparative Example 1 was evaluated by the following method.
(Number of spherical protrusions)
The surface of the obtained photoreceptor was observed with an optical microscope. Then, the number of spherical protrusions having a size of 10 μm or more was counted, and the number per 10 cm 2 was examined.

得られた結果は、比較例1での値を100%とした場合の相対比較でランク付けを行った。   The obtained results were ranked by relative comparison when the value in Comparative Example 1 was 100%.

◎ … 30%未満
○〜◎ … 30%以上50%未満
○ … 50%以上70%未満
△〜○ … 70%以上95%未満
△ … 95%以上105%未満
× … 105%以上に増加
(画像欠陥)
本テスト用に改造したキヤノン製複写機iR5000に本実施例で作製した電子写真感光体を設置し、プロセススピード265mm/sec、前露光(波長660nmのLED)光量4lx・s、主帯電器の電流値1000μAの条件にて画像形成を行い、A3サイズの黒原稿を複写した。こうして得られた画像全域を観察し、直径0.2mm以上の球状突起に起因する白ポチの個数を数えた。
◎… Less than 30%
○ ~ ◎… 30% to less than 50%
○… 50% or more and less than 70%
△ ~ ○… 70% or more and less than 95%
△… 95% or more and less than 105%
×… Increase to over 105%
(Image defect)
The electrophotographic photosensitive member produced in this example was installed in the Canon iR5000 modified for this test, the process speed was 265 mm / sec, the pre-exposure (LED with a wavelength of 660 nm), the amount of light 4 lx · s, the current of the main charger An image was formed under the condition of a value of 1000 μA, and an A3 size black original was copied. The entire area of the image thus obtained was observed, and the number of white spots caused by spherical protrusions having a diameter of 0.2 mm or more was counted.

得られた結果は、比較例1での値を100%とした場合の相対比較でランク付けを行った。   The obtained results were ranked by relative comparison when the value in Comparative Example 1 was 100%.

◎ … 30%未満
○〜◎ … 30%以上50%未満
○ … 50%以上70%未満
△〜○ … 70%以上95%未満
△ … 95%以上105%未満
× … 105%以上に増加
(帯電能)
電子写真装置の主帯電器に一定の電流(例えば1000μA)を流し、現像器位置にセットした表面電位計(TREK社Model344)の電位センサーにより暗部電位を測定した。したがって、暗部電位が大きいほど帯電能が良好であることを示す。帯電能測定は感光体母線方向全領域に渡って行い、その平均値とした。帯電能の評価結果は、比較例1の結果を基準とした。
◎… Less than 30%
○ ~ ◎… 30% to less than 50%
○… 50% or more and less than 70%
△ ~ ○… 70% or more and less than 95%
△… 95% or more and less than 105%
×… Increase to over 105%
(Chargeability)
A constant current (for example, 1000 μA) was passed through the main charger of the electrophotographic apparatus, and the dark portion potential was measured by a potential sensor of a surface electrometer (TREK Model 344) set at the position of the developer. Therefore, the larger the dark part potential, the better the charging ability. The charging ability was measured over the entire region in the direction of the photoreceptor bus, and the average value was taken. The evaluation result of charging ability was based on the result of Comparative Example 1.

◎ … 10%以上の良化
○ … 5%以上10%未満の良化
△ … 5%未満の良化
× … 悪化
(感度)
現像器位置での暗部電位が一定値(例えば450V)となるよう主帯電器電流を調整した後、原稿に反射濃度0.1以下の所定の白紙を用い、現像器位置での明部電位が所定の値となるよう像露光(波長655nmの半導体レーザー)を調整した際の像露光量により評価する。したがって、像露光量が少ないほど感度が良好であることを示す。感度測定は感光体母線方向全領域に渡って行い、その平均値とした。したがって、数値が小さいほど良好である。感度の評価結果は、比較例1の結果を基準とした。
◎… 10% or better
○ ... 5% or more and less than 10% improvement
△… Less than 5% improvement
×… worse
(sensitivity)
After adjusting the main charger current so that the dark part potential at the developing unit position becomes a constant value (for example, 450 V), a predetermined white paper having a reflection density of 0.1 or less is used for the original, and the bright part potential at the developing unit position is predetermined. Evaluation is based on the amount of image exposure when adjusting the image exposure (semiconductor laser with a wavelength of 655 nm) so as to be a value. Therefore, the smaller the image exposure amount, the better the sensitivity. Sensitivity was measured over the entire region in the direction of the photoreceptor bus, and the average value was taken. Therefore, the smaller the value, the better. The evaluation result of sensitivity was based on the result of Comparative Example 1.

◎ … 10%以上の良化
○ … 5%以上10%未満の良化
△ … 5%未満の良化
× … 悪化
(光メモリー)
現像器位置における暗部電位が所定の値となるように主帯電器の電流値を調整した後、所定の白紙を原稿とした際の明部電位が所定の値となるよう像露光光量を調整する。この状態でキヤノン製ゴーストテストチャート(部品番号:FY9-9040)に反射濃度1.1、直径5mmの黒丸を貼り付けたものを原稿台に置き、その上にキヤノン製中間調チャートを重ねておいた際のコピー画像において、中間調コピー上に認められるゴーストチャートの直径5mmの黒丸の反射濃度と中間調部分の反射濃度との差を測定することにより行った。光メモリーの測定は、感光体母線方向全領域に渡って行い、その平均値とした。したがって、数値が小さいほど良好である。光メモリーの評価結果は、比較例1の結果を基準とした。
◎… 10% or better
○ ... 5% or more and less than 10% improvement
△… Less than 5% improvement
×… worse
(Optical memory)
After adjusting the current value of the main charger so that the dark portion potential at the developing unit position becomes a predetermined value, the image exposure light amount is adjusted so that the bright portion potential when the predetermined white paper is used as a document has a predetermined value. . When a Canon ghost test chart (part number: FY9-9040) with a black circle with a reflection density of 1.1 and a diameter of 5 mm is placed on the platen and a Canon halftone chart is placed on top of it In this copy image, the difference between the reflection density of the black circle with a diameter of 5 mm and the reflection density of the halftone portion of the ghost chart recognized on the halftone copy was measured. The optical memory was measured over the entire area in the direction of the photoreceptor bus, and the average value was taken. Therefore, the smaller the value, the better. The evaluation result of the optical memory was based on the result of Comparative Example 1.

◎ … 10%以上の良化
○ … 5%以上10%未満の良化
△ … 5%未満の良化
× … 悪化
実施例1、比較例1の評価結果を表2に示す。表2から分かるように、複数の円筒状基体に囲まれた領域の中央に円筒状部材を設けることによって球状突起、画像欠陥が大幅に改善されることが分かる。また、予期しなかった効果であるが、帯電能、感度、光メモリーといった電子写真感光体の特性に関しても改善が見られることが判明した。
◎… 10% or better
○ ... 5% or more and less than 10% improvement
△… Less than 5% improvement
X ... Deterioration Table 2 shows the evaluation results of Example 1 and Comparative Example 1. As can be seen from Table 2, it can be seen that spherical projections and image defects are greatly improved by providing a cylindrical member in the center of a region surrounded by a plurality of cylindrical substrates. In addition, although it was an unexpected effect, it was found that improvements were also made in the characteristics of the electrophotographic photosensitive member such as charging ability, sensitivity, and optical memory.

Figure 2005163164
Figure 2005163164

(比較例2-a)
図1に示す堆積膜形成装置を用い、実施例1と同様にして表1の条件でa-Si感光体の形成を行った。本比較例では円筒状部材は全てステンレス製のものを用いたこと以外は実施例1と全く同様とした。
(比較例2-b)
図1に示す堆積膜形成装置を用い、実施例1と同様にして表1の条件でa-Si感光体の形成を行った。本比較例では円筒状部材は全てアルミナ製のものを用いたこと以外は実施例1と全く同様とした。
(Comparative Example 2-a)
Using the deposited film forming apparatus shown in FIG. 1, an a-Si photoconductor was formed under the conditions shown in Table 1 in the same manner as in Example 1. In this comparative example, the cylindrical member was completely the same as Example 1 except that all stainless steel members were used.
(Comparative Example 2-b)
Using the deposited film forming apparatus shown in FIG. 1, an a-Si photoconductor was formed under the conditions shown in Table 1 in the same manner as in Example 1. In this comparative example, the cylindrical members were all the same as those in Example 1 except that all of the cylindrical members were made of alumina.

実施例1、比較例1、比較例2(a、b)で作成したa-Si電子写真感光体は、下記の方法で評価を行った。
(球状突起軸方向分布)
得られた感光体の表面を光学顕微鏡で観察した。そして、10μm以上の大きさの球状突起の数を軸方向3箇所数え、10cm2当たりの個数を調べた。
The a-Si electrophotographic photoreceptors prepared in Example 1, Comparative Example 1, and Comparative Example 2 (a, b) were evaluated by the following methods.
(Spherical protrusion axial distribution)
The surface of the obtained photoreceptor was observed with an optical microscope. Then, the number of spherical protrusions having a size of 10 μm or more was counted in three axial directions, and the number per 10 cm 2 was examined.

得られた結果は、比較例1での下部の測定値を100%とした場合の相対比較でランク付けを行い軸方向の球状突起の分布を確認した。   The obtained results were ranked by relative comparison when the lower measured value in Comparative Example 1 was set to 100%, and the distribution of spherical protrusions in the axial direction was confirmed.

5 … かなり良好
4 … やや良好
3 … 同等
2 … やや悪化
1 … かなり悪化

(画像欠陥)
実施例1と同様に画像欠陥の評価を比較例1での値を100%とした場合の相対比較でランク付けを行った。
5… Pretty good
4 ... Slightly good
3 ... Equivalent
2… Somewhat worse
1 ... considerably worse

(Image defect)
In the same manner as in Example 1, evaluation of image defects was ranked by relative comparison when the value in Comparative Example 1 was 100%.

5 … かなり良好
4 … やや良好
3 … 同等
2 … やや悪化
1 … かなり悪化
実施例1、比較例2の評価結果を表3に示す。表3から分かるように、実施例1のように、複数の円筒状基体に囲まれた領域の中央に上部側の材質をアルミナ製、下部側の材質をステンレス製に2等分した円筒状部材を設けることによって、球状突起、画像欠陥が改善されたことが分かる。
特に、円筒状基体下部側で球状突起の発生率は低減した結果が得られた。
5… Pretty good
4 ... Slightly good
3 ... Equivalent
2… Somewhat worse
1 ... considerably deteriorated Table 3 shows the evaluation results of Example 1 and Comparative Example 2. As can be seen from Table 3, as in Example 1, a cylindrical member in which the upper side material is made of alumina and the lower side material is made of stainless steel in the middle of a region surrounded by a plurality of cylindrical substrates. It can be seen that the spherical protrusions and image defects were improved by providing.
In particular, the result of reducing the incidence of spherical protrusions on the lower side of the cylindrical substrate was obtained.

Figure 2005163164
Figure 2005163164

(実施例2)
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー105上に、高周波電源103の発振周波数を50MHzとして表1に示す条件に従い、前述の堆積膜形成方法でa-Si堆積膜から成る電子写真感光体を形成した。
(Example 2)
Using the deposited film forming apparatus shown in FIG. 1, the above-described deposited film forming method is performed on a cylindrical aluminum cylinder 105 having a diameter of 80 mm and a length of 358 mm according to the conditions shown in Table 1 with the oscillation frequency of the high frequency power supply 103 set to 50 MHz. An electrophotographic photosensitive member comprising a Si deposited film was formed.

円筒状部材の直径は、円筒状基体に囲まれた領域の直径の0.3倍、長さは、反応容器の高さの0.95倍、円筒状部材の上部側の材質をアルミナ製、下部側の材質はステンレス製とし、上部側の絶縁性部材部と下部側導電性部材の長さの比を変化させた。   The diameter of the cylindrical member is 0.3 times the diameter of the region surrounded by the cylindrical substrate, the length is 0.95 times the height of the reaction vessel, the material on the upper side of the cylindrical member is made of alumina, and the material on the lower side Is made of stainless steel, and the ratio of the length of the upper insulating member portion to the lower conductive member is changed.

円筒状部材の表面は、上部側及び下部側共にブラスト加工により、Ra=7±1μm、θa=15±2度、S=50±10μmとした。
実施例2で作成したa-Si電子写真感光体の球状突起軸分布、画像欠陥について、実施例1と同様の方法で評価を行った。
実施例2の評価結果を表4に示す。表4から分かるように、絶縁性部材と導電性部材とを組合せた円筒状部材は、上部側の絶縁性部材の長さを下部側の導電性部材の長さに対して0.1〜8.5倍とすることが本発明には適している。
絶縁性部材と導電性部材とを組合せた円筒状部材は、上部側の絶縁性部材の長さを下部側の導電性部材の長さに対して0.05倍または9.0倍にしたときは円筒状基体下部側で0.1~0.85倍にしたときより球状突起の悪化が若干見られた。
The surface of the cylindrical member was Ra = 7 ± 1 μm, θa = 15 ± 2 degrees, and S = 50 ± 10 μm by blasting on both the upper side and the lower side.
The spherical projection axis distribution and image defects of the a-Si electrophotographic photosensitive member prepared in Example 2 were evaluated in the same manner as in Example 1.
The evaluation results of Example 2 are shown in Table 4. As can be seen from Table 4, the cylindrical member combining the insulating member and the conductive member has a length of the insulating member on the upper side 0.1 to 8.5 times the length of the conductive member on the lower side. This is suitable for the present invention.
A cylindrical member combining an insulating member and a conductive member has a cylindrical base when the length of the upper insulating member is 0.05 times or 9.0 times the length of the lower conductive member. Slight worsening of the spherical protrusion was observed when the magnification was 0.1 to 0.85 times on the lower side.

Figure 2005163164
Figure 2005163164

(実施例3)
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー105上に、高周波電源103の発振周波数を105MHzと60MHzの重畳周波数として表5に示す条件に従い、前述の堆積膜形成方法でa-Si堆積膜から成る電子写真感光体を形成した。
Example 3
Using the deposited film forming apparatus shown in FIG. 1, on the cylindrical aluminum cylinder 105 having a diameter of 80 mm and a length of 358 mm, the above-mentioned deposition is performed according to the conditions shown in Table 5 with the oscillation frequency of the high-frequency power source 103 as the superposed frequency of 105 MHz and 60 MHz. An electrophotographic photosensitive member comprising an a-Si deposited film was formed by a film forming method.

円筒状部材の直径は、円筒状基体に囲まれた領域の直径の0.3倍、長さは、反応容器の高さの0.95倍、円筒状部材の上部側の材質をアルミナ製、下部側の材質はアルミニウム製とし、上部側の絶縁性部材部を下部側導電性部材の長さに対して0.7倍とした。   The diameter of the cylindrical member is 0.3 times the diameter of the region surrounded by the cylindrical substrate, the length is 0.95 times the height of the reaction vessel, the material on the upper side of the cylindrical member is made of alumina, and the material on the lower side Was made of aluminum, and the upper insulating member portion was 0.7 times the length of the lower conductive member.

円筒状部材の表面は、ブラスト加工により、Ra=7±1μm、θa=15±2度、S=50±10μmとした。
実施例3で作成したa-Si電子写真感光体を実施例1と同様の評価を行ったところ、実施例1同様に良好な結果が得られた。
The surface of the cylindrical member was Ra = 7 ± 1 μm, θa = 15 ± 2 degrees, and S = 50 ± 10 μm by blasting.
The a-Si electrophotographic photosensitive member prepared in Example 3 was evaluated in the same manner as in Example 1. As a result, good results were obtained as in Example 1.

Figure 2005163164
Figure 2005163164

(実施例4)
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー105上に、高周波電源103の発振周波数を50MHzとして表1に示す条件に従い、前述の堆積膜形成方法でa-Si堆積膜から成る電子写真感光体を形成した。 円筒状部材の直径は、円筒状基体に囲まれた領域の直径の0.3倍、長さは、反応容器の高さの0.9倍、円筒状部材の上部側の材質をアルミナ製、下部側の材質はニッケル製とし、上部側の絶縁性部材部を下部側導電性部材の長さに対して0.7倍とした。
Example 4
Using the deposited film forming apparatus shown in FIG. 1, the above-described deposited film forming method is performed on a cylindrical aluminum cylinder 105 having a diameter of 80 mm and a length of 358 mm according to the conditions shown in Table 1 with the oscillation frequency of the high frequency power supply 103 set to 50 MHz. An electrophotographic photosensitive member comprising a Si deposited film was formed. The diameter of the cylindrical member is 0.3 times the diameter of the region surrounded by the cylindrical substrate, the length is 0.9 times the height of the reaction vessel, the material on the upper side of the cylindrical member is made of alumina, and the material on the lower side Is made of nickel, and the upper insulating member portion is 0.7 times the length of the lower conductive member.

円筒状部材の表面は、ブラスト加工により、Ra=7±1μm、θa=15±2度、S=50±10μmとしたとした。
実施例4で作成したa-Si電子写真感光体を実施例1と同様の評価を行ったところ、実施例1同様に良好な結果が得られた。
(実施例5)
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー105上に、表5に示す条件に従い、前述の堆積膜形成方法でa-Si堆積膜から成る電子写真感光体を形成した。円筒状部材は上部側の材質をアルミナ製、下部側の材質はステンレス製とし上部側の絶縁性部材部を下部側導電性部材の長さに対して1.0倍とした。
円筒状部材の直径は、円筒状基体の内部空間の直径の0.5倍、高さは、反応容器の高さの0.6倍とした。高周波電源103の発振周波数は60MHzと105MHzの重畳周波数とした。
The surface of the cylindrical member was set to Ra = 7 ± 1 μm, θa = 15 ± 2 degrees, and S = 50 ± 10 μm by blasting.
The a-Si electrophotographic photosensitive member prepared in Example 4 was evaluated in the same manner as in Example 1. As a result, good results were obtained as in Example 1.
(Example 5)
1. Using the deposited film forming apparatus shown in FIG. 1, an electrophotographic photosensitive film composed of an a-Si deposited film on a cylindrical aluminum cylinder 105 having a diameter of 80 mm and a length of 358 mm in accordance with the conditions shown in Table 5 by the aforementioned deposited film forming method. Formed body. The cylindrical member was made of alumina on the upper side and made of stainless steel on the lower side, and the insulating member on the upper side was made 1.0 times the length of the lower conductive member.
The diameter of the cylindrical member was 0.5 times the diameter of the internal space of the cylindrical substrate, and the height was 0.6 times the height of the reaction vessel. The oscillation frequency of the high frequency power source 103 was set to a superposition frequency of 60 MHz and 105 MHz.

本実施例では、円筒状部材下部側の導電性部材の表面をアルミニウム材、ニッケル材、ステンレス材、二酸化チタン材の4種類の材料を用いた溶射により、Ra=6±1μm、θa=15±2度、S=60±10μmの範囲になるように溶射加工を施し、各々材料を用いて4回の成膜を行った。
なお、溶射加工を行わなかった上部側のアルミナ製の円筒状部材も同様の表面状態になるようブラスト加工を施している。
実施例5で作成したa-Si電子写真感光体を実施例1と同様の評価を行ったところ、いずれのa-Si電子写真感光体も実施例1同様に良好な結果が得られた。
In this embodiment, Ra = 6 ± 1 μm, θa = 15 ± by spraying the surface of the conductive member on the lower side of the cylindrical member by using four kinds of materials of aluminum, nickel, stainless steel and titanium dioxide. Thermal spraying was performed twice so that S = 60 ± 10 μm, and film formation was performed four times using each material.
Note that the alumina cylindrical member on the upper side that has not been sprayed is also blasted so as to have a similar surface state.
When the a-Si electrophotographic photosensitive member prepared in Example 5 was evaluated in the same manner as in Example 1, all the a-Si electrophotographic photosensitive members had good results as in Example 1.

(実施例6)
図1に示す堆積膜形成装置を用い、直径80mm、長さ358mmの円筒状アルミニウムシリンダー105上に、表5に示す条件に従い、前述の堆積膜形成方法でa-Si堆積膜から成る電子写真感光体を形成した。円筒状部材は上部側の材質をアルミナ製、下部側の材質はニッケル製とし上部側の絶縁性部材部を下部側導電性部材の長さに対して1.0倍とした。
円筒状部材の直径は、円筒状基体の内部空間の直径の0.5倍、高さは、反応容器の高さの0.6倍とした。高周波電源103の発振周波数は60MHzと105MHzの重畳周波数とした。
Example 6
1. Using the deposited film forming apparatus shown in FIG. 1, on the cylindrical aluminum cylinder 105 having a diameter of 80 mm and a length of 358 mm, in accordance with the conditions shown in Table 5, an electrophotographic photosensitive film comprising an a-Si deposited film by the aforementioned deposited film forming method. Formed body. The cylindrical member was made of alumina on the upper side and made of nickel on the lower side, and the insulating member on the upper side was made 1.0 times the length of the lower conductive member.
The diameter of the cylindrical member was 0.5 times the diameter of the internal space of the cylindrical substrate, and the height was 0.6 times the height of the reaction vessel. The oscillation frequency of the high frequency power source 103 was set to a superposition frequency of 60 MHz and 105 MHz.

本実施例では、円筒状部材上部側の絶縁性部材の表面をアルミナ、ジルコニアの材料の2種類、及び双方の混合材料を用いた溶射により、Ra=6±1μm、θa=15±2度、S=60±10μmの範囲になるように溶射加工を施し、各々材料を用いて3回の成膜を行った。
なお、溶射加工を行わなかった下部側のニッケル製の円筒状部材も同様の表面状態になるようブラスト加工を施している。
実施例6で作成したa-Si電子写真感光体を実施例1と同様の評価を行ったところ、いずれのa-Si電子写真感光体も実施例1同様に良好な結果が得られた。
In this embodiment, Ra = 6 ± 1 μm, θa = 15 ± 2 degrees, by spraying the surface of the insulating member on the upper side of the cylindrical member with two types of materials of alumina and zirconia, and a mixture of both. Thermal spraying was performed so that S = 60 ± 10 μm, and film formation was performed three times using each material.
Note that the nickel cylindrical member on the lower side that has not been subjected to thermal spraying is also blasted so as to have a similar surface state.
The a-Si electrophotographic photosensitive member prepared in Example 6 was evaluated in the same manner as in Example 1. As a result, all a-Si electrophotographic photosensitive members had good results as in Example 1.

本発明の堆積膜形成装置の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the deposited film formation apparatus of this invention. 従来のVHF帯の周波数を用いたVHFプラズマCVD法による電子写真感光体の製造装置の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the manufacturing apparatus of the electrophotographic photoreceptor by the VHF plasma CVD method using the frequency of the conventional VHF band. 平均傾斜角(θa)の定義を説明するための模式図である。It is a schematic diagram for demonstrating the definition of average inclination angle ((theta) a). 本発明により形成可能な電子写真感光体の層構成の一例を示した図である。FIG. 3 is a diagram illustrating an example of a layer configuration of an electrophotographic photosensitive member that can be formed according to the present invention.

符号の説明Explanation of symbols

101 反応容器
101(a)誘電体部材
101(b)上蓋
102 高周波電力導入手段
103 高周波電源
104 マッチングボックス
105 円筒状基体
106 基体支持体
107 基体加熱用ヒーター
108 回転機構
109 排気配管
110 ガス供給手段
111 円筒状部材
111(a)上部側絶縁性部材
111(b)下部側導電性部材
201 反応容器
201(a)誘電体部材
201(b)上蓋
202 高周波電力導入手段
203 高周波電源
204 マッチングボックス
205 円筒状基体
206 基体支持体
207 基体加熱用ヒーター
208 回転機構
209 排気配管
210 ガス供給手段
1200 電子写真感光体
1201 支持体
1202 光導電層
1203 表面層
1204 電荷注入阻止層
1205 電荷発生層
1206 電荷輸送層
101 reaction vessel
101 (a) Dielectric member
101 (b) Upper lid
102 High-frequency power introduction means
103 high frequency power supply
104 matching box
105 Cylindrical substrate
106 Substrate support
107 Substrate heating heater
108 Rotating mechanism
109 Exhaust piping
110 Gas supply means
111 Cylindrical member
111 (a) Upper insulating member
111 (b) Lower conductive member
201 reaction vessel
201 (a) Dielectric member
201 (b) Upper lid
202 High-frequency power introduction means
203 high frequency power supply
204 matching box
205 Cylindrical substrate
206 Substrate support
207 Substrate heating heater
208 Rotating mechanism
209 Exhaust piping
210 Gas supply means
1200 electrophotographic photoreceptor
1201 Support
1202 Photoconductive layer
1203 Surface layer
1204 Charge injection blocking layer
1205 Charge generation layer
1206 Charge transport layer

Claims (18)

少なくとも一部が誘電体部材で構成された減圧可能な反応容器と、該反応容器内部に同一円周上に配置された複数の円筒状基体と、原料ガス導入手段と、該反応容器の外部に配置された複数の高周波電力導入手段とを有し、該高周波電力導入手段に高周波電力を印加し、該反応容器内にグロー放電を発生させることにより、該反応容器内に導入された原料ガスを分解し、該複数の円筒状基体上に堆積膜を形成する堆積膜形成装置において、
該円筒状基体が配置される配置円内に導電性部材と絶縁性部材とを組み合せた構成の円筒状部材を有することを特徴とする堆積膜形成装置。
A reaction vessel capable of being depressurized, at least a part of which is made of a dielectric member, a plurality of cylindrical substrates disposed on the same circumference inside the reaction vessel, a raw material gas introduction means, and an outside of the reaction vessel A plurality of high-frequency power introducing means arranged, applying a high-frequency power to the high-frequency power introducing means, and generating glow discharge in the reaction vessel, thereby introducing the raw material gas introduced into the reaction vessel In a deposited film forming apparatus that decomposes and forms deposited films on the plurality of cylindrical substrates,
A deposited film forming apparatus comprising a cylindrical member having a configuration in which a conductive member and an insulating member are combined in an arrangement circle in which the cylindrical substrate is arranged.
前記円筒状部材の下部側は導電性部材、上部側は絶縁性部材で構成されていることを特徴とする請求項1に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 1, wherein a lower side of the cylindrical member is formed of a conductive member and an upper side of the cylindrical member is formed of an insulating member. 前記上部側の絶縁性部材の長さは、前記下部側の導電性部材の長さの0.1〜8.5倍であることを特徴とする請求項1乃至2に記載の堆積膜形成装置。   3. The deposited film forming apparatus according to claim 1, wherein a length of the upper insulating member is 0.1 to 8.5 times a length of the lower conductive member. 前記円筒状部材の下部側の導電性部材で構成された部分は接地されていることを特徴とする請求項1乃至3に記載の堆積膜形成装置。   4. The deposited film forming apparatus according to claim 1, wherein a portion formed of the conductive member on the lower side of the cylindrical member is grounded. 5. 前記円筒状部材の直径が、前記複数の円筒状基体に囲まれた空間の内接円の直径の0.1倍〜0.8倍であることを特徴とする請求項1乃至4に記載の堆積膜形成装置。   5. The deposited film forming apparatus according to claim 1, wherein a diameter of the cylindrical member is 0.1 to 0.8 times a diameter of an inscribed circle in a space surrounded by the plurality of cylindrical substrates. . 前記円筒状部材の全長が前記反応容器の高さの0.5倍〜0.98倍であることを特徴とする請求項1乃至5に記載の堆積膜形成装置。   6. The deposited film forming apparatus according to claim 1, wherein the total length of the cylindrical member is 0.5 to 0.98 times the height of the reaction vessel. 前記円筒状部材の表面の少なくとも一部は、算術平均粗さ(Ra)が1μm以上20μm以下の範囲であることを特徴とする請求項1乃至6に記載の堆積膜形成装置。   7. The deposited film forming apparatus according to claim 1, wherein at least a part of the surface of the cylindrical member has an arithmetic average roughness (Ra) in a range of 1 μm to 20 μm. 前記円筒状部材の表面の少なくとも一部は、平均傾斜角(θa)が9度以上20度以下の範囲であることを特徴とする請求項1乃至7に記載の堆積膜形成装置。   8. The deposited film forming apparatus according to claim 1, wherein at least a part of the surface of the cylindrical member has an average inclination angle (θa) in a range of 9 degrees to 20 degrees. 前記円筒状部材の表面の少なくとも一部は、局部山頂の平均間隔(S)が30μm以上100μm以下の範囲であることを特徴とする請求項1乃至8に記載の堆積膜形成装置。   9. The deposited film forming apparatus according to claim 1, wherein at least part of the surface of the cylindrical member has an average interval (S) between local peaks of 30 μm or more and 100 μm or less. 前記円筒状部材の表面粗さが、ブラスト加工によって調整されていることを特徴とする請求項8乃至9に記載の堆積膜形成装置。   10. The deposited film forming apparatus according to claim 8, wherein the surface roughness of the cylindrical member is adjusted by blasting. 前記円筒状部材の表面粗さが、溶射加工によって調整されていることを特徴とする請求項8乃至9に記載の堆積膜形成装置。   10. The deposited film forming apparatus according to claim 8, wherein the surface roughness of the cylindrical member is adjusted by thermal spraying. 前記円筒状部材の導電性部材の溶射加工に用いられる溶射材が、アルミニウム、ニッケル、ステンレス、二酸化チタンの少なくとも1つ以上の材料であることを特徴とする請求項11に記載の堆積膜形成装置。   12. The deposited film forming apparatus according to claim 11, wherein the thermal spray material used for thermal spraying of the conductive member of the cylindrical member is at least one material of aluminum, nickel, stainless steel, and titanium dioxide. . 前記円筒状部材の絶縁性部材の溶射加工に用いられる溶射材が、アルミナ、二酸化チタン、窒化アルミニウム、窒化ホウ素、ジルコン、コンジェラート、ジルコン-コンジェラート、酸化珪素酸化ベリリウムマイカ系セラミック等を用いることを特徴とする請求項11に記載の堆積膜形成装置。   The thermal spray material used for the thermal spraying of the insulating member of the cylindrical member is made of alumina, titanium dioxide, aluminum nitride, boron nitride, zircon, congelate, zircon-congelate, silicon oxide beryllium oxide mica ceramic, or the like. 12. The deposited film forming apparatus according to claim 11, wherein: 前記高周波電力導入手段が、前記複数の円筒状基体の配置円と中心を同じくする同心円上に等間隔で設置されていることを特徴とする請求項1乃至13に記載の堆積膜形成装置。   14. The deposited film forming apparatus according to claim 1, wherein the high-frequency power introducing means is installed at equal intervals on a concentric circle having the same center as the arrangement circle of the plurality of cylindrical substrates. 前記高周波電力の周波数が50〜450MHzの範囲であることを特徴とする請求項1乃至14に記載の堆積膜形成装置。   15. The deposited film forming apparatus according to claim 1, wherein a frequency of the high-frequency power is in a range of 50 to 450 MHz. 前記複数の円筒状基体上に形成される堆積膜が、シリコン原子を母材とした非単結晶材料であることを特徴とする請求項1乃至15に記載の堆積膜形成装置。   16. The deposited film forming apparatus according to claim 1, wherein the deposited film formed on the plurality of cylindrical substrates is a non-single crystal material having a silicon atom as a base material. 電子写真感光体の製造に用いられることを特徴とする請求項1乃至16に記載の堆積膜形成装置。   17. The deposited film forming apparatus according to claim 1, which is used for manufacturing an electrophotographic photosensitive member. 請求項1乃至17記載の堆積膜形成装置を用いた堆積膜形成方法。   A deposited film forming method using the deposited film forming apparatus according to claim 1.
JP2003407946A 2003-12-05 2003-12-05 Deposited film forming apparatus and deposited film forming method Pending JP2005163164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407946A JP2005163164A (en) 2003-12-05 2003-12-05 Deposited film forming apparatus and deposited film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407946A JP2005163164A (en) 2003-12-05 2003-12-05 Deposited film forming apparatus and deposited film forming method

Publications (1)

Publication Number Publication Date
JP2005163164A true JP2005163164A (en) 2005-06-23

Family

ID=34729841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407946A Pending JP2005163164A (en) 2003-12-05 2003-12-05 Deposited film forming apparatus and deposited film forming method

Country Status (1)

Country Link
JP (1) JP2005163164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144028A1 (en) * 2011-04-20 2012-10-26 株式会社神戸製鋼所 High-tension steel sheet with alloyed deposit formed by hot-dip galvanization and having excellent adhesion, and process for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144028A1 (en) * 2011-04-20 2012-10-26 株式会社神戸製鋼所 High-tension steel sheet with alloyed deposit formed by hot-dip galvanization and having excellent adhesion, and process for producing same
CN103443322A (en) * 2011-04-20 2013-12-11 株式会社神户制钢所 High-tension steel sheet with alloyed deposit formed by hot-dip galvanization and having excellent adhesion, and process for producing same
GB2505348A (en) * 2011-04-20 2014-02-26 Kobe Steel Ltd High-tension steel sheet with alloyed deposit formed by hot-dip galvanization and having excellent adhesion, and process for producing same
US9181613B2 (en) 2011-04-20 2015-11-10 Kobe Steel, Ltd. High tensile strength hot-dip galvannealed steel sheet having excellent coated-layer adhesiveness and method for producing same

Similar Documents

Publication Publication Date Title
US20090078566A1 (en) Deposited Film Forming Method, Deposited Film Forming Device, Deposited Film, and Photosensitive Member Provided with the Deposited Film
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP4109861B2 (en) Vacuum processing method
JP4298401B2 (en) Deposited film forming apparatus and deposited film forming method
JP5058511B2 (en) Deposited film forming equipment
JP2005163164A (en) Deposited film forming apparatus and deposited film forming method
JP2005163163A (en) Deposition film formation device, and deposition film formation method
JP5058510B2 (en) Deposited film forming apparatus and deposited film forming method
JP2005015878A (en) Deposition film formation device, and deposition film formation method
JP2006009040A (en) Film deposition apparatus and film deposition method
JPH09263947A (en) Deposited film forming equipment and formation of deposited film
JPH1126388A (en) Forming equipment for deposition film and forming method for deposition film
JP2006104544A (en) Deposited film formation system and deposited film formation method
JP2005163161A (en) Apparatus and method for forming deposition film
JP2005163162A (en) Apparatus and method for forming deposition film
JP2005015880A (en) Deposited film formation apparatus, and deposited film formation method
JP2005015877A (en) Apparatus and method for forming deposition film
JP2003024772A (en) Plasma processing apparatus and plasma processing method
JP2005163165A (en) Deposition film forming system and deposition film forming method
JP2009030088A (en) Device for forming deposition film
JP2005163166A (en) Deposition film forming system and deposition film forming method
JP2005133128A (en) Apparatus and method for plasma treatment
JP2005068455A (en) Method and apparatus for forming deposition film
JP2008179862A (en) Apparatus and method for forming deposited film
JP2005344150A (en) Deposition film depositing device and deposition film depositing method