JP2005163162A - Apparatus and method for forming deposition film - Google Patents

Apparatus and method for forming deposition film Download PDF

Info

Publication number
JP2005163162A
JP2005163162A JP2003407715A JP2003407715A JP2005163162A JP 2005163162 A JP2005163162 A JP 2005163162A JP 2003407715 A JP2003407715 A JP 2003407715A JP 2003407715 A JP2003407715 A JP 2003407715A JP 2005163162 A JP2005163162 A JP 2005163162A
Authority
JP
Japan
Prior art keywords
deposited film
reaction vessel
film forming
forming apparatus
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407715A
Other languages
Japanese (ja)
Inventor
Tatsuji Okamura
竜次 岡村
Junichiro Hashizume
淳一郎 橋爪
Nobufumi Tsuchida
伸史 土田
Takashi Otsuka
崇志 大塚
Yoshio Seki
好雄 瀬木
Tetsuya Karaki
哲也 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003407715A priority Critical patent/JP2005163162A/en
Publication of JP2005163162A publication Critical patent/JP2005163162A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for forming a deposition film, whereby unevenness in electrical properties of a photoreceptor is suppressed, unevenness in image density is improved and reduction of globular projections causing image defects can be achieved. <P>SOLUTION: In the method, the deposition film having good properties is formed on a plurality of substrates by placing cylindrical substrates on the circumference of the same circle at regular intervals in a reaction vessel which is at least partially composed of a dielectric member and introducing a high-frequency powder from outside of the reaction vessel. A cylindrical member is installed approximately in the center of the reaction vessel, and the distance between a conductive upper lid composing a part of the reaction vessel and the upper end face of an auxiliary substrate facing the conductive upper lid is adjusted to 10-150 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基体上に堆積膜を形成する装置および方法に関する。とりわけ機能性膜、特に半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等に用いる堆積膜の形成装置および形成方法に関する。   The present invention relates to an apparatus and method for forming a deposited film on a substrate. In particular, the present invention relates to an apparatus and a method for forming a functional film, particularly a deposited film used for a semiconductor device, an electrophotographic photosensitive member, an image input line sensor, a photographing device, a photovoltaic device, and the like.

従来、半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス、その他各種エレクトロニクス素子、光学素子等の形成に用いる堆積膜形成方法として、プラズマCVD法、イオンプレーティング法、プラズマエッチング法等、高周波電力によって生起されたプラズマを用いた方法が多数知られており、そのための装置も実用に付されている。   Conventionally, as a deposition film forming method used for forming semiconductor devices, electrophotographic photosensitive members, line sensors for image input, photographing devices, photovoltaic devices, other various electronic elements, optical elements, etc., plasma CVD method, ion plating method Many methods using plasma generated by high-frequency power, such as a plasma etching method, are known, and an apparatus therefor has been put into practical use.

例えばプラズマCVD法、すなわち、原料ガスを高周波グロー放電により分解し、基板上に薄膜状の堆積膜を形成する方法は好適な堆積膜形成手段として実用化されており、例えば電子写真用水素化アモルファスシリコン(以下、「a-Si:H」と表記する)堆積膜の形成等に利用され、そのための装置も各種提案されている。   For example, a plasma CVD method, that is, a method in which a source gas is decomposed by high-frequency glow discharge to form a thin deposited film on a substrate has been put to practical use as a suitable deposited film forming means. Various devices have been proposed for use in the formation of silicon (hereinafter referred to as “a-Si: H”) deposited films.

特に、VHF帯の高周波電力を用いたプラズマCVD(以下、「VHF-PCVD」と略記する。)法が注目を浴びており、このVHF-PCVD法を用いた各種堆積膜の開発が積極的に進められている。これは、VHF-PCVD法では堆積膜の堆積速度が比較的速く、また高品質な堆積膜が得られるため、製品の低コスト化、高品質化を同時に達成し得るものと期待されるためである。そして、複数のa-Si:H系電子写真用の光受容部材を同時に形成できて、生産性が高い堆積膜形成装置の開発が進められている。   In particular, plasma CVD (hereinafter abbreviated as “VHF-PCVD”) using high-frequency power in the VHF band is attracting attention, and the development of various deposited films using this VHF-PCVD method is active. It is being advanced. This is because the VHF-PCVD method has a relatively high deposition rate, and a high-quality deposited film can be obtained, so that it is expected that the cost of the product and the quality can be improved at the same time. is there. Development of a deposited film forming apparatus that can simultaneously form a plurality of light-receiving members for a-Si: H-based electrophotography and has high productivity is in progress.

例えば、カソード電極を反応容器の外側に複数配置し、カソード電極と対向電極間にある反応容器の一部を誘電体部材とすることで、大面積で均質な高周波放電が容易に達成され、大面積基体へのプラズマ処理を均一且つ高速に行うことが可能になる装置が開示されている(例えば、特許文献1参照)。   For example, by arranging a plurality of cathode electrodes on the outside of the reaction vessel and using a part of the reaction vessel between the cathode electrode and the counter electrode as a dielectric member, a uniform high frequency discharge can be easily achieved in a large area. An apparatus that can perform plasma processing on an area substrate uniformly and at high speed is disclosed (for example, see Patent Document 1).

また、少なくとも2つの異なる周波数の高周波電力を同時に供給することにより、広い範囲において均一な真空処理特性を有する方法が示されている(例えば、特許文献2参照)。   In addition, a method is shown that has uniform vacuum processing characteristics over a wide range by simultaneously supplying high-frequency power of at least two different frequencies (see, for example, Patent Document 2).

また、少なくとも一部が導電性部材で構成された減圧可能な反応容器中に被処理基体を設置し、反応容器外に設置した高周波電極に印加した高周波電力によって反応容器中に導入したガスを分解してプラズマを形成し、基体を処理するプラズマ処理装置において、反応容器の一部を構成する導電性部材に対向する補助基体端面は該導電性部材と略平行であり、補助基体端面と該導電性部材との間隔を1mm以上30mm以下とすることで、プラズマ特性ならびにプラズマ処理の均一性やプラズマの長時間の安定性が向上するプラズマ処理装置及び方法が示されている(例えば、特許文献3参照)。   In addition, the substrate to be treated is placed in a depressurizable reaction vessel at least partially made of a conductive member, and the gas introduced into the reaction vessel is decomposed by the high frequency power applied to the high frequency electrode installed outside the reaction vessel. In the plasma processing apparatus for forming plasma and processing the substrate, the end surface of the auxiliary substrate facing the conductive member forming a part of the reaction vessel is substantially parallel to the conductive member, and the end surface of the auxiliary substrate and the conductive member A plasma processing apparatus and method have been shown in which the plasma characteristics, the uniformity of plasma processing, and the long-term stability of plasma are improved by setting the distance from the conductive member to 1 mm to 30 mm (for example, Patent Document 3). reference).

このような堆積膜形成装置として、図4に模式的な構成図を示す。   FIG. 4 shows a schematic configuration diagram of such a deposited film forming apparatus.

図4(a)は概略断面図、図4(b)は図4(a)の切断線A-A’に沿う概略断面図である。反応容器401は401(a)と401(b)からなり、401(a)は誘電体部材で構成されており、反応容器401の下部には排気配管409が接続され、排気配管409の他端は不図示の排気装置(例えば真空ポンプ)に接続されている。反応容器401の中心部を取り囲むように、堆積膜の形成される複数の円筒状基体405(本体405(a)と補助基体405(b)からなる)が互いに平行になるように同一円周上に配置されている。複数の円筒状基体405は基体加熱用ヒーター407を内蔵した基体支持体406によって各々保持されている。そして、反応容器401内にはSiH4、GeH4、H2、CH4、B26、PH3、Ar、He等のガスボンベからなる不図示のガス供給装置に接続されたガス供給手段410があり、反応容器401の外には高周波電極402が設置されている。高周波電極402には、高周波電源403がマッチングボックス404と高周波電力分岐手段412を介して接続されている。さらに、円筒状基体405は各々の回転機構408によって、回転可能なようになっている。
特開平9-310181号公報 特開2002-241944号公報 特開2003-82466号公報
4A is a schematic cross-sectional view, and FIG. 4B is a schematic cross-sectional view taken along the cutting line AA ′ of FIG. 4A. The reaction vessel 401 is composed of 401 (a) and 401 (b), 401 (a) is made of a dielectric member, and an exhaust pipe 409 is connected to the lower part of the reaction vessel 401, and the other end of the exhaust pipe 409 Is connected to an exhaust device (not shown) (for example, a vacuum pump). A plurality of cylindrical substrates 405 (consisting of a main body 405 (a) and an auxiliary substrate 405 (b)) on which the deposited film is formed are arranged on the same circumference so as to surround the central portion of the reaction vessel 401. Is arranged. The plurality of cylindrical substrates 405 are respectively held by a substrate support 406 having a substrate heating heater 407 built therein. In the reaction vessel 401, gas supply means 410 connected to a gas supply device (not shown) composed of gas cylinders such as SiH 4 , GeH 4 , H 2 , CH 4 , B 2 H 6 , PH 3 , Ar, and He. A high frequency electrode 402 is installed outside the reaction vessel 401. A high frequency power source 403 is connected to the high frequency electrode 402 via a matching box 404 and a high frequency power branching means 412. Further, the cylindrical base 405 can be rotated by each rotating mechanism 408.
JP 9-310181 A Japanese Patent Laid-Open No. 2002-241944 Japanese Patent Laid-Open No. 2003-82466

このような従来の電子写真感光体形成方法及び装置により、膜堆積速度の向上による基体処理時間の短縮、同時処理可能基体数の増加、堆積膜特性の均一性・再現性の向上が達成され、生産コストの安い、ある程度実用的な特性と均一性を持つ電子写真感光体を得ることが可能になった。また真空反応容器内の清掃を厳格に行えばある程度欠陥の少ない電子写真感光体を得ることは可能である。   By such a conventional electrophotographic photosensitive member forming method and apparatus, it is possible to shorten the substrate processing time by increasing the film deposition rate, increase the number of simultaneously processable substrates, and improve the uniformity and reproducibility of deposited film characteristics. It has become possible to obtain an electrophotographic photosensitive member having practical characteristics and uniformity to a certain extent at low production costs. Further, if the inside of the vacuum reaction vessel is strictly cleaned, it is possible to obtain an electrophotographic photosensitive member having a certain number of defects.

しかしながら、これら堆積膜を用いた製品に対する市場の要求レベルは日々高まっており、この要求に応えるべく、より高品質の堆積膜が求められるようになっている。   However, the level of market demand for products using these deposited films is increasing day by day, and higher quality deposited films are required to meet this demand.

すなわち、近年、急激に需要が広がっているカラー複写機においては、これまで以上に画像欠陥に対する要求が厳しい。例えば電子写真感光体のように大面積で比較的厚い堆積膜が要求される製品においても、その感光体の製造工程で発生する堆積膜の異常成長は画像欠陥に直結するため、極力なくすことが求められている。従って、均一膜質で光学的及び電気的諸特性の要求を満足し、かつ電子写真プロセスによる画像形成時に画像欠陥の少ない堆積膜を高収率で得るのは難しいという解決すべき問題が残存している。   In other words, in recent years, demand for image defects is more severe than ever in color copying machines, for which demand is rapidly expanding. For example, even in a product that requires a relatively thick deposited film with a large area, such as an electrophotographic photoreceptor, abnormal growth of the deposited film that occurs in the manufacturing process of the photoreceptor is directly linked to image defects, and therefore can be eliminated as much as possible. It has been demanded. Therefore, there remains a problem to be solved that it is difficult to obtain a deposited film with a uniform film quality, satisfying the requirements of optical and electrical characteristics, and with few image defects at the time of image formation by an electrophotographic process. Yes.

上記の感光体の製造工程で発生する堆積膜の異常成長とは次のようなものである。   The abnormal growth of the deposited film that occurs in the manufacturing process of the photosensitive member is as follows.

a-Si:H膜は基体表面に数μmオーダーのダストが付着していた場合、成膜中にそのダストを核として異常成長、いわゆる「球状突起」が成長してしまうという性質を持っている。球状突起はダストを起点とした円錐形を逆転させた形をしており、正常堆積部分と球状突起部分の界面では局在準位が非常に多いために低抵抗化し、帯電電荷が界面を通って基体側に抜けてしまうという性質を持っている。このため、球状突起のある部分は、画像上ではべた黒画像で白い点となって現れる(反転現像の場合はべた白画像に黒い点となって現れる)。このいわゆる「ポチ」と呼ばれる画像欠陥は年々規格が厳しくなっており、大きさによってはA3用紙に数個存在していても不良として扱われることがある。さらには、カラー複写機に搭載される場合にはさらに規格は厳しくなり、A3用紙に1個存在していても不良となる場合がある。   The a-Si: H film has the property that when dust of the order of several μm adheres to the surface of the substrate, abnormal growth, that is, so-called “spherical protrusions” grow with the dust as a nucleus during film formation. . Spherical protrusions have a shape that is a reversal of the conical shape starting from dust, and there are many localized levels at the interface between the normal deposition part and the spherical protrusion part, so the resistance decreases, and the charged charge passes through the interface. Therefore, it has the property of coming out to the substrate side. For this reason, the part with the spherical protrusion appears as a white point in the solid black image on the image (in the case of reversal development, it appears as a black point in the solid white image). The so-called “pochi” image defect has a stricter standard every year, and depending on the size, even if there are several A3 sheets, they may be treated as defective. Furthermore, the standard becomes more stringent when mounted on a color copying machine, and even if one is present on A3 paper, it may be defective.

この球状突起は、ダストを起点としているため、使用する基体は成膜前に精密に洗浄され、成膜装置に設置する行程は全てクリーンルームあるいは真空下で作業が行われる。このようにして、成膜開始前に基体上に付着するダストは極力少なくするよう努力されてきており、効果を上げてきた。しかし、球状突起の発生原因は基体上に付着したダストのみではない。すなわち、a-Si:H感光体を製造する場合、要求される膜厚が数μmから数10μmと非常に厚いため、成膜時間は数時間から数十時間に及ぶ。この間に、a-Si:H膜は基体のみではなく、成膜炉壁や成膜炉内の構造物にも堆積する。これらの炉壁、構造物は基体のように管理された表面を有していないため、場合によっては密着力が弱く、長時間に渡る成膜中に膜剥がれを起こす場合があった。成膜中に僅かでも剥がれが発生すると、それがダストとなり、堆積中の感光体表面に付着し、これが起点となって球状突起の異常成長が発生してしまう。従って、高い歩留まりを維持していくためには、成膜前の基体の管理のみならず、成膜中における成膜炉内の膜剥がれの防止についても慎重な管理が必要とされ、a-Si:H感光体の製造を難しいものにしていた。   Since these spherical protrusions start from dust, the substrate to be used is precisely cleaned before film formation, and all the steps to be installed in the film formation apparatus are performed in a clean room or under vacuum. In this way, efforts have been made to reduce the amount of dust adhering to the substrate before the start of film formation, and the effect has been improved. However, the cause of the generation of the spherical protrusion is not only the dust adhering to the substrate. That is, when an a-Si: H photoconductor is manufactured, the required film thickness is very large, from several μm to several tens of μm, and therefore the film formation time ranges from several hours to several tens of hours. During this time, the a-Si: H film is deposited not only on the substrate but also on the film forming furnace wall and the structure in the film forming furnace. Since these furnace walls and structures do not have a controlled surface like the substrate, the adhesion is weak in some cases, and film peeling may occur during film formation over a long period of time. If even a slight peeling occurs during the film formation, it becomes dust and adheres to the surface of the photoreceptor being deposited, and this causes the abnormal growth of the spherical projections. Therefore, in order to maintain a high yield, careful management is required not only for management of the substrate before film formation, but also for prevention of film peeling in the film formation furnace during film formation. : H The manufacture of the photoconductor was made difficult.

画像欠陥以外にも画質に対する要求も高まっている。   In addition to image defects, there is a growing demand for image quality.

特にデジタル電子写真装置やカラー電子写真装置においては、文字原稿のみならず、写真、絵、デザイン画等のコピーも頻繁に為されるため、ハーフトーンを含む原稿が多くコピーされるようになり、軽微な画像濃度のむらも画像欠陥と同様視覚的に明らかになる。従って、画像濃度むらの低減も従来以上に強く求められるようになっている。このような感光体特性の向上を目指し、堆積膜形成条件、堆積膜積層構成の最適化も為されているが、同時に、堆積膜形成装置、堆積膜形成方法の面での改善も強く望まれている。   Especially in digital electrophotographic devices and color electrophotographic devices, not only textual manuscripts but also photographs, pictures, design drawings, etc. are frequently copied, so many manuscripts including halftones are copied, Minor variations in image density are also visually evident, as are image defects. Therefore, the reduction in image density unevenness is strongly demanded more than ever. In order to improve the characteristics of the photosensitive member, the conditions for forming the deposited film and the deposited film stack structure have been optimized, but at the same time, improvements in terms of the deposited film forming apparatus and the deposited film forming method are also strongly desired. ing.

このような状況下において、前述従来の堆積膜形成装置、堆積膜形成方法においても、画像欠陥の低減、堆積膜特性や均一性の向上に関して、まだ改善の余地が残されているのが現状である。   Under such circumstances, there is still room for improvement in the above-described conventional deposited film forming apparatus and deposited film forming method with respect to reducing image defects and improving deposited film characteristics and uniformity. is there.

[発明の目的]
本発明の目的は、上述のごとき従来の電子写真感光体における諸問題を克服して、安価に安定して歩留まり良く製造し得る、画像欠陥が少なく高画質の使いやすい電子写真感光体の製造を可能にする堆積膜形成装置、及び堆積膜形成方法を提供することにある。
[Object of the invention]
The object of the present invention is to overcome the problems associated with the conventional electrophotographic photosensitive member as described above, and to manufacture an electrophotographic photosensitive member that is easy to use with high image quality with few image defects, which can be manufactured inexpensively, stably and with good yield. An object of the present invention is to provide a deposited film forming apparatus and a deposited film forming method that can be performed.

本発明者らは上記目的を達成すべく鋭意検討を行った結果、まず、堆積膜形成装置・堆積膜形成方法において、少なくとも一部が誘電体部材で構成された減圧可能な反応容器内に円筒状基体を同一円周上に等間隔で配置し、高周波電力を該反応容器外から導入する場合、円筒状基体で囲まれた空間の形状を工夫するとともに、反応容器の一部を構成する導電性上蓋に対向する補助基体上端面との間隔を最適化することにより複数の基体上に、良好な特性を有する堆積膜を均一に形成可能であることを見出し、本発明を完成させるに至ったものである。   As a result of diligent investigations to achieve the above object, the inventors of the present invention firstly, in a deposited film forming apparatus and a deposited film forming method, a cylinder is placed in a depressurizable reaction vessel at least partially made of a dielectric member. When the cylindrical substrates are arranged at equal intervals on the same circumference and high frequency power is introduced from outside the reaction vessel, the shape of the space surrounded by the cylindrical substrate is devised, and the conductive material constituting a part of the reaction vessel By optimizing the distance between the upper surface of the auxiliary substrate and the upper surface of the auxiliary substrate, it was found that a deposited film having good characteristics can be uniformly formed on a plurality of substrates, and the present invention has been completed. Is.

即ち、本発明は、少なくとも一部が誘電体部材で構成された減圧可能な反応容器と、該反応容器内部に同一円周上に配置された複数の円筒状基体及び原料ガス導入手段と、該反応容器の外部に配置された複数の高周波電極を有し、該高周波電極に高周波電力を印加し、該反応容器内にグロー放電を発生させることにより、該反応容器内に導入された原料ガスを分解し、該複数の円筒状基体上に堆積膜を形成する堆積膜形成装置において、該反応容器の概略中央に円筒状部材を設置し、さらに反応容器の一部を構成する導電性上蓋と、該導電性上蓋に対向する補助基体上端面との間隔を10mm以上150mm以下にすることを特徴とする堆積膜形成装置及び方法である。   That is, the present invention comprises a reaction vessel that can be depressurized, at least partly composed of a dielectric member, a plurality of cylindrical substrates and raw material gas introduction means disposed on the same circumference inside the reaction vessel, A plurality of high-frequency electrodes arranged outside the reaction vessel, a high-frequency power is applied to the high-frequency electrode, and a glow discharge is generated in the reaction vessel, so that the source gas introduced into the reaction vessel In a deposited film forming apparatus that decomposes and forms deposited films on the plurality of cylindrical substrates, a cylindrical member is installed at the approximate center of the reaction vessel, and a conductive upper lid that constitutes a part of the reaction vessel; An apparatus and a method for forming a deposited film, characterized in that the distance from the upper end surface of the auxiliary substrate facing the conductive upper lid is 10 mm or more and 150 mm or less.

このような効果が得られる本発明について、以下、詳述する。   The present invention capable of obtaining such effects will be described in detail below.

本発明者らは、複数の円筒状基体を同一円周上に等間隔に配置し、高周波電力導入手段を反応容器の外部に配置した堆積膜形成装置において、堆積膜の密着性を向上させてダストの発生を低減する方法を検討していたとき、円筒状基体の周りの構成が非対称となっていることに気がついた。この非対称性は、大雑把に言って、円筒状基体の配置円の内側と外側に分けて考えることができるが、これがどのような影響を及ぼしているかを確認した。   In the deposited film forming apparatus in which a plurality of cylindrical substrates are arranged at equal intervals on the same circumference and the high-frequency power introducing means is arranged outside the reaction vessel, the adhesion of the deposited film is improved. When considering a method for reducing the generation of dust, it was noticed that the configuration around the cylindrical substrate was asymmetric. Roughly speaking, this asymmetry can be considered by dividing it into the inside and the outside of the arrangement circle of the cylindrical substrate, and the effect of this was confirmed.

すなわち、通常の成膜においては、周方向に均一に堆積するために回転している円筒状基体を静止状態にして堆積膜を形成し、円筒状基体の周方向の球状突起分布を調べた。すると、球状突起数は周方向に均等に発生しているのではなく、円筒状基体の配置円の内側に多く発生していることが判明した。つまり、このような形態の堆積膜形成装置において、球状突起を改善し、カラー複写機での使用にも耐えるレベルまで画像欠陥を低減するためには、主に、この内部側の球状突起を低減する必要があることが確認された。   That is, in the normal film formation, the rotating cylindrical substrate was placed in a stationary state in order to deposit uniformly in the circumferential direction to form a deposited film, and the distribution of spherical protrusions in the circumferential direction of the cylindrical substrate was examined. As a result, it was found that the number of spherical protrusions did not occur evenly in the circumferential direction, but a large number occurred inside the arrangement circle of the cylindrical substrate. In other words, in such a deposited film forming apparatus, in order to improve the spherical protrusions and reduce image defects to a level that can withstand use in a color copying machine, the inner spherical protrusions are mainly reduced. Confirmed that there is a need to do.

円筒状基体の配置円の内部側で球状突起が多い理由の詳細は現在、不明だが、堆積膜形成装置の構造を見たとき、円筒状基体が並んだ円周の外側は堆積膜形成装置の炉壁が面しているのに対して、内部側には炉壁はなく、このような空間の形状の違いが付着した堆積膜の膜応力の差を発生させ、密着性に影響を与えているのだろうと想像している。   The details of the reason why there are many spherical protrusions on the inner side of the arrangement circle of the cylindrical substrate are currently unknown, but when looking at the structure of the deposited film forming device, the outside of the circumference where the cylindrical substrates are arranged is that of the deposited film forming device. Whereas the furnace wall faces, there is no furnace wall on the inside, and this difference in the shape of the space generates a difference in the film stress of the deposited film, which affects the adhesion. I imagine that there will be.

これに対して、本発明によるところの円筒状部材を複数の円筒状基体の内部空間に設置した堆積膜形成装置において円筒状基体の周方向の球状突起数分布を調べたところ、内部側で球状突起の発生率が低減しており、周方向で球状突起分布はほぼ均等になっていることが判明した。これは、複数の円筒状基体の内部空間に設置した円筒状部材が内部側の炉壁に相当する機能を持ち、擬似的ながら内部と外部の構造が対称になったためではないかと考えている。   On the other hand, when the distribution of the number of spherical protrusions in the circumferential direction of the cylindrical substrate was examined in the deposited film forming apparatus in which the cylindrical member according to the present invention was installed in the internal space of the plurality of cylindrical substrates, The incidence of protrusions was reduced, and it was found that the distribution of spherical protrusions was almost uniform in the circumferential direction. This is thought to be because the cylindrical member installed in the internal space of the plurality of cylindrical bases has a function corresponding to the furnace wall on the inner side, and the internal and external structures are symmetric while being simulated.

円筒状部材は、炉壁と同様の誘電体材料にした場合、炉壁〜円筒状基体間の距離と円筒状基体〜円筒状部材の距離をほぼ等しくしたときに球状突起の低減効果が最も現れた。しかし、このときの副作用として、円筒状部材にも堆積膜が付着するため、円筒状基体に堆積する膜の堆積速度が若干低下してしまう現象が現れた。そこで、本発明者らは球状突起改善効果と堆積速度の維持が両立する構成について鋭意検討した。   When the cylindrical member is made of the same dielectric material as the furnace wall, the effect of reducing the spherical protrusion is most apparent when the distance between the furnace wall and the cylindrical base is substantially equal to the distance between the cylindrical base and the cylindrical member. It was. However, as a side effect at this time, a deposited film also adheres to the cylindrical member, and thus a phenomenon has occurred in which the deposition rate of the film deposited on the cylindrical substrate is slightly reduced. Therefore, the present inventors diligently studied a configuration in which both the spherical protrusion improvement effect and the maintenance of the deposition rate are compatible.

その結果、円筒状部材の材質を誘電体材料から導電性材料(例えば金属)に変更し、かつ、接地することにより、球状突起低減効果を維持しながら円筒状部材の外径を小さくすることが可能であることが判明した。一方、堆積速度は円筒状部材の外径を小さくすることで大幅に向上することが確認された。   As a result, by changing the material of the cylindrical member from a dielectric material to a conductive material (e.g. metal) and grounding, the outer diameter of the cylindrical member can be reduced while maintaining the effect of reducing spherical protrusions. It turned out to be possible. On the other hand, it was confirmed that the deposition rate was greatly improved by reducing the outer diameter of the cylindrical member.

更に本発明者らは、もう一段の堆積膜の画像欠陥の低減に関して検討していたとき、反応容器の一部を構成する導電性上蓋と、円筒状基体上部に取り付けられる補助基体の上端面との間隔を最適化することにより、より一層の効果が得られることを発見した。従来、導電性上蓋と補助基体上端面の間隔は、放電が回り込むのを防ぐために、できるだけ接近するように構成していたが、逆に、この間隔を広げ、互いの相互作用を低減させることで、意外にもダストの付着が防止され、画像欠陥の大幅な低減につながることが判明した。この理由について詳細は不明だが、導電性上蓋と補助基体の間隔を最適化することで、円筒状基体の電界分布が変化したことが関係していると推測している。   Furthermore, when the present inventors have considered the reduction of image defects in the other deposited film, the conductive upper lid constituting a part of the reaction vessel, the upper end surface of the auxiliary substrate attached to the upper portion of the cylindrical substrate, It has been found that a further effect can be obtained by optimizing the interval. Conventionally, the distance between the conductive upper lid and the upper end surface of the auxiliary base has been configured to be as close as possible in order to prevent the discharge from wrapping around, but conversely, this distance is increased to reduce mutual interaction. Surprisingly, it was found that the adhesion of dust was prevented, leading to a significant reduction in image defects. Although the details of this reason are unknown, it is speculated that the electric field distribution of the cylindrical substrate is changed by optimizing the distance between the conductive upper lid and the auxiliary substrate.

さらに、導電性上蓋と補助基体上端面との間隔の最適化は、予想外の効果として円筒状基体の軸方向での特性のばらつきを改善することが判明した。そのメカニズムについてはあくまで推測ではあるが、やはり円筒状基体の電界分布の変化が関係していると考えていいる。   Furthermore, it has been found that optimizing the distance between the conductive top lid and the upper end surface of the auxiliary base improves the variation in the characteristics of the cylindrical base in the axial direction as an unexpected effect. The mechanism is speculative, but it is thought that the change in the electric field distribution of the cylindrical substrate is also related.

本発明は、反応容器の概略中央に円筒状部材が設置されているので、先にあげた特許文献3に示された補助基体端面と該導電性部材との間隔とは異なる範囲において複数の基体上に、画像欠陥が少なく、良好な特性を有する堆積膜を均一形成することが可能である。   In the present invention, since the cylindrical member is installed in the approximate center of the reaction vessel, a plurality of substrates are provided in a range different from the distance between the end surface of the auxiliary substrate and the conductive member described in Patent Document 3 mentioned above. In addition, it is possible to uniformly form a deposited film having few image defects and good characteristics.

本発明は、以上の経緯によって完成されたものである。   The present invention has been completed by the above process.

本発明によれば、少なくとも一部が誘電体部材で構成された反応容器内に円筒状基体を同一円周上に等間隔で配置し、高周波電力を反応容器外から導入することで、複数の基体上に、良好な特性を有する堆積膜形成装置・方法において、反応容器の概略中央に円筒状部材を設置し、さらに反応容器の一部を構成する導電性上蓋と、該導電性上蓋に対向する補助基体上端面との間隔を10mm以上150mm以下とすることで、電子写真感光体の電位特性のむらを抑制するとともに、画像欠陥の原因となる球状突起を大幅に減少させることが可能となった。   According to the present invention, a cylindrical substrate is arranged at equal intervals on the same circumference in a reaction vessel at least partially composed of a dielectric member, and a plurality of high frequency powers are introduced from outside the reaction vessel. In an apparatus and method for forming a deposited film having good characteristics on a substrate, a cylindrical member is installed in the approximate center of the reaction vessel, and further, a conductive upper lid that constitutes a part of the reaction vessel, and the conductive upper lid. By setting the distance from the upper end surface of the auxiliary substrate to 10 mm or more and 150 mm or less, it is possible to suppress unevenness in the potential characteristics of the electrophotographic photosensitive member and to significantly reduce the spherical protrusions that cause image defects. .

以下、図面を用いて本発明の堆積膜形成装置及び堆積膜形成方法について詳細に説明する。   Hereinafter, a deposited film forming apparatus and a deposited film forming method of the present invention will be described in detail with reference to the drawings.

図1は本発明の堆積膜形成装置及び方法で、複数の電子写真用光受容部材を同時に形成できる生産性の極めて高い装置の一例を模式的に示したものである。   FIG. 1 schematically shows an example of a highly productive apparatus capable of simultaneously forming a plurality of electrophotographic light-receiving members in the deposited film forming apparatus and method of the present invention.

図1(a)は概略断面図、図1(b)は図1(a)の切断線A-A’に沿う概略断面図である。図1に示す堆積膜製造装置は、原料ガスが分解される成膜空間を誘電体部材101(a)と導電性上蓋101(b)から成る反応容器101により円柱状領域に制限し、円柱状成膜空間の中心軸が円筒状基体105(a)配置円の中心を通る構成とし、さらに、円筒状基体105(a)の配置円外に設置された高周波電力導入手段102を誘電体部材101(a)の外部に位置させることにより、原料ガスの利用効率が向上し、同時に、形成される堆積膜中の欠陥を減少させることが可能となる。   FIG. 1A is a schematic cross-sectional view, and FIG. 1B is a schematic cross-sectional view taken along the cutting line A-A ′ of FIG. The deposited film manufacturing apparatus shown in FIG. 1 limits the film formation space in which the source gas is decomposed to a cylindrical region by a reaction vessel 101 composed of a dielectric member 101 (a) and a conductive upper lid 101 (b). The center axis of the film formation space is configured to pass through the center of the cylindrical substrate 105 (a) arrangement circle, and the high-frequency power introduction means 102 installed outside the arrangement circle of the cylindrical substrate 105 (a) is a dielectric member 101. By positioning it outside (a), the utilization efficiency of the source gas can be improved, and at the same time, defects in the formed deposited film can be reduced.

反応容器101の下部には排気配管109が接続され、排気配管109の他端は不図示の排気装置(例えば真空ポンプ)に接続されている。反応容器101の中心部を取り囲むように、堆積膜を形成される複数の円筒状基体105(a)が互いに平行になるように同一円周上に配置されている。複数の円筒状基体105(a)は基体加熱用ヒーター107を内蔵した基体支持体106によって各々保持されている。そして、反応容器101内には概略中央に導電性材料から成る円筒状部材111、SiH4、GeH4、H2、CH4、B26、PH3、Ar、He等のガスボンベからなる不図示のガス供給装置に接続されたガス供給手段110があり、反応容器101の外には高周波電力導入手段102が設置されている。高周波電力導入手段102には、高周波電源103がマッチングボックス104と高周波電力分岐手段112を介して接続されている。さらに、円筒状基体105(a)は各々の回転機構108によって、回転可能になっている。 An exhaust pipe 109 is connected to the lower part of the reaction vessel 101, and the other end of the exhaust pipe 109 is connected to an exhaust device (not shown) (for example, a vacuum pump). A plurality of cylindrical substrates 105 (a) on which a deposited film is formed are arranged on the same circumference so as to be parallel to each other so as to surround the central portion of the reaction vessel 101. The plurality of cylindrical substrates 105 (a) are respectively held by a substrate support 106 incorporating a substrate heating heater 107. In the reaction vessel 101, there is a cylindrical member 111 made of a conductive material at the approximate center, a gas cylinder made of SiH 4 , GeH 4 , H 2 , CH 4 , B 2 H 6 , PH 3 , Ar, He or the like. There is a gas supply means 110 connected to the illustrated gas supply apparatus, and a high-frequency power introduction means 102 is installed outside the reaction vessel 101. A high frequency power supply 103 is connected to the high frequency power introducing means 102 through a matching box 104 and a high frequency power branching means 112. Further, the cylindrical base body 105 (a) can be rotated by each rotating mechanism 108.

本発明において、堆積膜の特性むら、球状突起改善効果を維持するためには、円筒状部材を反応容器の概略中央に設置することが必要であり、さらに反応容器の一部を構成する導電性上蓋101(b)と、それに対向する円筒状基体105(a)の上部に取り付けられた補助基体105(b)の上端面との間隔dをある特定の範囲にする必要があった。これらの位置関係の詳細を図2に示す。符号はそれぞれ下2桁で対応させてある。すなわち、前記間隔を10mm以上150mm以下、好ましくは31mm以上100mm以下とすることが有効であることが判明した。   In the present invention, in order to maintain the unevenness of the characteristics of the deposited film and the effect of improving the spherical protrusion, it is necessary to install a cylindrical member at the approximate center of the reaction vessel, and further, the conductivity constituting a part of the reaction vessel. The distance d between the upper lid 101 (b) and the upper end surface of the auxiliary base body 105 (b) attached to the upper part of the cylindrical base body 105 (a) opposite to the upper cover 101 (b) needs to be in a certain range. Details of these positional relationships are shown in FIG. Each code corresponds to the last two digits. That is, it has been found that it is effective to set the interval to 10 mm to 150 mm, preferably 31 mm to 100 mm.

間隔が小さすぎる場合は、前述の推測で述べたように本発明の効果が得られにくく、間隔が大きすぎる場合は、導電性上蓋と補助基体上端面の空間が大きくなりすぎ誘電体で形成されている反応容器内部の軸方向でプラズマ密度に違いによる温度分布が発生しやすくなり、膜剥がれが生じてしまう場合がある。また、反応容器自体も大きくなってしまうことから、装置の投資コストも大きくなってしまう弊害がある。   If the distance is too small, it is difficult to obtain the effect of the present invention as described in the above-mentioned estimation. If the distance is too large, the space between the conductive upper lid and the upper end surface of the auxiliary substrate becomes too large and is formed of a dielectric. The temperature distribution due to the difference in plasma density tends to occur in the axial direction inside the reaction vessel, and film peeling may occur. In addition, since the reaction vessel itself becomes large, there is a disadvantage that the investment cost of the apparatus becomes large.

ここで、円筒状部材111は導電性材料から成る。円筒状部材の材質は導電性材料なら何でも使用できるが、アルミニウム、鉄、ステンレス、金、銀、銅、ニッケル、クロム、チタンなど金属材料の場合、加工が容易で耐久性が高く、また再利用の利便性などの点でも好ましい。また、これらの材料中の2種以上からなる複合材料なども好適に用いられる。   Here, the cylindrical member 111 is made of a conductive material. Any material can be used for the cylindrical member as long as it is a conductive material. However, metal materials such as aluminum, iron, stainless steel, gold, silver, copper, nickel, chromium, and titanium are easy to process and highly durable. It is also preferable in terms of convenience. In addition, composite materials composed of two or more of these materials are also preferably used.

本発明の堆積膜形成装置では、円筒状部材111は電気的に接地することが必要である。接地することによって、高周波電力導入手段102に対して擬似的な対向電極的な作用をしているものと推測される。逆に、円筒状部材111は、接地するだけで充分に本発明の効果を得ることができるため、例えば円筒状部材111用に別の高周波電源を用意したり、1台の高周波電源103から高周波電力導入手段102と円筒状部材111に出力を分岐して整合を取る、といったコストや手間が一切掛からないため、堆積膜形成装置101自体のコストを低減することができ、ひいては電子写真感光体の製造コスト低減にも結びつくことになる。   In the deposited film forming apparatus of the present invention, the cylindrical member 111 needs to be electrically grounded. By grounding, it is presumed that the high-frequency power introducing means 102 is acting as a pseudo counter electrode. On the contrary, since the cylindrical member 111 can sufficiently obtain the effects of the present invention simply by being grounded, for example, another high-frequency power source is prepared for the cylindrical member 111, Since there is no cost or labor for branching and aligning the output between the power introduction means 102 and the cylindrical member 111, the cost of the deposited film forming apparatus 101 itself can be reduced. This also leads to a reduction in manufacturing costs.

補助基体105(b)は、材質としては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスなどの材料を用いると導電性で熱伝導が良いので好適である。これらの材料中の2種以上からなる複合材料なども好適に用いられるが、円筒状基体105(a)と同じ材質とすることがより好ましい。補助基体105(b)は、導電性上蓋101(b)との距離dが本発明の範囲となるように、長さLが決定される。この詳細も図2に示した。   The auxiliary base 105 (b) is made of copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, stainless steel, etc., as it is conductive and has good heat conductivity. Is preferred. A composite material composed of two or more of these materials is also preferably used, but it is more preferable to use the same material as that of the cylindrical substrate 105 (a). The length L of the auxiliary base 105 (b) is determined so that the distance d between the auxiliary base 105 (b) and the conductive upper lid 101 (b) falls within the scope of the present invention. This detail is also shown in FIG.

円筒状基体105(a)は、使用目的に応じた材質を有するものであれば良い。材質においては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスは電気伝導が良好のため好適である。さらに、これらの材料中の2種以上からなる複合材料も耐熱性が向上するために望ましい。   The cylindrical substrate 105 (a) may be any material having a material corresponding to the purpose of use. Of the materials, copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, and stainless steel are preferable because of their good electrical conductivity. Furthermore, a composite material composed of two or more of these materials is also desirable for improving heat resistance.

本発明においては高周波電力の周波数が50〜450MHzの範囲において、画像欠陥の低減効果が特に高くなる。これは、50MHzよりも低い周波数領域においては、プラズマが安定して生成可能な圧力が急激に高まることに起因していると思われる。本発明者らの検討によれば、例えば周波数が13.56MHzの場合には、プラズマが安定して生成可能な圧力は、周波数が50MHz以上の場合と比べ約1桁から半桁高いことが確認されている。このような高い圧力においては、成膜空間中においてポリシラン等のパーティクルが生じ易く、このパーティクルが堆積膜中に取り込まれると球状突起を発生させやすくなる。本発明において、高周波電力の周波数を50MHz以上とすることにより、プラズマ生成圧力を充分低くすることができるため、パーティクルの発生確率は激減し、円筒状基体全周にわたって良好な堆積膜が形成されるものと考えられる。   In the present invention, the effect of reducing image defects is particularly high when the frequency of the high frequency power is in the range of 50 to 450 MHz. This seems to be due to the rapid increase in pressure at which plasma can be stably generated in a frequency region lower than 50 MHz. According to the study by the present inventors, for example, when the frequency is 13.56 MHz, it is confirmed that the pressure at which plasma can be stably generated is about one to half digits higher than that when the frequency is 50 MHz or more. ing. At such a high pressure, particles such as polysilane are easily generated in the film formation space, and when these particles are taken into the deposited film, spherical protrusions are easily generated. In the present invention, since the plasma generation pressure can be sufficiently lowered by setting the frequency of the high frequency power to 50 MHz or more, the generation probability of particles is drastically reduced, and a good deposited film is formed over the entire circumference of the cylindrical substrate. It is considered a thing.

また、450MHzよりも高い周波数領域においては、プラズマの均一性の低下により450MHz以下の場合と比べて膜特性の均一性に差が生じてしまう。このような膜特性の均一性に差ができると、同時に膜の応力にも差が生じ、その境界付近で膜剥がれが生じやすくなる。このため、画像欠陥が悪化しやすい。周波数が450MHzよりも高い周波数領域においては、電力導入手段近傍での電力の吸収が大きく、ここで電子の生成が最も頻繁に為されるため、プラズマ不均一を生じ易く、堆積膜の特性むらにつながりやすい。450MHz以下の周波数においては、電力導入手段近傍での極端な電力吸収が生じにくいため、プラズマ均一性、さらには膜特性の均一性が高くなる。   Further, in a frequency region higher than 450 MHz, the uniformity of the film characteristics is different from the case of 450 MHz or less due to a decrease in plasma uniformity. If there is a difference in the uniformity of such film characteristics, there will also be a difference in the stress of the film at the same time, and film peeling is likely to occur near the boundary. For this reason, image defects are likely to deteriorate. In the frequency region where the frequency is higher than 450 MHz, the power absorption near the power introduction means is large, and electrons are most frequently generated here, so that plasma non-uniformity is likely to occur and the characteristics of the deposited film are uneven. Easy to connect. At frequencies of 450 MHz or less, extreme power absorption in the vicinity of the power introduction means is unlikely to occur, resulting in high plasma uniformity and even film property uniformity.

本発明においては、高周波電力を50〜450MHzの範囲内にある2つ以上の周波数を重ね合わせた重畳周波数とすることで、画像欠陥低減及び特性の均一性において、より一層の効果を得ることができる。   In the present invention, by setting the high frequency power to a superposition frequency obtained by superposing two or more frequencies in the range of 50 to 450 MHz, it is possible to obtain further effects in reducing image defects and uniformity of characteristics. it can.

また、高周波電源103は、装置に適した高周波電力を発生することが出来ればいかなるものでも好適に使用出来る。さらに、高周波電源103の出力変動率には特に制限は無い。   As the high frequency power source 103, any device can be suitably used as long as it can generate high frequency power suitable for the apparatus. Further, the output fluctuation rate of the high frequency power supply 103 is not particularly limited.

本発明で使用されるマッチングボックス104は高周波電源103と負荷の整合を取ることができるものであればいかなる構成のものでも好適に使用出来る。また、整合を取る方法としては、自動的に調整されるものが製造時の煩雑さを避けるために好適であるが、手動で調整されるものであっても本発明の効果に全く影響は無い。また、マッチングボックス104が配置される位置に関しては整合が取れる範囲においてどこに設置してもなんら問題はないが、マッチングボックス104から高周波電力導入手段102までの配線のインダクタンスを出来るだけ小さくするような配置とした方が広い負荷条件で整合を取ることが可能になるため望ましい。   The matching box 104 used in the present invention can be suitably used in any configuration as long as the high frequency power supply 103 and the load can be matched. In addition, as a method of taking the alignment, an automatically adjusted method is preferable in order to avoid complexity at the time of manufacturing, but even if manually adjusted, there is no influence on the effect of the present invention. . In addition, as for the position where the matching box 104 is disposed, there is no problem wherever the matching box 104 can be placed within the range where matching can be achieved, but the layout is made so that the inductance of the wiring from the matching box 104 to the high-frequency power introducing means 102 is made as small as possible. This is desirable because it enables matching under a wide range of load conditions.

高周波電力導入手段102及び高周波電力分岐手段112の材質としては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスなどは熱伝導が良く、電気伝導も良いので好適である。これらの材料中の2種以上からなる複合材料なども好適に用いられる。   Copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chrome, molybdenum, titanium, stainless steel, etc. are good materials for heat conduction and high-frequency power introduction means 102 and high-frequency power branch means 112. It is preferable because it is good. A composite material composed of two or more of these materials is also preferably used.

高周波電力導入手段102の数としては、円筒状基体105(a)と同数もしくは円筒状基体105(a)の1/2とすることが更に好ましい。円筒状基体105(a)の1/2とする場合には、近接する2つの円筒状基体105(a)との距離が等しくなるよう配置することが最適である。複数の高周波電力導入手段102への電力の供給は、例えば、1つの高周波電源103からマッチングボックス104を介した後、電力供給路を高周波電力分岐手段112で分岐させて行うことができる。また例えば、1つの高周波電源103から電力供給路を高周波電力分岐手段112で分岐させた後、複数のマッチングボックスを介して電力供給を行ってもよく、さらには例えば、個々の高周波電力導入手段102ごとに別個の高周波電源およびマッチングボックスを設けてもよいが、全ての高周波電力導入手段102から導入される高周波電力の周波数が完全に一致するという点、装置コストの点、装置の大きさの点から、1つの高周波電源から全ての高周波電力導入手段102に電力供給されることが好ましい。   More preferably, the number of high-frequency power introducing means 102 is the same as the cylindrical base body 105 (a) or 1/2 of the cylindrical base body 105 (a). When the cylindrical base 105 (a) is halved, it is optimal to arrange the cylindrical bases 105 (a) so that the distances between two adjacent cylindrical bases 105 (a) are equal. The supply of power to the plurality of high-frequency power introducing means 102 can be performed, for example, by branching the power supply path by the high-frequency power branching means 112 after passing through the matching box 104 from one high-frequency power supply 103. Further, for example, after a power supply path is branched from one high-frequency power source 103 by the high-frequency power branching means 112, power may be supplied through a plurality of matching boxes, and further, for example, individual high-frequency power introducing means 102 A separate high frequency power supply and a matching box may be provided for each, but the frequency of the high frequency power introduced from all the high frequency power introduction means 102 is completely the same, the cost of the device, the size of the device Therefore, it is preferable that power is supplied to all high-frequency power introducing means 102 from one high-frequency power source.

高周波電力導入手段102としては棒状、筒状、球状、板状等のカソード電極や、同軸構造体の外部導体に開口部を設けそこから電力供給する手段等が用いることができる。   As the high-frequency power introducing means 102, a rod-like, cylindrical, spherical, plate-like cathode electrode, a means for providing an opening in the outer conductor of the coaxial structure, and supplying power from there can be used.

本発明で使用される反応容器101の誘電体部材101(a)の材料としては、セラミックス材料が好ましく、具体的には、アルミナ、ジルコニア、ムライト、コージュライト、炭化珪素、チッ化ホウ素、チッ化アルミ、チッ化珪素等の少なくとも一つ以上を含む材料によって構成されていると堆積膜の密着性が高く、球状突起発生防止のために有効であるので好ましい。これらの中でも、アルミナ、チッ化ホウ素、チッ化アルミは誘電正接や絶縁抵抗等の電気特性にすぐれ、高周波電力の吸収が少ないことからより好ましい。   The material of the dielectric member 101 (a) of the reaction vessel 101 used in the present invention is preferably a ceramic material, specifically, alumina, zirconia, mullite, cordierite, silicon carbide, boron nitride, nitride. It is preferable to use a material containing at least one of aluminum, silicon nitride, and the like because the deposited film has high adhesion and is effective for preventing the occurrence of spherical protrusions. Among these, alumina, boron nitride, and aluminum nitride are more preferable because they have excellent electrical characteristics such as dielectric loss tangent and insulation resistance, and have low absorption of high-frequency power.

また、加工の容易さから電子写真感光体を作製する際には、誘電体部材101(a)の形状は円筒形状が好ましいが、必要に応じて楕円形、多角形形状を用いても良く、作製する部材に応じて形状を選択すれば良い。   Further, when producing an electrophotographic photosensitive member from the ease of processing, the shape of the dielectric member 101 (a) is preferably a cylindrical shape, but if necessary, an elliptical shape or a polygonal shape may be used. What is necessary is just to select a shape according to the member to produce.

反応容器101の誘電体部材101(a)表面の少なくとも一部は、球状突起低減効果を増すために算術平均粗さ(Ra)が1μm以上20μm以下の範囲であることが好ましい。また、Raを上記の範囲内にすると同時に平均傾斜角(θa)を9度以上20度以下の範囲に制御する、或いはRaを上記の範囲内にすると同時に局部山頂の平均間隔(S)を30μm以上100μm以下の範囲にすることがより好ましい。さらに、Ra、θa、Sを全て上記の範囲内にすることで画像欠陥改善効果が特に顕著になる。   At least a part of the surface of the dielectric member 101 (a) of the reaction vessel 101 preferably has an arithmetic average roughness (Ra) in the range of 1 μm to 20 μm in order to increase the effect of reducing spherical protrusions. In addition, Ra is controlled within the above range, and the average inclination angle (θa) is controlled within the range of 9 degrees to 20 degrees, or Ra is set within the above range, and at the same time, the average interval (S) between the local peaks is 30 μm. More preferably, it is in the range of 100 μm or less. Further, by making Ra, θa, and S all within the above ranges, the image defect improvement effect becomes particularly remarkable.

反応容器101の導電性上蓋101(b)の材質としては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスなどの材料を用いると導電性で熱伝導が良いので好適である。これらの材料中の2種以上からなる複合材料なども好適に用いられる。   The conductive upper lid 101 (b) of the reaction vessel 101 is made of conductive material such as copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, and stainless steel. This is preferable because of good conduction. A composite material composed of two or more of these materials is also preferably used.

基体加熱用ヒーター107は真空仕様である発熱体であればよく、具体的にはシース状ヒーター、板状ヒーター、セラミックヒーター、カーボンヒーター等の電気抵抗発熱体、ハロゲンランプ、赤外線ランプ等の熱放射ランプ発熱体、液体、気体等を温媒とし熱交換手段による発熱体等が挙げられる。基体加熱用ヒーター107の表面材料としてはステンレス、ニッケル、アルミニウム、銅等の金属類、セラミック、耐熱性高分子樹脂等を使用することができる。   The substrate heating heater 107 may be a heating element having a vacuum specification. Specifically, it is an electric resistance heating element such as a sheathed heater, a plate heater, a ceramic heater, or a carbon heater, and heat radiation such as a halogen lamp or an infrared lamp. Examples include a heating element using a heat exchange means using a lamp heating element, liquid, gas, or the like as a heating medium. As the surface material of the substrate heating heater 107, metals such as stainless steel, nickel, aluminum, and copper, ceramics, heat resistant polymer resins, and the like can be used.

図1の堆積膜形成装置を用いた堆積膜の形成は、例えば概略以下のようにして行われる。   Formation of a deposited film using the deposited film forming apparatus of FIG. 1 is performed, for example, as follows.

まず、基体ホルダー106に保持した円筒状基体105(a)を反応容器101内に設置し、不図示の排気装置により排気口109を通して反応容器101内を排気する。続いて、発熱体107により円筒状基体105(a)を所定の温度に加熱・制御する。   First, the cylindrical substrate 105 (a) held by the substrate holder 106 is installed in the reaction vessel 101, and the inside of the reaction vessel 101 is exhausted through an exhaust port 109 by an exhaust device (not shown). Subsequently, the cylindrical base 105 (a) is heated and controlled to a predetermined temperature by the heating element 107.

円筒状基体105(a)が所定の温度となったところで、原料ガス供給手段110を介して、原料ガスを反応容器101内に導入する。原料ガスの流量が設定流量となり、また、反応容器101内の圧力が安定したのを確認した後、高周波電源103からマッチングボックス104を介して高周波電力導入手段102へ所定の高周波電力を供給する。供給された高周波電力によって、反応容器101内にグロー放電が生起し、原料ガスは励起・解離して円筒状基体105(a)上に堆積膜が形成される。   When the cylindrical substrate 105 (a) reaches a predetermined temperature, the source gas is introduced into the reaction vessel 101 through the source gas supply means 110. After confirming that the flow rate of the raw material gas becomes the set flow rate and the pressure in the reaction vessel 101 is stable, predetermined high frequency power is supplied from the high frequency power source 103 to the high frequency power introducing means 102 via the matching box 104. The supplied high-frequency power causes glow discharge in the reaction vessel 101, and the source gas is excited and dissociated to form a deposited film on the cylindrical substrate 105 (a).

所望の膜厚の形成が行なわれた後、高周波電力の供給を止め、続いて原料ガスの供給を停止して堆積膜の形成を終える。多層構造の堆積膜を形成する場合には、同様の操作を複数回繰り返す。この場合、各層間においては、上述したように1つの層の形成が終了した時点で一旦放電を完全に停止し、次層のガス流量、圧力に設定が変更された後、再度放電を生起して次層の形成を行なってもよいし、あるいは、1つの層の形成終了後一定時間でガス流量、圧力、高周波電力を次層の設定値に徐々に変化させることにより連続的に複数層を形成してもよい。また、各層の間で一旦、反応容器101内の残留ガスを充分真空引きすることで、層と層の間で異なるガス種を使う場合の汚染の心配がなくなるため好ましい。   After the formation of the desired film thickness, the supply of the high frequency power is stopped, and then the supply of the source gas is stopped to finish the formation of the deposited film. When forming a multi-layered deposited film, the same operation is repeated a plurality of times. In this case, in each layer, as described above, once the formation of one layer is completed, the discharge is once stopped completely, and after the setting is changed to the gas flow rate and pressure of the next layer, the discharge occurs again. The next layer may be formed, or a plurality of layers may be continuously formed by gradually changing the gas flow rate, pressure, and high-frequency power to the set values of the next layer within a certain period of time after the formation of one layer. It may be formed. In addition, it is preferable to sufficiently evacuate the residual gas in the reaction vessel 101 once between the layers, because there is no fear of contamination when different gas species are used between the layers.

堆積膜の形成中、必要に応じて円筒状基体105(a)を回転機構108により所定の速度で回転させてもよい。   During the formation of the deposited film, the cylindrical substrate 105 (a) may be rotated at a predetermined speed by the rotation mechanism 108 as necessary.

本発明を用いることにより、例えば図3に示すようなa-Si:H系電子写真用光受容部材が形成可能である。   By using the present invention, for example, an a-Si: H-based electrophotographic light-receiving member as shown in FIG. 3 can be formed.

図3(a)に示す電子写真感光体300は、支持体301の上に、水素原子またはハロゲン原子を構成要素として含むアモルファスシリコン(以下「a-Si:H,X」と表記する。)を有する光導電性を有する光導電層302が設けられている。   An electrophotographic photosensitive member 300 shown in FIG. 3A has amorphous silicon (hereinafter referred to as “a-Si: H, X”) containing a hydrogen atom or a halogen atom as a constituent element on a support 301. A photoconductive layer 302 having photoconductivity is provided.

図3(b)に示す電子写真感光体300は、支持体301の上に、a-Si:H,Xからなり光導電性を有する光導電層302と、a-Si:H系(又はアモルファス炭素系)表面層303が設けられて構成されている。   An electrophotographic photosensitive member 300 shown in FIG. 3B has a photoconductive layer 302 made of a-Si: H, X and having photoconductivity on a support 301, and an a-Si: H system (or amorphous). A carbon-based) surface layer 303 is provided.

図3(c)に示す電子写真感光体300は、支持体301の上に、a-Si:H系電荷注入阻止層304と、a-Si:H,Xからなり光導電性を有する光導電層302と、a-Si:H系(又はアモルファス炭素系)表面層303が設けられて構成されている。   The electrophotographic photosensitive member 300 shown in FIG. 3 (c) has a photoconductive material composed of a-Si: H based charge injection blocking layer 304 and a-Si: H, X on a support 301. A layer 302 and an a-Si: H-based (or amorphous carbon-based) surface layer 303 are provided.

図3(d)に示す電子写真感光体300は、支持体301の上に、光導電層302が設けられている。この光導電層302はa-Si:H,Xからなる電荷発生層305及び電荷輸送層306とからなり、その上にa-Si:H系(又はアモルファス炭素系)表面層303が設けられている。   In the electrophotographic photosensitive member 300 shown in FIG. 3D, a photoconductive layer 302 is provided on a support 301. The photoconductive layer 302 includes a charge generation layer 305 and a charge transport layer 306 made of a-Si: H, X, and an a-Si: H-based (or amorphous carbon-based) surface layer 303 is provided thereon. Yes.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited at all by these.

(実施例1)
図1に示す放電空間中央にアルミニウム製円筒状部材を設置した堆積膜形成装置を用い、円筒状基体105(a)である直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示す条件に従い、電荷注入阻止層、光導電層、表面層からなる電子写真感光体を形成した。
(Example 1)
Using the deposited film forming apparatus in which an aluminum cylindrical member is installed in the center of the discharge space shown in FIG. 1, the cylindrical base 105 (a) is shown in Table 1 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. According to the conditions, an electrophotographic photosensitive member comprising a charge injection blocking layer, a photoconductive layer, and a surface layer was formed.

本実施例においては、高周波電源103の発振周波数は105MHzを用い、導電性上蓋と補助基体上端面の間隔dは50mmとした。   In this embodiment, the oscillation frequency of the high frequency power source 103 is 105 MHz, and the distance d between the conductive upper lid and the upper end surface of the auxiliary substrate is 50 mm.

Figure 2005163162
Figure 2005163162

(比較例1)
図4に示す放電空間に円筒状部材の無い従来の堆積膜形成装置を用い、表1に示した条件で実施例1と同様に電荷注入阻止層、光導電層、表面層からなる感光体を作製した。本比較例においても、高周波電源403の発振周波数は105MHzを用い、導電性上蓋と補助基体上端面の間隔dは50mmとした。
(Comparative Example 1)
Using a conventional deposited film forming apparatus having no cylindrical member in the discharge space shown in FIG. 4, a photoreceptor composed of a charge injection blocking layer, a photoconductive layer, and a surface layer is formed in the same manner as in Example 1 under the conditions shown in Table 1. Produced. Also in this comparative example, the oscillation frequency of the high frequency power supply 403 is 105 MHz, and the distance d between the conductive upper lid and the upper end surface of the auxiliary substrate is 50 mm.

(評価)
このようにして作製されたa-Si:H感光体を本テスト用に改造されたキヤノン製の複写機iR5000に設置し、感光体の特性評価を行なった。評価項目は「球状突起数」、「画像欠陥」の2項目とし、以下の具体的評価法により各項目の評価を行ない、結果を表2に示した。
(Evaluation)
The a-Si: H photoconductor produced in this way was installed in a Canon copier iR5000 modified for this test, and the characteristics of the photoconductor were evaluated. The evaluation items were two items, “the number of spherical protrusions” and “image defect”. Each item was evaluated by the following specific evaluation method, and the results are shown in Table 2.

(球状突起数)
得られた感光体の表面を光学顕微鏡で観察し、球状突起の個数をカウントした。具体的には、直径が10μm以上20μm未満大きさ及び20μm以上球状突起の数を数え、10cm2当たりの個数を調べた。
(Number of spherical protrusions)
The surface of the obtained photoreceptor was observed with an optical microscope, and the number of spherical protrusions was counted. Specifically, the diameter was 10 μm or more and less than 20 μm and the number of spherical protrusions of 20 μm or more was counted, and the number per 10 cm 2 was examined.

得られた結果は、比較例1での値を基準として、球状突起の減少率でランク付けを行った。

◎ … 80%以上の減少
◎〜○ … 60%以上80%未満の減少
○ … 40%以上60%未満の減少
○〜△ … 10%以上40%未満の減少
△ … 0%以上10%未満の減少
× … 増加。
The obtained results were ranked by the reduction rate of the spherical protrusions based on the value in Comparative Example 1.

◎… More than 80% decrease
◎ ~ ○ ... 60% or more and less than 80% reduction
○… Reduction of 40% or more and less than 60%
○ ~ △… 10% or more and less than 40% decrease
△… 0% or more and less than 10% decrease
×… Increased.

(画像欠陥)
キヤノン製複写機iR5000に作製した電子写真感光体を設置し、プロセススピード265mm/sec、前露光(波長660nmのLED)光量4lx・s、帯電器の電流値1000μAの条件にてベタ黒画像(画像密度100%)において得られた画像を観察し、A3サイズの黒原稿を複写した。こうして得られた画像を観察し、直径0.3mm以上の球状突起に起因する白ポチの個数を数えた。
(Image defect)
Installed an electrophotographic photosensitive member on Canon iR5000, a solid black image under the conditions of a process speed of 265 mm / sec, pre-exposure (LED with a wavelength of 660 nm), a light intensity of 4 lx · s, and a charger current value of 1000 μA. The image obtained at a density of 100% was observed, and an A3 size black original was copied. The images thus obtained were observed, and the number of white spots caused by spherical protrusions having a diameter of 0.3 mm or more was counted.

なお、評価画像は、透過濃度2.0とした。画像の透過濃度は画像濃度計:MacbethRD914を用いて測定し、画像のほぼ中央で測定し、2.0となる画像を用いた。   The evaluation image has a transmission density of 2.0. The transmission density of the image was measured using an image densitometer: Macbeth RD914, measured at approximately the center of the image, and an image of 2.0 was used.

得られた結果は、比較例1での値を基準として、画像欠陥の減少率でランク付けを行った。

◎ … 80%以上の減少
◎〜○ … 60%以上80%未満の減少
○ … 40%以上60%未満の減少
○〜△ … 10%以上40%未満の減少
△ … 0%以上10%未満の減少
× … 増加。
The obtained results were ranked based on the image defect reduction rate based on the value in Comparative Example 1.

◎… More than 80% decrease
◎ ~ ○ ... 60% or more and less than 80% reduction
○… Reduction of 40% or more and less than 60%
○ ~ △… 10% or more and less than 40% decrease
△… 0% or more and less than 10% decrease
×… Increased.

Figure 2005163162
Figure 2005163162

(実施例2)
図1に示す放電空間中央にアルミニウム製円筒状部材を設置した堆積膜形成装置を用い、円筒状基体105(a)である直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示す条件に従い、前述の堆積膜形成方法でa-Si:H堆積膜から成る電子写真感光体を形成した。
(Example 2)
Using the deposited film forming apparatus in which an aluminum cylindrical member is installed in the center of the discharge space shown in FIG. 1, the cylindrical base 105 (a) is shown in Table 1 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. According to the conditions, an electrophotographic photosensitive member made of an a-Si: H deposited film was formed by the above-described deposited film forming method.

本実施例においては、高周波電源103の発振周波数は20、50、70、105、250、450、500MHzを用い、それぞれの条件において、導電性上蓋と補助基体上端面の間隔dを変えた数種類の組み合わせについて電子写真感光体を形成した。   In this embodiment, the oscillation frequency of the high-frequency power source 103 is 20, 50, 70, 105, 250, 450, 500 MHz, and several types are obtained by changing the distance d between the conductive upper cover and the upper end surface of the auxiliary substrate under each condition. An electrophotographic photoreceptor was formed for the combination.

(比較例2)
導電性上蓋と補助基体上端面の間隔dを2mm、160mmとする以外は実施例1と同様に電荷注入阻止層、光導電層、表面層からなる感光体を作製した。
(Comparative Example 2)
A photoconductor comprising a charge injection blocking layer, a photoconductive layer and a surface layer was prepared in the same manner as in Example 1 except that the distance d between the conductive upper lid and the upper end surface of the auxiliary substrate was 2 mm and 160 mm.

(評価)
このようにして作製されたa-Si:H感光体を本テスト用に改造されたキヤノン製の複写機iR5000に設置し、感光体の特性評価を行なった。評価項目は「球状突起数」、「画像欠陥」、「画像濃度むら」の3項目とし、「球状突起数」、「画像欠陥」は実施例1と同様の手順にて評価を行い、得られた結果は、比較例2での値(間隔2mm、20MHzの条件)を基準として、減少率でランク付けを行った。
(Evaluation)
The a-Si: H photoconductor produced in this way was installed in a Canon copier iR5000 modified for this test, and the characteristics of the photoconductor were evaluated. The evaluation items are “spherical projection number”, “image defect”, and “image density unevenness”, and “spherical projection number” and “image defect” are obtained by evaluating in the same procedure as in Example 1. The results were ranked according to the reduction rate based on the value in Comparative Example 2 (condition of 2 mm spacing and 20 MHz).

(画像濃度むら)
まず、現像器位置での暗部電位が一定値となるよう主帯電器電流を調整した後、原稿に反射濃度0.01以下の所定の白紙を用い、現像器位置での明部電位が所定の値となるよう像露光光量を調整した。次いで、キヤノン製中間調チャート(部品号:FY9-9042)を原稿台に置き、コピーしたときに得られたコピー画像上全領域における反射濃度の最高値と最低値の差により評価した。評価結果は全感光体の平均値とした。
(Image density unevenness)
First, after adjusting the main charger current so that the dark part potential at the developing unit position becomes a constant value, a predetermined white paper with a reflection density of 0.01 or less is used for the original, and the bright part potential at the developing unit position becomes a predetermined value. The amount of image exposure was adjusted so that Subsequently, a Canon halftone chart (part number: FY9-9042) was placed on the document table, and the evaluation was made based on the difference between the maximum value and the minimum value of the reflection density in the entire area on the copy image obtained when copying. The evaluation result was the average value of all the photoconductors.

画像濃度むらの評価結果は、比較例2での値(間隔2mm、20MHzの条件)を基準とし、各項目の改善度合いにより判定を行った。   The evaluation result of the image density unevenness was determined by the degree of improvement of each item, based on the value in Comparative Example 2 (interval 2 mm, 20 MHz condition).

◎ … 40%以上の良化
◎〜○ … 30%以上40%未満の良化
○ … 20%以上30%未満の良化
○〜△ … 10%以上20%未満の良化
△ … 0%以上10%未満の良化
× … 悪化
◎… 40% or better
◎ ~ ○ ... 30% to less than 40% improvement
○… 20% to less than 30% improvement
○ ~ △ ... Improvement of 10% or more and less than 20%
△… Improvement of 0% or more and less than 10%
×… worse

Figure 2005163162
Figure 2005163162

Figure 2005163162
Figure 2005163162

Figure 2005163162
Figure 2005163162

Figure 2005163162
Figure 2005163162

評価結果において、全項目とも本発明の範囲である実施例2と比較例2の間で明らかに差が認められた。特に、球状突起においては、10μm以上20μm未満の比較的小さいものにおいて、間隔dを31mm〜100mmにすることで顕著に良化していることがわかる。   In the evaluation results, all the items clearly differed between Example 2 and Comparative Example 2, which are within the scope of the present invention. In particular, it can be seen that spherical protrusions are remarkably improved by setting the distance d to 31 mm to 100 mm in relatively small ones of 10 μm or more and less than 20 μm.

(実施例3)
図1に示す放電空間中央にアルミニウム製円筒状部材を設置した堆積膜形成装置を用い、円筒状基体105(a)である直径80mm、長さ358mmの円筒状アルミニウムシリンダー上に、表1に示す条件に従い、前述の堆積膜形成方法でa-Si:H堆積膜から成る電子写真感光体を形成した。
Example 3
Using the deposited film forming apparatus in which an aluminum cylindrical member is installed in the center of the discharge space shown in FIG. 1, the cylindrical base 105 (a) is shown in Table 1 on a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm. According to the conditions, an electrophotographic photosensitive member made of an a-Si: H deposited film was formed by the above-described deposited film forming method.

本実施例では、高周波電源103から105MHz、50MHzの2種類の周波数を同時に発振した。なお、夫々の出力は全出力の夫々50%とした。   In this embodiment, two types of frequencies of 105 MHz and 50 MHz are simultaneously oscillated from the high frequency power source 103. Each output was 50% of the total output.

本実施では、導電性上蓋と補助基体上端面の間隔dを10〜150mmの範囲で変化させで感光体を作製した。   In this embodiment, the photosensitive member was produced by changing the distance d between the conductive upper lid and the upper end surface of the auxiliary substrate in the range of 10 to 150 mm.

本実施例で作成した感光体を、実施例2と同様に球状突起の評価を行った。   The photoconductors prepared in this example were evaluated for spherical protrusions in the same manner as in Example 2.

得られた結果は、実施例2と同様に、比較例2での値(間隔2mm、20MHzの条件)を基準として、球状突起の減少率でランク付けを行った。   As in Example 2, the obtained results were ranked according to the reduction rate of the spherical protrusions based on the values in Comparative Example 2 (conditions of interval 2 mm, 20 MHz).

結果を表7に示す。   The results are shown in Table 7.

Figure 2005163162
Figure 2005163162

表7に示すように、本実施例においては、高周波電力を2種類の周波数の重畳とすることで、より顕著に球状突起の個数が減少することが分かる。これは、高周波電力を2周波数以上の重畳周波数としたことで、円筒状基体の電界分布がより一層好ましい状態に変化したためと推測される。   As shown in Table 7, it can be seen that in this embodiment, the number of spherical protrusions is more significantly reduced by superimposing two types of frequencies on the high-frequency power. This is presumably because the electric field distribution of the cylindrical substrate has changed to a more favorable state by setting the high frequency power to a superposition frequency of two or more frequencies.

以上説明したように本発明によれば、少なくとも一部が誘電体部材で構成された反応容器内に円筒状基体を同一円周上に等間隔で配置し、高周波電力を反応容器外から導入することで、複数の基体上に、良好な特性を有する堆積膜形成装置・方法において、反応容器の概略中央に円筒状部材を設置し、さらに反応容器の一部を構成する導電性上蓋と、該導電性上蓋に対向する補助基体上端面との間隔を10mm以上150mm以下とすることで、電子写真感光体の電位特性のむらを抑制するとともに、画像欠陥の原因となる球状突起を大幅に減少させることが可能となった。   As described above, according to the present invention, cylindrical substrates are arranged at equal intervals on the same circumference in a reaction vessel at least partly composed of a dielectric member, and high frequency power is introduced from outside the reaction vessel. Thus, in a deposited film forming apparatus and method having good characteristics on a plurality of substrates, a cylindrical member is installed at the approximate center of the reaction vessel, and a conductive upper lid constituting a part of the reaction vessel; By setting the distance from the upper end surface of the auxiliary substrate facing the conductive upper lid to 10 mm or more and 150 mm or less, the unevenness of the electric potential characteristics of the electrophotographic photosensitive member is suppressed and the spherical projections causing image defects are greatly reduced. Became possible.

本発明の堆積膜形成装置の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the deposited film formation apparatus of this invention. 導電性上蓋とキャップの位置関係を示す模式的な構成図である。It is a typical block diagram which shows the positional relationship of an electroconductive upper cover and a cap. 本発明により形成可能な電子写真用光受容部材の層構成の一例を示した図である。It is the figure which showed an example of the layer structure of the light-receiving member for electrophotography which can be formed by this invention. 従来の堆積膜形成装置の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the conventional deposited film formation apparatus.

符号の説明Explanation of symbols

101 反応容器
101(a) 誘電体部材
101(b) 導電性上蓋
102 高周波電力導入手段
103 高周波電源
104 マッチングボックス
105(a) 円筒状基体
105(b) 補助基体
106 基体支持体
107 基体加熱用ヒーター
108 回転機構
109 排気配管
110 ガス供給手段
111 円筒状部材
112 高周波電力分岐手段
201(b) 導電性上蓋
205(a) 円筒状基体
205(b) 補助基体
211 円筒状部材
300 電子写真感光体
301 支持体
302 光導電層
303 表面層
304 電荷注入阻止層
305 電荷発生層
306 電荷輸送層
401 反応容器
401(a) 誘電体部材
401(b) 導電性上蓋
402 高周波電力導入手段
403 高周波電源
404 マッチングボックス
405(a) 円筒状基体
405(b) 補助基体
406 基体支持体
407 基体加熱用ヒーター
408 回転機構
409 排気配管
410 ガス供給手段
412 高周波電力分岐手段
101 reaction vessel
101 (a) Dielectric material
101 (b) Conductive top cover
102 High-frequency power introduction means
103 high frequency power supply
104 matching box
105 (a) Cylindrical substrate
105 (b) Auxiliary substrate
106 Substrate support
107 Substrate heating heater
108 Rotating mechanism
109 Exhaust piping
110 Gas supply means
111 Cylindrical member
112 High-frequency power branching means
201 (b) Conductive top cover
205 (a) Cylindrical substrate
205 (b) Auxiliary substrate
211 Cylindrical member
300 Electrophotographic photoconductor
301 Support
302 Photoconductive layer
303 surface layer
304 Charge injection blocking layer
305 Charge generation layer
306 Charge transport layer
401 reaction vessel
401 (a) Dielectric material
401 (b) Conductive top cover
402 High frequency power introduction means
403 high frequency power supply
404 matching box
405 (a) Cylindrical substrate
405 (b) Auxiliary substrate
406 Substrate support
407 Substrate heating heater
408 Rotating mechanism
409 Exhaust piping
410 Gas supply means
412 High-frequency power branching means

Claims (9)

少なくとも一部が誘電体部材で構成された減圧可能な反応容器と、該反応容器内部に同一円周上に配置された複数の円筒状基体及び原料ガス導入手段と、該反応容器の外部に配置された複数の高周波電極を有し、該高周波電極に高周波電力を印加し、該反応容器内にグロー放電を発生させることにより、該反応容器内に導入された原料ガスを分解し、該複数の円筒状基体上に堆積膜を形成する堆積膜形成装置において、
該反応容器の概略中央に円筒状部材を設置し、さらに反応容器の一部を構成する導電性上蓋と、該導電性上蓋に対向する補助基体上端面との間隔を10mm以上150mm以下とすることを特徴とする堆積膜形成装置。
A reaction vessel capable of being depressurized, at least partly composed of a dielectric member, a plurality of cylindrical substrates and raw material gas introduction means arranged on the same circumference inside the reaction vessel, and arranged outside the reaction vessel A plurality of high-frequency electrodes, and applying a high-frequency power to the high-frequency electrodes to generate a glow discharge in the reaction vessel, thereby decomposing the raw material gas introduced into the reaction vessel, In a deposited film forming apparatus for forming a deposited film on a cylindrical substrate,
A cylindrical member is installed at the approximate center of the reaction vessel, and the distance between the conductive upper lid constituting a part of the reaction vessel and the upper end surface of the auxiliary substrate facing the conductive upper lid is 10 mm or more and 150 mm or less. A deposited film forming apparatus characterized by the above.
前記補助基体上端面と該導電性上蓋との間隔を31mm以上100mm以下とすることを特徴とする請求項1に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 1, wherein a distance between the upper end surface of the auxiliary base and the conductive upper lid is set to 31 mm or more and 100 mm or less. 前記円筒状部材は導電性であることを特徴とする請求項1または2に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 1, wherein the cylindrical member is conductive. 前記高周波電力導入手段が、前記複数の円筒状基体の配置円と中心を同じくする同心円上に等間隔で設置されていることを特徴とする請求項1ないし3のいずれか1項に記載の堆積膜形成装置。   The deposition according to any one of claims 1 to 3, wherein the high-frequency power introduction means are installed at equal intervals on a concentric circle having the same center as the arrangement circle of the plurality of cylindrical substrates. Film forming device. 前記高周波電力の周波数が50〜450MHzの範囲であることを特徴とする請求項1ないし4のいずれか1項に記載の堆積膜形成装置。   5. The deposited film forming apparatus according to claim 1, wherein a frequency of the high-frequency power is in a range of 50 to 450 MHz. 前記高周波電力は、周波数が異なる複数の高周波電力である請求項5に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 5, wherein the high-frequency power is a plurality of high-frequency powers having different frequencies. 前記複数の円筒状基体上に形成される堆積膜が、シリコン原子を母材とした非単結晶材料であることを特徴とする請求項1ないし6のいずれか1項に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 1, wherein the deposited films formed on the plurality of cylindrical substrates are non-single-crystal materials having silicon atoms as a base material. . 電子写真感光体の製造に用いられることを特徴とする請求項1ないし7のいずれか1項に記載の堆積膜形成装置。   8. The deposited film forming apparatus according to claim 1, wherein the deposited film forming apparatus is used for manufacturing an electrophotographic photosensitive member. 請求項1ないし8のいずれか1項に記載の堆積膜形成装置を用いた堆積膜形成方法。   A deposited film forming method using the deposited film forming apparatus according to claim 1.
JP2003407715A 2003-12-05 2003-12-05 Apparatus and method for forming deposition film Pending JP2005163162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407715A JP2005163162A (en) 2003-12-05 2003-12-05 Apparatus and method for forming deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407715A JP2005163162A (en) 2003-12-05 2003-12-05 Apparatus and method for forming deposition film

Publications (1)

Publication Number Publication Date
JP2005163162A true JP2005163162A (en) 2005-06-23

Family

ID=34729667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407715A Pending JP2005163162A (en) 2003-12-05 2003-12-05 Apparatus and method for forming deposition film

Country Status (1)

Country Link
JP (1) JP2005163162A (en)

Similar Documents

Publication Publication Date Title
JPH11193470A (en) Deposited film forming device and formation of deposited film
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP4109861B2 (en) Vacuum processing method
JP4298401B2 (en) Deposited film forming apparatus and deposited film forming method
JP2005163162A (en) Apparatus and method for forming deposition film
JP2007297661A (en) Apparatus for forming deposition film
JP2005163161A (en) Apparatus and method for forming deposition film
JP2005163163A (en) Deposition film formation device, and deposition film formation method
JP2005163166A (en) Deposition film forming system and deposition film forming method
JP3606399B2 (en) Deposited film forming equipment
JP2005344150A (en) Deposition film depositing device and deposition film depositing method
JP2005344151A (en) Deposition film forming device and method
JP3710171B2 (en) Method for forming electrophotographic photosensitive member
JP2006009040A (en) Film deposition apparatus and film deposition method
JP2005163164A (en) Deposited film forming apparatus and deposited film forming method
JP2005015877A (en) Apparatus and method for forming deposition film
JP2006104544A (en) Deposited film formation system and deposited film formation method
JPH1126388A (en) Forming equipment for deposition film and forming method for deposition film
JP2005015878A (en) Deposition film formation device, and deposition film formation method
JP2000054146A (en) Formation of deposited film and deposited film forming device
JP2006009042A (en) Film deposition apparatus and film deposition method
JP2005015880A (en) Deposited film formation apparatus, and deposited film formation method
JP2007297660A (en) Deposited film formation device and deposited film formation method
JP2005133128A (en) Apparatus and method for plasma treatment
JP2008179862A (en) Apparatus and method for forming deposited film