JP2005163166A - Deposition film forming system and deposition film forming method - Google Patents

Deposition film forming system and deposition film forming method Download PDF

Info

Publication number
JP2005163166A
JP2005163166A JP2003407955A JP2003407955A JP2005163166A JP 2005163166 A JP2005163166 A JP 2005163166A JP 2003407955 A JP2003407955 A JP 2003407955A JP 2003407955 A JP2003407955 A JP 2003407955A JP 2005163166 A JP2005163166 A JP 2005163166A
Authority
JP
Japan
Prior art keywords
frequency power
film forming
deposited film
forming apparatus
introducing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407955A
Other languages
Japanese (ja)
Inventor
Junichiro Hashizume
淳一郎 橋爪
Yoshio Seki
好雄 瀬木
Tetsuya Karaki
哲也 唐木
Tatsuji Okamura
竜次 岡村
Nobufumi Tsuchida
伸史 土田
Takashi Otsuka
崇志 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003407955A priority Critical patent/JP2005163166A/en
Publication of JP2005163166A publication Critical patent/JP2005163166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposition film forming system and a deposition film forming method capable of drastically decreasing the image defects of an electrophotographic photoreceptor, improving the electrostatic chargeability of the electrophotographic photoreceptor, and reducing a cost by reducing the generation of spherical projections due to dust during deposition. <P>SOLUTION: The deposition film forming system and the deposition film forming method form the deposition films having good characteristics on a plurality of cylindrical substrates by arranging the plurality of the substrates at equal intervals on the same circumference, arranging high-frequency electric power introducing means on the outside of a reaction vessel, and introducing the high-frequency electric power therein, wherein the high-frequency electric power introducing means are installed on a plurality of arrangement circles different in diameters. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基体上に堆積膜を形成する堆積膜形成装置および堆積膜形成方法に関する。とりわけ機能性膜、特に半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等に用いる堆積膜形成装置および堆積膜形成方法に関する。   The present invention relates to a deposited film forming apparatus and a deposited film forming method for forming a deposited film on a substrate. More particularly, the present invention relates to a deposited film forming apparatus and a deposited film forming method used for a functional film, particularly a semiconductor device, an electrophotographic photosensitive member, an image input line sensor, a photographing device, a photovoltaic device, and the like.

従来、半導体デバイス、電子写真感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス、その他各種エレクトロニクス素子、光学素子等の形成に用いる堆積膜形成方法として、プラズマCVD法、イオンプレーティング法、プラズマエッチング法等、高周波電力によって生起されたプラズマを用いた方法が多数知られており、そのための装置も実用に付されている。   Conventionally, as a deposition film forming method used for forming semiconductor devices, electrophotographic photosensitive members, line sensors for image input, photographing devices, photovoltaic devices, other various electronic elements, optical elements, etc., plasma CVD method, ion plating method Many methods using plasma generated by high-frequency power, such as a plasma etching method, are known, and an apparatus therefor has been put into practical use.

例えばプラズマCVD法、すなわち、原料ガスを高周波グロー放電により分解し、基板上に薄膜状の堆積膜を形成する方法は好適な堆積膜形成手段として実用化されており、例えば電子写真用アモルファスシリコン(以下、「a−Si」と表記する)堆積膜の形成等に利用され、そのための装置も各種提案されている。   For example, a plasma CVD method, that is, a method in which a source gas is decomposed by high-frequency glow discharge to form a thin deposited film on a substrate has been put into practical use as a suitable deposited film forming means. Various devices have been proposed for use in the formation of deposited films (hereinafter referred to as “a-Si”).

特に、VHF帯の高周波電力を用いたプラズマCVD(以下、「VHF−PCVD」と略記する)法が注目を浴びており、このVHF−PCVD法を用いた各種堆積膜の開発が積極的に進められている。これは、VHF−PCVD法では堆積膜の堆積速度が比較的速く、また高品質な堆積膜が得られるため、製品の低コスト化、高品質化を同時に達成し得るものと期待されるためである。そして、複数のa−Si系電子写真用の感光体を同時に形成できて、生産性が高い堆積膜形成装置の開発が進められている。   In particular, plasma CVD using high frequency power in the VHF band (hereinafter abbreviated as “VHF-PCVD”) is attracting attention, and development of various deposited films using this VHF-PCVD method is actively promoted. It has been. This is because in the VHF-PCVD method, the deposition rate of the deposited film is relatively high and a high-quality deposited film can be obtained, so that it is expected that the cost reduction and quality improvement of the product can be achieved at the same time. is there. Development of a deposited film forming apparatus that can form a plurality of a-Si electrophotographic photoreceptors at the same time and has high productivity is in progress.

例えば、反応容器の一部を誘電体部材とし、高周波電力導入手段を反応容器の外側に複数配置することで、大面積で均質な高周波放電が容易に達成され、大面積基体へのプラズマ処理を均一且つ高速に行うことが可能になる装置が開示されている。(例えば、特許文献1参照)
このような堆積膜形成装置の一例として、図3に模式的な構成図を示す。
For example, by arranging a part of the reaction vessel as a dielectric member and arranging a plurality of high-frequency power introduction means outside the reaction vessel, a uniform high-frequency discharge can be easily achieved in a large area, and plasma treatment on a large-area substrate can be performed. An apparatus that enables uniform and high speed operation is disclosed. (For example, see Patent Document 1)
FIG. 3 shows a schematic configuration diagram as an example of such a deposited film forming apparatus.

図3(a)は概略断面図、図3(b)は図3(a)の切断線A−A’に沿う概略断面図である。反応容器301は誘電体部材301(a)と上蓋301(b)から成る。反応容器301の下部には排気配管309が接続され、排気配管309の他端は不図示の排気装置(例えば真空ポンプ)に接続されている。反応容器301の中心部を取り囲むように、堆積膜の形成される複数の円筒状基体305が互いに平行になるように同一円周上に配置されている。複数の円筒状基体305は基体加熱用ヒーター307を内蔵した基体支持体306によって各々保持されている。そして、反応容器301内にはSiH4、GeH4、H2、CH4、B2H6、PH3、Ar、He等のガスボンベからなる不図示のガス供給装置に接続されたガス供給手段310があり、反応容器301の外には高周波電力導入手段302が設置されている。高周波電力導入手段302には、高周波電源303がマッチングボックス304と高周波電力分岐手段312を介して接続されている。さらに、円筒状基体305は各々の回転機構308によって、回転可能になっている。
特開平9−310181号公報
FIG. 3A is a schematic cross-sectional view, and FIG. 3B is a schematic cross-sectional view taken along a cutting line AA ′ in FIG. The reaction vessel 301 includes a dielectric member 301 (a) and an upper lid 301 (b). An exhaust pipe 309 is connected to the lower part of the reaction vessel 301, and the other end of the exhaust pipe 309 is connected to an exhaust device (not shown) (for example, a vacuum pump). A plurality of cylindrical substrates 305 on which deposited films are formed are arranged on the same circumference so as to be parallel to each other so as to surround the central portion of the reaction vessel 301. The plurality of cylindrical substrates 305 are respectively held by a substrate support 306 having a substrate heating heater 307 built therein. In the reaction vessel 301, there is a gas supply means 310 connected to a gas supply device (not shown) composed of gas cylinders such as SiH 4, GeH 4, H 2, CH 4, B 2 H 6, PH 3, Ar, and He. Is provided with high-frequency power introducing means 302. A high frequency power supply 303 is connected to the high frequency power introducing means 302 via a matching box 304 and a high frequency power branching means 312. Further, the cylindrical base body 305 can be rotated by each rotating mechanism 308.
JP-A-9-310181

このような従来の堆積膜形成装置及び方法により、膜堆積速度の向上による基体処理時間の短縮、同時処理可能基体数の増加、堆積膜特性の均一性・再現性の向上が達成され、生産コストの安い、実用的な特性と均一性を持つ電子写真感光体を得ることが可能になった。また真空反応容器内の清掃を厳格に行えばある程度欠陥の少ない電子写真感光体を得ることは可能である。   With such a conventional deposited film forming apparatus and method, it is possible to shorten the substrate processing time by increasing the film deposition rate, increase the number of simultaneously processable substrates, and improve the uniformity and reproducibility of the deposited film characteristics. It has become possible to obtain an electrophotographic photosensitive member that is inexpensive and has practical characteristics and uniformity. Further, if the inside of the vacuum reaction vessel is strictly cleaned, it is possible to obtain an electrophotographic photosensitive member having a certain number of defects.

しかしながら、これらの堆積膜を用いた製品に対する市場の要求レベルは日々高まっており、この要求に応えるべく、より高品質の堆積膜が求められるようになっている。   However, the level of market demand for products using these deposited films is increasing day by day, and higher quality deposited films are being demanded to meet this demand.

すなわち、近年、急激に需要が広がっているカラー複写機においては、これまで以上に画像欠陥に対する要求が厳しい。ところが、電子写真感光体のように大面積で比較的厚い堆積膜が要求される製品においては、その感光体の製造工程が長時間に渡るために製造工程中にダストが発生しやすく、且つ、堆積面の面積が広いため、自ずとダストが付着する確率も高まる傾向がある。このダスト起因の堆積膜の異常成長は画像欠陥に直結するため、極力なくすことが必要となってきた。   In other words, in recent years, demand for image defects is more severe than ever in color copying machines, for which demand is rapidly expanding. However, in a product that requires a relatively thick deposited film with a large area, such as an electrophotographic photosensitive member, dust is easily generated during the manufacturing process because the manufacturing process of the photosensitive member takes a long time, and Since the area of the deposition surface is large, the probability of dust adhering tends to increase. Since the abnormal growth of the deposited film due to dust is directly connected to the image defect, it is necessary to eliminate it as much as possible.

従って、膜堆積速度が速く、光学的及び電気的諸特性の要求を満足し、かつ電子写真プロセスによる画像形成時に画像欠陥が少ない堆積膜を高収率で得るためには、改善すべき問題が残存していた。   Therefore, in order to obtain a deposited film with a high yield in which the film deposition rate is high, the requirements of optical and electrical characteristics are satisfied, and the image formation by the electrophotographic process is small, there is a problem to be improved. It remained.

上記の感光体の製造工程で発生する堆積膜の異常成長とは次のようなものである。   The abnormal growth of the deposited film that occurs in the manufacturing process of the photosensitive member is as follows.

a−Si膜は基体表面に数μmオーダーのダストが付着していた場合、成膜中にそのダストを核として異常成長、いわゆる「球状突起」が成長してしまうという性質を持っている。球状突起はダストを起点とした円錐形を逆転させた形をしており、正常堆積部分と球状突起部分の界面では局在準位が非常に多いために低抵抗化し、帯電電荷が界面を通って基体側に抜けてしまう。このため、球状突起のある部分は、画像上ではべた黒画像で白い点となって現れる(反転現像の場合はべた白画像に黒い点となって現れる)。このいわゆる「ポチ」と呼ばれる画像欠陥は年々規格が厳しくなっており、大きさによってはA3用紙に数個存在していても不良として扱われることがある。さらには、カラー複写機に搭載される場合にはさらに規格は厳しくなり、A3用紙に1個存在していても不良となる場合がある。   The a-Si film has the property that, when dust of the order of several μm adheres to the surface of the substrate, abnormal growth, that is, so-called “spherical protrusions” grow using the dust as a nucleus during film formation. Spherical protrusions have a shape that is a reversal of the conical shape starting from dust, and there are many localized levels at the interface between the normal deposition part and the spherical protrusion part, so the resistance decreases, and the charged charge passes through the interface. Will come off to the substrate side. For this reason, the part with the spherical protrusion appears as a white point in the solid black image on the image (in the case of reversal development, it appears as a black point in the solid white image). The so-called “pochi” image defect has a stricter standard every year, and depending on the size, even if there are several A3 sheets, they may be treated as defective. Furthermore, the standard becomes more stringent when mounted on a color copying machine, and even if one is present on A3 paper, it may be defective.

この球状突起は、ダストを起点としているため、使用する基体は成膜前に精密に洗浄され、成膜装置に設置する行程は全てクリーンルームあるいは真空下で作業が行われる。このようにして、成膜開始前に基体上に付着するダストは極力少なくするよう努力されてきており、効果を上げてきた。しかし、球状突起の発生原因は基体上に付着したダストのみではない。すなわち、a−Si感光体を製造する場合、要求される膜厚が数μmから数10μmと非常に厚いため、成膜時間は数時間から数十時間に及び、この間にa−Si膜は基体のみではなく、反応容器壁や反応容器内の構造物にも堆積する。これらの炉壁、構造物は基体のように管理された表面や温度を有していないため、場合によっては密着力が弱く、長時間に渡る成膜中に膜剥がれを起こす場合があった。成膜中に僅かでも剥がれが発生すると、それがダストとなり、堆積中の感光体表面に付着し、これが起点となって球状突起の異常成長が発生してしまう。従って、高い歩留まりを維持していくためには、成膜前の基体の管理のみならず、成膜中における反応容器内の膜剥がれの防止についても慎重な管理が必要とされ、a−Si感光体の製造を難しいものにしていた。   Since these spherical protrusions start from dust, the substrate to be used is precisely cleaned before film formation, and all the steps to be installed in the film formation apparatus are performed in a clean room or under vacuum. In this way, efforts have been made to reduce the amount of dust adhering to the substrate before the start of film formation, and the effect has been improved. However, the cause of the generation of the spherical protrusion is not only the dust adhering to the substrate. That is, when an a-Si photosensitive member is manufactured, the required film thickness is very large, from several μm to several tens of μm, and therefore the film formation time ranges from several hours to several tens of hours. It accumulates not only on the reaction vessel wall but also on the structure in the reaction vessel. Since these furnace walls and structures do not have a controlled surface or temperature like the substrate, the adhesion is weak in some cases, and film peeling may occur during film formation over a long period of time. If even a slight peeling occurs during the film formation, it becomes dust and adheres to the surface of the photoreceptor being deposited, and this causes the abnormal growth of the spherical projections. Therefore, in order to maintain a high yield, it is necessary to carefully manage not only the substrate before film formation but also prevention of film peeling in the reaction vessel during film formation. Making the body difficult.

また、画像欠陥の問題に加え、近年の複写機のカラー化や高速化に伴い、電位特性に対する要求は以前にも増して高まっている。すなわち、複写機のカラー化は本体プロセスの複雑化をもたらしており、このために帯電手段と現像手段を接近させて配置することが難しくなってきている。このような状況の中で現像位置で充分な表面電位を得るためには、より高い帯電能が必要である。また、複写機の高速化は、帯電に割く時間が割かれていくことを意味し、この場合も帯電能の向上が求められる。   Further, in addition to the problem of image defects, the demand for potential characteristics is increasing more than ever with the recent increase in color and speed of copying machines. That is, the colorization of the copying machine has complicated the main body process, which makes it difficult to place the charging unit and the developing unit close to each other. In such a situation, in order to obtain a sufficient surface potential at the development position, higher charging ability is required. Further, the speeding up of the copying machine means that time for charging is taken up, and also in this case, improvement in charging ability is required.

さらに複写機の用途が文字中心の複写原稿から写真等の画像に移り、ハーフトーンを多用する複写原稿が増えてきたため、濃度の均一性については、以前に増して厳しい基準が要求されるようになってきた。特に写真原稿に関しては、ゴーストと呼ばれる現象に対して要求が厳しい。ここで言うゴーストとは、前回複写したイメージがハーフトーン領域で薄く顕在化してしまう現象である。これまでにも様々な方法によってゴーストをより軽減する試みがなされているが、更に向上させることのできる技術が切望されている。   Furthermore, as the use of copying machines has shifted from character-centered copy originals to images such as photographs, the number of copy originals that frequently use halftone has increased, so that stricter standards are required for density uniformity. It has become. In particular, for a photographic manuscript, the demand for a phenomenon called ghost is severe. The ghost referred to here is a phenomenon in which an image copied last time is thinly revealed in a halftone region. Attempts have been made to further reduce ghosts by various methods, but a technique that can be further improved is eagerly desired.

本発明の目的は、上述のごとき従来の電子写真感光体における諸問題、具体的には球状突起に起因する画像欠陥を克服し、さらに帯電能が高く、ゴーストの少ない、優れた特性を有する電子写真感光体を、安価に安定して歩留まり良く製造し得る堆積膜形成装置、及び堆積膜形成方法を提供することにある。   An object of the present invention is to overcome various problems in the conventional electrophotographic photosensitive member as described above, specifically, an image defect caused by spherical protrusions, and has an excellent characteristic such that the charging ability is high and the ghost is small. An object of the present invention is to provide a deposited film forming apparatus and a deposited film forming method capable of manufacturing a photographic photosensitive member stably at a low cost and with a high yield.

本発明者らは上記目的を達成すべく鋭意検討を行った結果、少なくとも一部が誘電体部材で構成された減圧可能な反応容器と、該反応容器内部に同一円周上に配置された複数の円筒状基体と、原料ガス導入手段と、該反応容器の外部に配置された複数の高周波電力導入手段とを有し、該高周波電力導入手段に高周波電力を印加し、該反応容器内にグロー放電を発生させることにより、該反応容器内に導入された原料ガスを分解し、該複数の円筒状基体上に堆積膜を形成する堆積膜形成装置において、該高周波電力導入手段を直径の異なる複数の配置円上に配置することにより、大幅に球状突起の発生を減らすと同時に、電気特性の向上が可能であることを見出した。   As a result of intensive studies to achieve the above object, the inventors of the present invention have found that at least a part of the reaction vessel made of a dielectric member can be decompressed, and a plurality of reaction vessels arranged on the same circumference inside the reaction vessel. And a plurality of high-frequency power introducing means arranged outside the reaction vessel, applying high-frequency power to the high-frequency power introducing means, In a deposited film forming apparatus that decomposes the raw material gas introduced into the reaction vessel by generating a discharge and forms a deposited film on the plurality of cylindrical substrates, the high-frequency power introducing means has a plurality of different diameters. It has been found that by arranging on the arrangement circle, it is possible to significantly reduce the generation of spherical protrusions and at the same time improve the electrical characteristics.

上記の効果が得られる本発明の形態について、以下、詳述する。   The embodiment of the present invention capable of obtaining the above effects will be described in detail below.

本発明者らは、複数の円筒状基体を同一円周上に等間隔に配置し、反応容器の外部に高周波電力導入手段を配置した堆積膜形成装置において、球状突起に起因する画像欠陥を改善するために、反応容器の内面に付着する堆積膜の密着性を向上させてダストの発生を低減する方法を検討した。まず、成膜が終了した後の反応容器内の堆積膜の密着性を詳細に検討していったところ、高周波電力導入手段近傍の反応容器壁に付着した堆積膜と高周波電力導入手段から離れた位置の堆積膜で膜の密着性や応力などが異なっていることを発見した。   The present inventors have improved image defects caused by spherical projections in a deposited film forming apparatus in which a plurality of cylindrical substrates are arranged at equal intervals on the same circumference and high-frequency power introduction means are arranged outside the reaction vessel. Therefore, a method for reducing the generation of dust by improving the adhesion of the deposited film adhering to the inner surface of the reaction vessel was examined. First, after examining in detail the adhesion of the deposited film in the reaction vessel after the film formation was completed, it was separated from the deposited film adhering to the reaction vessel wall in the vicinity of the high-frequency power introducing means and the high-frequency power introducing means. It was discovered that the adhesion and stress of the film differed depending on the deposited film at the position.

従来用いられてきた堆積膜形成装置は、代表的には図3、及び図4に示したものである。図3に示した堆積膜形成装置では高周波電力導入手段302は円筒状基体305と同心円状に配置され、かつ、円筒状基体305と対向する位置に配置されている。高周波電力導入手段302をこのような構成にした場合、対向電極の役割を果たす円筒状基体305の距離が接近しているため、高周波電力が効率よく投入される。このため、高周波電力導入手段302と円筒状基体305間の電力密度が高まり、両者の間に位置する反応容器301(a)の壁が大電力に晒されることになる。この結果、反応容器壁に付着する堆積膜から脱水素反応が進んで膜中応力が増加し、成膜条件によっては膜剥がれが発生しやすくなるのである。この反応容器壁からの膜剥がれはたとえ微細な剥がれであっても円筒状基体305までの距離が近いため、球状突起などの異常成長を引き起こす重大な要因となる。   The deposited film forming apparatus conventionally used is typically shown in FIG. 3 and FIG. In the deposited film forming apparatus shown in FIG. 3, the high-frequency power introducing means 302 is disposed concentrically with the cylindrical substrate 305 and is disposed at a position facing the cylindrical substrate 305. When the high-frequency power introducing means 302 is configured as described above, the cylindrical base 305 serving as a counter electrode is close in distance, so that high-frequency power is efficiently input. For this reason, the power density between the high-frequency power introducing means 302 and the cylindrical substrate 305 is increased, and the wall of the reaction vessel 301 (a) located between them is exposed to high power. As a result, the dehydrogenation reaction proceeds from the deposited film adhering to the reaction vessel wall, the stress in the film increases, and film peeling easily occurs depending on the film forming conditions. Even if the film is peeled off from the reaction vessel wall, the distance to the cylindrical substrate 305 is short, which is a serious factor causing abnormal growth such as spherical protrusions.

図4(a)に示した堆積膜形成装置では高周波電力導入手段302は円筒状基体305と同心円状に、かつ、円筒状基体305の間に位置するように配置されている。高周波電力導入手段302の配置をこのような構成にした場合、高周波電力導入手段302と対向電極の役割を果たす円筒状基体305との距離が遠いために電力投入効率が低下し、円筒状基体対向位置と同等の電力を投入した場合、感光体特性の悪化原因となる。感光体特性を補償するために投入電力を大きくすると高周波電力導入手段302近傍の反応容器壁に堆積している膜の膜質が変化し、やはり成膜条件によっては膜剥がれの原因となる。   In the deposited film forming apparatus shown in FIG. 4A, the high-frequency power introducing means 302 is arranged concentrically with the cylindrical substrate 305 and located between the cylindrical substrates 305. When the arrangement of the high-frequency power introducing means 302 is such a configuration, the power input efficiency is reduced because the distance between the high-frequency power introducing means 302 and the cylindrical base 305 serving as a counter electrode is long, and the cylindrical base facing the cylindrical base. If power equivalent to the position is input, it causes deterioration of the photoreceptor characteristics. If the input power is increased to compensate for the characteristics of the photoreceptor, the film quality of the film deposited on the reaction vessel wall near the high-frequency power introducing means 302 changes, which may cause film peeling depending on the film formation conditions.

図4(b)に示した堆積膜形成装置では高周波電力導入手段302は円筒状基体305と同心円状に、円筒状基体305と対向する位置、および円筒状基体305の間に設けられている。高周波電力導入手段302の配置をこのような構成にした場合、円筒状基体305の対向位置に配置された高周波電力導入手段302は、円筒状基体の間に配置されたものよりも距離が近く、高周波電力の導入効率が高くなる。逆に、円筒状基体間に配置された高周波電力導入手段302は距離が遠くなるために導入効率が低下してしまう。従って、図4(b)に示した堆積膜装置は、結果的にほとんどの高周波電力が円筒状基体305の対向位置に配置された高周波電力導入手段302から供給されてしまい、やはり、成膜条件によっては反応容器301(a)の炉壁からの剥がれの問題が生じてしまう。   In the deposited film forming apparatus shown in FIG. 4B, the high-frequency power introducing means 302 is provided concentrically with the cylindrical substrate 305 and at a position facing the cylindrical substrate 305 and between the cylindrical substrates 305. When the arrangement of the high-frequency power introducing means 302 is such a configuration, the high-frequency power introducing means 302 arranged at the position opposed to the cylindrical base body 305 is closer to the distance than the one arranged between the cylindrical base bodies, The introduction efficiency of high frequency power is increased. On the contrary, the high frequency power introducing means 302 disposed between the cylindrical bases has a long distance, so that the introduction efficiency is lowered. Therefore, in the deposited film apparatus shown in FIG. 4B, as a result, most of the high-frequency power is supplied from the high-frequency power introducing means 302 disposed at the position opposed to the cylindrical substrate 305. Depending on the case, there arises a problem of peeling of the reaction vessel 301 (a) from the furnace wall.

本発明者らは、この高周波電力の導入方法によって発生する反応容器壁からの膜剥がれが、電子写真感光体の品質向上の大きな障壁になっていることを確認した。そして、その対策を鋭意検討した結果、反応容器外に設けられた高周波電力導入手段から高周波電力を導入する場合、反応容器内面での電力密度を出来るだけ均一に近づけることが炉壁からの膜剥がれ防止に有効であるとの結論に達した。そこで、高周波電力導入手段の本数を出来るだけ増やし、反応容器外周に均等に配置することにより、電力分布を均一に近づける検討を行った。すると確かに高周波電力導入手段を増やすほどに反応容器壁からの膜剥がれは発生しにくくなることが確認されたが、成膜条件によっては膜剥がれを皆無にするところまでは改善できなかった。   The inventors of the present invention have confirmed that film peeling from the reaction vessel wall generated by this method of introducing high-frequency power is a significant barrier for improving the quality of the electrophotographic photosensitive member. As a result of diligent examination of the countermeasures, when high-frequency power is introduced from the high-frequency power introduction means provided outside the reaction vessel, it is possible to make the power density on the inner surface of the reaction vessel as close as possible to peel off the film from the furnace wall. A conclusion was reached that it was effective in preventing this. Therefore, the number of high-frequency power introducing means was increased as much as possible, and the power distribution was made closer to uniform by arranging them uniformly on the outer periphery of the reaction vessel. As a result, it was confirmed that the film peeling from the reaction vessel wall was less likely to occur as the number of means for introducing high-frequency power was increased. However, depending on the film forming conditions, it could not be improved to the point where no film peeling occurred.

そこで、さらに検討を行った結果、高周波電力導入手段と、対向電極となる円筒状基体との距離が電力分布の均一化に重要であるとの結論に至った。すなわち、高周波電力導入手段と最も近い位置にある円筒状基体の間の距離が全ての高周波電力導入手段について等しくなるように、各々の高周波電力導入手段の配置する位置を調整した。その結果、充分大きい高周波電力を導入しても、反応容器壁からの膜剥がれは全く発生せず、画像欠陥のほとんどない、非常に優れた感光体が得られることが判明した。   Therefore, as a result of further investigation, it was concluded that the distance between the high-frequency power introducing means and the cylindrical base body serving as the counter electrode is important for making the power distribution uniform. That is, the position where each high-frequency power introducing means is arranged is adjusted so that the distance between the cylindrical bases closest to the high-frequency power introducing means is equal for all the high-frequency power introducing means. As a result, it was found that even when sufficiently high frequency power was introduced, film peeling from the reaction vessel wall did not occur at all, and a very excellent photoconductor having almost no image defects was obtained.

この理由については、現在、次のように考えている。すなわち、高周波電力導入手段を同一円周上に配置した場合、たとえ電極本数を増やしても高周波電力導入手段から円筒状基体までの最短距離にはばらつきが出来る。このため、いくら高周波電力導入手段の数を増やしても、高周波電力導入手段と円筒状基体の距離が近い場所で高周波電力の導入効率は高くなり、遠いところで低くなってしまう。結果として、高周波電力導入手段を増やした割には、高周波電力の導入効率が高いところから大部分の高周波電力は印加されてしまい、その部分の膜剥がれを抑えることは難しかった。従って、このように高周波電力導入手段と円筒状基体との最短距離にばらつきがある状態ではどうしても膜剥がれを皆無にするところまでは改善できなかったのである。   The reason for this is now considered as follows. That is, when the high-frequency power introducing means is arranged on the same circumference, the shortest distance from the high-frequency power introducing means to the cylindrical substrate can vary even if the number of electrodes is increased. For this reason, no matter how much the number of high-frequency power introduction means is increased, the introduction efficiency of the high-frequency power is high at a place where the distance between the high-frequency power introduction means and the cylindrical base is short, and it is low at a far place. As a result, although the high-frequency power introduction means is increased, most of the high-frequency power is applied from the point where the introduction efficiency of the high-frequency power is high, and it is difficult to suppress film peeling at that portion. Therefore, in such a state where the shortest distance between the high-frequency power introducing means and the cylindrical base body varies, it has not been possible to improve to the point where there is no film peeling.

一方、高周波電力導入手段から円筒状基体までの最短距離が等しくなるように各々の高周波電力導入手段を配置した場合、導入効率はどの高周波電力導入手段においても等しいため、電力分布にむらができない。このため、高周波電力導入手段の本数を増やすことにより高周波電力は反応容器壁全体に均一に広がり、膜剥がれを防止できるのである。   On the other hand, when each high-frequency power introduction means is arranged so that the shortest distance from the high-frequency power introduction means to the cylindrical base body is equal, the introduction efficiency is the same in any high-frequency power introduction means, and the power distribution cannot be uneven. For this reason, by increasing the number of high-frequency power introducing means, the high-frequency power spreads uniformly over the entire reaction vessel wall, and film peeling can be prevented.

本発明において、さらに特筆すべきこととして、電子写真感光体の電気特性が向上することが確認された。特に、帯電能が向上し、ゴーストが軽減する現象が見られた。この原因について詳細は不明であるが、円筒状基体の周りに複数の高周波電力導入手段が等しい距離で配置されるため、円筒状基体の周りの電力分布が均一化し、プラズマ状態も均一になることが堆積膜の膜質向上に寄与したものと考えている。   In the present invention, it has been confirmed that the electrical characteristics of the electrophotographic photosensitive member are further improved. In particular, there was a phenomenon that charging ability was improved and ghost was reduced. Although the details of this cause are unknown, since a plurality of high-frequency power introduction means are arranged at equal distances around the cylindrical substrate, the power distribution around the cylindrical substrate is made uniform and the plasma state is also uniform. Is considered to have contributed to improving the quality of the deposited film.

本発明は、以上の経緯によって完成されたものである。   The present invention has been completed by the above process.

以上説明したように本発明によれば、複数の円筒状基体を同一円周上に等間隔に配置し、高周波電力導入手段を反応容器の外部に配置して高周波電力を導入することで、基体上に良好な特性を有する堆積膜を形成する堆積膜装置及び方法において、各々の高周波電力導入手段と円筒状基体の距離が等しくなるように、高周波電力導入手段を直径の異なる複数の配置円上に設置することによって、電気的特性を犠牲にすることなく大幅に球状突起の発生を減らすことが可能となった。さらに、高周波電力が均一に投入できるため、堆積膜の膜質を向上させることが可能となる。   As described above, according to the present invention, a plurality of cylindrical substrates are arranged at equal intervals on the same circumference, and the high-frequency power introduction means is arranged outside the reaction vessel to introduce the high-frequency power. In the deposited film apparatus and method for forming a deposited film having good characteristics on the high frequency power introducing means, the high frequency power introducing means is arranged on a plurality of arrangement circles having different diameters so that the distance between each high frequency power introducing means and the cylindrical substrate is equal. It is possible to significantly reduce the occurrence of spherical protrusions without sacrificing electrical characteristics. Furthermore, since the high frequency power can be supplied uniformly, the film quality of the deposited film can be improved.

以下、図面を用いて本発明の堆積膜形成装置及び堆積膜形成方法について詳細に説明する。   Hereinafter, a deposited film forming apparatus and a deposited film forming method of the present invention will be described in detail with reference to the drawings.

図1は本発明の堆積膜形成装置であり、複数の電子写真感光体を同時に形成できる生産性の極めて高い装置の一例を模式的に示したものである。   FIG. 1 schematically shows an example of a deposited film forming apparatus of the present invention, which is a highly productive apparatus capable of simultaneously forming a plurality of electrophotographic photosensitive members.

図1(a)は概略断面図、図1(b)は図1(a)の切断線A−A’に沿う概略断面図である。図1に示す堆積膜形成装置は、原料ガスが分解される成膜空間を誘電体部材101(a)と上蓋101(b)から成る反応容器101により円柱状領域に制限し、円柱状成膜空間の中心軸が円筒状基体105の配置円の中心を通る構成とし、さらに高周波電力導入手段102を誘電体部材101(a)の外部に位置させることにより、原料ガスの利用効率を向上させ、同時に、形成される堆積膜中の欠陥を減少させることが可能となるものである。   FIG. 1A is a schematic cross-sectional view, and FIG. 1B is a schematic cross-sectional view taken along a cutting line A-A ′ in FIG. The deposited film forming apparatus shown in FIG. 1 restricts a film formation space in which a source gas is decomposed to a cylindrical region by a reaction vessel 101 composed of a dielectric member 101 (a) and an upper lid 101 (b), and forms a cylindrical film. By using a configuration in which the central axis of the space passes through the center of the arrangement circle of the cylindrical base body 105, and by positioning the high-frequency power introduction means 102 outside the dielectric member 101 (a), the utilization efficiency of the source gas is improved. At the same time, it is possible to reduce defects in the deposited film to be formed.

反応容器101の下部には排気配管109が接続され、排気配管109の他端は不図示の排気装置(例えば真空ポンプ)に接続されている。反応容器101の中心部を取り囲むように、堆積膜を形成される複数の円筒状基体105が互いに平行になるように同一円周上に配置されている。複数の円筒状基体105は基体加熱用ヒーター107を内蔵した基体支持体106によって各々保持されている。そして、反応容器101内にはSiH4、GeH4、H2、CH4、B2H6、PH3、Ar、He等のガスボンベからなる不図示のガス供給装置に接続されたガス供給手段110があり、反応容器101の外には高周波電力導入手段102が直径の異なる2つの配置円上に配置されている。高周波電力導入手段102には、高周波電源103がマッチングボックス104と高周波電力分岐手段112を介して接続されている。さらに、円筒状基体105は各々の回転機構108によって、回転可能になっている。   An exhaust pipe 109 is connected to the lower part of the reaction vessel 101, and the other end of the exhaust pipe 109 is connected to an exhaust device (not shown) (for example, a vacuum pump). A plurality of cylindrical substrates 105 on which a deposited film is formed are arranged on the same circumference so as to be parallel to each other so as to surround the central portion of the reaction vessel 101. The plurality of cylindrical substrates 105 are respectively held by a substrate support 106 in which a substrate heating heater 107 is incorporated. In the reaction vessel 101, there is a gas supply means 110 connected to a gas supply device (not shown) composed of gas cylinders such as SiH 4, GeH 4, H 2, CH 4, B 2 H 6, PH 3, Ar, and He. The high frequency power introducing means 102 is arranged on two arrangement circles having different diameters. A high frequency power supply 103 is connected to the high frequency power introducing means 102 through a matching box 104 and a high frequency power branching means 112. Further, the cylindrical base body 105 can be rotated by each rotating mechanism 108.

ここで、高周波電力導入手段102は、反応容器101に近い配置円上に配置された内周の高周波電力導入手段102(a)と、反応容器101から遠い配置円上に配置された外周の高周波電力導入手段102(b)の2種類に分けられることにより、直径の異なる複数の配置円上に配置される。複数の配置円のそれぞれの直径は、内周の高周波導入手段102(a)から最も近い円筒状基体105までの距離(A)と外周の高周波電力導入手段102(b)から最も近い円筒状基体105までの距離(B)が等しくなるように決定することが肝要である。円筒状基体105の本数の2倍の高周波電力導入手段102を配置する場合、内周の高周波電力導入手段102(a)は円筒状基体間に、外周の高周波電力導入手段102(b)は円筒状基体の対向面に設けることが好ましい。このように距離(A)と距離(B)とを等しくなるように高周波電力導入手段102を設けることにより円筒状基体105との間の電力密度が実質的に等しくなり、この結果、間にある反応容器101の内面に堆積する堆積膜の膜質が均一となり、応力も均一になるため、剥がれ防止効果が得られる。さらに、本堆積膜形成装置の場合、円筒状基体105一本に対して高周波電力導入手段102は2本となっている。このため、例えば図3や図4(a)の堆積膜形成装置のように、円筒状基体305一本に対して高周波電力導入手段302が一本の場合と比べて、高周波電力導入手段一本当たりの高周波電力は1/2となっている。このため、反応容器101の壁を通り抜ける電力密度も1/2であり、堆積膜の剥がれ防止に非常に効果的である。   Here, the high frequency power introducing means 102 includes an inner peripheral high frequency power introducing means 102 (a) arranged on the arrangement circle close to the reaction vessel 101, and an outer peripheral high frequency electric power arranged on the arrangement circle far from the reaction vessel 101. By being divided into two types of power introduction means 102 (b), they are arranged on a plurality of arrangement circles having different diameters. The diameter of each of the plurality of arrangement circles is such that the distance (A) from the inner peripheral high-frequency introducing means 102 (a) to the nearest cylindrical base 105 and the closest cylindrical base from the outer peripheral high-frequency power introducing means 102 (b) It is important to determine the distance (B) up to 105 to be equal. When the high frequency power introduction means 102 twice the number of the cylindrical base bodies 105 are arranged, the high frequency power introduction means 102 (a) on the inner periphery is between the cylindrical base bodies, and the high frequency power introduction means 102 (b) on the outer periphery is a cylinder. It is preferable to provide it on the opposing surface of the substrate. Thus, by providing the high-frequency power introducing means 102 so that the distance (A) and the distance (B) are equal, the power density between the cylindrical base 105 and the cylindrical base 105 becomes substantially equal. Since the film quality of the deposited film deposited on the inner surface of the reaction vessel 101 becomes uniform and the stress becomes uniform, an effect of preventing peeling can be obtained. Further, in the case of this deposited film forming apparatus, there are two high-frequency power introducing means 102 for one cylindrical substrate 105. For this reason, for example, as in the deposited film forming apparatus of FIG. 3 or FIG. 4A, one high-frequency power introduction means is provided compared with one high-frequency power introduction means 302 for one cylindrical substrate 305. The high frequency power per hit is ½. For this reason, the power density passing through the wall of the reaction vessel 101 is also ½, which is very effective in preventing peeling of the deposited film.

一方、図4(b)の堆積膜形成装置では、高周波電力導入手段302は円筒状基体に対して2本であり、図1の堆積膜形成装置と同様であるが、高周波電力導入手段302は単一の配置円上に配置されている。このため、円筒状基体305の対向位置に配置された高周波電力導入手段302は、円筒状基体の間に配置されたものよりも距離が近く、高周波電力の導入効率が高くなる。逆に、円筒状基体間に配置された高周波電力導入手段302は距離が遠くなるために導入効率が低下してしまう。この結果、図4(b)の装置は、図1の装置と同じ数の高周波電力導入手段302を備えているものの、結果的にほとんどの電力が円筒状基体305の対向位置に配置された高周波電力導入手段302から供給されてしまい、やはり、成膜条件によっては反応容器301(a)の炉壁からの剥がれの問題が生じてしまう。一方、本発明によるところの図1の堆積膜形成装置では、外周の高周波電力導入手段102(b)と内周の高周波電力導入手段102(a)とも円筒状基体105までの距離が等しく、どちらの導入手段にも均等に電力が供給されるため、上記のような問題が生じない。   On the other hand, in the deposited film forming apparatus of FIG. 4B, there are two high-frequency power introducing means 302 for the cylindrical substrate, which is the same as the deposited film forming apparatus of FIG. It is arranged on a single arrangement circle. For this reason, the high-frequency power introducing means 302 disposed at the position facing the cylindrical base body 305 is closer to the distance than the one disposed between the cylindrical base bodies, and the high-frequency power introducing efficiency is increased. On the contrary, the high frequency power introducing means 302 disposed between the cylindrical bases has a long distance, so that the introduction efficiency is lowered. As a result, the apparatus shown in FIG. 4B includes the same number of high-frequency power introducing means 302 as the apparatus shown in FIG. 1, but as a result, most of the electric power is arranged at a position opposite to the cylindrical substrate 305. The power is supplied from the power introduction means 302, and again, depending on the film forming conditions, there arises a problem of peeling of the reaction vessel 301 (a) from the furnace wall. On the other hand, in the deposited film forming apparatus of FIG. 1 according to the present invention, the distance between the outer peripheral high-frequency power introducing means 102 (b) and the inner peripheral high-frequency power introducing means 102 (a) is equal to the cylindrical substrate 105. Since the power is evenly supplied to the introduction means, the above problem does not occur.

高周波電力導入手段102及び高周波電力分岐手段112の材質としては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスなどは熱伝導が良く、電気伝導も良いので好適である。これらの材料中の2種以上からなる複合材料なども好適に用いられる。   As the material of the high-frequency power introducing means 102 and the high-frequency power branching means 112, copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, stainless steel, etc. have good heat conduction and electric conduction. It is preferable because it is good. A composite material composed of two or more of these materials is also preferably used.

高周波電力導入手段102の数としては、円筒状基体105の2倍以上の整数倍とすることが好ましい。円筒状基体105の2倍とする場合には、図1(b)に示したように、円筒状基体105の対向位置、及び円筒状基体間に配置することが最適である。さらに、高周波電力導入手段102の数を円筒状基体105の3倍とすることはさらに好ましい。この場合には、図2(a)に示したように、円筒状基体105の対向位置に1本、円筒状基体間に2本配置する方法や、図2(b)に示したように、円筒状基体105の対向位置に2本、円筒状基体間に1本配置する方法などがある。ここで、円筒状基体105の「対向位置」とは、高周波電力導入手段102の配置円の中心から見て、円筒状基体に隠れる範囲に配置することを意味している。同様に、「円筒状基体間」とは、高周波電力導入手段102の配置円の中心から見て、円筒状基体105に重ならない範囲に配置することを意味している。高周波電力導入手段102の数を4倍以上にする場合にも同様の方法で配置すればよい。このとき、各々の高周波電力導入手段102を等間隔に、かつ、円筒状基体105からの距離を等しくするように配置することは本発明の効果を得る上で非常に好ましいものである。   The number of high-frequency power introducing means 102 is preferably an integer multiple of twice or more that of the cylindrical substrate 105. When the size is twice that of the cylindrical substrate 105, as shown in FIG. 1B, it is optimal to dispose the cylindrical substrate 105 between the opposed positions of the cylindrical substrate 105 and between the cylindrical substrates. Furthermore, it is more preferable that the number of high-frequency power introducing means 102 is three times that of the cylindrical base body 105. In this case, as shown in FIG. 2 (a), one is arranged at a position opposed to the cylindrical base 105 and two are arranged between the cylindrical bases, or as shown in FIG. 2 (b), There is a method of disposing two in a position opposite to the cylindrical substrate 105 and one between the cylindrical substrates. Here, the “opposing position” of the cylindrical base body 105 means that the cylindrical base body 105 is disposed in a range hidden by the cylindrical base body as viewed from the center of the placement circle of the high-frequency power introducing means 102. Similarly, “between cylindrical substrates” means that the high-frequency power introducing means 102 is arranged in a range that does not overlap the cylindrical substrate 105 when viewed from the center of the arrangement circle. The same method may be used when the number of high-frequency power introducing means 102 is four times or more. At this time, it is very preferable to arrange the high-frequency power introducing means 102 at equal intervals and at equal distances from the cylindrical base body 105 in order to obtain the effects of the present invention.

複数の高周波電力導入手段102への電力の供給は、例えば、1つの高周波電源103からマッチングボックス104を介した後、電力供給路を高周波電力分岐手段112で分岐させて行うことができる。また例えば、1つの高周波電源103から電力供給路を高周波電力分岐手段112で分岐させた後、複数のマッチングボックスを介して電力供給を行っても良い。また、高周波電力導入手段102を例えば円筒状基体105の対向位置にあるものと、円筒状基体間にあるものといったように異なる配置円上にあるものごとに分け、各々に対して独立して高周波電源103、マッチングボックス104、高周波電力分岐手段112を設けてもよい。この場合、必要に応じてそれぞれの高周波電源の発振周波数や印加電力を変えることも、電子写真感光体の品質管理が容易になるため好ましいものである。さらには個々の高周波電力導入手段102ごとに別個の高周波電源およびマッチングボックスを設けてもよいが、装置コストや装置の大きさを重視する場合には、1つの高周波電源から全ての高周波電力導入手段102に電力供給することが好ましい。   The supply of power to the plurality of high-frequency power introducing means 102 can be performed, for example, by branching the power supply path by the high-frequency power branching means 112 after passing through the matching box 104 from one high-frequency power supply 103. Further, for example, the power supply path from one high-frequency power source 103 may be branched by the high-frequency power branching means 112, and then power may be supplied through a plurality of matching boxes. Further, the high-frequency power introducing means 102 is divided into, for example, those located on different arrangement circles, such as those located opposite the cylindrical base 105 and those located between the cylindrical bases, and the high-frequency power introducing means 102 is independently high-frequency for each. A power source 103, a matching box 104, and a high-frequency power branching unit 112 may be provided. In this case, it is also preferable to change the oscillation frequency and applied power of each high-frequency power source as necessary because quality control of the electrophotographic photosensitive member becomes easy. Furthermore, a separate high-frequency power supply and a matching box may be provided for each high-frequency power introduction means 102. However, when importance is attached to the device cost and the size of the device, all high-frequency power introduction means are provided from one high-frequency power supply. It is preferable to supply power to 102.

高周波電力導入手段102としては棒状、筒状、球状、板状等の高周波電力導入手段や、同軸構造体の外部導体に開口部を設けそこから電力供給する手段等が用いることができる。   As the high-frequency power introducing means 102, rod-shaped, cylindrical, spherical, plate-like high-frequency power introducing means, means for providing an opening in the outer conductor of the coaxial structure, and supplying power from there can be used.

また、高周波電源103は、装置に適した高周波電力を発生することが出来ればいかなるものでも好適に使用出来る。さらに、高周波電源103の出力変動率には特に制限は無い。   Any high frequency power source 103 can be used as long as it can generate high frequency power suitable for the apparatus. Further, the output fluctuation rate of the high frequency power supply 103 is not particularly limited.

本発明においては高周波電力の周波数が50〜450MHzの範囲において、画像欠陥の低減効果が特に高くなる。これは、50MHzよりも低い周波数領域においては、プラズマが安定して生成可能な圧力が急激に高まることに起因していると思われる。本発明者らの検討によれば、例えば周波数が13.56MHzの場合には、プラズマが安定して生成可能な圧力は、周波数が50MHz以上の場合と比べ約1桁から半桁高いことが確認されている。このような高い圧力においては、成膜空間中においてポリシラン等のパーティクルが生じ易く、このパーティクルが堆積膜中に取り込まれると球状突起を発生させやすくなる。本発明において、高周波電力の周波数を50MHz以上とすることにより、プラズマ生成圧力を充分低くすることができるため、パーティクルの発生確率は激減し、円筒状基体全周にわたって良好な堆積膜が形成されるものと考えられる。   In the present invention, the effect of reducing image defects is particularly high when the frequency of the high-frequency power is in the range of 50 to 450 MHz. This seems to be due to the rapid increase in the pressure at which plasma can be stably generated in a frequency region lower than 50 MHz. According to the study by the present inventors, for example, when the frequency is 13.56 MHz, it is confirmed that the pressure at which plasma can be stably generated is about one to half digits higher than that when the frequency is 50 MHz or more. Has been. At such a high pressure, particles such as polysilane are easily generated in the film formation space, and when these particles are taken into the deposited film, spherical protrusions are easily generated. In the present invention, by setting the frequency of the high-frequency power to 50 MHz or more, the plasma generation pressure can be sufficiently lowered, so that the probability of particle generation is drastically reduced and a good deposited film is formed over the entire circumference of the cylindrical substrate. It is considered a thing.

また、450MHzよりも高い周波数領域においては、プラズマの均一性の低下により450MHz以下の場合と比べて膜特性の均一性に差が生じてしまう。このような膜特性の均一性に差ができると、同時に膜の応力にも差が生じ、その境界付近で膜剥がれが生じやすくなる。このため、画像欠陥が悪化しやすい。周波数が450MHzよりも高い周波数領域においては、電力導入手段近傍での電力の吸収が大きく、ここで電子の生成が最も頻繁に為されるため、プラズマ不均一を生じ易く、堆積膜の特性むらにつながりやすい。450MHz以下の周波数においては、電力導入手段近傍での極端な電力吸収が生じにくいため、プラズマ均一性、さらには膜特性の均一性が高くなる。   In the frequency region higher than 450 MHz, the uniformity of the film characteristics is different from the case of 450 MHz or less due to the lowering of the plasma uniformity. If there is a difference in the uniformity of such film characteristics, there will also be a difference in the stress of the film at the same time, and film peeling is likely to occur near the boundary. For this reason, image defects are likely to deteriorate. In the frequency region where the frequency is higher than 450 MHz, the power absorption in the vicinity of the power introduction means is large, and generation of electrons is most frequently performed here, so that plasma non-uniformity is likely to occur and the characteristics of the deposited film are uneven. Easy to connect. At frequencies of 450 MHz or less, extreme power absorption is unlikely to occur in the vicinity of the power introduction means, so that plasma uniformity and film property uniformity are enhanced.

本発明で使用されるマッチングボックス104は高周波電源103と負荷の整合を取ることができるものであればいかなる構成のものでも好適に使用出来る。また、整合を取る方法としては、自動的に調整されるものが製造時の煩雑さを避けるために好適であるが、手動で調整されるものであっても本発明の効果に全く影響は無い。また、マッチングボックス104が配置される位置に関しては整合が取れる範囲においてどこに設置してもなんら問題はないが、マッチングボックス104から高周波電力導入手段102までの配線のインダクタンスを出来るだけ小さくするような配置とした方が広い負荷条件で整合を取ることが可能になるため望ましい。   The matching box 104 used in the present invention can be suitably used in any configuration as long as the high frequency power source 103 and the load can be matched. In addition, as a method of taking the alignment, an automatically adjusted method is preferable in order to avoid complexity at the time of manufacturing, but even if manually adjusted, there is no influence on the effect of the present invention. . In addition, as for the position where the matching box 104 is disposed, there is no problem wherever the matching box 104 is disposed within the matching range, but the wiring box from the matching box 104 to the high-frequency power introducing means 102 is disposed as small as possible. This is desirable because it enables matching under a wide range of load conditions.

本発明で使用される反応容器101の誘電体部材101(a)の材料としては、セラミックス材料が好ましく、具体的には、アルミナ、ジルコニア、ムライト、コージュライト、炭化珪素、チッ化ホウ素、チッ化アルミ、チッ化珪素等の少なくとも一つ以上を含む材料によって構成されていると堆積膜の密着性が高く、球状突起発生防止のために有効であるので好ましい。これらの中でも、アルミナ、チッ化ホウ素、チッ化アルミは誘電正接や絶縁抵抗等の電気特性にすぐれ、高周波電力の吸収が少ないことからより好ましい。   The material of the dielectric member 101 (a) of the reaction vessel 101 used in the present invention is preferably a ceramic material, specifically, alumina, zirconia, mullite, cordierite, silicon carbide, boron nitride, nitride. It is preferable to use a material containing at least one of aluminum, silicon nitride, and the like because the deposited film has high adhesion and is effective for preventing the occurrence of spherical protrusions. Among these, alumina, boron nitride, and aluminum nitride are more preferable because they have excellent electrical characteristics such as dielectric loss tangent and insulation resistance, and have low absorption of high-frequency power.

また、加工の容易さから電子写真感光体を作製する際には、反応容器101の誘電体部材101(a)の形状は円筒形状が好ましいが、必要に応じて楕円形、多角形形状を用いても良く、作製する部材に応じて形状を選択すれば良い。   Further, when the electrophotographic photosensitive member is produced from the ease of processing, the shape of the dielectric member 101 (a) of the reaction vessel 101 is preferably a cylindrical shape, but an elliptical shape or a polygonal shape is used as necessary. The shape may be selected depending on the member to be manufactured.

反応容器101の誘電体部材101(a)表面の少なくとも一部は、球状突起低減効果を増すために算術平均粗さ(Ra)が1μm以上20μm以下の範囲であることが好ましい。また、Raを上記の範囲内にすると同時に平均傾斜角(θa)を9度以上20度以下の範囲に制御する、或いはRaを上記の範囲内にすると同時に局部山頂の平均間隔(S)を30μm以上100μm以下の範囲にすることがより好ましい。さらに、Ra、θa、Sを全て上記の範囲内にすることで画像欠陥改善効果が特に顕著になる。   At least a part of the surface of the dielectric member 101 (a) of the reaction vessel 101 preferably has an arithmetic average roughness (Ra) in the range of 1 μm or more and 20 μm or less in order to increase the effect of reducing spherical protrusions. Further, Ra is set within the above range, and the average inclination angle (θa) is controlled to a range of 9 degrees to 20 degrees, or Ra is set within the above range, and at the same time, the average distance (S) between the local peaks is 30 μm. More preferably, it is in the range of 100 μm or less. Furthermore, by making Ra, θa, and S all within the above ranges, the image defect improvement effect becomes particularly remarkable.

反応容器101の上蓋101(b)の材質としては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスなどの材料を用いると導電性で熱伝導が良いので好適である。これらの材料中の2種以上からなる複合材料なども好適に用いられる。   If the material of the upper lid 101 (b) of the reaction vessel 101 is a material such as copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, stainless steel, etc., it is electrically conductive and can conduct heat. It is preferable because it is good. A composite material composed of two or more of these materials is also preferably used.

円筒状基体105は、使用目的に応じた材質を有するものであれば良い。材質においては銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレスは電気伝導が良好のため好適である。さらに、これらの材料中の2種以上からなる複合材料も耐熱性が向上するために望ましい。   The cylindrical base 105 only needs to have a material according to the purpose of use. Of the materials, copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, and stainless steel are preferable because of their good electrical conductivity. Furthermore, a composite material composed of two or more of these materials is also desirable for improving heat resistance.

基体加熱用ヒーター107は真空仕様である発熱体であればよく、具体的にはシース状ヒーター、板状ヒーター、セラミックヒーター、カーボンヒーター等の電気抵抗発熱体、ハロゲンランプ、赤外線ランプ等の熱放射ランプ発熱体、液体、気体等を温媒とし熱交換手段による発熱体等が挙げられる。基体加熱用ヒーター107の表面材料としてはステンレス、ニッケル、アルミニウム、銅等の金属類、セラミック、耐熱性高分子樹脂等を使用することができる。   The substrate heating heater 107 may be a heating element having a vacuum specification. Specifically, it is an electric resistance heating element such as a sheathed heater, a plate heater, a ceramic heater, or a carbon heater, and heat radiation such as a halogen lamp or an infrared lamp. Examples include a heating element using a heat exchange means using a lamp heating element, liquid, gas, or the like as a heating medium. As the surface material of the substrate heating heater 107, metals such as stainless steel, nickel, aluminum, and copper, ceramics, heat resistant polymer resins, and the like can be used.

本発明の堆積膜形成装置においては、図6に示したように円筒状基体で囲まれる放電空間の中央に導電性を有する円筒状部材を設置しても良い。このような円筒状部材を設置することにより、さらに画像欠陥を低減させることが可能である。円筒状部材は接地した状態で用いることがより好ましい。   In the deposited film forming apparatus of the present invention, a cylindrical member having conductivity may be installed in the center of the discharge space surrounded by the cylindrical substrate as shown in FIG. By installing such a cylindrical member, it is possible to further reduce image defects. It is more preferable to use the cylindrical member in a grounded state.

図1の堆積膜形成装置を用いた堆積膜の形成は、例えば概略以下のようにして行われる。   Formation of a deposited film using the deposited film forming apparatus of FIG. 1 is performed, for example, as follows.

まず、基体ホルダー106に保持した円筒状基体105を反応容器101内に設置し、不図示の排気装置により排気口109を通して反応容器101内を排気する。続いて、発熱体107により円筒状基体105を所定の温度に加熱・制御する。   First, the cylindrical substrate 105 held by the substrate holder 106 is installed in the reaction vessel 101, and the inside of the reaction vessel 101 is exhausted through an exhaust port 109 by an exhaust device (not shown). Subsequently, the cylindrical base 105 is heated and controlled to a predetermined temperature by the heating element 107.

円筒状基体105が所定の温度となったところで、原料ガス供給手段110を介して、原料ガスを反応容器101内に導入する。原料ガスの流量が設定流量となり、また、反応容器101内の圧力が安定したのを確認した後、高周波電源103からマッチングボックス104を介して複数の配置円上に設置された高周波電力導入手段102へ所定の高周波電力を供給する。供給された高周波電力によって、反応容器101内にグロー放電が生起し、原料ガスは励起・解離して円筒状基体105上に堆積膜が形成される。   When the cylindrical substrate 105 reaches a predetermined temperature, the source gas is introduced into the reaction vessel 101 through the source gas supply means 110. After confirming that the flow rate of the source gas is the set flow rate and that the pressure in the reaction vessel 101 is stable, the high-frequency power introduction means 102 installed on a plurality of arrangement circles from the high-frequency power source 103 via the matching box 104. A predetermined high-frequency power is supplied to Glow discharge occurs in the reaction vessel 101 by the supplied high frequency power, and the source gas is excited and dissociated to form a deposited film on the cylindrical substrate 105.

所望の膜厚の形成が行なわれた後、高周波電力の供給を止め、続いて原料ガスの供給を停止して堆積膜の形成を終える。多層構造の堆積膜を形成する場合には、同様の操作を複数回繰り返す。この場合、各層間においては、上述したように1つの層の形成が終了した時点で一旦放電を完全に停止し、次層のガス流量、圧力に設定が変更された後、再度放電を生起して次層の形成を行なってもよいし、あるいは、1つの層の形成終了後一定時間でガス流量、圧力、高周波電力を次層の設定値に徐々に変化させることにより連続的に複数層を形成してもよい。また、各層の間で一旦、反応容器101内の残留ガスを充分真空引きすることで、層と層の間で異なるガス種を使う場合の汚染の心配がなくなるため好ましい。   After the formation of the desired film thickness, the supply of the high frequency power is stopped, and then the supply of the source gas is stopped to finish the formation of the deposited film. When forming a multi-layered deposited film, the same operation is repeated a plurality of times. In this case, in each layer, as described above, once the formation of one layer is completed, the discharge is once stopped completely, and after the setting is changed to the gas flow rate and pressure of the next layer, the discharge occurs again. The next layer may be formed, or a plurality of layers may be continuously formed by gradually changing the gas flow rate, pressure, and high-frequency power to the set values of the next layer within a certain period of time after the formation of one layer. It may be formed. In addition, it is preferable to sufficiently evacuate the residual gas in the reaction vessel 101 once between the layers, because there is no fear of contamination when different gas species are used between the layers.

堆積膜の形成中、必要に応じて円筒状基体105を回転機構108により所定の速度で回転させてもよい。   During the formation of the deposited film, the cylindrical substrate 105 may be rotated at a predetermined speed by the rotation mechanism 108 as necessary.

本発明を用いることにより、例えば図5に示すようなa−Si系電子写真感光体が形成可能である。   By using the present invention, for example, an a-Si electrophotographic photosensitive member as shown in FIG. 5 can be formed.

図5(a)に示す電子写真感光体500は、支持体501の上に、水素原子またはハロゲン原子を構成要素として含むa−Siを有する光導電性を有する光導電層502が設けられている。   In the electrophotographic photosensitive member 500 shown in FIG. 5A, a photoconductive layer 502 having photoconductivity having a-Si containing a hydrogen atom or a halogen atom as a constituent element is provided on a support 501. .

図5(b)に示す電子写真感光体500は、支持体501の上に、水素原子またはハロゲン原子を構成要素として含むa−Siからなり光導電性を有する光導電層502と、a−Si系(又はアモルファス炭素系)表面層503が設けられて構成されている。   An electrophotographic photosensitive member 500 shown in FIG. 5B has a photoconductive layer 502 made of a-Si containing a hydrogen atom or a halogen atom as a constituent element on a support 501, and a-Si. A system (or amorphous carbon system) surface layer 503 is provided.

図5(c)に示す電子写真感光体500は、支持体501の上に、a−Si系電荷注入阻止層504と、水素原子またはハロゲン原子を構成要素として含むa−Siからなり光導電性を有する光導電層502と、a−Si系(又はアモルファス炭素系)表面層503が設けられて構成されている。   An electrophotographic photoreceptor 500 shown in FIG. 5C is formed of a-Si based charge injection blocking layer 504 and a-Si containing hydrogen atoms or halogen atoms as constituent elements on a support 501 and is photoconductive. And an a-Si (or amorphous carbon) surface layer 503 are provided.

図5(d)に示す電子写真感光体500は、支持体501の上に、光導電層502が設けられている。この光導電層502は水素原子またはハロゲン原子を構成要素として含むa−Siからなる電荷発生層505及び電荷輸送層506とからなり、その上にa−Si系(又はアモルファス炭素系)表面層503が設けられている。   In the electrophotographic photosensitive member 500 shown in FIG. 5D, a photoconductive layer 502 is provided on a support 501. The photoconductive layer 502 includes a charge generation layer 505 and a charge transport layer 506 made of a-Si containing hydrogen atoms or halogen atoms as constituent elements, and an a-Si (or amorphous carbon) surface layer 503 thereon. Is provided.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれらによりなんら制限されるものではない。
(実施例1)
図1に示す堆積膜形成装置を用い、円筒状基体105としての直径80mm、長さ358mmのアルミニウムシリンダー上に、高周波電源103の発振周波数を50MHzとして表1に示す条件に従い、前述の堆積膜形成方法でa−Si堆積膜から成る電子写真感光体を作成した。この装置では、それぞれの高周波電力導入手段102と最近接の円筒状基体105との距離は全ての高周波電力導入手段で等しくなるように設置してある。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited at all by these.
(Example 1)
Using the deposited film forming apparatus shown in FIG. 1, the above-mentioned deposited film formation is performed on an aluminum cylinder having a diameter of 80 mm and a length of 358 mm as the cylindrical substrate 105 according to the conditions shown in Table 1 with the oscillation frequency of the high frequency power supply 103 set to 50 MHz. An electrophotographic photosensitive member comprising an a-Si deposited film was prepared by this method. In this apparatus, the distance between each high frequency power introducing means 102 and the closest cylindrical base 105 is set to be equal for all the high frequency power introducing means.

Figure 2005163166
(比較例1)
図3に示す従来堆積膜形成装置を用い、実施例1と同様にして表1の条件でa−Si感光体の形成を行った。成膜条件は実施例1と全く同様とした。
Figure 2005163166
(Comparative Example 1)
Using the conventional deposited film forming apparatus shown in FIG. 3, an a-Si photosensitive member was formed under the conditions shown in Table 1 in the same manner as in Example 1. The film forming conditions were exactly the same as in Example 1.

実施例1、比較例1で作成したa−Si電子写真感光体は、下記の方法で評価を行った。
(反応容器の膜付き)
成膜終了後の反応容器内面に堆積した堆積膜の付着状況を次の方法で調べた。
The a-Si electrophotographic photosensitive member prepared in Example 1 and Comparative Example 1 was evaluated by the following method.
(With reaction vessel membrane)
The adhesion state of the deposited film deposited on the inner surface of the reaction vessel after film formation was examined by the following method.

まず、反応容器内面にセロハンテープをしっかり貼り付け、次にセロハンテープをゆっくり剥がし、テープに付着してくる膜の量を透過濃度を測定することで評価した。濃度が濃いほど膜剥がれし易いことを示している。評価は円筒状基体対向面と円筒状基体間でそれぞれ5ヶ所サンプリングを行い、結果を平均した。   First, the cellophane tape was firmly attached to the inner surface of the reaction vessel, then the cellophane tape was slowly peeled off, and the amount of the film adhering to the tape was evaluated by measuring the permeation concentration. The higher the concentration, the easier the film is peeled off. In the evaluation, sampling was performed at five positions between the cylindrical substrate facing surface and the cylindrical substrate, and the results were averaged.

得られた結果は、比較例1での濃度の値を100%としてランク付けを行った。
◎ … 70%未満
○〜◎ … 70%以上、80%未満
○ … 80%以上、90%未満
△〜○ … 90%以上、100%未満
△ … 比較例1と変らず
× … 比較例1より悪化
(球状突起数)
得られた感光体の表面を光学顕微鏡で観察した。そして、20μm以上の大きさの球状突起の数を数え、10cm2当たりの個数を調べた。
The obtained results were ranked with the density value in Comparative Example 1 as 100%.
◎… Less than 70% ○ to ◎… 70% or more, less than 80% ○… 80% or more, less than 90% Δ to ○… 90% or more, less than 100% Δ… Same as Comparative Example 1 × From Comparative Example 1 Deterioration (number of spherical protrusions)
The surface of the obtained photoreceptor was observed with an optical microscope. Then, the number of spherical protrusions having a size of 20 μm or more was counted, and the number per 10 cm 2 was examined.

得られた結果は、比較例1での値を100%とした場合の相対比較でランク付けを行った。
◎ … 30%未満
○〜◎ … 30%以上50%未満
○ … 50%以上70%未満
△〜○ … 70%以上100%未満
△ … 比較例1と変らず
× … 比較例1より悪化
(画像欠陥)
本テスト用に改造したキヤノン製複写機iR5000に本実施例で作製した電子写真感光体を設置し、プロセススピード265mm/sec、前露光(波長660nmのLED)光量4lx・s、主帯電器の電流値1000μAの条件にて画像形成を行い、A3サイズの黒原稿を複写した。こうして得られた画像を観察し、直径0.3mm以上の球状突起に起因する白ポチの個数を数えた。
The obtained results were ranked by relative comparison when the value in Comparative Example 1 was 100%.
◎ ... Less than 30% ○ ~ ◎ ... 30% or more and less than 50% ○ ... 50% or more and less than 70% Δ ~ ○ ... 70% or more and less than 100% Δ ... No change from Comparative Example 1 x ... worse than Comparative Example 1 (image) defect)
The electrophotographic photosensitive member produced in this example is installed in a Canon copying machine iR5000 modified for this test, the process speed is 265 mm / sec, the pre-exposure (LED with a wavelength of 660 nm), the light quantity of 4 lx · s, the current of the main charger. An image was formed under the condition of a value of 1000 μA, and an A3 size black original was copied. The images thus obtained were observed, and the number of white spots caused by spherical protrusions having a diameter of 0.3 mm or more was counted.

得られた結果は、比較例1での値を100%とした場合の相対比較でランク付けを行った。
◎ … 30%未満
○〜◎ … 30%以上50%未満
○ … 50%以上70%未満
△〜○ … 70%以上100%未満
△ … 比較例1と変らず
× … 比較例1より悪化
(帯電能)
電子写真装置の主帯電器に一定の電流(例えば1000μA)を流し、現像器位置にセットした表面電位計(TREK社Model344)の電位センサーにより暗部電位を測定した。したがって、暗部電位が大きいほど帯電能が良好であることを示す。帯電能の評価結果は、比較例1の結果を100%とした場合の相対比較でランク付けを行った。
◎ … 120%より大
○〜◎ … 115%より大、120%以下
○ … 110%より大、115%以下
△〜○ … 100%より大、110%以下
△ … 比較例1と変らず
× … 比較例1より悪化
(ゴースト)
現像器位置における暗部電位が所定の値となるように主帯電器の電流値を調整した後、所定の白紙を原稿とした際の明部電位が所定の値となるよう像露光光量を調整する。この状態でキヤノン製ゴーストテストチャート(部品番号:FY9−9040)に反射濃度1.1、直径5mmの黒丸を貼り付けたものを原稿台に置き、その上にキヤノン製中間調チャートを重ねておいた際のコピー画像において、中間調コピー上に認められるゴーストチャートの直径5mmの黒丸の反射濃度と中間調部分の反射濃度との差を測定することにより行った。したがって、数値が小さいほど良好である。ゴーストの評価結果は、比較例1の結果を100%とした場合の相対比較でランク付けを行った。
◎ … 70%未満
○〜◎ … 70%以上80%未満
○ … 80%以上90%未満
△〜○ … 90%以上100%未満
△ … 比較例1と変らず
× … 比較例1より悪化
実施例1、比較例1の評価結果を表2に示す。表2から分かるように、本発明の堆積膜形成装置を用いることによって剥がれ、球状突起、画像欠陥が大幅に改善されることが分かる。また、予期しなかった効果であるが、帯電能、感度、光メモリーといった電子写真感光体の特性に関しても改善が見られる。これは、高周波電力導入手段と円筒状基体のが均等になるように高周波電力導入手段を複数の配置円上に配置したことで、円筒状基体の周りのプラズマ状態が均一化したことが影響を与えていると推定される。
The obtained results were ranked by relative comparison when the value in Comparative Example 1 was 100%.
◎ ... Less than 30% ○ ~ ◎ ... 30% or more and less than 50% ○ ... 50% or more and less than 70% Δ ~ ○ ... 70% or more and less than 100% Δ ... No change from Comparative Example 1 x ... worse than Comparative Example 1 (charging) Noh)
A constant current (for example, 1000 μA) was passed through the main charger of the electrophotographic apparatus, and the dark portion potential was measured with a potential sensor of a surface potentiometer (Model 344, TREK) set at the position of the developer. Therefore, the larger the dark part potential, the better the charging ability. The evaluation results of the charging ability were ranked by relative comparison when the result of Comparative Example 1 was set to 100%.
◎… greater than 120% ○ to ◎… greater than 115%, 120% or less ○… greater than 110%, 115% or less Δ to ○… greater than 100%, 110% or less Δ… unchanged from Comparative Example 1 ×… Worse than Comparative Example 1 (ghost)
After adjusting the current value of the main charger so that the dark portion potential at the developing unit position becomes a predetermined value, the image exposure light amount is adjusted so that the bright portion potential when the predetermined white paper is used as a document has a predetermined value. . In this state, a Canon ghost test chart (part number: FY9-9040) with a reflection density of 1.1 and a black circle of 5 mm in diameter is placed on the document table, and a Canon halftone chart is placed on top of it. In the copy image, the difference between the reflection density of the black circle having a diameter of 5 mm and the reflection density of the halftone portion of the ghost chart recognized on the halftone copy was measured. Therefore, the smaller the value, the better. The ghost evaluation results were ranked by relative comparison with the result of Comparative Example 1 being 100%.
◎ ... Less than 70% ○ ~ ◎ ... 70% or more and less than 80% ○ ... 80% or more and less than 90% Δ ~ ○ ... 90% or more and less than 100% Δ ... Same as Comparative Example 1 × ... worse than Comparative Example 1 Examples 1 and Table 2 show the evaluation results of Comparative Example 1. As can be seen from Table 2, it can be seen that the use of the deposited film forming apparatus of the present invention significantly improves the peeling, spherical protrusion, and image defect. Moreover, although it is an unexpected effect, the characteristics of the electrophotographic photosensitive member such as charging ability, sensitivity, and optical memory are also improved. This is because the high-frequency power introduction means is arranged on a plurality of arrangement circles so that the high-frequency power introduction means and the cylindrical base are uniform, and the plasma state around the cylindrical base is made uniform. Presumed to be giving.

Figure 2005163166
(実施例2)
図2(a)に示す堆積膜形成装置を用い、円筒状基体105としての直径80mm、長さ358mmのアルミニウムシリンダー上に、高周波電源の発振周波数を105MHzとして表3に示す条件に従い、前述の堆積膜形成方法でa−Si堆積膜から成る電子写真感光体を形成した。図2(a)の堆積膜形成装置には、円筒状基体105の対向面に1本、円筒状基体間に2本の高周波電力導入手段102を設けた。従って、合計で円筒状基体の3倍の高周波電力導入手段が設置されている。この装置では、円筒状基体の対向面に設置された高周波電力導入手段より、円筒状基体間の高周波電力導入手段の方が、若干、円筒状基体に近い構成となっている。
Figure 2005163166
(Example 2)
Using the deposited film forming apparatus shown in FIG. 2A, on the aluminum cylinder having a diameter of 80 mm and a length of 358 mm as the cylindrical substrate 105, the above-mentioned deposition is performed according to the conditions shown in Table 3 with the oscillation frequency of the high frequency power source set to 105 MHz. An electrophotographic photosensitive member made of an a-Si deposited film was formed by a film forming method. In the deposited film forming apparatus of FIG. 2A, one high-frequency power introducing means 102 is provided on the opposite surface of the cylindrical substrate 105 and two between the cylindrical substrates. Therefore, a high-frequency power introducing means that is three times as much as the cylindrical base in total is installed. In this apparatus, the high-frequency power introducing means between the cylindrical substrates is slightly closer to the cylindrical substrate than the high-frequency power introducing means installed on the opposite surface of the cylindrical substrate.

Figure 2005163166
上記の方法で得られた電子写真感光体は、実施例1と同様の評価を行った。結果を表4に示す。表4からわかるように、円筒状基体に対して、高周波電力導入手段が3倍ある堆積膜形成装置は本発明の効果をさらに得ることができることが判明した。
Figure 2005163166
The electrophotographic photosensitive member obtained by the above method was evaluated in the same manner as in Example 1. The results are shown in Table 4. As can be seen from Table 4, it was found that the deposited film forming apparatus having three times the high-frequency power introducing means with respect to the cylindrical substrate can further obtain the effects of the present invention.

Figure 2005163166
(実施例3)
図2(b)に示す堆積膜形成装置を用い、円筒状基体105としての直径80mm、長さ358mmのアルミニウムシリンダー上に、高周波電源の発振周波数を105MHzと60MHzの重畳周波数として、表5に示す条件に従い、前述の堆積膜形成方法でa−Si堆積膜から成る電子写真感光体を形成した。図2(b)の堆積膜形成装置には、円筒状基体105の対向面に2本、円筒状基体の間に1本の高周波電力導入手段102を設けた。従って、合計で円筒状基体の3倍の高周波電力導入手段が設置されている。この装置では、それぞれの高周波電力導入手段と最近接の円筒状基体との距離は全ての高周波電力導入手段で等しくなるように設置してある。
Figure 2005163166
(Example 3)
Using the deposited film forming apparatus shown in FIG. 2 (b), Table 5 shows the oscillation frequency of the high-frequency power source as a superimposed frequency of 105 MHz and 60 MHz on an aluminum cylinder having a diameter of 80 mm and a length of 358 mm as the cylindrical substrate 105. According to the conditions, an electrophotographic photosensitive member made of an a-Si deposited film was formed by the above-described deposited film forming method. In the deposited film forming apparatus of FIG. 2B, two high-frequency power introducing means 102 are provided on the opposing surface of the cylindrical substrate 105, and one high-frequency power introducing means 102 is provided between the cylindrical substrates. Therefore, a high-frequency power introducing means that is three times as much as the cylindrical base in total is installed. In this apparatus, the distance between each high frequency power introducing means and the closest cylindrical base is set to be equal for all the high frequency power introducing means.

Figure 2005163166
上記の方法で得られた電子写真感光体は、実施例1と同様の評価を行った。結果を表6に示す。表6からわかるように、円筒状基体に対して、高周波電力導入手段を3倍にし、かつ、両者の距離を等しくした堆積膜形成装置では、本発明の効果をさらに得ることができることが判明した。
Figure 2005163166
The electrophotographic photosensitive member obtained by the above method was evaluated in the same manner as in Example 1. The results are shown in Table 6. As can be seen from Table 6, it was found that the effect of the present invention can be further obtained in the deposited film forming apparatus in which the high-frequency power introducing means is tripled with respect to the cylindrical substrate and the distance between the two is equal. .

Figure 2005163166
(実施例4)
図2(a)に示す堆積膜形成装置を用い、円筒状基体105としての直径80mm、長さ358mmのアルミニウムシリンダー上に、表7に示す条件に従い、前述の堆積膜形成方法でa−Si堆積膜から成る電子写真感光体を形成した。
Figure 2005163166
Example 4
Using the deposited film forming apparatus shown in FIG. 2 (a), a-Si is deposited on the aluminum cylinder having a diameter of 80 mm and a length of 358 mm as the cylindrical substrate 105 according to the conditions shown in Table 7 by the aforementioned deposited film forming method. An electrophotographic photosensitive member comprising a film was formed.

本実施例では、内周高周波電力導入手段102(a)と外周高周波電力導入手段102(b)にそれぞれ別の高周波電源を接続し、独立して電力を制御した。各々の高周波電源の発振周波数は150MHzとした。   In the present embodiment, different high frequency power supplies are connected to the inner peripheral high frequency power introducing means 102 (a) and the outer peripheral high frequency power introducing means 102 (b), and the power is controlled independently. The oscillation frequency of each high frequency power source was 150 MHz.

Figure 2005163166
上記の方法で得られた電子写真感光体は、実施例1と同様の評価を行った。結果を表8に示す。表8からわかるように、内周高周波電力導入手段、外周高周波電力導入手段それぞれに独立した高周波電源を接続することで、印加する電力をよりきめ細かく制御することが可能となり、本発明の効果はより一層得られることが判明した。また、電子写真感光体の品質管理が容易になるというメリットもあった。
Figure 2005163166
The electrophotographic photosensitive member obtained by the above method was evaluated in the same manner as in Example 1. The results are shown in Table 8. As can be seen from Table 8, by connecting independent high-frequency power sources to the inner peripheral high-frequency power introducing means and the outer peripheral high-frequency power introducing means, it becomes possible to control the applied power more finely, and the effect of the present invention is further improved. It was found that more can be obtained. In addition, there is a merit that quality control of the electrophotographic photosensitive member becomes easy.

Figure 2005163166
(実施例5)
図2(a)に示す堆積膜形成装置を用い、円筒状基体105としての直径80mm、長さ358mmのアルミニウムシリンダー上に、表9に示す条件に従い、前述の堆積膜形成方法でa−Si堆積膜から成る電子写真感光体を形成した。
Figure 2005163166
(Example 5)
Using the deposited film forming apparatus shown in FIG. 2 (a), a-Si deposition is performed on the aluminum cylinder having a diameter of 80 mm and a length of 358 mm as the cylindrical substrate 105 according to the conditions shown in Table 9 by the aforementioned deposited film forming method. An electrophotographic photosensitive member comprising a film was formed.

本実施例では、内周高周波電力導入手段102(a)と外周高周波電力導入手段102(b)にそれぞれ別の高周波電源を接続し、独立して電力を制御した。各々の高周波電源の発振周波数は内周高周波電力導入手段102(a)に印加する周波数を50MHz、外周高周波電力導入手段102(b)に印加する周波数を100MHzとした。   In the present embodiment, different high frequency power supplies are connected to the inner peripheral high frequency power introducing means 102 (a) and the outer peripheral high frequency power introducing means 102 (b), and the power is controlled independently. The oscillation frequency of each high frequency power source was 50 MHz applied to the inner peripheral high frequency power introducing means 102 (a) and 100 MHz applied to the outer peripheral high frequency power introducing means 102 (b).

Figure 2005163166
上記の方法で得られた電子写真感光体は、実施例1と同様の評価を行った。結果を表10に示す。表10からわかるように、内周高周波電力導入手段、外周高周波電力導入手段それぞれに独立した高周波電源を接続し、異なる発振周波数の高周波電力を印加することで、本発明の効果はより一層得られることが判明した。また、電子写真感光体の品質管理が容易になるというメリットもあった。
Figure 2005163166
The electrophotographic photosensitive member obtained by the above method was evaluated in the same manner as in Example 1. The results are shown in Table 10. As can be seen from Table 10, the effect of the present invention can be further obtained by connecting independent high frequency power sources to the inner peripheral high frequency power introducing means and the outer peripheral high frequency power introducing means and applying high frequency power having different oscillation frequencies. It has been found. In addition, there is a merit that quality control of the electrophotographic photosensitive member becomes easy.

Figure 2005163166
(実施例6)
図6に示す堆積膜形成装置を用い、円筒状基体605としての直径80mm、長さ358mmのアルミニウムシリンダー上に、表11に示す条件に従い、前述の堆積膜形成方法でa−Si堆積膜から成る電子写真感光体を形成した。高周波電源603は1台とし、高周波電力分岐手段612を用いて各々の高周波電力導入手段602に分配した。高周波電源の発振周波数は400MHzとした。この装置では、それぞれの高周波電力導入手段と最近接の円筒状基体との距離は全ての高周波電力導入手段で等しくなるように設置してある。
Figure 2005163166
(Example 6)
The deposited film forming apparatus shown in FIG. 6 is used to form an a-Si deposited film on an aluminum cylinder having a diameter of 80 mm and a length of 358 mm as a cylindrical substrate 605 according to the above-described deposited film forming method according to the conditions shown in Table 11. An electrophotographic photoreceptor was formed. One high-frequency power source 603 was provided and distributed to each high-frequency power introducing unit 602 using a high-frequency power branching unit 612. The oscillation frequency of the high frequency power source was 400 MHz. In this apparatus, the distance between each high frequency power introducing means and the closest cylindrical base is set to be equal for all the high frequency power introducing means.

本実施例では、円筒状部材で囲まれた放電空間の中央にステンレス製の円筒状部材613を設置した。円筒状部材613の直径は、円筒状基体に囲まれた領域の直径の0.25倍、長さは反応容器の高さの0.95倍とした。円筒状部材は排気口509に設置された排気メッシュを介してアースに落とされている。
In this embodiment, a stainless steel cylindrical member 613 is installed at the center of the discharge space surrounded by the cylindrical member. The diameter of the cylindrical member 613 was 0.25 times the diameter of the region surrounded by the cylindrical substrate, and the length was 0.95 times the height of the reaction vessel. The cylindrical member is dropped to the ground via an exhaust mesh installed at the exhaust port 509.

Figure 2005163166
上記の方法で得られた電子写真感光体は、実施例1と同様の評価を行った。結果を表12に示す。表12からわかるように、放電空間中央に円筒状部材をアースに落とした状態で設置することで、本発明の効果と相まって、さらに画像欠陥を低減することが出来ることが判明した。
Figure 2005163166
The electrophotographic photosensitive member obtained by the above method was evaluated in the same manner as in Example 1. The results are shown in Table 12. As can be seen from Table 12, it was found that image defects can be further reduced by installing the cylindrical member in the center of the discharge space in a state where it is grounded, coupled with the effects of the present invention.

Figure 2005163166
Figure 2005163166

本発明の堆積膜形成装置の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the deposited film formation apparatus of this invention. 本発明の堆積膜形成装置の横断面図の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the cross-sectional view of the deposited film formation apparatus of this invention. 従来のVHF帯の周波数を用いたVHFプラズマCVD法による電子写真感光体の製造装置の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the manufacturing apparatus of the electrophotographic photoreceptor by the VHF plasma CVD method using the frequency of the conventional VHF band. 本発明の堆積膜形成装置の一例を示した模式的な構成図である。It is the typical block diagram which showed an example of the deposited film formation apparatus of this invention. 本発明により形成可能な電子写真感光体の層構成の一例を示した図である。FIG. 3 is a diagram illustrating an example of a layer configuration of an electrophotographic photosensitive member that can be formed according to the present invention. 本発明の堆積膜形成装置のさらに別の一例を示した模式的な構成図である。It is the typical block diagram which showed another example of the deposited film formation apparatus of this invention.

符号の説明Explanation of symbols

101、301 反応容器
101(a)、301(a)、601(a) 誘電体部材
101(b)、301(b)、601(b) 上蓋
102、302、602 高周波電力導入手段
103、303、603 高周波電源
104、304、604 マッチングボックス
105、305、605 円筒状基体
106、306、606 基体支持体
107、307、607 基体加熱用ヒーター
108、308、608 回転機構
109、309、609 排気配管
110、310、610 ガス供給手段
112、312、612 高周波電力分岐手段
500 電子写真用感光体
501 支持体
502 光導電層
503 表面層
504 電荷注入阻止層
505 電荷発生層
506 電荷輸送層
613 円筒状部材
101, 301 Reaction vessel 101 (a), 301 (a), 601 (a) Dielectric member 101 (b), 301 (b), 601 (b) Upper lid 102, 302, 602 High-frequency power introducing means 103, 303, 603 High-frequency power source 104, 304, 604 Matching box 105, 305, 605 Cylindrical base 106, 306, 606 Base support 107, 307, 607 Substrate heating heater 108, 308, 608 Rotating mechanism 109, 309, 609 Exhaust piping 110 , 310, 610 Gas supply means 112, 312, 612 High frequency power branching means 500 Electrophotographic photoreceptor 501 Support body 502 Photoconductive layer 503 Surface layer 504 Charge injection blocking layer 505 Charge generation layer 506 Charge transport layer 613 Cylindrical member

Claims (19)

少なくとも一部が誘電体部材で構成された減圧可能な反応容器と、該反応容器内部に同一円周上に配置された複数の円筒状基体と、原料ガス導入手段と、該反応容器の外部に配置された複数の高周波電力導入手段とを有し、該高周波電力導入手段に高周波電力を印加し、該反応容器内にグロー放電を発生させることにより、該反応容器内に導入された原料ガスを分解し、該複数の円筒状基体上に堆積膜を形成する堆積膜形成装置において、該高周波電力導入手段が直径の異なる複数の配置円上に配置されることを特徴とする堆積膜形成装置。   A reaction vessel capable of being depressurized, at least a part of which is made of a dielectric member, a plurality of cylindrical substrates disposed on the same circumference inside the reaction vessel, a raw material gas introduction means, and an outside of the reaction vessel A plurality of high-frequency power introducing means arranged, applying a high-frequency power to the high-frequency power introducing means, and generating a glow discharge in the reaction vessel, the raw material gas introduced into the reaction vessel is In a deposited film forming apparatus that decomposes and forms deposited films on the plurality of cylindrical substrates, the high-frequency power introducing means is disposed on a plurality of arrangement circles having different diameters. 前記円筒状基体の数の整数倍の前記高周波電力導入手段が設けられることを特徴とする請求項1に記載の堆積膜形成装置。   2. The deposited film forming apparatus according to claim 1, wherein the high-frequency power introducing means is provided in an integral multiple of the number of the cylindrical substrates. 前記円筒状基体の数の2倍以上の前記高周波電力導入手段が設けられることを特徴とする請求項1乃至2に記載の堆積膜形成装置。   3. The deposited film forming apparatus according to claim 1, wherein the high-frequency power introducing means is provided at least twice as many as the number of the cylindrical substrates. 前記円筒状基体の数の3倍以上の前記高周波電力導入手段が設けられることを特徴とする請求項1乃至2に記載の堆積膜形成装置。   3. The deposited film forming apparatus according to claim 1, wherein the high-frequency power introducing means is provided at least three times the number of the cylindrical substrates. 少なくとも一つの配置円上に配置される前記高周波電力導入手段は、概略前記円筒状基体の対向位置に配置され、他の配置円上に配置される前記高周波電力導入手段は、該円筒状基体の間に配置されることを特徴とする請求項1乃至4に記載の堆積膜形成装置。   The high-frequency power introducing means arranged on at least one arrangement circle is generally arranged at a position opposed to the cylindrical substrate, and the high-frequency power introducing means arranged on another arrangement circle is arranged on the cylindrical substrate. The deposited film forming apparatus according to claim 1, wherein the deposited film forming apparatus is disposed between them. 前記円筒状基体の間に配置される前記高周波電力導入手段の配置円の直径は、該円筒状基体の対向位置に配置される前記高周波電力導入手段の配置円の直径より小さいことを特徴とする請求項5に記載の堆積膜形成装置。   The diameter of the arrangement circle of the high-frequency power introduction means arranged between the cylindrical base bodies is smaller than the diameter of the arrangement circle of the high-frequency power introduction means arranged at a position facing the cylindrical base body. The deposited film forming apparatus according to claim 5. 前記高周波電力導入手段と、該高周波電力導入手段から最も近い前記円筒状基体との距離を、全ての該高周波電力導入手段で実質的に等しくなるように配置することを特徴とする請求項1乃至6に記載の堆積膜形成装置。   2. The high-frequency power introducing means and the cylindrical base closest to the high-frequency power introducing means are arranged so that the distance between all the high-frequency power introducing means is substantially equal. 6. The deposited film forming apparatus according to 6. 複数の配置円上に配置された前記高周波電力導入手段に同一の高周波電源から高周波電力を印加することを特徴とする請求項1乃至7に記載の堆積膜形成装置。   8. The deposited film forming apparatus according to claim 1, wherein high-frequency power is applied from the same high-frequency power source to the high-frequency power introducing means arranged on a plurality of arrangement circles. 前記高周波電力導入手段が配置される複数の配置円ごとに独立した高周波電源が設けられることを特徴とする請求項1乃至7に記載の堆積膜形成装置。   8. The deposited film forming apparatus according to claim 1, wherein an independent high-frequency power source is provided for each of a plurality of arrangement circles where the high-frequency power introducing means is arranged. 前記独立した高周波電源ごとに、前記高周波電力導入手段に印加する高周波電力が異なることを特徴とする請求項9に記載の堆積膜形成装置。   The deposited film forming apparatus according to claim 9, wherein high-frequency power applied to the high-frequency power introducing unit is different for each independent high-frequency power source. 前記独立した高周波電源ごとに、前記高周波電力導入手段に印加する高周波電力の発振周波数が異なることを特徴とする請求項9乃至10に記載の堆積膜形成装置。   11. The deposited film forming apparatus according to claim 9, wherein an oscillation frequency of the high frequency power applied to the high frequency power introducing means is different for each independent high frequency power source. 前記円筒状基体が配置される配置円内に、さらに導電性を有する円筒状部材を有することを特徴とする請求項1乃至11に記載の堆積膜形成装置。   12. The deposited film forming apparatus according to claim 1, further comprising a cylindrical member having conductivity in an arrangement circle in which the cylindrical substrate is arranged. 前記円筒状部材が円筒状基体の配置円の概略中央に設置されていることを特徴とする請求項12に記載の堆積膜形成装置。   13. The deposited film forming apparatus according to claim 12, wherein the cylindrical member is installed at a substantially center of an arrangement circle of the cylindrical substrate. 前記円筒状部材は接地されていることを特徴とする請求項12乃至13に記載の堆積膜形成装置。   14. The deposited film forming apparatus according to claim 12, wherein the cylindrical member is grounded. 前記高周波電力の周波数が50〜450MHzの範囲であることを特徴とする請求項1乃至14に記載の堆積膜形成装置。   15. The deposited film forming apparatus according to claim 1, wherein a frequency of the high frequency power is in a range of 50 to 450 MHz. 前記高周波電力の周波数が50〜450MHzの範囲にある異なる2つ以上の周波数を重畳したものであることを特徴とする請求項1乃至15に記載の堆積膜形成装置。   16. The deposited film forming apparatus according to claim 1, wherein two or more different frequencies having a frequency of the high-frequency power in a range of 50 to 450 MHz are superimposed. 前記複数の円筒状基体上に形成される堆積膜が、シリコン原子を母材とした非単結晶材料であることを特徴とする請求項1乃至16に記載の堆積膜形成装置。   17. The deposited film forming apparatus according to claim 1, wherein the deposited film formed on the plurality of cylindrical substrates is a non-single crystal material having a silicon atom as a base material. 電子写真感光体の製造に用いられることを特徴とする請求項1乃至17に記載の堆積膜形成装置。   18. The deposited film forming apparatus according to claim 1, wherein the deposited film forming apparatus is used for manufacturing an electrophotographic photosensitive member. 請求項1乃至18記載の堆積膜形成装置を用いて堆積膜を形成することを特徴とする堆積膜形成方法。   19. A deposited film forming method comprising forming a deposited film using the deposited film forming apparatus according to claim 1.
JP2003407955A 2003-12-05 2003-12-05 Deposition film forming system and deposition film forming method Pending JP2005163166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407955A JP2005163166A (en) 2003-12-05 2003-12-05 Deposition film forming system and deposition film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407955A JP2005163166A (en) 2003-12-05 2003-12-05 Deposition film forming system and deposition film forming method

Publications (1)

Publication Number Publication Date
JP2005163166A true JP2005163166A (en) 2005-06-23

Family

ID=34729849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407955A Pending JP2005163166A (en) 2003-12-05 2003-12-05 Deposition film forming system and deposition film forming method

Country Status (1)

Country Link
JP (1) JP2005163166A (en)

Similar Documents

Publication Publication Date Title
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP2000073173A (en) Formation of deposited film and deposited film forming device
JP4109861B2 (en) Vacuum processing method
JP4298401B2 (en) Deposited film forming apparatus and deposited film forming method
JP2005163166A (en) Deposition film forming system and deposition film forming method
JP2007297661A (en) Apparatus for forming deposition film
JP2005163161A (en) Apparatus and method for forming deposition film
JP2005163163A (en) Deposition film formation device, and deposition film formation method
JP2005163162A (en) Apparatus and method for forming deposition film
JP3606399B2 (en) Deposited film forming equipment
JP2005344150A (en) Deposition film depositing device and deposition film depositing method
JP2006104544A (en) Deposited film formation system and deposited film formation method
JP2005344151A (en) Deposition film forming device and method
JP2006009042A (en) Film deposition apparatus and film deposition method
JP2006009040A (en) Film deposition apparatus and film deposition method
JP2005015877A (en) Apparatus and method for forming deposition film
JP2005015878A (en) Deposition film formation device, and deposition film formation method
JP2008214659A (en) Method for forming deposition film
JP2005163164A (en) Deposited film forming apparatus and deposited film forming method
JP2005068455A (en) Method and apparatus for forming deposition film
JP3402952B2 (en) Method and apparatus for forming deposited film
JP2007297660A (en) Deposited film formation device and deposited film formation method
JPH11343573A (en) Deposited film forming device and its method
JP2003041369A (en) Method and apparatus for vacuum treatment
JP2005133128A (en) Apparatus and method for plasma treatment