JP2007060749A - 誘導子型発電・駆動両用モータおよびそれを備えた自動車 - Google Patents

誘導子型発電・駆動両用モータおよびそれを備えた自動車 Download PDF

Info

Publication number
JP2007060749A
JP2007060749A JP2005240331A JP2005240331A JP2007060749A JP 2007060749 A JP2007060749 A JP 2007060749A JP 2005240331 A JP2005240331 A JP 2005240331A JP 2005240331 A JP2005240331 A JP 2005240331A JP 2007060749 A JP2007060749 A JP 2007060749A
Authority
JP
Japan
Prior art keywords
power generation
armature
shaft
power
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240331A
Other languages
English (en)
Other versions
JP4751135B2 (ja
Inventor
Shingo Oohashi
紳悟 大橋
Toru Okazaki
徹 岡崎
Hidehiko Sugimoto
英彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005240331A priority Critical patent/JP4751135B2/ja
Publication of JP2007060749A publication Critical patent/JP2007060749A/ja
Application granted granted Critical
Publication of JP4751135B2 publication Critical patent/JP4751135B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Synchronous Machinery (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

【課題】発電と駆動の両方を可能とし且つコイルへの給電構造等を簡素化する。
【解決手段】外部駆動源により回転される発電軸16と、外部電力により駆動される駆動軸17とが同一軸線上に配置され、発電軸16と駆動軸17の間に共有の界磁側固定子13が配置される一方、発電軸16と駆動軸17に電機子コイル19、20、33、34を有する電機子側固定子11、15が配置される共に、電機子側固定子11、15と界磁側固定子13の間に誘導子22、23、30、31を備えた回転子12、14が発電軸16、駆動軸17に固定され、界磁側固定子13には軸線回りの内外周とで互いに逆極性となる同心円状の磁極が軸線方向の両側に励磁される界磁コイル26が取り付けられ、発電用回転子12と駆動用回転子14には、界磁コイル26の内外周の磁束を発電用の電機子コイル19側に誘導する誘導子22、23、30、31を配置している。
【選択図】図1

Description

本発明は、誘導子型発電・駆動両用モータおよび該モータを備えた自動車に関し、詳しくは、1台のモータで発電と駆動の両方を行えるようにするものである。
近年、ガソリン等の化石燃料の枯渇や排気ガスによる環境悪化を改善すべく、電気エネルギーによりモータを駆動して走行する電気自動車やハイブリッド自動車の開発が進められている。例えば、ハイブリッド自動車1では、図13に示すように、エンジン2の動力から発電を行う発電用モータ3と、ディファレンシャルギア5を介して車輪を駆動する駆動用モータ4とを別々に設置しており、夫々を合わせた重量、体積、コストが大きくなる問題がある。
また、特開平5−276734号公報等に開示されているようにモータを超電導化した場合には、発電用モータ3と駆動用モータ4の複数モータ分の超電導コイルが必要となるため、高価な超電導線材の使用量が増大してコストアップとなる問題もある。また、超電導モータが複数に分散配置されると、超電導コイルを極低温に冷却するための冷却配管が複雑になると共に、冷却を維持するための断熱空間も大きく必要となる。かつ、磁場漏れ対策のシールド部材も夫々のモータで個別に必要となり、モータの大型化およびコスト増を招くこととなる。
一方、特開昭54−116610号公報(特許文献1)や特開平6−86517号公報(特許文献2)等に開示された発電機では、図14に示すように、回転軸101が外筒となるブラケット102にベアリング103を介して貫通し、回転軸101に外嵌固定された継鉄104の外周に界磁巻線105を設けていると共に、界磁巻線105の左右から交互に突出する爪形磁極106、107を設け、全体として回転子を形成している。一方、ブラケット102には、爪形磁極106、107に対向して固定子巻線108を設けている。また、界磁巻線105への電力供給は、スリップリング109を介して摺動自在に給電する構成としている。スリップリング109を介して界磁巻線105に直流を供給することで界磁巻線105の図中右側にN極が発生し且つ図中左側にS極が発生する場合を考えると、右側から突出する爪形磁極106にN極が誘導され、左側から突出する爪形磁極107にS極が誘導される。即ち、回転軸101を中心として巻回された界磁巻線105を1つ設けるだけで、回転子の外周側に複数のN極およびS極を周方向の交互に発生させることが可能となる。
しかしながら、界磁巻線5は回転子の一部として形成されており、回転運動を行う界磁巻線5への給電はスリップリング9を介して摺動接触にて行わねばならず、構造が複雑化すると共に、スリップリング9での接触摩耗による低寿命化の問題や、スリップリング9での摺動接触が不安定化すると給電も安定しないという問題がある。界磁巻線5を超電導化した場合を考えると、回転する界磁巻線5を冷却する必要が生じ、冷却構造が複雑化する問題が生じる。
特開平5−276734号公報 特開昭54−116610号公報 特開平6−86517号公報
本発明は、前記問題に鑑みてなされたもので、発電と駆動の両方が必要な場合に全体としてモータを小型化すると共に、コイルへの給電構造等を簡単にすることを課題としている。
前記課題を解決するため、本発明は第1に、外部駆動源により回転駆動される発電軸と、該発電軸と同一軸線上に配置される駆動軸を備え、これら発電軸と駆動軸の間に共有して用いられる界磁側固定子が配置される一方、前記発電軸と駆動軸に夫々電機子コイルを備えた電機子側固定子が配置される共に、これら電機子側固定子と前記界磁側固定子の間にそれぞれ誘導子を備えた回転子が前記発電軸、駆動軸に固定され、
前記界磁側固定子には、軸線回りの内周側と外周側とで互いに逆極性となる同心円状の磁極が軸線方向の両側に励磁される界磁体が取り付けられる一方、
前記発電用、駆動用の各回転子には、一端面が前記界磁体の外周側に対向すると共に他端面が前記発電用、駆動用の各電機子側固定子の電機子コイルに対向する磁性体からなる第1誘導子と、一端面が前記界磁体の内周側に対向すると共に他端面が前記発電用、駆動用の各電機子側固定子の電機子コイルに対向する磁性体からなる第2誘導子とが周方向に交互に配置され、
前記発電用の電機子コイルに電力出力線が接続され、発電軸側では回転駆動力が入力されて発電された電力が出力される一方、前記駆動用の電機子コイルには電力入力線が接続され、駆動軸側では電力が入力されて回転駆動力として出力される構成とされている誘導子型発電・駆動両用モータを提供している。
前記構成とすると、界磁側では円環状の内周側と外周側とに逆極性が同心円上に励磁されるため、各回転子が回転しても、第1誘導子の一端面は界磁側固定子の例えばN極発生地点の円周上を移動すると共に、第2誘導子の一端面は界磁側固定子の例えばS極発生地点の円周上を移動し、第1誘導子と第2誘導子の他端面には互いに逆極性の一定磁極が誘導される。そこで、外部動力を伝達して発電軸を回転させれば、発電用回転子の各誘導子が発電用電機子側固定子の電機子コイルの近傍を周期的に横切って磁場変動が生じ、電磁誘導により該電機子コイルに電力が生成される。一方、駆動用電機子側固定子の電機子コイルの極性を周期的に変化させるように電力入力線より給電することで、駆動用回転子の各誘導子と該電機子コイルとの間で吸引/反発力が発生して駆動用回転子が回転し、駆動軸より駆動力が出力される。
したがって、1台のモータで発電と駆動の両方を行うことができ、発電用と駆動用とに別々のモータを用意せずに済むため、全体としてモータを小型化することができる。さらに、界磁体と電機子コイルとの両方が固定子に取り付けられるので、コイルへの給電にスリップリング等の摺接部材を用いる必要がなくなり、構造を簡素化できると共に、スリップリング等での接触摩耗による低寿命化の問題や給電不安定の問題も解消することが可能となる。また、一対の回転子を回転駆動させるための界磁側固定子を1つで共用化しているので、部品点数の削減および小型化を図ることができる。
具体的には、前記界磁体は軸線回りの円環状に導体線が巻回された界磁コイルとしていると好ましい。該構成とすると、界磁コイルに通電した場合に、界磁コイルの外周側あるいは内周側のいずれか一方にN極が発生し、いずれか他方にS極が発生することになり、N極とS極とを同心円上に発生させることが可能となる。よって、1つの界磁コイルだけで第1誘導子および第2誘導子により複数極の界磁を発生させることができ、コイル巻回作業が簡素化でき製造効率が向上する。さらに、第1誘導子および第2誘導子の一端面は界磁コイルに沿った円弧状としていると好ましい。
本発明は第2に、外部駆動源により回転駆動される発電軸と、該発電軸と同一軸線上に配置される駆動軸を備え、これら発電軸と駆動軸の間に共有して用いられる界磁側固定子が配置される一方、前記発電軸と駆動軸に夫々電機子コイルを備えた電機子側固定子が配置される共に、これら電機子側固定子と前記界磁側固定子の間にそれぞれ誘導子を備えた回転子が前記発電軸、駆動軸に固定され、
前記界磁側固定子には、軸線回りの周方向に交互に逆極性となる磁極が軸線方向の両側に励磁される複数の界磁体が取り付けられる一方、前記電機子側固定子には、軸線回りの円環状に導体線が巻回された電機子コイルが取り付けられ、
前記発電用、駆動用の各回転子には、一端面が前記発電用、駆動用の電機子コイルの外周側に対向すると共に他端面が前記界磁体に対向する磁性体からなる第1誘導子と、一端面が前記発電用、駆動用の電機子コイルの内周側に対向すると共に他端面が前記界磁体に対向する磁性体からなる第2誘導子とが周方向に交互に配置され、
前記発電用の電機子コイルに電力出力線が接続され、発電軸側では回転駆動力が入力されて発電された電力が出力される一方、前記駆動用の電機子コイルには電力入力線が接続され、駆動軸側では電力が入力されて回転駆動力として出力される構成とされている誘導子型発電・駆動両用モータを提供している。
前記構成とすると、回転子が回転しても第1誘導子の他端面は電機子コイルの外周に沿って移動するので電機子コイルへの通電方向に応じて所定の極性が誘導される。一方、第2誘導子の他端面は電機子コイルの内周に沿って移動するので、第1誘導子とは逆の極性が誘導される。そこで、駆動用電機子側固定子の電機子コイルの極性を周期的に変化させるように電力入力線より給電することで、駆動用回転子の各誘導子と該界磁体との間で吸引/反発力が発生して駆動用回転子が回転し、駆動軸より駆動力が出力される。一方、外部動力を伝達して発電軸を回転させれば、界磁体から発電用回転子の各誘導子に誘導された磁束が発電用電機子側固定子の電機子コイルの内外周に周期的な磁場変動を生じさせるため、電磁誘導により該電機子コイルに電力が生成される。
したがって、前記第1の発明と同様に、1台のモータで発電と駆動の両方を行うことができ全体として小型化できると共に、界磁体と電機子コイルとの両方が固定子に取り付けられるのでコイル給電にスリップリング等の摺接部材を用いる必要がなくなり構造を簡単にできる。
前記電機子側固定子、第1、第2誘導子を備えた回転子を組み付けている発電軸と駆動軸とを、その間に界磁側固定子を挟んで同一軸線上に並列配置したアキシャルギャップ型とし、両側の駆動軸に挟まれた発電軸には、電機子側固定子を挟んで両側に回転子を固定し、前記電機子側固定子の電機子コイルの両側端面を両側の回転子の第1、第2誘導子と対向させた構成としてもよい。
該構成とすると、発電軸の両側に駆動軸を配置しているので、左右の両側から回転動力を取り出すことが可能となる。また、界磁体からの磁束は界磁側固定子の両側に発生するが、界磁側固定子の両側に回転子と電機子側固定子を挟設配置するアキシャルギャップ構造としているので、界磁をトルク発生に有効利用することができる。
前記発電軸を中央に挟んで左右両側に駆動軸を配置し、該左右の駆動軸を独立に回転駆動させると共にそれぞれ独立して回転数制御を行える構成としてもよい。
該構成とすると、両側の駆動軸を互いに独立回転するように設けているので、各駆動用電機子側固定子の電機子コイルへの通電を夫々相違させて各駆動用回転子の回転数を相違させることで、各駆動軸の回転数を夫々異ならせることが可能となる。
前記界磁体は、超電導線材を巻回した界磁コイルとしていると好ましい。
即ち、界磁体を超電導化することで、磁場の強化が図られてモータトルクを大幅にアップすることができる。また、前述のように本発明のモータは発電用と駆動用とで1つの界磁側固定子を共用しているので、界磁コイルの超電導線材の使用量が低減されコストダウンが図られる。また、超電導線材からなる界磁コイルを極低温に冷却する配管等も共用化された1つの界磁側固定子に向けて配管すれば足りるため、冷却構造も簡素化される。さらに、界磁の磁場漏れ対策を行う場合でも、1つの界磁のみを対策すれば足りるため、小型化および低コスト化できる。なお、超電導線材としてはビスマス系やイットリウム系等の高温超電導材を用いると好適である。ただし、界磁体として超電導バルク磁石を用いてもよい。
前記電機子コイルは超電導線材を巻回して形成していると好ましい。
即ち、電機子コイルも超電導化することで大電流を流すことが可能となり、電機子コイルの巻数を大幅に低減することができる。また、所要の超電導性能を発揮させるため超電導線材を冷却する構造を設ける場合を考えても、前述したように、界磁体と電機子コイルとの両方が固定子に取り付けられて動かないので、冷媒供給路やシール構造等の設計が簡単になり冷却構造を簡単にできる。
前記界磁コイルあるいは/および前記電機子コイルの中空部に圧粉磁性体からなる磁心を配置していると好ましい。
該構成とすると、圧粉磁性体は金型による形成が容易であり、加工性に優れると共に、磁気特性が等方的となる利点がある。また、圧粉磁性体は、磁性粉末を絶縁樹脂で結合し、あるいは、被膜で覆った磁性粉末を絶縁樹脂で結合した構成とすることで、個々の磁性粉末の間が樹脂で絶縁され、一般の軟磁性材料よりも渦電流損失が低減されて磁気特性に優れる磁心が得られ、コイルの磁束を強化することができる。
また、前記第1誘導子および前記第2誘導子も圧粉磁性体で形成されていると、複雑な三次元形状の誘導子も容易に成形することができ好適である。
本発明は第3に、前記誘導子型発電・駆動両用モータを搭載した自動車であって、
前記発電軸にはエンジンからの回転動力を伝達する一方、前記駆動軸の回転動力を車輪に伝達していることを特徴とする自動車を提供している。
前記構成とすると、発電機と駆動モータを個別に設けることなく1台のモータで発電と駆動の両方を行えるので、車載部品としてのモータを全体として小型化・軽量化することができ、自動車の小型化および燃費向上に貢献する。
本発明は第4に、前記左右の駆動軸を独立回転させる誘導子型発電・駆動両用モータを搭載した自動車であって、
前記発電軸にはエンジンからの回転動力を伝達する一方、前記2つの駆動軸をそれぞれ左右の車輪に回転動力を伝達して、両輪駆動構成としていることを特徴とする自動車を提供している。
前記構成とすると、1台のモータで2つの駆動出力軸の回転速度を独立して制御することが可能なため、左右の車輪に異なる回転数を与えることができる。したがって、2台のモータで2つの車輪を駆動するよりも全体としてモータの小型化が図れると共に、従来のようなディファレンシャルギア等を介設する必要がなくなり、動力伝達ロスを低減することが可能となる。また、ディファレンシャルギア等を廃止できることで、自動車の小型軽量化にも貢献する。
以上の説明より明らかなように、第1、第2の発明によれば、界磁体と電機子コイルとの双方がそれぞれ固定子に取り付けられるので、コイルへの給電にスリップリング等の摺接部材が不要となり、構造の簡素化、長寿命化、給電安定化を図ることができる。さらに、1台のモータで発電と駆動力生成の両方を行うことができるため、発電用と駆動用とに別々のモータを用意せずに済み、全体としてモータを小型化できる。
また、第3、第4の発明によれば、ディファレンシャルギア等による動力伝達ロスを無くしつつ、1台のモータで左右の車輪に異なる回転数を与えることができると共に、車載モータ数の低減および自動車の小型軽量化することもできる。
本発明の実施形態を図面を参照して説明する。
図1は第1実施形態の誘導子型発電・駆動両用モータ10を示す。
誘導子型発電・駆動両用モータ10はアキシャルギャップ構造であり、発電用電機子側固定子11、発電用回転子12、界磁側固定子13、駆動用回転子14、駆動用電機子側固定子15の順番に並設している。発電用回転子12には発電軸16を固定しており、駆動用回転子14には駆動軸17を固定している。発電軸16および駆動軸17は、発電用電機子側固定子11、界磁側固定子13および駆動用電機子側固定子15に対して回転自在としている。発電用電機子側固定子11、界磁側固定子13および駆動用電機子側固定子15はケーシング等の設置面Gに固定している。
界磁側固定子13は、設置面Gに固定された磁性体からなるヨーク24と、ヨーク24の軸線回りに埋設された真空断熱構造の断熱冷媒容器25と、断熱冷媒容器25に収容された超電導線材からなる軸線回りの界磁コイル26とを備えている。
ヨーク24は、中心穴24bに第1駆動軸16の先端を回転自在に支持する第1軸受部27と第2駆動軸17の先端を回転自在に支持する第2軸受部28とを左右に内蔵していると共に、軸受部27、28を中心として円環状に凹設された取付穴24aを形成している。断熱冷媒容器25には液体窒素を循環させた状態で界磁コイル26を収容しており、その断熱冷媒容器25を取付穴24aに埋設している。即ち、界磁コイル26の中空部には磁性体からなる磁心が配置されている。また、界磁コイル26を形成する超電導材としては、ビスマス系やイットリウム系等の超電導材を用いている。
ヨーク24は、磁性粉末(鉄粉等)を絶縁樹脂でプレス結合して加熱処理を施した圧粉磁性体、あるいは、被膜(燐酸化合物被膜等)で覆った磁性粉末(鉄粉等)を絶縁樹脂で結合して加熱処理を施した圧粉磁性体としている。圧粉磁性体の結合用樹脂としては、ポリフェニレンサルファイドや可溶性ポリイミド等の樹脂が好適に用いられる。しかしながら、ヨーク24はFRPやステンレス等の非磁性材料で形成してもよい。
発電用回転子12と駆動用回転子14は左右対称であり、図2(A)〜(D)は一方の発電用回転子12を代表して図示している。
発電用回転子12は、円盤形状で非磁性材料からなり発電軸16の固定用の中心軸穴21aを有する支持部21と、中心軸穴21aを中心として点対称位置に埋設された一対のN極誘導子22(第1誘導子)と、N極誘導子22から90°回転した位置に埋設された一対のS極誘導子23(第2誘導子)とを備えている。N極誘導子22およびS極誘導子23は、発電用電機子側固定子11と対向する扇形状の他端面22a、23aをそれぞれ同一円上の等間隔に配置すると共に互いに同一面積としている。
N極誘導子22の一端面22bは、界磁コイル26のN極発生位置に対向するように配置され、例えばN極誘導子22の一端面22bは、図5(B)に示すように、界磁コイル26の外周側に対向配置される円弧状としている。
S極誘導子23の一端面23bは、界磁コイル26のS極発生位置に対向するように配置され、例えばS極誘導子23の一端面23bは、図5(C)に示すように、界磁コイル26の内周側に対向配置される円弧状としている。
即ち、N極誘導子22およびS極誘導子23は、円弧状の一端面22b、23bから軸線方向に向けて断面形状を変化させることで他端面22a、23aでは扇形状となる立体形状としている。また、N極誘導子22およびS極誘導子23の断面積は、一端面22b、23bから他端面22a、23aまで一定としている。また、N極誘導子22の一端面22bは、S極誘導子23の一端面23bと同一面積としている。なお、支持部21は、FRPやステンレス等の非磁性材料で形成している。また、各誘導子22、23は、磁性粉末(鉄粉等)を絶縁樹脂でプレス結合して加熱処理を施した圧粉磁性体、あるいは、被膜(燐酸化合物被膜等)で覆った磁性粉末(鉄粉等)を絶縁樹脂で結合して加熱処理を施した圧粉磁性体としている。なお、駆動用回転子14についても、発電軸16の変わりに駆動軸17を固定する点以外は同様の構成としている。
発電用電機子側固定子11と駆動用電機子側固定子15とは左右対称であり、図4では一方の発電用電機子側固定子11について代表して図示している。
発電用電機子側固定子11は、図1(A)(B)および図4に示すように、設置面Gに固定された磁性体からなるヨーク18と、ヨーク18に埋設された銅巻線である電機子コイル19、20とを備えている。ヨーク18は、中央に発電軸16の外径より大きく穿設された遊嵌穴18bと、遊嵌穴18bを中心として周方向に等間隔に穿設された円環状の4つの取付溝18aとを備え、取付溝18aは内側対向面から凹設されて外側面には貫通していない。取付溝18aには電機子コイル19、20を収容していると共に電機子コイル19、20の中空部には磁性体からなる磁心18cを配置している。
ヨーク18は、磁性粉末(鉄粉等)を絶縁樹脂でプレス結合して加熱処理を施した圧粉磁性体、あるいは、被膜(燐酸化合物被膜等)で覆った磁性粉末(鉄粉等)を絶縁樹脂で結合して加熱処理を施した圧粉磁性体としている。なお、駆動用電機子側固定子15についても同様の構成としている。
界磁コイル26には直流を供給する電力入力線35を接続している。駆動用電機子側固定子15の電機子コイル33、34には交流を供給する電力入力線38を接続している。発電用電機子側固定子11の電機子コイル19、20には生成された電力を取り出す電力出力線37を接続している。また、断熱冷媒容器25には液体窒素からなる冷媒を循環供給するための断熱された冷却配管36を接続している。
次に、誘導子型発電・駆動両用モータ10の動作について説明する。
まず、発電原理について説明する。界磁コイル26に直流を給電すると、界磁コイル26の軸線方向左側において外周側にN極が発生すると共に内周側にS極が発生する。すると、図5(A)(B)に示すように、N極側の磁束が発電用回転子12のN極誘導子27内に一端面22bより導入され、他端面22aにN極磁束が現れる。また、図5(A)(C)に示すように、S極側の磁束は発電用回転子12のS極誘導子23内に一端面23bより導入され、他端面23aにS極磁束が現れる。ここで、各誘導子22、23の一端面22b、23bは界磁コイル26の内外周に沿った同心円上に配置されているので、発電用回転子12が回転してもN極誘導子22の他端面22aには常にN極が現れ、S極誘導子23の他端面23aには常にS極が現れることとなる。
この状態から、外部動力により発電軸16を回転させると、発電用回転子12のN極誘導子22およびS極誘導子23が発電用電機子側固定子11の電機子コイル19、20の近傍を周方向に周期的に横切って磁場変動が生じる。その際の電磁誘導により電機子コイル19、20に電力が生成され、電力出力線37より電力が取り出される。
次いで、駆動原理について説明する。界磁コイル26に直流を給電することで、界磁コイル26の軸線方向右側において外周側にS極が発生すると共に内周側にN極が発生する。すると、前記同様に、駆動用回転子14のS極誘導子30の他端面22aにS極磁束が現れると共に、N極誘導子31の他端面23aにN極磁束が現れる。この状態から、駆動用電機子側固定子15の電機子コイル33、34の極性を周期的に変化させるように電力入力線38より給電することで、駆動用回転子14の各誘導子30、31と電機子コイル33、34との間で吸引/反発力が発生して駆動用回転子14が回転し、駆動軸17より駆動力が出力される。
以上の構成とすると、界磁コイル26が固定された界磁側固定子13と、電機子コイル19、20、33、34が固定された電機子側固定子11、15とは回転せず、各誘導子22、23、30、31が固定された回転子12、14が回転するので、各コイル19、20、26、33、34への給電にスリップリング等の摺接部材が不要となり、給電構造の簡素化および給電安定化を図ることができると共にモータの長寿命化にも貢献する。また、液体窒素の供給対象である断熱冷媒容器25も固定されて回転しないので、冷媒供給路やシール構造等の設計が容易となり冷却構造を簡素化できる。さらに、1台のモータ10で発電と駆動の両方を行うことができ、発電用と駆動用とに別々のモータを用意せずに済むため、全体としてモータを小型化することができる。
また、界磁側固定子13の両側に回転子12、14および電機子側固定子11、15を配置することで、超電導線材からなる界磁コイル26で発生する強力な左右の磁極の両方をトルク発生に有効利用することができる。即ち、界磁コイル26の有効利用を図ることで、高価な超電導材の使用量を抑えることができ低コスト化できる。なお、超電導の界磁コイル26の代わりに公知の超電導界磁バルクや永久磁石を用いてもよい。
次に、誘導子型発電・駆動両用モータ10を搭載した自動車C1について説明する。
自動車C1(ハイブリッド自動車)は、図6に示すように、バッテリー40と、バッテリー40からの直流電流を所定電圧の交流に変換して駆動用電機子側固定子15の電機子コイル33、34の電力入力線38に給電する第1インバータ41と、発電軸16に回転動力を伝達するエンジン42と、発電用電機子側固定子11の電機子コイル19、20の電力出力線37からの交流電流を直流に変換してバッテリー40に蓄電する第2インバータ43とを備えている。モータ10の駆動軸17はディファレンシャルギア5を介して各車輪に連繋接続している。また、第2インバータ43からの出力電流をバッテリー40を介さずに第1インバータ42に入力する分岐通電経路44も有している。なお、界磁側固定子13の界磁コイル16には図示しない配線でバッテリー40より直流電流を給電している。
以上の構成とすると、発電機と駆動モータを個別に設けることなく1台のモータ10で発電と駆動の両方を行えるので、車載部品としてのモータ10を全体として小型化・軽量化することができ、自動車C1の小型化および燃費向上に貢献する。
図7は第2実施形態を示す。
第1実施形態との相違点は、発電用電機子側固定子11’と駆動用電機子側固定子15’の電機子コイル47、49を超電導線材で形成している点である。
発電用電機子側固定子11’および駆動用電機子側固定子15’は、ヨーク18、32のコイル取付穴18a、32aを設け、これらコイル取付穴18a、32aに円環状で真空断熱構造の断熱冷媒容器46、48を埋設し、断熱冷媒容器46、48に超電導線材からなる巻線である電機子コイル47、49を収容している。また、各断熱冷媒容器46、48には液体窒素を冷媒として供給する冷却配管36を接続している。
以上の構成とすると、電機子コイル47、49も超電導化して大電流を通電可能としているため、巻数を大幅低減することができる。また、電機子コイル47、49は固定子11’、15’に取り付けられて動かないので、冷却配管36やシール構造等の設計が簡単になり冷却構造を簡素化できる。なお、他の構成は第1実施形態と同様であるため同一符号を付して説明を省略する。
図8は第3実施形態を示す。
第1実施形態との相違点は、発電用回転子53、駆動用回転子54および界磁側固定子55、56を両側に追加して多段化している点である。
発電用回転子12、界磁側固定子13および駆動用回転子14は第1実施形態と同構造であるため説明を省略する。
発電用電機子側固定子51と駆動用電機子側固定子52は互いに対称形状であり、設置面Gに固定された磁性体からなるヨーク57、61と、ヨーク57、61の周方向に等間隔に複数埋設された電機子コイル58、62とを備えている。ヨーク57、61は、中央に発電軸16および駆動軸17の外径より大きく穿設された遊嵌穴57a、61aと、遊嵌穴57a、61aを中心として周方向に等間隔に穿設された4つの取付穴57b、61bとを備えている。取付穴57b、61bにそれぞれ電機子コイル58、62を埋設していると共に、電機子コイル58、62の中空部には磁性体からなる磁心60、63を配置している。
発電用電機子側固定子51および駆動用電機子側固定子52の両側に追加された発電用回転子53と駆動用回転子54は、第1実施形態の回転子12、14と同構造であり、左側の発電用回転子53は回転子14と同じ向きで発電軸16に外嵌固定している一方、右側の駆動用回転子54は回転子12と同じ向きで駆動軸17に外嵌固定している。
発電用回転子53および駆動用回転子54の両側に追加された界磁側固定子55、56は、設置面Gに固定された磁性体からなるヨーク68、71と、ヨーク68、71に埋設された円環状で真空断熱構造の断熱冷媒容器70、73と、断熱冷媒容器70、73に収容された超電導線材からなる巻線である界磁コイル69、72とを備えている。ヨーク68、71は、中央に発電軸16および駆動軸17の外径より大きく穿設された遊嵌穴68a、71aと、遊嵌穴68a、71aを中心として円環状に穿設された取付溝68b、71bとを備えている。即ち、取付溝68b、71bは内側対向面から凹設されて外側面には貫通していない。円環状の断熱冷媒容器70、73には液体窒素を循環させた状態で界磁コイル69、72を収容しており、その断熱冷媒容器70、73を取付溝68b、71bに埋設している。
界磁コイル26、70、72には電力入力線35を介して直流を供給しており、駆動用電機子側固定子52の電機子コイル62には交流を供給している。発電用電機子側固定子51の電機子コイル58には生成された電力を取り出す電力出力線37を接続している。また、断熱冷媒容器25、70、73には断熱された冷却配管36から液体窒素を冷媒として循環させている。
以上の構成のようにモータを多段化すれば、第1実施形態に比べて界磁が強化されて出力トルクの増大を図ることができる。なお、他の構成は第1実施形態と同様であるため同一符号を付して説明を省略する。
図9は第4実施形態を示す。
第1実施形態との相違点は、界磁側固定子76は4つの界磁コイル81を周方向に等間隔に配置していると共に、発電用電機子側固定子75および駆動用電機子側固定子77は、夫々1つの電機子コイル79、84を軸線回りの円環状に巻回して配置している点である。
界磁側固定子76は、設置面Gに固定された磁性体からなるヨーク80と、ヨーク80に周方向に等間隔をあけて4つ埋設された真空断熱構造で円環状の断熱冷媒容器81と、断熱冷媒容器81に収容された超電導線材からなる巻線である界磁コイル82とを備えている。ヨーク0は、中心穴に発電軸16を回転自在に支持する第1軸受部27と、駆動軸17を回転自在に支持する第2軸受部28とを左右に内蔵していると共に、外周側の周方向には等間隔に穿設された4つの取付穴80aとを備えている。断熱冷媒容器81には液体窒素を循環させた状態で界磁コイル82を収容していると共に、界磁コイル82および断熱冷媒容器81の中空部には磁性体からなる磁心80bを配置している。内部に界磁コイル82を収容した4つの断熱冷媒容器81を各取付穴80aにそれぞれ埋設している。
発電用電機子側固定子75と駆動用電機子側固定子77とは左右対称であり、設置面Gに固定された磁性体からなるヨーク78、83と、軸線回りの円環状に巻回されてヨーク78、83に埋設された夫々1つずつの電機子コイル79、84とを備えている。ヨーク79、84は、中央に発電軸16および駆動軸17の外径より大きく穿設された遊嵌穴78b、83bと、遊嵌穴78b、83bを中心として内側対向面より円環状に凹設された溝部78a、83aとを備え、溝部78a、83a内に電機子コイル79、84を埋設している。
界磁コイル82には直流を供給する電力入力線35を接続している。駆動用電機子側固定子77の電機子コイル84には交流を供給する電力入力線38を接続している。発電用電機子側固定子75の電機子コイル79には生成された電力を取り出す電力出力線37を接続している。また、断熱冷媒容器81には液体窒素からなる冷媒を循環供給するための断熱された冷却配管36を接続している。
4つの界磁コイル82には直流を供給して周方向に交互にN極とS極が定常的に発生させている。また、駆動側の電機子コイル84には単相交流を供給して励磁方向を周期的に切替している。なお、各回転子12、14の構造は第1実施形態と同様であるので、同一符号を付して説明を省略する。
以上の構成とすると、駆動側の電機子コイル84に単相交流を給電すれば、あるタイミングではコイル外周にS極が発生すると共にコイル内周にN極が発生する。すると、N極側の磁束が誘導子22内に導入されると共にS極側の磁束が別の誘導子23に導入される。したがって、電機子コイル84の極性を周期的に変化させることで、各界磁コイル82と各誘導子22、23との間で吸引/反発力が発生して回転子12が回転し、駆動軸17が回転する。一方、発電軸16を外部動力で回転させることで、各界磁コイル82から回転子14の各誘導子30に導入された磁束が、発電用電機子側固定子75の電機子コイル79の内外周に周期的な磁場変動を生じさせ、電磁誘導により該電機子コイル79に電力が励起される。
図10は第5実施形態を示す。
第1実施形態との相違点は、3つの電機子の間に2つの界磁を配置し、中央に発電軸16を配置する一方、両側に一対の駆動軸17、93を配置している点である。
本実施形態の誘導子型発電・駆動両用モータ85は、2つの界磁用固定子13の間に発電用電機子側固定子86を配置すると共に、各界磁用固定子13の両側に駆動用電機子側固定子11、15を配置しており、夫々の固定子11、13、15、86の間に回転子12、14を配置している。即ち、左右両側の回転子12、14を駆動用回転子とし、中央の一対の回転子12、14を発電用回転子12、14として用いている。
中央の発電用電機子側固定子86は、設置面Gに固定された磁性体からなるヨーク87と、ヨーク87の周方向に等間隔に複数埋設された電機子コイル88とを備えている。ヨーク87には中央に発電軸16を回転自在に支持する軸受部89を設け、軸受部89を中心として周方向に等間隔に円環状の4つの取付穴87aを穿設している。取付穴87aにそれぞれ電機子コイル88を埋設し、該電機子コイル88の中空部に磁性体からなる磁心87bを配置している。第1発電軸16は両側の発電用回転子12、14の中心に固定していると共に第1ギア90を外嵌固定している。第1ギア90には、第1発電軸16に平行して外部配置された第2発電軸92に外嵌固定している第2ギア91を噛み合わせている。
右側の駆動用回転子14には駆動軸17を固定している一方、左側の駆動用回転子12には第2の駆動軸93を固定している。また、一対の界磁用固定子13の界磁コイル26には直流を供給する電力入力線(図示せず)を接続していると共に、断熱冷媒容器25に液体窒素等の冷媒を供給する冷却配管(図示せず)を接続している。駆動用電機子側固定子11、15の電機子コイル19、33にはそれぞれ交流を供給する電力入力線(図示せず)を別々に接続している。発電用電機子側固定子86の電機子コイル88には電力出力線を接続している。
以上の構成とすると、第2発電軸92を外部動力により回転させることで第2ギア91、第1ギア90および第1発電軸16を介して中央側の発電用回転子12、14が回転し、電磁誘導により発電用電機子側固定子86の電機子コイル88で電力が励起され、その発電された電力が電力出力線より出力される。一方、駆動用電機子側固定子11、15の各電機子コイル19、33には電力入力線より所定のタイミングで交流を供給することで、磁気的反発力で両側の駆動用回転子12、14が回転し、駆動軸17、93より回転動力が出力される。この際、左側の駆動用電機子側固定子11の電機子コイル19と、右側の駆動用電機子側固定子15の電機子コイル33とに異なった電流をそれぞれ給電することにより、左右の駆動軸17、93の回転数を相違させることが可能となる。
次に、誘導子型発電・駆動両用モータ85を搭載した自動車C2について説明する。
自動車C2(ハイブリッド自動車)は、図11に示すように、バッテリー40と、バッテリー40からの直流電流を所定電圧の交流に変換して駆動用電機子側固定子11、15の電機子コイル19、33に給電するインバータ41、95と、第2ギア91を回転させて第1発電軸16に回転動力を伝達するエンジン42と、発電用電機子側固定子86の電機子コイル88で発生する交流電流を直流に変換してバッテリー40に蓄電するインバータ43とを備えている。一方の駆動軸17は右車輪にダイレクト接続していると共に、他方の駆動軸93は左車輪にダイレクト接続している。また、インバータ43からの出力電流をバッテリー40を介さずにインバータ41、95に入力する分岐通電経路も有している。なお、各界磁側固定子13の界磁コイル26には図示しない配線でバッテリー40より直流電流を給電している。
以上の構成とすると、モータ85と車輪との間に従来のようなディファレンシャルギア等を介設する必要がなくなり、動力伝達ロスを低減できる。また、ディファレンシャルギア等を廃止できることで、自動車C2が小型軽量化されると共に車載スペースに余裕をもたせることができる。さらに、従来のインホイールモータに比べて、車載するモータ数を半減することが可能となる。
図12は第6実施形態を示す。
第5実施形態との相違点は、第4実施形態のように電機子コイル79、84、97を軸線回りの円環状に巻回して配置している点である。
本実施形態は、2つの界磁用固定子76に発電用電機子側固定子95を配置すると共に、各界磁用固定子76の両側に駆動用電機子側固定子75、77を配置しており、夫々の固定子75、76、77、95の間に回転子12、14を配置している。即ち、左右両側の回転子12、14を駆動用回転子とし、中央の一対の回転子12、14を発電用回転子12、14としている点は第5実施形態と同様である。
界磁用固定子76は、第4実施形態と同様で、断熱冷媒容器81に収容した超電導線材からなる界磁コイル82を周方向に等間隔をあけて4つ配置している。発電用電機子側固定子95および駆動用電機子側固定子75、77は、軸線回りの円環状に導体線を巻回して1つのそれぞれ1つの電機子コイル79、84を配置している。中央の発電用回転子12、14の中心には第1発電軸16を固定していると共に、第1発電軸16の端部に第1ギア90を固定している。第1ギア90には、第1発電軸16に平行して外部配置された第2発電軸92に外嵌固定している第2ギア91を噛み合わせている。
右側の駆動用回転子12には駆動軸17を固定している一方、左側の駆動用回転子14には第2の駆動軸93を固定している。また、一対の界磁用固定子76の界磁コイル82には直流を供給する電力入力線(図示せず)を接続していると共に、断熱冷媒容器81に液体窒素等の冷媒を供給する冷却配管(図示せず)を接続している。駆動用電機子側固定子75、77の電機子コイル79、84にはそれぞれ交流を供給する電力入力線(図示せず)を別々に接続している。発電用電機子側固定子95の電機子コイル97には電力出力線を接続している。なお、他の構成は第5実施形態と同様であるため説明を省略する。
(A)は本発明の第1実施形態の誘導子型発電・駆動両用モータの断面図、(B)は90°回転させた位置における断面図である。 (A)は回転子の正面図、(B)は(A)のI−I線断面図、(C)は背面図、(D)は(A)のII−II線断面図である。 (A)は界磁側固定子の正面図、(B)は(A)のI−I線断面図である。 電機子側固定子の正面図である。 (A)は回転子および界磁側固定子の正面図、(B)は(A)のI−I線断面図、(C)は(A)のII−II線断面図である。 誘導子型発電・駆動両用モータが搭載された自動車の概略図である。 第2実施形態の誘導子型発電・駆動両用モータの断面図である。 第3実施形態の誘導子型発電・駆動両用モータの断面図である。 第4実施形態の誘導子型発電・駆動両用モータの断面図である。 第5実施形態の誘導子型発電・駆動両用モータの断面図である。 誘導子型発電・駆動両用モータが搭載された自動車の概略図である。 第6実施形態の誘導子型発電・駆動両用モータの断面図である。 従来例の自動車の概略図である。 従来例を示す図面である。
符号の説明
10 誘導子型発電・駆動両用モータ
11 発電用電機子側固定子
12 発電用回転子
13 界磁側固定子
14 駆動用回転子
15 駆動用電機子側固定子
16 発電軸
17 駆動軸
19、20、33、34 電機子コイル
22、31 N極誘導子(第1誘導子)
23、30 S極誘導子(第2誘導子)
25 断熱冷媒容器
26 界磁コイル
35、38 電力入力線
37 電力出力線

Claims (10)

  1. 外部駆動源により回転駆動される発電軸と、該発電軸と同一軸線上に配置される駆動軸を備え、これら発電軸と駆動軸の間に共有して用いられる界磁側固定子が配置される一方、前記発電軸と駆動軸に夫々電機子コイルを備えた電機子側固定子が配置される共に、これら電機子側固定子と前記界磁側固定子の間にそれぞれ誘導子を備えた回転子が前記発電軸、駆動軸に固定され、
    前記界磁側固定子には、軸線回りの内周側と外周側とで互いに逆極性となる同心円状の磁極が軸線方向の両側に励磁される界磁体が取り付けられる一方、
    前記発電用、駆動用の各回転子には、一端面が前記界磁体の外周側に対向すると共に他端面が前記発電用、駆動用の各電機子側固定子の電機子コイルに対向する磁性体からなる第1誘導子と、一端面が前記界磁体の内周側に対向すると共に他端面が前記発電用、駆動用の各電機子側固定子の電機子コイルに対向する磁性体からなる第2誘導子とが周方向に交互に配置され、
    前記発電用の電機子コイルに電力出力線が接続され、発電軸側では回転駆動力が入力されて発電された電力が出力される一方、前記駆動用の電機子コイルには電力入力線が接続され、駆動軸側では電力が入力されて回転駆動力として出力される構成とされている誘導子型発電・駆動両用モータ。
  2. 外部駆動源により回転駆動される発電軸と、該発電軸と同一軸線上に配置される駆動軸を備え、これら発電軸と駆動軸の間に共有して用いられる界磁側固定子が配置される一方、前記発電軸と駆動軸に夫々電機子コイルを備えた電機子側固定子が配置される共に、これら電機子側固定子と前記界磁側固定子の間にそれぞれ誘導子を備えた回転子が前記発電軸、駆動軸に固定され、
    前記界磁側固定子には、軸線回りの周方向に交互に逆極性となる磁極が軸線方向の両側に励磁される複数の界磁体が取り付けられる一方、前記電機子側固定子には、軸線回りの円環状に導体線が巻回された電機子コイルが取り付けられ、
    前記発電用、駆動用の各回転子には、一端面が前記発電用、駆動用の電機子コイルの外周側に対向すると共に他端面が前記界磁体に対向する磁性体からなる第1誘導子と、一端面が前記発電用、駆動用の電機子コイルの内周側に対向すると共に他端面が前記界磁体に対向する磁性体からなる第2誘導子とが周方向に交互に配置され、
    前記発電用の電機子コイルに電力出力線が接続され、発電軸側では回転駆動力が入力されて発電された電力が出力される一方、前記駆動用の電機子コイルには電力入力線が接続され、駆動軸側では電力が入力されて回転駆動力として出力される構成とされている誘導子型発電・駆動両用モータ。
  3. 前記電機子側固定子、第1、第2誘導子を備えた回転子を組み付けている前記発電軸と前記駆動軸とを、その間に前記界磁側固定子を挟んで同一軸線上に並列配置したアキシャルギャップ型とし、
    両側の駆動軸に挟まれた発電軸には、電機子側固定子を挟んで両側に前記回転子を固定し、前記電機子側固定子の電機子コイルの両側端面を両側の回転子の第1、第2誘導子と対向させた構成としている請求項1または請求項2に記載の誘導子型発電・駆動両用モータ。
  4. 前記発電軸を中央に挟んで左右両側に駆動軸を配置し、該左右の駆動軸を独立に回転駆動させると共にそれぞれ独立して回転数制御を行える構成としている請求項3に記載の誘導子型発電・駆動両用モータ。
  5. 前記界磁体は、超電導線材を巻回した界磁コイルとしている請求項1乃至請求項4のいずれか1項に記載の誘導子型発電・駆動両用モータ。
  6. 前記電機子コイルは超電導線材を巻回して形成している請求項1乃至請求項5のいずれか1項に記載の誘導子型発電・駆動両用モータ。
  7. 前記界磁コイルあるいは/および前記電機子コイルの中空部に圧粉磁性体からなる磁心を配置している請求項5または請求項6に記載の誘導子型発電・駆動両用モータ。
  8. 前記第1誘導子および前記第2誘導子は圧粉磁性体で形成している請求項1乃至請求項7のいずれか1項に記載の誘導子型発電・駆動両用モータ。
  9. 請求項1乃至請求項8のいずれか1項に記載の誘導子型発電・駆動両用モータを搭載した自動車であって、
    前記発電軸にはエンジンからの回転動力を伝達する一方、前記駆動軸の回転動力を車輪に伝達していることを特徴とする自動車。
  10. 請求項4乃至請求項8のいずれか1項に記載の誘導子型発電・駆動両用モータを搭載した自動車であって、
    前記発電軸にはエンジンからの回転動力を伝達する一方、前記2つの駆動軸をそれぞれ左右の車輪に回転動力を伝達して、両輪駆動構成としていることを特徴とする自動車。
JP2005240331A 2005-08-22 2005-08-22 誘導子型発電・駆動両用モータおよびそれを備えた自動車 Expired - Fee Related JP4751135B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240331A JP4751135B2 (ja) 2005-08-22 2005-08-22 誘導子型発電・駆動両用モータおよびそれを備えた自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240331A JP4751135B2 (ja) 2005-08-22 2005-08-22 誘導子型発電・駆動両用モータおよびそれを備えた自動車

Publications (2)

Publication Number Publication Date
JP2007060749A true JP2007060749A (ja) 2007-03-08
JP4751135B2 JP4751135B2 (ja) 2011-08-17

Family

ID=37923718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240331A Expired - Fee Related JP4751135B2 (ja) 2005-08-22 2005-08-22 誘導子型発電・駆動両用モータおよびそれを備えた自動車

Country Status (1)

Country Link
JP (1) JP4751135B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170206A (zh) * 2011-03-16 2011-08-31 江苏微特利电机制造有限公司 串连式混合动力汽车联体电机结构及控制
KR101294071B1 (ko) 2011-10-27 2013-08-07 현대자동차주식회사 하이브리드 차량용 시스템
WO2016103740A1 (ja) * 2014-02-20 2016-06-30 北田保雄 電気回転機
CN112688519A (zh) * 2020-12-29 2021-04-20 福州大学 一种定子永磁型轴向磁场永磁电机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330764U (ja) * 1989-04-24 1991-03-26
JPH0638418A (ja) * 1992-07-10 1994-02-10 Toshiba Corp アキシャルギャップ回転電機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330764U (ja) * 1989-04-24 1991-03-26
JPH0638418A (ja) * 1992-07-10 1994-02-10 Toshiba Corp アキシャルギャップ回転電機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170206A (zh) * 2011-03-16 2011-08-31 江苏微特利电机制造有限公司 串连式混合动力汽车联体电机结构及控制
KR101294071B1 (ko) 2011-10-27 2013-08-07 현대자동차주식회사 하이브리드 차량용 시스템
WO2016103740A1 (ja) * 2014-02-20 2016-06-30 北田保雄 電気回転機
US10411579B2 (en) 2014-02-20 2019-09-10 Kitada Rotary Enjine Llc Electric rotating machine
CN112688519A (zh) * 2020-12-29 2021-04-20 福州大学 一种定子永磁型轴向磁场永磁电机

Also Published As

Publication number Publication date
JP4751135B2 (ja) 2011-08-17

Similar Documents

Publication Publication Date Title
CA2593069C (en) Inductor-type synchronous machine
JP5621794B2 (ja) 磁気変調式複軸モータ
JP4890119B2 (ja) 超電導コイル装置及び誘導子型同期機
JP4758703B2 (ja) 超電導装置およびアキシャルギャップ型の超電導モータ
US10720819B2 (en) Switched reluctance machine with toroidal winding
JP2007060748A (ja) 超電導多軸モータおよびそれを備えた車両
JP4751135B2 (ja) 誘導子型発電・駆動両用モータおよびそれを備えた自動車
JP2007060744A (ja) 発電・駆動両用モータおよびそれを備えた車両
JP4751134B2 (ja) 誘導子型モータおよびそれを備えた車両
JP4920322B2 (ja) 誘導子型同期機
CN105576862A (zh) 一种全超导电励磁低速直驱同步发电机
CN116670987A (zh) 用于驱动轮辋的电动盘式马达
CN104508953B (zh) 包括两个磁性轴承电机的致动器
JP4680708B2 (ja) アキシャル型モータ
JP2005269868A (ja) 超電導モータ装置および該超電導モータ装置を用いた移動体
JP2008001280A (ja) 舶用推進装置
JP2008074263A (ja) 駆動装置
JP2006345661A (ja) ラジアルギャップ型モータ
JP5181091B2 (ja) 超電導電動機
JP4706351B2 (ja) 誘導子型モータ
KR20220017096A (ko) 이중 영구자석 전동기
JP2006320090A (ja) モータ
JP2007252106A (ja) 誘導子型同期機

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees