JP2007059305A - Plasma processing method and device or conductor - Google Patents

Plasma processing method and device or conductor Download PDF

Info

Publication number
JP2007059305A
JP2007059305A JP2005245595A JP2005245595A JP2007059305A JP 2007059305 A JP2007059305 A JP 2007059305A JP 2005245595 A JP2005245595 A JP 2005245595A JP 2005245595 A JP2005245595 A JP 2005245595A JP 2007059305 A JP2007059305 A JP 2007059305A
Authority
JP
Japan
Prior art keywords
gas
plasma processing
plasma
processed
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005245595A
Other languages
Japanese (ja)
Other versions
JP2007059305A5 (en
JP4577155B2 (en
Inventor
Mitsuhisa Saito
光央 齋藤
Kenichiro Suetsugu
憲一郎 末次
Tomohiro Okumura
智洋 奥村
Takashi Nagamatsu
高史 永末
Fumihiro Tateno
史洋 立野
Yasuhiro Torigoe
靖浩 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005245595A priority Critical patent/JP4577155B2/en
Publication of JP2007059305A publication Critical patent/JP2007059305A/en
Publication of JP2007059305A5 publication Critical patent/JP2007059305A5/ja
Application granted granted Critical
Publication of JP4577155B2 publication Critical patent/JP4577155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing method and a device capable of removing a covering of the whole processing objects at a high speed when processing a plurality of processing objects adjacently contacting with one place or more in a batch system; and to provide a conductor for easily securing electric continuity with a desired metallic member, for example, caulking with a crimp terminal by removing the covering in a short time by plasma. <P>SOLUTION: An insulator chamber 3 is arranged between an upper electrode 1 and a lower electrode 2, and a gas flow passage 4 is formed on its inside. While vibrating the processing objects 10 by a vibrating unit 13, processing gas is supplied inside from a processing gas supply device 5, and the plasma 12 is generated by supplying an AC electric field between the electrodes from a high frequency power source 9. The covering of the whole processing objects can be removed at a high speed by positioning the plurality of processing objects 10 adjacently contacting with one place or more by separating from between the electrodes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、大気圧近傍の圧力下でプラズマを用い、導線、配線部品、電子部品、部品端子、プリント基板、シート基板、フィルム基板、とりわけ複数の被処理物に対して、各被処理面を高速に表面処理するためのプラズマ処理方法及び装置、また、その表面処理により、被覆を除去した銅線に対して、はんだ等の金属めっきをしなくても、所望の金属部材との導通が確保できる導線に関するものである。   The present invention uses plasma under a pressure close to atmospheric pressure, and each surface to be processed is applied to a conductor, a wiring component, an electronic component, a component terminal, a printed circuit board, a sheet substrate, a film substrate, particularly a plurality of objects to be processed. Plasma treatment method and apparatus for surface treatment at high speed, and the surface treatment ensures the conduction with the desired metal member without the need for metal plating such as solder on the copper wire from which the coating has been removed. It relates to a conductive wire.

大気圧近傍の圧力下で生成するプラズマ(以下、「大気圧プラズマ」と称する)を用いたプラズマ処理方法及び装置は、装置コスト削減、省スペース、及び省エネなどの理由から、例えば導線、配線部品、電子部品、部品端子、プリント基板、シート基板、フィルム基板などの製造工程におけるエッチング、成膜及び表面処理工程の一部において、減圧装置を用いたプラズマからの転換が図られている。   A plasma processing method and apparatus using plasma generated under a pressure close to atmospheric pressure (hereinafter referred to as “atmospheric pressure plasma”) is used for, for example, conducting wires and wiring components for reasons such as apparatus cost reduction, space saving, and energy saving. In some of the etching, film formation and surface treatment processes in the manufacturing process of electronic parts, component terminals, printed boards, sheet substrates, film substrates, etc., conversion from plasma using a decompression device is attempted.

従来例としてのプラズマ処理方法及び装置を、図10乃至図11を用いて説明する。   A plasma processing method and apparatus as a conventional example will be described with reference to FIGS.

図10はプラズマ処理装置の正面図を示し、正面図のG−G部における横断面図を図11に示す。図11では、上部電極1と下部電極2を設け、両電極間に絶縁体チャンバー3を設けている。また、絶縁体チャンバー3の内部にはガス流路4を形成しており、処理ガス供給装置5、金属容器6におけるガス供給口7を介して内部にガスを供給し、ガス流路4を通ってガス噴出口8より処理ガスを大気中へ排気しつつ、高周波電源9より上部電極1に高周波電力を供給し、上部電極1と下部電極2の間に交流電界を供給できる構造となっている。また、被処理物10はガス噴出口8より挿入し、絶縁体チャンバー3内の任意の場所に載置させることが可能となっている。なお、下部電極2と金属容器6は基本的に接地電位とし、上部電極1と金属容器6は絶縁ブロック11で絶縁させている。   FIG. 10 shows a front view of the plasma processing apparatus, and FIG. 11 shows a cross-sectional view taken along line GG of the front view. In FIG. 11, an upper electrode 1 and a lower electrode 2 are provided, and an insulator chamber 3 is provided between both electrodes. Further, a gas flow path 4 is formed inside the insulator chamber 3, and gas is supplied to the inside through the gas supply port 7 in the processing gas supply device 5 and the metal container 6, and passes through the gas flow path 4. The high-frequency power is supplied to the upper electrode 1 from the high-frequency power source 9 and the AC electric field is supplied between the upper electrode 1 and the lower electrode 2 while exhausting the processing gas from the gas outlet 8 into the atmosphere. . In addition, the object to be processed 10 can be inserted from the gas ejection port 8 and placed on an arbitrary place in the insulator chamber 3. The lower electrode 2 and the metal container 6 are basically set to ground potential, and the upper electrode 1 and the metal container 6 are insulated by an insulating block 11.

この装置によるプラズマ処理の一例として、絶縁体チャンバー3内に被処理物10を載置し、処理ガス供給装置5より処理ガスとしてHe=750sccm、O2=40sccm、CF4=13sccmを供給し、高周波電源9より電力を100W供給することで、上部電極1と下部電極2の間にプラズマ12を生成でき、被処理物10をプラズマ処理できる。 As an example of plasma processing by this apparatus, an object to be processed 10 is placed in an insulator chamber 3, and He = 750 sccm, O 2 = 40 sccm, CF 4 = 13 sccm are supplied as processing gases from the processing gas supply device 5, By supplying electric power of 100 W from the high frequency power supply 9, plasma 12 can be generated between the upper electrode 1 and the lower electrode 2, and the workpiece 10 can be plasma processed.

また、上記プラズマ処理方法により、例えば、銅線の表面にイミド系有機膜を塗布した被覆銅線としての被処理物10をプラズマ処理することが可能である。なおこの時、被覆銅線を単線で絶縁体チャンバー3に挿入しプラズマ処理するだけでなく、拠り線の状態(接着剤等を用いて複数本を束ねた状態)で絶縁体チャンバー3に挿入し、所謂バッチ処理として、プラズマ処理することも可能である。   Further, by the plasma processing method described above, for example, the object to be processed 10 as a coated copper wire in which an imide organic film is applied to the surface of a copper wire can be plasma-treated. At this time, the coated copper wire is not only inserted into the insulator chamber 3 as a single wire and subjected to plasma treatment, but also inserted into the insulator chamber 3 in the state of a base wire (a state where a plurality of wires are bundled using an adhesive or the like). Plasma processing can also be performed as so-called batch processing.

図10乃至図11は、特許文献1もしくは未公開自社の特願2003−363081号明細書に記載のプラズマ処理方法及び装置を基本としており、固体誘電体を設けた一対の電極間にプラズマを生成し、被処理物を電極間のなす空間に載置することで被処理物をプラズマ処理する方法である。この方法は、一般にダイレクト方式と呼ばれ、被処理物を高密度なプラズマに直接曝すため、高速なプラズマ処理が可能となる。
特開2004−363152公報
10 to 11 are based on the plasma processing method and apparatus described in Patent Document 1 or unpublished Japanese Patent Application No. 2003-363081, and generate plasma between a pair of electrodes provided with a solid dielectric. In this method, the object to be processed is plasma-treated by placing the object to be processed in a space formed between the electrodes. This method is generally called a direct method, and the object to be processed is directly exposed to high-density plasma, so that high-speed plasma processing is possible.
JP 2004-363152 A

従来例としてのプラズマ処理方法及び装置にて、被処理物をプラズマ処理した結果を次に示す。なお被処理物は、銅線の表面にイミド系の有機膜としてポリイミドアミドを15μmの厚さで全周塗布した被覆銅線とし、さらに接着剤にて40本束ねた拠り線の状態としたものを用いた。   The results of plasma processing of an object to be processed by the conventional plasma processing method and apparatus are shown below. The object to be treated is a coated copper wire in which polyimide amide is coated on the surface of the copper wire as an imide-based organic film with a thickness of 15 μm, and 40 wires are bundled with an adhesive. Was used.

なお、被覆銅線の被覆除去の有無に関する評価は、プラズマ処理後の拠り線をエポキシ樹脂に埋め込み、エメリー紙等を用いて回転研磨した後で、銅線の断面をSEM観察することで実施した。   In addition, the evaluation regarding the presence or absence of the coating removal of the coated copper wire was carried out by embedding the ground wire after the plasma treatment in an epoxy resin, rotating and polishing with emery paper, etc., and then observing the cross section of the copper wire by SEM .

従来例におけるプラズマ処理結果を図12に示す。図の横軸はプラズマ処理時間を示し、縦軸は被覆除去された銅線の数を示す。このように、プラズマ処理時間が90s程度までは線形性良く、且つ高速に被覆除去が進行し、40本中32本程度を被覆除去できた。また、390sのプラズマ処理を実施することで、全40本の被覆を除去できた。   The plasma processing result in the conventional example is shown in FIG. In the figure, the horizontal axis represents the plasma treatment time, and the vertical axis represents the number of copper wires that have been coated. As described above, the removal of the coating progressed at a high speed and with a high linearity until the plasma treatment time was about 90 seconds, and about 32 out of 40 pieces could be removed. In addition, the 40 coatings could be removed by performing the plasma treatment for 390 s.

しかしながら、90sを経過するあたりから被覆除去速度が極端に低下し、中心部に位置する被処理物の被覆が除去されにくい、また結果として全40本の被覆を除去するのに390sという非常に長い時間を要するという問題があった。   However, the coating removal speed is extremely reduced after 90 seconds elapses, and it is difficult to remove the coating of the processing object located in the center, and as a result, 390 s is very long to remove all 40 coatings. There was a problem of taking time.

また、従来例におけるプラズマ処理方法及び装置を用いて被覆を除去した導線を再び束ねて、はんだ等の金属めっきをすることなく、所望の金属部材と接合した場合、金属部材との導通が確保できない(抵抗率が高い)という問題があった。   In addition, when the conductors from which the coating has been removed using the plasma processing method and apparatus in the conventional example are bundled again and joined to a desired metal member without performing metal plating such as solder, conduction with the metal member cannot be secured. There was a problem (high resistivity).

本発明は、上記従来の問題点に鑑み、隣接し、一箇所以上が接触した複数の被処理物のバッチ処理において、全ての被処理物の被覆を高速に除去できるプラズマ処理方法及び装置を提供すること、また、その表面処理により、所望の金属部材との導通を確保しやすくなる導線を提供することを目的としている。   In view of the above-described conventional problems, the present invention provides a plasma processing method and apparatus that can remove all coatings of a workpiece at high speed in batch processing of a plurality of workpieces that are adjacent and in contact at one or more locations. Moreover, it aims at providing the conducting wire which becomes easy to ensure conduction | electrical_connection with a desired metal member by the surface treatment.

本願の第1発明のプラズマ処理方法は、一対の電極間の少なくとも一方に固体誘電体を設け、電極間に処理用ガスを供給しつつ高周波電力を供給することで、大気圧近傍の圧力下でプラズマを生成し、プラズマ状態のガスを被処理物に対して照射し、複数の、且つ少なくとも一箇所が接触する被処理物をプラズマ処理する方法であり、
一対の電極間のなす空間に被処理物を載置させずに、プラズマ状態のガスを被処理面に照射させることを特徴とする。
In the plasma processing method according to the first invention of the present application, a solid dielectric is provided on at least one of a pair of electrodes, and high-frequency power is supplied while supplying a processing gas between the electrodes. A method of generating plasma, irradiating an object to be processed with a gas in a plasma state, and performing plasma processing on a plurality of objects to be processed that are in contact with at least one place,
A surface to be processed is irradiated with a gas in a plasma state without placing an object to be processed in a space formed between a pair of electrodes.

このような構成により、隣接し、一箇所以上が接触した複数の被処理物のバッチ処理において、全ての被処理物の被覆を高速に除去できることが実現可能となる。   With such a configuration, it is possible to realize that it is possible to remove the coating of all the objects to be processed at high speed in the batch processing of a plurality of objects to be processed that are adjacent and in contact with one or more places.

本願の第2発明のプラズマ処理方法は、一対の電極間の少なくとも一方に固体誘電体を設け、電極間に処理用ガスを供給しつつ高周波電力を供給することで、大気圧近傍の圧力下でプラズマを生成し、プラズマ状態のガスを被処理物に対して照射し、複数の、且つ少なくとも一箇所が接触する被処理物をプラズマ処理する方法であり、
一対の電極間のなす空間に被処理物を載置させずに、プラズマ状態のガスを少なくとも2方向から被処理面に照射させることを特徴とする。
In the plasma processing method of the second invention of the present application, a solid dielectric is provided on at least one of a pair of electrodes, and high-frequency power is supplied while supplying a processing gas between the electrodes. A method of generating plasma, irradiating an object to be processed with a gas in a plasma state, and performing plasma processing on a plurality of objects to be processed that are in contact with at least one place,
A surface to be processed is irradiated with a gas in a plasma state from at least two directions without placing an object to be processed in a space formed between a pair of electrodes.

このような構成により、隣接し、一箇所以上が接触した複数の被処理物のバッチ処理において、全ての被処理物の被覆を高速に除去できることが実現可能となる。   With such a configuration, it is possible to realize that it is possible to remove the coating of all the objects to be processed at high speed in the batch processing of a plurality of objects to be processed that are adjacent and in contact with one or more places.

本願の第1及び第2発明のプラズマ処理方法において、好適には、被処理物が糸状あるいは棒状の形態をなすことが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the object to be processed is in the form of a thread or a rod.

また好適には、被処理物を複数本で重ねた、束ねた、あるいは拠った状態であることが望ましい。   In addition, it is preferable that a plurality of objects to be processed are stacked, bundled, or relied on.

また好適には、被処理物は、表面の一部及び全部を有機膜で覆った金属であることが望ましく、さらに好適には、有機膜は熱硬化性樹脂であることが望ましい。   Preferably, the object to be processed is a metal whose surface is partially and entirely covered with an organic film, and more preferably, the organic film is a thermosetting resin.

本願の第1及び第2発明のプラズマ処理方法において、好適には、被処理物がフィルム状、シート状及び板状の形態をなすことが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the object to be processed is in the form of a film, a sheet or a plate.

また好適には、被処理物を複数枚で重ねた状態としたことが望ましい。   Further, it is preferable that a plurality of objects to be processed are stacked.

また好適には、被処理物は、表面の一部及び全部を有機膜で覆った金属であることが望ましい。   Also preferably, the object to be treated is a metal whose surface is partially and entirely covered with an organic film.

本願の第1発明のプラズマ処理方法において、好適には、被処理物の線方向からプラズマ状態のガスを照射することが望ましい。   In the plasma processing method of the first invention of the present application, it is preferable to irradiate a gas in a plasma state from the line direction of the workpiece.

本願の第2発明のプラズマ処理方法において、好適には、少なくとも1方向は、被処理物の線方向からプラズマ状態のガスを照射し、さらに少なくとも1方向は、被処理物の線方向と垂直となる方向からプラズマ状態のガスを照射することが望ましい。   In the plasma processing method of the second invention of the present application, preferably, at least one direction is irradiated with a gas in a plasma state from a line direction of the object to be processed, and at least one direction is perpendicular to the line direction of the object to be processed. It is desirable to irradiate a gas in a plasma state from a certain direction.

本願の第1及び第2発明のプラズマ処理方法において、好適には、供給させるガスの平均流速方向に対して、被処理物の位置を移動させることを特徴とすることが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the position of the object to be processed is preferably moved with respect to the average flow velocity direction of the gas to be supplied.

本願の第1及び第2発明のプラズマ処理方法において、好適には、被処理面を振動あるいは回転させながら処理することが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable to perform processing while vibrating or rotating the surface to be processed.

さらに好適には、振動周波数が0.1Hz以上500kHz以下であることが望ましい。   More preferably, the vibration frequency is preferably 0.1 Hz to 500 kHz.

さらに好適には、回転周波数が0.1Hz以上500kHz以下であることが望ましい。   More preferably, the rotational frequency is from 0.1 Hz to 500 kHz.

本願の第1及び第2発明のプラズマ処理方法において、好適には、プラズマ処理中に、もしくはプラズマ処理とプラズマ処理の間に、供給するガスの流量を大きくすることが望ましく、さらに好適には、供給するガスの流量を断続的に大きくすることで、隣接する被処理物同士の接触面積を小さくすることが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is desirable that the flow rate of the supplied gas is preferably increased during the plasma processing or between the plasma processing and more preferably, It is desirable to reduce the contact area between adjacent workpieces by intermittently increasing the flow rate of the supplied gas.

さらに好適には、一時的にガスの供給を遮断し、ガス供給を再開した瞬間に流れる過渡的なガス流により、ガス流量を大きくすることが望ましい。   More preferably, the gas flow rate is desirably increased by a transient gas flow that flows at the moment when the gas supply is temporarily interrupted and the gas supply is resumed.

さらに好適には、ガスストップバルブを介して、ガス供給の遮断及び再開を行うことが望ましい。   More preferably, it is desirable to shut off and restart the gas supply via a gas stop valve.

本願の第1及び第2発明のプラズマ処理方法において、好適には、被処理物が、少なくとも2面の壁に囲まれており、且つ2面の壁が対向する位置にあることが望ましい。   In the plasma processing methods of the first and second inventions of the present application, preferably, the object to be processed is surrounded by at least two walls, and the two walls are opposed to each other.

本願の第1及び第2発明のプラズマ処理方法において、好適には、電極間の距離が10mm以下であることが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the distance between the electrodes is 10 mm or less.

本願の第1及び第2発明のプラズマ処理方法において、好適には、電極間の距離が4mm以下であることが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the distance between the electrodes is 4 mm or less.

本願の第1及び第2発明のプラズマ処理方法において、好適には、被処理物の端面が載置される位置は、電極間のなす空間から0.5mm以上離れていることが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the position where the end surface of the object to be processed is placed is separated by 0.5 mm or more from the space formed between the electrodes.

本願の第1及び第2発明のプラズマ処理方法において、好適には、被処理物の端面が載置される位置は、電極間のなす空間から10mm以下であることが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the position where the end face of the workpiece is placed is 10 mm or less from the space formed between the electrodes.

本願の第1及び第2発明のプラズマ処理方法において、好適には、処理用ガスが不活性ガスを50%以上の割合で含むことが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the processing gas contains an inert gas at a ratio of 50% or more.

本願の第1及び第2発明のプラズマ処理方法において、好適には、処理用ガスは不活性ガスを99.9%以下の割合で含むことが望ましい。   In the plasma processing methods of the first and second inventions of the present application, it is preferable that the processing gas contains an inert gas at a ratio of 99.9% or less.

本願の第1及び第2発明のプラズマ処理方法において、好適には、不活性ガスとO2ガスを含むガスを用いてプラズマ処理する第1の工程と、不活性ガスと還元性ガスを含むガスを用いてプラズマ処理する第2の工程を実施することが望ましく、さらに好適には、第1の工程で被処理物表面の有機膜を除去し、第2の工程で被処理物表面の金属元素を還元するが好ましい。また、さらに好適には、還元性のガスは、H2、NH3、N2、及びCOガスのいずれかであることが望ましい。 In the plasma processing methods of the first and second inventions of the present application, preferably, a first step of performing plasma processing using a gas containing an inert gas and O 2 gas, and a gas containing an inert gas and a reducing gas It is desirable to carry out the second step of performing plasma treatment using, and more preferably, the organic film on the surface of the workpiece is removed in the first step, and the metal element on the surface of the workpiece in the second step Is preferably reduced. More preferably, the reducing gas is any one of H 2 , NH 3 , N 2 , and CO gas.

本願の第1及び第2発明のプラズマ処理方法において、好適には、処理用ガスがO2ガスを含み、且つN2、F元素含有ガスの少なくとも1種類を含むことが望ましい。 In the plasma processing methods of the first and second inventions of the present application, it is preferable that the processing gas includes O 2 gas and at least one of N 2 and F element-containing gas.

また好適には、F元素含有ガスはF2、CHF3、HF、CF4、C24、C26、C36、C46、C38、C48、C58、NF3及びSF6ガスのいずれかであることが望ましい。 Also preferably, F element-containing gas is F 2, CHF 3, HF, CF 4, C 2 F 4, C 2 F 6, C 3 F 6, C 4 F 6, C 3 F 8, C 4 F 8 , C 5 F 8 , NF 3 and SF 6 gas are desirable.

本願の第1発明の導線は、一対の電極間の少なくとも一方に固体誘電体を設け、電極間に処理用ガスを供給しつつ高周波電力を供給することで、大気圧近傍の圧力下でプラズマを生成し、プラズマ状態のガスを被処理物に対して照射し、複数の、且つ少なくとも一箇所が接触する被処理物を、一対の電極間のなす空間に被処理物を載置させずに、プラズマ状態のガスを被処理面に照射させることでプラズマ処理する工程と、複数の被処理物の周囲を金属部材で囲んで、機械的な圧力を与えることで被処理物と金属部材を接触させる工程により、被処理物と金属部材を導通させることを特徴とする。   The conducting wire according to the first invention of the present application provides plasma at a pressure near atmospheric pressure by providing a solid dielectric on at least one of a pair of electrodes and supplying high-frequency power while supplying a processing gas between the electrodes. Generate and irradiate the object to be processed with a gas in a plasma state, and place the object to be processed in a space formed by a plurality of and at least one place between a pair of electrodes, Plasma treatment is performed by irradiating the surface to be treated with a gas in a plasma state, and a plurality of objects to be treated are surrounded by metal members, and mechanical pressure is applied to bring the objects to be treated into contact with the metal members. According to the process, the object to be processed and the metal member are made conductive.

このような構成により、所望の金属部材との導通を確保しやすくなる導線を提供することが実現可能となる。   With such a configuration, it is possible to provide a conductive wire that facilitates securing conduction with a desired metal member.

また好適には、機械的な圧力を与える工程が、カシメをする工程であることが望ましい。   Preferably, the step of applying mechanical pressure is a step of crimping.

また好適には、金属部材が圧着端子であることが望ましい。   Preferably, the metal member is a crimp terminal.

本願の第1発明のプラズマ処理装置は、一対の電極間の少なくとも一方に固体誘電体を設け、電極に連結可能な高周波電源と電極間に処理用ガスを供給できるガス供給装置を設け、電極間のなす空間に備えるガス流路を経由して、被処理物の被処理面に処理用ガスを供給することが可能なプラズマ処理装置であり、
電極間のなす空間に連結し、且つ少なくとも対向する2面の絶縁体からなる壁を備えることを特徴とする。
The plasma processing apparatus according to the first invention of the present application includes a solid dielectric provided at least between a pair of electrodes, a high-frequency power source connectable to the electrodes, and a gas supply device capable of supplying a processing gas between the electrodes. A plasma processing apparatus capable of supplying a processing gas to a processing surface of an object to be processed via a gas flow path provided in a space formed by
It is characterized by comprising a wall made of at least two opposing insulators connected to the space formed between the electrodes.

このような構成により、隣接し、一箇所以上が接触した複数の被処理物のバッチ処理において、全ての被処理物の被覆を高速に除去できることが実現可能となる。   With such a configuration, it is possible to realize that it is possible to remove the coating of all the objects to be processed at high speed in the batch processing of a plurality of objects to be processed that are adjacent and in contact with one or more places.

本願の第2発明のプラズマ処理装置は、一対の電極間の少なくとも一方に固体誘電体を設け、電極に連結可能な高周波電源と電極間に処理用ガスを供給できるガス供給装置を設け、電極間のなす空間に備えるガス流路を経由して、被処理物の被処理面全体に処理用ガスを供給することが可能なプラズマ処理装置であり、
電極間のなす空間に連結し、且つ少なくとも対向する2面の絶縁体からなる壁を備え、尚且つ該ガス流路を少なくとも2系統備えることを特徴とする。
The plasma processing apparatus of the second invention of the present application is provided with a solid dielectric provided at least between a pair of electrodes, a high-frequency power source connectable to the electrodes, and a gas supply device capable of supplying a processing gas between the electrodes. A plasma processing apparatus capable of supplying a processing gas to the entire processing surface of an object to be processed via a gas flow path provided in a space formed by
It is characterized in that it is provided with a wall made of at least two opposing insulators connected to a space formed between the electrodes, and further provided with at least two systems of the gas flow paths.

このような構成により、隣接し、一箇所以上が接触した複数の被処理物のバッチ処理において、全ての被処理物の被覆を高速に除去できることが実現可能となる。   With such a configuration, it is possible to realize that it is possible to remove the coating of all the objects to be processed at high speed in the batch processing of a plurality of objects to be processed that are adjacent and in contact with one or more places.

本願の第1及び第2発明のプラズマ処理装置において、好適には、電極に対する被処理物の位置を相対的に変化することが可能な移動機構を備えることが望ましい。   In the plasma processing apparatus according to the first and second inventions of the present application, it is preferable to provide a moving mechanism that can change the position of the object to be processed relative to the electrode.

また好適には、移動機構は、振動を伝達することが可能な機構、あるいは回転を伝達することが可能なことが望ましい。   Preferably, the moving mechanism is preferably a mechanism that can transmit vibration or a rotation.

本願の第1及び第2発明のプラズマ処理装置において、好適には、互いに隣接する被処理物同士の接触面積を小さくすることが可能な解し機構を備えることが望ましい。   In the plasma processing apparatuses according to the first and second inventions of the present application, it is preferable to provide a breaking mechanism that can reduce the contact area between the objects to be processed adjacent to each other.

以上のように、本発明のプラズマ処理方法及び装置によれば、隣接し、一箇所以上が接触した複数の被処理物のバッチ処理において、熱伝導を抑えつつ高密度プラズマを供給することで、全ての被処理物の被覆を高速に除去できるプラズマ処理方法及び装置を提供すること、また、プラズマにより短時間で被覆を除去することで、例えば圧着端子とのかしめのような、所望の金属部材との導通を確保しやすくなる導線を提供することが可能となる。   As described above, according to the plasma processing method and apparatus of the present invention, in batch processing of a plurality of workpieces that are adjacent and in contact with one or more locations, by supplying high-density plasma while suppressing heat conduction, To provide a plasma processing method and apparatus capable of removing all coatings of an object to be processed at high speed, and to remove a coating in a short time by plasma, for example, a desired metal member such as caulking with a crimp terminal. It is possible to provide a conductive wire that facilitates ensuring electrical continuity.

(実施の形態1)
以下、本発明の第1実施形態について、図1乃至図5を参照して説明する。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.

図1は本発明の第1実施形態におけるプラズマ処理装置の構成を示す断面図である。図1において、上部電極1と下部電極2を設け、両電極間に絶縁体チャンバー3を設けている。また、絶縁体チャンバー3の内部にはガス流路4を形成しており、処理ガス供給装置5、金属容器6におけるガス供給口7を介して内部にガスを供給し、ガス流路4を通ってガス噴出口8より処理ガスを大気中へ排気しつつ、高周波電源9より上部電極1に高周波電力を供給し、上部電極1と下部電極2の間に交流電界を供給できる構造となっている。また、被処理物10はガス噴出口8より挿入し、絶縁体チャンバー3内の任意の場所に載置させることが可能となっている。なお、下部電極2と金属容器6は基本的に接地電位とし、上部電極1と金属容器6は絶縁ブロック11で絶縁させている。このようなプラズマ処理装置を用いて、上部電極1と下部電極2の間にプラズマ12を生成することができる。   FIG. 1 is a cross-sectional view showing the configuration of the plasma processing apparatus in the first embodiment of the present invention. In FIG. 1, an upper electrode 1 and a lower electrode 2 are provided, and an insulator chamber 3 is provided between both electrodes. Further, a gas flow path 4 is formed inside the insulator chamber 3, and gas is supplied to the inside through the gas supply port 7 in the processing gas supply device 5 and the metal container 6, and passes through the gas flow path 4. The high-frequency power is supplied to the upper electrode 1 from the high-frequency power source 9 and the AC electric field is supplied between the upper electrode 1 and the lower electrode 2 while exhausting the processing gas from the gas outlet 8 into the atmosphere. . In addition, the object to be processed 10 can be inserted from the gas ejection port 8 and placed on an arbitrary place in the insulator chamber 3. The lower electrode 2 and the metal container 6 are basically set to ground potential, and the upper electrode 1 and the metal container 6 are insulated by an insulating block 11. Plasma 12 can be generated between the upper electrode 1 and the lower electrode 2 using such a plasma processing apparatus.

ここでは、振動ユニット13により、被処理物がZ方向に往復できる運動できるようになっている。   Here, the vibration unit 13 can move the workpiece to reciprocate in the Z direction.

なお、本発明の実施の形態では、図2乃至図3に示すような被処理物を用いた。図2は被処理物の断面の拡大模式図を示し、図3は被処理物の外観模式図を示している。図2より、被処理物10は直径L=0.09mmの銅線14の周囲にイミド系有機膜15を厚みM=15μmで被覆している。またこの被覆銅線を、図3に示すように接着剤を用いて40本束ねた拠り線状のものを被処理物10として適用した。ここで、図3に示したように、銅線の長さ方向Nを線方向と称し、拠り線の断面(あるいは各銅線の断面)に平行な方向Oを径方向と称する。   In the embodiment of the present invention, an object to be processed as shown in FIGS. 2 to 3 is used. FIG. 2 shows an enlarged schematic view of a cross section of the object to be processed, and FIG. 3 shows a schematic external view of the object to be processed. As shown in FIG. 2, the object to be treated 10 covers an imide organic film 15 with a thickness M = 15 μm around a copper wire 14 having a diameter L = 0.09 mm. In addition, as shown in FIG. 3, a ground wire in which 40 coated wires were bundled using an adhesive as shown in FIG. Here, as shown in FIG. 3, the length direction N of the copper wire is referred to as a line direction, and the direction O parallel to the cross section of the ground wire (or the cross section of each copper wire) is referred to as the radial direction.

この装置によるプラズマ処理の一例として、絶縁体チャンバー3内に被処理物10を挿入し、振動ユニット13により被処理物10を移動させつつ、処理ガスとしてHe=750sccm、O2=40sccm、CF4=13sccmを供給し、高周波電源9より電力を100W供給することで、上部電極1と下部電極2の間にプラズマ12を生成し、被処理物10をプラズマ処理した。また、振動ユニット13の振動条件は、振幅1.5mm、振動数5Hzとし、図4の電極近傍の断面拡大図で示したように、両電極間の距離Pは2mmとした。なおこのとき、被処理物10の端面は両電極間に届かない位置、すなわち、両電極間のなす空間の端面である破線A−Aより左側の位置に1mm離して載置し、上部電極1と下部電極2のなす空間で生成されるプラズマ12に直接曝されないようにした。 As an example of plasma processing by this apparatus, the processing object 10 is inserted into the insulator chamber 3 and the processing object 10 is moved by the vibration unit 13, while He = 750 sccm, O 2 = 40 sccm, CF 4 as processing gases. = 13 sccm and 100 W from the high-frequency power source 9 to generate plasma 12 between the upper electrode 1 and the lower electrode 2, and the object to be processed 10 was plasma-treated. The vibration conditions of the vibration unit 13 were an amplitude of 1.5 mm and a frequency of 5 Hz, and the distance P between the electrodes was 2 mm as shown in the enlarged cross-sectional view in the vicinity of the electrodes in FIG. At this time, the end surface of the workpiece 10 is placed at a position that does not reach between both electrodes, that is, at a position 1 mm away from the broken line AA that is the end surface of the space between both electrodes, and the upper electrode 1 The plasma 12 generated in the space formed by the lower electrode 2 is not directly exposed.

上記のプラズマ処理方法及び装置により、被処理物10をプラズマ処理した結果、90sのプラズマ処理で、40本全ての被覆銅線の被覆を除去することができた。なおこのとき、線方向の被覆除去長さは5mmであった。   As a result of subjecting the workpiece 10 to plasma processing using the plasma processing method and apparatus described above, it was possible to remove all 40 coated copper wires by 90 s plasma processing. At this time, the coating removal length in the line direction was 5 mm.

被覆を除去したあと、250℃のSn−Ag−Cu系鉛フリーはんだ槽に3sディップし、はんだをメッキした後、エポキシ樹脂に埋め込み、断面を観察したSEM画像を図5に示す。図5から明らかなように、全ての銅線14の周囲に鉛フリーはんだ16がメッキされており、銅線14の界面には合金層が形成されていた。このことは、全40本において、イミド系有機膜が残渣なく除去されていることを示している。   FIG. 5 shows an SEM image of the cross section observed after removing the coating, dipping for 3 s in a Sn—Ag—Cu lead-free solder bath at 250 ° C., plating the solder, embedding in an epoxy resin, and observing the cross section. As is clear from FIG. 5, lead-free solder 16 was plated around all the copper wires 14, and an alloy layer was formed at the interface of the copper wires 14. This indicates that the imide-based organic film is removed without residue in all 40 films.

このようにして、断面をSEM観察することで、被覆銅線からイミド系有機膜15が除去されているか、否かを評価した。   In this way, it was evaluated whether or not the imide organic film 15 was removed from the coated copper wire by observing the cross section with an SEM.

次に、上記のプラズマ処理方法及び装置により、被処理物10の両端の被覆を除去して銅線を露出させ、両端に圧着端子をかしめて導通の有無を確認したところ、導通を確保することが確認できた。   Next, with the above plasma processing method and apparatus, the coating on both ends of the workpiece 10 is removed to expose the copper wire, and crimp terminals are crimped on both ends to confirm the presence or absence of conduction. Was confirmed.

以上のように、短時間で被覆を除去できた理由として、熱による有機膜の変質が化学反応による有機膜の除去速度を低下させていることが考えられる。一般に、大気圧下でのプラズマは、減圧下では得難い、非常に高密度なプラズマを生成することが可能である。しかし一方で、粒子間の衝突回数が増えるため、高密度化に伴って熱的平衡状態に近づき、非常に高いガス温度となることが知られている。よって従来例のように、高密度プラズマを被処理物に直接曝すと、拠り線の内部に、プラズマ活性種による化学反応が浸透するより早く、熱が伝導し、銅線に被覆された有機膜を熱硬化させると考えられる。この結果、化学反応による有機膜の除去速度が低下し、被処理物の中心部で極端に除去速度が低下したと予想できる。   As described above, the reason why the coating could be removed in a short time is considered to be that the organic film alteration due to heat reduces the organic film removal rate due to chemical reaction. In general, plasma under atmospheric pressure is difficult to obtain under reduced pressure, and it is possible to generate very high density plasma. However, on the other hand, since the number of collisions between particles increases, it is known that as the density increases, a thermal equilibrium state is approached and the gas temperature becomes very high. Therefore, as in the conventional example, when high-density plasma is directly exposed to the object to be processed, the heat conduction is conducted faster than the chemical reaction by the plasma active species penetrates into the ground wire, and the organic film covered with the copper wire. Is considered to be thermoset. As a result, it can be expected that the removal rate of the organic film by the chemical reaction is reduced and the removal rate is extremely reduced at the center of the object to be processed.

一方、第1実施形態では、両電極間で生成した高温高密度プラズマが、離れた位置にある被処理物に到達するまでに低温高密度プラズマとなることが予想できる。両電極間からそれほど離れていなければ、Heのラジカル寿命が長いなどの理由から、ガス温度は下がるがプラズマ密度はそれほど低下せず、低温高密度プラズマとして被処理物に到達できると考えられる。   On the other hand, in the first embodiment, it can be expected that the high-temperature and high-density plasma generated between the two electrodes becomes the low-temperature and high-density plasma before reaching the object to be processed at a distant position. If the distance between the electrodes is not so far, it is considered that the gas temperature decreases but the plasma density does not decrease so much because the He radical lifetime is long, and it can reach the object to be processed as a low-temperature and high-density plasma.

また、次の3つのことも理由として考えられる。1つ目に、従来例ではプラズマ活性種の浸透が径方向であったが、第1実施形態では線方向であり、拠り線の内部へのプラズマ活性種の浸透速度が大きくなったこと。2つ目に、被処理物を振動させることで、被処理物の特定の面にのみプラズマ活性種が照射するのを防止し、特定の箇所に熱が蓄積されるのを抑制できたこと。3つ目に、被処理物を振動させることで、絶縁体チャンバーの壁面に被処理物が長時間接触することを防止し、壁面から被処理物へ熱が伝導するのを抑制できること。   The following three things are also considered as reasons. First, the penetration of plasma active species is radial in the conventional example, but is linear in the first embodiment, and the penetration rate of plasma active species into the interior of the ground wire is increased. Secondly, by vibrating the workpiece, it was possible to prevent the plasma active species from irradiating only a specific surface of the workpiece, and to suppress the accumulation of heat at a specific location. Third, by vibrating the workpiece, the workpiece can be prevented from coming into contact with the wall surface of the insulator chamber for a long time, and heat conduction from the wall surface to the workpiece can be suppressed.

これらの理由により、熱による有機膜の変質を抑制でき、被覆除去速度が大幅に向上したと考えられる。   For these reasons, it is considered that the deterioration of the organic film due to heat can be suppressed, and the coating removal rate has been greatly improved.

次に、導通を確保できた理由として、以下のことが考えられる。   Next, the following can be considered as a reason why the conduction can be ensured.

従来例では、プラズマから供給される熱などにより、特に拠り線の最外周部の銅線において、自然酸化膜よりも厚い酸化膜が形成されてしまい、隣接する銅線同士、あるいは銅線と圧着端子間の接触抵抗が高くなったと考えられる。一方、第1実施形態では最外周部の銅線においても表面を酸化することなくプラズマ処理できたため、導通を確保できたと考えられる。   In the conventional example, an oxide film thicker than the natural oxide film is formed on the copper wire at the outermost periphery of the base wire due to heat supplied from the plasma, etc., and the adjacent copper wires or the copper wires are crimped together. It is thought that the contact resistance between terminals increased. On the other hand, in the first embodiment, it was considered that the conduction was ensured because the plasma treatment could be performed without oxidizing the surface even in the outermost copper wire.

(実施の形態2)
以下、本発明の第2実施形態について、図6乃至図7を参照して説明する。
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS.

図6は本発明の第2実施形態におけるプラズマ処理装置の断面図であり、基本的な構成は、第1実施形態と同じである。ただし、被処理物10に対して2方向からプラズマを照射できる構成となっている(図示せず)。図のC−Cにおける上断面図を図7に示す。図7において、上部電極1−a、1−bと下部電極2−a、2−b(共に図示せず、ただし破線部D、Eにあたる部分に載置している)を設け、両電極間に絶縁体チャンバー3を設けている。また、絶縁体チャンバー3の内部にはガス流路4を形成しており、処理ガス供給装置5−a、5−b、金属容器6におけるガス供給口7を介して内部にガスを供給し、ガス流路4を通ってガス噴出口8より処理ガスを大気中へ排気しつつ、高周波電源9(図示せず)より上部電極1−a、1−bに高周波電力を供給し、上部電極1−a、1−bと下部電極2−a、2−bの間に交流電界を供給できる構造となっている。また、被処理物10はガス噴出口8より挿入し、絶縁体チャンバー3内の任意の場所に載置させることが可能となっている。なお、下部電極2−a、2−bと金属容器6は基本的に接地電位とし、上部電極1−a、1−bと金属容器6は絶縁ブロック11(図示せず)で絶縁させている。このようなプラズマ処理装置を用いて、上部電極1−a、1−bと下部電極2−a、2−bの間にプラズマ12−a、12−bを生成することができる。   FIG. 6 is a cross-sectional view of a plasma processing apparatus according to the second embodiment of the present invention, and the basic configuration is the same as that of the first embodiment. However, the configuration is such that the workpiece 10 can be irradiated with plasma from two directions (not shown). FIG. 7 shows an upper cross-sectional view taken along the line CC in FIG. In FIG. 7, upper electrodes 1-a, 1-b and lower electrodes 2-a, 2-b (both not shown, but are placed on portions corresponding to broken lines D, E) are provided between the two electrodes. Is provided with an insulator chamber 3. Further, a gas flow path 4 is formed inside the insulator chamber 3, and gas is supplied to the inside through the gas supply ports 7 in the processing gas supply devices 5-a and 5-b and the metal container 6, High-frequency power is supplied to the upper electrodes 1-a and 1-b from a high-frequency power source 9 (not shown) while exhausting the processing gas from the gas outlet 8 through the gas flow path 4 to the atmosphere. -A, 1-b and the lower electrodes 2-a, 2-b can be supplied with an alternating electric field. In addition, the object to be processed 10 can be inserted from the gas ejection port 8 and placed on an arbitrary place in the insulator chamber 3. The lower electrodes 2-a and 2-b and the metal container 6 are basically at ground potential, and the upper electrodes 1-a and 1-b and the metal container 6 are insulated by an insulating block 11 (not shown). . Using such a plasma processing apparatus, plasmas 12-a and 12-b can be generated between the upper electrodes 1-a and 1-b and the lower electrodes 2-a and 2-b.

ここでは、振動ユニット13により、被処理物がY方向に往復できる運動できるようになっている。   Here, the vibration unit 13 can move the workpiece to reciprocate in the Y direction.

この装置によるプラズマ処理の一例として、絶縁体チャンバー3内に被処理物10を挿入し、振動ユニット13により被処理物10を移動させつつ、処理ガス供給装置5−aよりHe=750sccm、O2=40sccm、CF4=13sccmを供給し、処理ガス供給装置5−bよりHe=1000sccm、O2=40sccm、CF4=13sccmを供給し、両電極間のなす領域1−aと両電極間のなす領域1−bに高周波電源9より電力を100W供給することで、プラズマ12−a、12−bを生成し、被処理物10をプラズマ処理した。また、振動ユニット13の振動条件は、振幅1.5mm(設定値)、振動数5Hzとし、第1実施例と同じく、上部電極1−aと下部電極2−a間の距離、上部電極1−bと下部電極2−b間の距離は、共に2mmとした。なおこのとき、被処理物10の端面は両電極間に届かない位置、すなわち、両電極間のなすDの端面F−F及び両電極間のなす距離Eの端面G−Gより共に1mm離して載置し、上部電極1−a、1−bと下部電極2−a、2−bのなす空間で生成されるプラズマ12−a、12−bに直接曝されないようにした。 As an example of plasma processing by this apparatus, the processing object 10 is inserted into the insulator chamber 3, and the processing object 10 is moved by the vibration unit 13, while He = 750 sccm, O 2 from the processing gas supply device 5-a. = 40 sccm, CF 4 = 13 sccm is supplied, He = 1000 sccm, O 2 = 40 sccm, CF 4 = 13 sccm is supplied from the processing gas supply device 5-b, and the region 1-a formed between the two electrodes and between the two electrodes By supplying 100 W of power from the high frequency power supply 9 to the region 1-b to be formed, plasmas 12-a and 12-b were generated, and the workpiece 10 was plasma-treated. The vibration conditions of the vibration unit 13 are an amplitude of 1.5 mm (set value) and a vibration frequency of 5 Hz. As in the first embodiment, the distance between the upper electrode 1-a and the lower electrode 2-a, the upper electrode 1- The distance between b and the lower electrode 2-b was 2 mm. At this time, the end face of the workpiece 10 does not reach between the two electrodes, that is, 1 mm away from the end face FF of the D formed between the two electrodes and the end face GG of the distance E formed between the two electrodes. It was placed so that it was not directly exposed to the plasma 12-a, 12-b generated in the space formed by the upper electrodes 1-a, 1-b and the lower electrodes 2-a, 2-b.

上記のプラズマ処理方法及び装置により、被処理物10をプラズマ処理した結果、60sのプラズマ処理で、40本全ての被覆銅線の被覆を除去することができた。またこのとき、線方向の被覆除去長さは10mmであった。   As a result of the plasma treatment of the workpiece 10 by the plasma treatment method and apparatus described above, it was possible to remove the coating of all 40 coated copper wires by the plasma treatment for 60 s. At this time, the coating removal length in the line direction was 10 mm.

次に、上記のプラズマ処理方法及び装置により、被処理物10の両端の被覆を除去して銅線を露出させ、両端に圧着端子をかしめて導通の有無を確認したところ、導通を確保することが確認できた。   Next, with the above plasma processing method and apparatus, the coating on both ends of the workpiece 10 is removed to expose the copper wire, and crimp terminals are crimped on both ends to confirm the presence or absence of conduction. Was confirmed.

以上のように、短時間で被覆を除去できた理由として、熱による有機膜の変質が化学反応による有機膜の除去速度を低下させていることが考えられる。一般に、大気圧下でのプラズマは、減圧下では得難い、非常に高密度なプラズマを生成することが可能である。しかし一方で、粒子間の衝突回数が増えるため、高密度化に伴って熱的平衡状態に近づき、非常に高いガス温度となることが知られている。よって従来例のように、高密度プラズマを被処理物に直接曝すと、拠り線の内部に、プラズマ活性種による化学反応が浸透するより早く、熱が伝導し、銅線に被覆された有機膜を熱硬化させると考えられる。この結果、化学反応による有機膜の除去速度が低下し、被処理物の中心部で極端に除去速度が低下したと予想できる。   As described above, the reason why the coating could be removed in a short time is considered to be that the organic film alteration due to heat reduces the organic film removal rate due to chemical reaction. In general, plasma under atmospheric pressure is difficult to obtain under reduced pressure, and it is possible to generate very high density plasma. However, on the other hand, since the number of collisions between particles increases, it is known that as the density increases, a thermal equilibrium state is approached and the gas temperature becomes very high. Therefore, as in the conventional example, when high-density plasma is directly exposed to the object to be processed, the heat conduction is conducted faster than the chemical reaction by the plasma active species penetrates into the ground wire, and the organic film covered with the copper wire. Is considered to be thermoset. As a result, it can be expected that the removal rate of the organic film by the chemical reaction is reduced and the removal rate is extremely reduced at the center of the object to be processed.

一方、第2実施形態では、両電極間で生成した高温高密度プラズマが、離れた位置にある被処理物に到達するまでに低温高密度プラズマとなることが予想できる。両電極間からそれほど離れていなければ、Heのラジカル寿命が長いなどの理由から、ガス温度は下がるがプラズマ密度はそれほど低下せず、低温高密度プラズマとして被処理物に到達できると考えられる。   On the other hand, in the second embodiment, it can be expected that the high-temperature and high-density plasma generated between the two electrodes becomes the low-temperature and high-density plasma before reaching the object to be processed at a distant position. If the distance between the electrodes is not so far, it is considered that the gas temperature decreases but the plasma density does not decrease so much because the He radical lifetime is long, and it can reach the object to be processed as a low-temperature and high-density plasma.

また、次の3つのことも理由として考えられる。1つ目に、従来例ではプラズマ活性種の浸透が径方向であったが、第1実施形態では線方向であり、拠り線の内部へのプラズマ活性種の浸透速度が大きくなったこと。2つ目に、被処理物を振動させることで、被処理物の特定の面にのみプラズマ活性種が照射するのを防止し、特定の箇所に熱が蓄積されるのを抑制できたこと。3つ目に、被処理物を振動させることで、絶縁体チャンバーの壁面に被処理物が長時間接触することを防止し、壁面から被処理物へ熱が伝導するのを抑制できること。   The following three things are also considered as reasons. First, the penetration of plasma active species is radial in the conventional example, but is linear in the first embodiment, and the penetration rate of plasma active species into the interior of the ground wire is increased. Secondly, by vibrating the workpiece, it was possible to prevent the plasma active species from irradiating only a specific surface of the workpiece, and to suppress the accumulation of heat at a specific location. Third, by vibrating the workpiece, the workpiece can be prevented from coming into contact with the wall surface of the insulator chamber for a long time, and heat conduction from the wall surface to the workpiece can be suppressed.

これらの理由により、熱による有機膜の変質を抑制でき、被覆除去速度が大幅に向上したと考えられる。   For these reasons, it is considered that the deterioration of the organic film due to heat can be suppressed, and the coating removal rate has been greatly improved.

また、2方向からプラズマを照射することで、より多くのプラズマ活性種を被処理物に供給でき、さらに被覆除去時間が短縮できたと考えられる。   In addition, it is considered that more plasma active species can be supplied to the object to be processed by irradiating plasma from two directions, and the coating removal time can be further shortened.

次に、導通を確保できた理由として、以下のことが考えられる。   Next, the following can be considered as a reason why the conduction can be ensured.

従来例では、プラズマから供給される熱などにより、特に拠り線の最外周部の銅線において、自然酸化膜よりも厚い酸化膜が形成されてしまい、隣接する銅線同士、あるいは銅線と圧着端子間の接触抵抗が高くなったと考えられる。一方、第2実施形態では最外周部の銅線においても表面を酸化することなくプラズマ処理できたため、導通を確保できたと考えられる。   In the conventional example, an oxide film thicker than the natural oxide film is formed on the copper wire at the outermost periphery of the base wire due to heat supplied from the plasma, etc., and the adjacent copper wires or the copper wires are crimped together. It is thought that the contact resistance between terminals increased. On the other hand, in the second embodiment, it was considered that the conduction was ensured because the plasma treatment could be performed without oxidizing the surface even in the outermost copper wire.

(実施の形態3)
以下、本発明の第3実施形態について、図1、図4を参照して説明する。
(Embodiment 3)
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS.

プラズマ処理装置の構成は第1実施例と同様である。   The configuration of the plasma processing apparatus is the same as that of the first embodiment.

この装置によるプラズマ処理の一例として、絶縁体チャンバー3内に被処理物10を挿入し、振動ユニット13により被処理物10を移動させつつ、処理ガスとしてHe=750sccm、O2=40sccm、CF4=13sccmを供給し、高周波電源9より電力を100W供給することで、上部電極1と下部電極2の間にプラズマ12を生成し、被処理物10をプラズマ処理した。また、振動ユニット13の振動条件は、振幅1.5mm、振動数5Hzとし、図4の電極近傍の断面拡大図で示したように、両電極間の距離Pは2mmとした。なおこのとき、被処理物10の端面は両電極間に届かない位置、すなわち、両電極間のなす空間の端面である破線A−Aより左側の位置に1mm離して載置し、上部電極1と下部電極2のなす空間で生成されるプラズマ12に直接曝されないようにした。 As an example of plasma processing by this apparatus, the processing object 10 is inserted into the insulator chamber 3, and the processing object 10 is moved by the vibration unit 13, while He = 750 sccm, O 2 = 40 sccm, CF 4 as processing gases. = 13 sccm and 100 W from the high-frequency power source 9 to generate plasma 12 between the upper electrode 1 and the lower electrode 2, and the object to be processed 10 was plasma-treated. The vibration conditions of the vibration unit 13 were an amplitude of 1.5 mm and a frequency of 5 Hz, and the distance P between the electrodes was 2 mm as shown in the enlarged cross-sectional view in the vicinity of the electrodes in FIG. At this time, the end surface of the workpiece 10 is placed at a position that does not reach between both electrodes, that is, at a position 1 mm away from the broken line AA that is the end surface of the space between the two electrodes. The plasma 12 generated in the space formed by the lower electrode 2 is not directly exposed.

このようなプラズマ処理条件で、プラズマ処理を25s実施した後、ガスストップバルブ(図示せず)を閉めるにより処理ガスの供給を5s間遮断し、再びガスストップバルブを開けることにより処理ガスの供給を再開するという30s単位の処理を2回実施し、その後に再び30sのプラズマ処理を実施した。   After performing plasma processing for 25 s under such plasma processing conditions, supply of the processing gas is stopped by closing the gas stop valve (not shown) for 5 s by closing the gas stop valve (not shown) and opening the gas stop valve again. A 30s unit process of restarting was performed twice, and then a 30s plasma process was performed again.

上記のプラズマ処理方法及び装置により、被処理物10をプラズマ処理した結果、90sのプラズマ処理で、40本全ての被覆銅線の被覆を除去することができた。なおこのとき、線方向の被覆除去長さは8mmであった。   As a result of subjecting the workpiece 10 to plasma processing using the plasma processing method and apparatus described above, it was possible to remove all 40 coated copper wires by 90 s plasma processing. At this time, the coating removal length in the line direction was 8 mm.

次に、上記のプラズマ処理方法及び装置により、被処理物10の両端の被覆を除去して銅線を露出させ、両端に圧着端子をかしめて導通の有無を確認したところ、導通を確保することが確認できた。   Next, with the above plasma processing method and apparatus, the coating on both ends of the workpiece 10 is removed to expose the copper wire, and crimp terminals are crimped on both ends to confirm the presence or absence of conduction. Was confirmed.

以上のように、短時間で被覆を除去できた理由として、熱による有機膜の変質が化学反応による有機膜の除去速度を低下させていることが考えられる。一般に、大気圧下でのプラズマは、減圧下では得難い、非常に高密度なプラズマを生成することが可能である。しかし一方で、粒子間の衝突回数が増えるため、高密度化に伴って熱的平衡状態に近づき、非常に高いガス温度となることが知られている。よって従来例のように、高密度プラズマを被処理物に直接曝すと、拠り線の内部に、プラズマ活性種による化学反応が浸透するより早く、熱が伝導し、銅線に被覆された有機膜を熱硬化させると考えられる。この結果、化学反応による有機膜の除去速度が低下し、被処理物の中心部で極端に除去速度が低下したと予想できる。   As described above, the reason why the coating could be removed in a short time is considered to be that the organic film alteration due to heat reduces the organic film removal rate due to chemical reaction. In general, plasma under atmospheric pressure is difficult to obtain under reduced pressure, and it is possible to generate very high density plasma. However, on the other hand, since the number of collisions between particles increases, it is known that as the density increases, a thermal equilibrium state is approached and the gas temperature becomes very high. Therefore, as in the conventional example, when high-density plasma is directly exposed to the object to be processed, the heat conduction is conducted faster than the chemical reaction by the plasma active species penetrates into the ground wire, and the organic film covered with the copper wire. Is considered to be thermoset. As a result, it can be expected that the removal rate of the organic film by the chemical reaction is reduced and the removal rate is extremely reduced at the center of the object to be processed.

一方、第3実施形態では、両電極間で生成した高温高密度プラズマが、離れた位置にある被処理物に到達するまでに低温高密度プラズマとなることが予想できる。両電極間からそれほど離れていなければ、Heのラジカル寿命が長いなどの理由から、ガス温度は下がるがプラズマ密度はそれほど低下せず、低温高密度プラズマとして被処理物に到達できると考えられる。   On the other hand, in the third embodiment, it can be expected that the high-temperature and high-density plasma generated between the two electrodes becomes the low-temperature and high-density plasma before reaching the object to be processed at a distant position. If the distance between the electrodes is not so far, it is considered that the gas temperature decreases but the plasma density does not decrease so much because the He radical lifetime is long, and it can reach the object to be processed as a low-temperature and high-density plasma.

また、次の3つのことも理由として考えられる。1つ目に、従来例ではプラズマ活性種の浸透が径方向であったが、第1実施形態では線方向であり、拠り線の内部へのプラズマ活性種の浸透速度が大きくなったこと。2つ目に、被処理物を振動させることで、被処理物の特定の面にのみプラズマ活性種が照射するのを防止し、特定の箇所に熱が蓄積されるのを抑制できたこと。3つ目に、被処理物を振動させることで、絶縁体チャンバーの壁面に被処理物が長時間接触することを防止し、壁面から被処理物へ熱が伝導するのを抑制できること。   The following three things are also considered as reasons. First, the penetration of plasma active species is radial in the conventional example, but is linear in the first embodiment, and the penetration rate of plasma active species into the interior of the ground wire is increased. Secondly, by vibrating the workpiece, it was possible to prevent the plasma active species from irradiating only a specific surface of the workpiece, and to suppress the accumulation of heat at a specific location. Third, by vibrating the workpiece, the workpiece can be prevented from coming into contact with the wall surface of the insulator chamber for a long time, and heat conduction from the wall surface to the workpiece can be suppressed.

これらの理由により、熱による有機膜の変質を抑制でき、被覆除去速度が大幅に向上したと考えられる。   For these reasons, it is considered that the deterioration of the organic film due to heat can be suppressed, and the coating removal rate has been greatly improved.

また、プラズマ処理中にガスストップバルブを用いてガス供給の遮断と再開を繰り返すことにより、ガス供給の再開時過大なガス流量が発生する。このガス流から力を受け、拠り線である被処理物がほどよく解れ、プラズマ活性種が浸透しやすくなることで、さらに被覆除去速度が向上したと考えられる。   Further, by repeatedly shutting off and restarting the gas supply using the gas stop valve during the plasma processing, an excessive gas flow rate is generated when the gas supply is restarted. It is considered that the removal rate of the coating is further improved by receiving the force from the gas flow and unraveling the object to be processed, which is the base line, so that the plasma active species can easily permeate.

次に、導通を確保できた理由として、以下のことが考えられる。   Next, the following can be considered as a reason why the conduction can be ensured.

従来例では、プラズマから供給される熱などにより、特に拠り線の最外周部の銅線において、自然酸化膜よりも厚い酸化膜が形成されてしまい、隣接する銅線同士、あるいは銅線と圧着端子間の接触抵抗が高くなったと考えられる。一方、第3実施形態では最外周部の銅線においても表面を酸化することなくプラズマ処理できたため、導通を確保できたと考えられる。   In the conventional example, an oxide film thicker than the natural oxide film is formed on the copper wire at the outermost periphery of the base wire due to heat supplied from the plasma, etc., and the adjacent copper wires or the copper wires are crimped together. It is thought that the contact resistance between terminals increased. On the other hand, in the third embodiment, it is considered that the conduction was ensured because the plasma treatment could be performed without oxidizing the surface of the outermost copper wire.

(実施の形態4)
以下、本発明の第4実施形態について、図4、図8及び図9を参照して説明する。
(Embodiment 4)
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIGS. 4, 8 and 9.

図8は本発明の第1実施形態におけるプラズマ処理装置の断面図である。図8において、プラズマ処理装置の基本構成は図1と同じであり、上部電極1と下部電極2の間にプラズマ12を生成することができる。また、振動ユニット13により、被処理物がZ方向に往復できる運動できるようになっている。   FIG. 8 is a cross-sectional view of the plasma processing apparatus in the first embodiment of the present invention. 8, the basic configuration of the plasma processing apparatus is the same as that in FIG. 1, and plasma 12 can be generated between the upper electrode 1 and the lower electrode 2. Further, the vibrating unit 13 can move the workpiece to reciprocate in the Z direction.

なお、振動ユニット13には搬送ユニット17が連結されており、隣接する解しユニット18とプラズマ処理装置の間で、被処理物10を搬送する構成になっている。   In addition, the conveyance unit 17 is connected to the vibration unit 13, and the workpiece 10 is conveyed between the adjacent unraveling unit 18 and the plasma processing apparatus.

図9は、解しユニット18内部の断面拡大図を示している。土台19上に被処理物10を載置させ、端子20を被処理物10に押しつけることで、拠り線を解すことができる。つまり、接着剤で互いに結合された被覆銅線同士を剥がすことができる。端子20をX方向に移動した後、再び端子20を被処理物10に押しつけるという動作を繰り返すことにより、線方向に対して任意の長さを解すことができる。あるいは、端子20を被処理物10に押しつけつつ端子20をX方向に動かすことにより、線方向に対して任意の長さを解すことができる。   FIG. 9 shows an enlarged cross-sectional view of the inside of the breaking unit 18. By placing the object to be processed 10 on the base 19 and pressing the terminal 20 against the object to be processed 10, the ground wire can be solved. That is, the coated copper wires bonded to each other with the adhesive can be peeled off. After moving the terminal 20 in the X direction, the operation of pressing the terminal 20 against the workpiece 10 again is repeated, so that an arbitrary length with respect to the line direction can be solved. Alternatively, by moving the terminal 20 in the X direction while pressing the terminal 20 against the workpiece 10, an arbitrary length can be solved with respect to the line direction.

この装置によるプラズマ処理の一例として、解しユニット18で被処理物10の先端を解した後、搬送ユニット17により被処理物10を取り出し、絶縁体チャンバー3内に被処理物10を挿入し、振動ユニット13により被処理物10を移動させつつ、処理ガスとしてHe=750sccm、O2=40sccm、CF4=13sccmを供給し、高周波電源9より電力を100W供給することで、上部電極1と下部電極2の間にプラズマ12を生成し、被処理物10をプラズマ処理した。また、振動ユニット13の振動条件は、振幅1.5mm、振動数5Hzとし、図4の電極近傍の断面拡大図で示したように、両電極間の距離Pは2mmとした。なおこのとき、被処理物10の端面は両電極間に届かない位置、すなわち、両電極間のなす空間の端面である破線A−Aより左側の位置に1mm離して載置し、上部電極1と下部電極2のなす空間で生成されるプラズマ12に直接曝されないようにした。 As an example of plasma processing by this apparatus, after the tip of the workpiece 10 is unwound by the unraveling unit 18, the workpiece 10 is taken out by the transport unit 17, and the workpiece 10 is inserted into the insulator chamber 3, While moving the object 10 to be processed by the vibration unit 13, He = 750 sccm, O 2 = 40 sccm, CF 4 = 13 sccm are supplied as processing gases, and 100 W is supplied from the high frequency power source 9, so that the upper electrode 1 and the lower Plasma 12 was generated between the electrodes 2 and the workpiece 10 was plasma treated. The vibration conditions of the vibration unit 13 were an amplitude of 1.5 mm and a frequency of 5 Hz, and the distance P between the electrodes was 2 mm as shown in the enlarged cross-sectional view in the vicinity of the electrodes in FIG. At this time, the end surface of the workpiece 10 is placed at a position that does not reach between both electrodes, that is, at a position 1 mm away from the broken line AA that is the end surface of the space between both electrodes, and the upper electrode 1 The plasma 12 generated in the space formed by the lower electrode 2 is not directly exposed.

上記のプラズマ処理方法及び装置により、被処理物10をプラズマ処理した結果、70sのプラズマ処理で、40本全ての被覆銅線の被覆を除去することができた。なおこのとき、線方向の被覆除去長さは6.5mmであった。   As a result of the plasma treatment of the workpiece 10 by the plasma treatment method and apparatus described above, it was possible to remove the coating of all 40 coated copper wires by the plasma treatment of 70 s. At this time, the coating removal length in the line direction was 6.5 mm.

次に、上記のプラズマ処理方法及び装置により、被処理物10の両端の被覆を除去して銅線を露出させ、両端に圧着端子をかしめて導通の有無を確認したところ、導通を確保することが確認できた。   Next, with the above plasma processing method and apparatus, the coating on both ends of the workpiece 10 is removed to expose the copper wire, and crimp terminals are crimped on both ends to confirm the presence or absence of conduction. Was confirmed.

以上のように、短時間で被覆を除去できた理由として、熱による有機膜の変質が化学反応による有機膜の除去速度を低下させていることが考えられる。一般に、大気圧下でのプラズマは、減圧下では得難い、非常に高密度なプラズマを生成することが可能である。しかし一方で、粒子間の衝突回数が増えるため、高密度化に伴って熱的平衡状態に近づき、非常に高いガス温度となることが知られている。よって従来例のように、高密度プラズマを被処理物に直接曝すと、拠り線の内部に、プラズマ活性種による化学反応が浸透するより早く、熱が伝導し、銅線に被覆された有機膜を熱硬化させると考えられる。この結果、化学反応による有機膜の除去速度が低下し、被処理物の中心部で極端に除去速度が低下したと予想できる。   As described above, the reason why the coating could be removed in a short time is considered to be that the organic film alteration due to heat reduces the organic film removal rate due to chemical reaction. In general, plasma under atmospheric pressure is difficult to obtain under reduced pressure, and it is possible to generate very high density plasma. However, on the other hand, since the number of collisions between particles increases, it is known that as the density increases, a thermal equilibrium state is approached and the gas temperature becomes very high. Therefore, as in the conventional example, when high-density plasma is directly exposed to the object to be processed, the heat conduction is conducted faster than the chemical reaction by the plasma active species penetrates into the ground wire, and the organic film covered with the copper wire. Is considered to be thermoset. As a result, it can be expected that the removal rate of the organic film by the chemical reaction is reduced and the removal rate is extremely reduced at the center of the object to be processed.

一方、第4実施形態では、両電極間で生成した高温高密度プラズマが、離れた位置にある被処理物に到達するまでに低温高密度プラズマとなることが予想できる。両電極間からそれほど離れていなければ、Heのラジカル寿命が長いなどの理由から、ガス温度は下がるがプラズマ密度はそれほど低下せず、低温高密度プラズマとして被処理物に到達できると考えられる。   On the other hand, in the fourth embodiment, it can be expected that the high-temperature and high-density plasma generated between the two electrodes becomes the low-temperature and high-density plasma before reaching the object to be processed at a distant position. If the distance between the electrodes is not so far, it is considered that the gas temperature decreases but the plasma density does not decrease so much because the He radical lifetime is long, and it can reach the object to be processed as a low-temperature and high-density plasma.

また、次の3つのことも理由として考えられる。1つ目に、従来例ではプラズマ活性種の浸透が径方向であったが、第1実施形態では線方向であり、拠り線の内部へのプラズマ活性種の浸透速度が大きくなったこと。2つ目に、被処理物を振動させることで、被処理物の特定の面にのみプラズマ活性種が照射するのを防止し、特定の箇所に熱が蓄積されるのを抑制できたこと。3つ目に、被処理物を振動させることで、絶縁体チャンバーの壁面に被処理物が長時間接触することを防止し、壁面から被処理物へ熱が伝導するのを抑制できること。   The following three things are also considered as reasons. First, the penetration of plasma active species is radial in the conventional example, but is linear in the first embodiment, and the penetration rate of plasma active species into the interior of the ground wire is increased. Secondly, by vibrating the workpiece, it was possible to prevent the plasma active species from irradiating only a specific surface of the workpiece, and to suppress the accumulation of heat at a specific location. Third, by vibrating the workpiece, the workpiece can be prevented from coming into contact with the wall surface of the insulator chamber for a long time, and heat conduction from the wall surface to the workpiece can be suppressed.

これらの理由により、熱による有機膜の変質を抑制でき、被覆除去速度が大幅に向上したと考えられる。   For these reasons, it is considered that the deterioration of the organic film due to heat can be suppressed, and the coating removal rate has been greatly improved.

また、プラズマ処理前に解しユニットを用いて被覆銅線同士を剥がしておくことで、プラズマ活性種が浸透しやすくなり、さらに被覆除去速度が向上したと考えられる。   Moreover, it is considered that the plasma-activated species can easily permeate and the coating removal rate is improved by removing the coated copper wires using a breaking unit before the plasma treatment.

次に、導通を確保できた理由として、以下のことが考えられる。   Next, the following can be considered as a reason why the conduction can be ensured.

従来例では、プラズマから供給される熱などにより、特に拠り線の最外周部の銅線において、自然酸化膜よりも厚い酸化膜が形成されてしまい、隣接する銅線同士、あるいは銅線と圧着端子間の接触抵抗が高くなったと考えられる。一方、第4実施形態では最外周部の銅線においても表面を酸化することなくプラズマ処理できたため、導通を確保できたと考えられる。   In the conventional example, an oxide film thicker than the natural oxide film is formed on the copper wire at the outermost periphery of the base wire due to heat supplied from the plasma, etc., and the adjacent copper wires or the copper wires are crimped together. It is thought that the contact resistance between terminals increased. On the other hand, in the fourth embodiment, it was considered that the conduction was ensured because the plasma treatment could be performed without oxidizing the surface even in the outermost copper wire.

以上、本発明の実施形態において、有機膜として、イミド系有機膜のポリイミドアミドを例示したが、これに限らない。特に熱硬化性を有する樹脂であれば格別の効果を奏し、エステル系有機膜、エステルイミド系有機膜、ウレタン系有機膜、エポキシ系有機膜、イミド系有機膜、アミド系有機膜などの様々な有機膜で本発明と同等の効果を得られる。   As described above, in the embodiment of the present invention, the imide organic film polyimide amide is exemplified as the organic film, but the organic film is not limited thereto. In particular, if it is a thermosetting resin, it has a special effect, such as an ester organic film, an ester imide organic film, a urethane organic film, an epoxy organic film, an imide organic film, and an amide organic film. An effect equivalent to that of the present invention can be obtained with an organic film.

また、本発明の実施形態において、被処理物が線状のものである場合のみ例示したが、これに限らず、フィルム状、シート状及び板状の形態であっても、狭いチャンバー内でも重ねて処理することができるため、本発明を用いることにより、本実施形態と同等の効果を奏する。   Further, in the embodiment of the present invention, only the case where the object to be processed is linear is illustrated, but the present invention is not limited to this, and even in a film shape, a sheet shape, and a plate shape, they are stacked in a narrow chamber. Therefore, by using the present invention, an effect equivalent to that of the present embodiment can be obtained.

また、本発明の実施形態において、被処理物を振動させる場合のみ例示したが、これに限らず、回転及び不規則な揺動させる場合でも、被処理物の特定の面にのみプラズマ活性種が照射するのを防止できる、あるいはチャンバーの壁面に被処理物が長時間接触することを防止できるため、本発明と同様の効果を得られる。   Further, in the embodiment of the present invention, the case is illustrated only when the workpiece is vibrated. However, the present invention is not limited to this, and even when the workpiece is rotated and irregularly swung, the plasma active species is only present on a specific surface of the workpiece. Irradiation can be prevented, or the object to be processed can be prevented from coming into contact with the wall surface of the chamber for a long time, so that the same effect as the present invention can be obtained.

また、本発明の実施形態において、振動周波数が5Hzの場合のみ例示したが、振動数が小さすぎると、プラズマから被処理物への熱伝導を抑制する効果が薄く、振動数が大きすぎると、振動による対流で大気を巻き込んでしまい、プラズマ密度を低下させてしまうため、概ね0.1Hz以上500kHz以下がよい。また、回転周波数に関しても同様である。   Further, in the embodiment of the present invention, only the case where the vibration frequency is 5 Hz is exemplified, but if the vibration frequency is too small, the effect of suppressing heat conduction from the plasma to the object to be processed is thin, and if the vibration frequency is too large, Since the atmosphere is engulfed by convection due to vibration and the plasma density is lowered, the frequency is preferably about 0.1 Hz to 500 kHz. The same applies to the rotation frequency.

また、本発明の実施形態において、ガスストップバルブを開閉することによってガス流量を大きくする場合のみ例示したが、これに限らず、流量計などの設定値を変えることによりガス流量を大きくしてもよく、本発明と同等の効果が得られる。   In the embodiment of the present invention, the gas flow rate is increased only by opening and closing the gas stop valve. However, the present invention is not limited to this, and the gas flow rate can be increased by changing the set value of a flow meter or the like. Well, an effect equivalent to that of the present invention can be obtained.

また、本発明の実施形態において、電極間の距離が2mmである場合のみ例示したが、これに限らない。電極間の距離が大きすぎると、プラズマが生成し難くなる、あるいはアークプラズマに移行しやすくなるため、概ね10mm以下がよい。さらに好適には4mm以下がよい。   In the embodiment of the present invention, only the case where the distance between the electrodes is 2 mm is illustrated, but the present invention is not limited to this. If the distance between the electrodes is too large, it is difficult to generate plasma or it is easy to shift to arc plasma. More preferably, it is 4 mm or less.

また、本発明の実施形態において、電極間のなす空間の端面から被処理物の端面までの距離が1mmである場合のみ例示したが、これに限らない。距離が近づきすぎるとプラズマからの熱の影響を受けやすく、距離が遠すぎるとプラズマ密度が低下して処理速度が著しく低下するため、概ね1mm以上10mm以下がよい。   Moreover, in embodiment of this invention, although illustrated only when the distance from the end surface of the space between electrodes to the end surface of a to-be-processed object is 1 mm, it is not restricted to this. If the distance is too close, it is easily affected by the heat from the plasma, and if the distance is too far, the plasma density is lowered and the processing speed is remarkably lowered.

また、本発明の実施形態において、不活性ガス濃度が93%程度の処理ガスの場合のみ例示したが、不活性ガスが少なすぎるとプラズマ密度の著しい低下を招くため、不活性ガス濃度は概ね50%以上がよい。また、不活性ガスが多すぎると化学反応性に乏しくなり処理速度が著しく低下するため、不活性ガス濃度は概ね99.9%以下がよい。   Further, in the embodiment of the present invention, only the case of a processing gas having an inert gas concentration of about 93% has been exemplified, but if the amount of the inert gas is too small, the plasma density is significantly lowered. % Or more is good. Further, if there is too much inert gas, the chemical reactivity becomes poor and the processing speed is remarkably reduced. Therefore, the inert gas concentration is preferably about 99.9% or less.

また、本発明の実施形態において、処理用ガスが不活性ガス、O2ガス及びF含有ガスの組み合わせについてのみ例示したが、これに限らない。処理用ガスが不活性ガス、O2ガス及びN2ガスを組み合わせた場合においても、オゾンの生成を促進するなどして、有機膜の除去速度を大きくできるため、本発明と同等の効果を得ることができる。また、F含有ガスとして、CF4ガスについてのみ例示したが、これに限らず、F2、CHF3、HF、CF4、C24、C26、C36、C46、C38、C48、C58、NF3及びSF6ガスにおいても同様の効果を得ることができる。 In the embodiment of the present invention, the processing gas is exemplified only for the combination of the inert gas, the O 2 gas, and the F-containing gas, but the present invention is not limited to this. Even when the processing gas is an inert gas, an O 2 gas, and an N 2 gas, the removal rate of the organic film can be increased by, for example, promoting the generation of ozone, thereby obtaining the same effect as the present invention. be able to. Further, as the F-containing gas, it has been illustrated only the CF 4 gas is not limited thereto, F 2, CHF 3, HF , CF 4, C 2 F 4, C 2 F 6, C 3 F 6, C 4 F 6, C 3 F 8, C 4 F 8, C 5 F 8, can provide the same effects in NF 3 and SF 6 gas.

また、本発明の実施形態において、1つの工程としてのプラズマ処理についてのみ例示したが、これに限らない。第1の工程で少なくとも不活性ガス及びO2ガスを含むガスで被処理物表面の有機膜を除去し、その後、第2の工程で少なくとも不活性ガス及び還元ガスを含むガスで露出した金属表面を還元することによって、有機膜除去中に酸化した導線の表面を還元することができるため、さらに格別の効果を奏する。なお、還元ガスとして、H2、NH3、N2、及びCOガスが挙げられる。 Further, in the embodiment of the present invention, only the plasma processing as one process is illustrated, but the present invention is not limited to this. In the first step, the organic film on the surface of the object to be processed is removed with a gas containing at least an inert gas and O 2 gas, and then exposed in a gas containing at least an inert gas and a reducing gas in the second step. Since the surface of the conducting wire oxidized during the removal of the organic film can be reduced by reducing the organic film, a further special effect is achieved. Examples of the reducing gas include H 2 , NH 3 , N 2 , and CO gas.

また、本発明の実施形態において、解し機構として機械的圧力を加えることによって解す場合のみ例示したが、これに限らず、薬液によって解す場合、また爆風によって解す場合でも本発明と同等の効果を得ることができる。   Moreover, in the embodiment of the present invention, only the case of solving by applying mechanical pressure as the unraveling mechanism is illustrated, but the present invention is not limited to this. Obtainable.

また、本発明の実施形態において、圧着端子とのかしめについてのみ例示したが、これに限らず、固体同士の接合であり、かつ機械的な圧力によって接合する場合は、本発明と同等の効果を得ることができる。   Further, in the embodiment of the present invention, only caulking with the crimp terminal is illustrated. However, the present invention is not limited to this, and in the case of joining between solids and joining by mechanical pressure, an effect equivalent to that of the present invention is obtained. Obtainable.

本発明は、隣接し、一箇所以上が接触した複数の被処理物のバッチ処理において、全ての被処理物の被覆を高速に除去できるプラズマ処理方法及び装置を提供でき、また、その表面処理により、所望の金属部材との導通を確保しやすくなる導線を提供でき、導線、配線部品、電子部品、部品端子、プリント基板、シート基板、フィルム基板、とりわけ複数の被処理物に対して、各被処理面を高速にエッチング、成膜及び表面処理するといった用途にも適用できる。   INDUSTRIAL APPLICABILITY The present invention can provide a plasma processing method and apparatus capable of removing coatings of all objects to be processed at high speed in batch processing of a plurality of objects to be processed that are adjacent and in contact with one or more places. Therefore, it is possible to provide a conductive wire that facilitates securing conduction with a desired metal member, and each conductive material, wiring component, electronic component, component terminal, printed circuit board, sheet substrate, film substrate, and particularly a plurality of objects to be processed. It can also be applied to uses such as etching, film formation, and surface treatment of the processing surface at high speed.

本発明の第1及び第3実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 1st and 3rd embodiment of this invention 本発明の第1実施形態における被処理物の断面の拡大模式図The enlarged schematic diagram of the cross section of the to-be-processed object in 1st Embodiment of this invention 本発明の第1実施形態における被処理物の外観模式図Schematic external view of an object to be processed in the first embodiment of the present invention 本発明の第1、第2及び第4実施形態における電極近傍の断面拡大図The cross-sectional enlarged view of the electrode vicinity in 1st, 2nd and 4th embodiment of this invention 本発明の第1実施形態における被処理物の断面を観察したSEM画像を示す図The figure which shows the SEM image which observed the cross section of the to-be-processed object in 1st Embodiment of this invention. 本発明の第2実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 2nd Embodiment of this invention. 本発明の第2実施形態におけるプラズマ処理装置の上断面図Upper sectional view of plasma processing apparatus in second embodiment of the present invention 本発明の第4実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 4th Embodiment of this invention. 本発明の第4実施形態における解しユニット18内部の断面拡大図The cross-sectional enlarged view inside the disassembling unit 18 in the fourth embodiment of the present invention. 従来のプラズマ処理装置を示す図A diagram showing a conventional plasma processing apparatus 従来のプラズマ処理装置を示す図A diagram showing a conventional plasma processing apparatus 従来のプラズマ処理装置を用いた場合の結果を示す図The figure which shows the result at the time of using the conventional plasma processing apparatus

符号の説明Explanation of symbols

1 上部電極
2 下部電極
3 絶縁体チャンバー
4 ガス流路
5 処理ガス供給装置
6 金属容器
7 ガス供給口
8 ガス噴出口
9 高周波電源
10 被処理物
11 絶縁ブロック
12 プラズマ
13 振動ユニット
DESCRIPTION OF SYMBOLS 1 Upper electrode 2 Lower electrode 3 Insulator chamber 4 Gas flow path 5 Process gas supply apparatus 6 Metal container 7 Gas supply port 8 Gas jet 9 High frequency power supply 10 To-be-processed object 11 Insulation block 12 Plasma 13 Vibration unit

Claims (38)

一対の電極間の少なくとも一方に誘電体を設け、電極間に処理用ガスを供給しつつ高周波電力を供給することで、電極間に大気圧近傍の圧力下でプラズマを生成させ、被処理物を処理する方法において、一対の電極間のなす空間に被処理物を載置させずに、前記被処理物の少なくとも一部分をプラズマに曝す際、前記被処理物を振動或いは回転させながら処理することを特徴とするプラズマ処理方法。 By providing a dielectric on at least one of the pair of electrodes and supplying high-frequency power while supplying a processing gas between the electrodes, plasma is generated between the electrodes under a pressure near atmospheric pressure, In the processing method, when exposing at least a part of the object to be processed to plasma without placing the object to be processed in a space formed between a pair of electrodes, the object to be processed is vibrated or rotated. A plasma processing method. 一対の電極間の少なくとも一方に誘電体を設け、電極間に処理用ガスを供給しつつ高周波電力を供給することで、電極間に大気圧近傍の圧力下でプラズマを生成させ、被処理物を処理する方法において、一対の電極間のなす空間に被処理物を載置させずに、プラズマ状態のガスを少なくとも2方向から被処理面に照射させること
を特徴とするプラズマ処理方法。
By providing a dielectric on at least one of the pair of electrodes and supplying high-frequency power while supplying a processing gas between the electrodes, plasma is generated between the electrodes under a pressure near atmospheric pressure, In the processing method, the processing surface is irradiated with plasma-state gas from at least two directions without placing the processing object in a space formed between the pair of electrodes.
被処理物が糸状あるいは棒状の形状であることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the object to be processed has a thread shape or a rod shape. 被処理物を複数本で重ねた、束ねた或いは拠った状態であることを特徴とする請求項3記載のプラズマ処理方法。 4. The plasma processing method according to claim 3, wherein a plurality of objects to be processed are stacked, bundled or relied on. 被処理物がフィルム状、シート状及び板状の形状であることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the object to be processed has a film shape, a sheet shape, or a plate shape. 被処理物を複数枚で重ねた状態としたことを特徴とする請求項5記載のプラズマ処理方法。 6. The plasma processing method according to claim 5, wherein a plurality of workpieces are stacked. 被処理物の線方向からプラズマ状態のガスを照射することを特徴とする請求項1記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the plasma gas is irradiated from a line direction of the workpiece. 少なくとも1方向は、被処理物の線方向からプラズマ状態のガスを照射し、さらに少なくとも1方向は、被処理物の線方向と垂直となる方向からプラズマ状態のガスを照射することを特徴とする請求項2記載のプラズマ処理方法。 At least one direction is irradiated with a plasma state gas from the line direction of the object to be processed, and at least one direction is irradiated with a plasma state gas from a direction perpendicular to the line direction of the object to be processed. The plasma processing method according to claim 2. 被処理物は、表面の一部及び全部を有機膜で覆った金属であることを特徴とする請求項3または5記載のプラズマ処理方法。 6. The plasma processing method according to claim 3, wherein the object to be processed is a metal whose surface is partially and entirely covered with an organic film. 有機膜は熱硬化性樹脂であることを特徴とする請求項9記載のプラズマ処理方法。 The plasma processing method according to claim 9, wherein the organic film is a thermosetting resin. 供給させるガスの平均流速方向に対して、被処理物の位置を移動させることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the position of the object to be processed is moved with respect to the average flow velocity direction of the gas to be supplied. 被処理面を振動あるいは回転させながら処理することを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the processing surface is processed while vibrating or rotating. 振動周波数が0.1Hz以上500kHz以下であることを特徴とする請求項12記載のプラズマ処理方法。 The plasma processing method according to claim 12, wherein the vibration frequency is 0.1 Hz to 500 kHz. 回転周波数が0.1Hz以上500kHz以下であることを特徴とする請求項12記載のプラズマ処理方法。 The plasma processing method according to claim 12, wherein the rotation frequency is 0.1 Hz to 500 kHz. プラズマ処理中に、もしくはプラズマ処理とプラズマ処理の間に、供給するガスの流量を大きくすることを特徴とする請求項1または2に記載のプラズマ処理方法。 3. The plasma processing method according to claim 1, wherein the flow rate of the supplied gas is increased during the plasma processing or between the plasma processing and the plasma processing. 供給するガスの流量を断続的に大きくすることで、隣接する被処理物同士の接触面積を小さくすることを特徴とする請求項15記載のプラズマ処理方法。 The plasma processing method according to claim 15, wherein a contact area between adjacent objects to be processed is reduced by intermittently increasing a flow rate of a gas to be supplied. 一時的にガスの供給を遮断し、ガス供給を再開した瞬間に流れる過渡的なガス流により、ガス流量を大きくすることを特徴とする請求項15記載のプラズマ処理方法。 16. The plasma processing method according to claim 15, wherein the gas flow rate is increased by a transient gas flow that flows at a moment when the gas supply is temporarily interrupted and the gas supply is resumed. ガスストップバルブを介して、ガス供給の遮断及び再開を行うことを特徴とする請求項15記載のプラズマ処理方法。 The plasma processing method according to claim 15, wherein the gas supply is shut off and restarted through a gas stop valve. 被処理物が、少なくとも2面の壁に囲まれており、且つ2面の壁が対向する位置にあることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the object to be processed is surrounded by at least two walls, and the two walls are opposed to each other. 電極間の距離が10mm以下であることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1 or 2, wherein a distance between the electrodes is 10 mm or less. 電極間の距離が4mm以下であることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein a distance between the electrodes is 4 mm or less. 被処理物の端面が載置される位置は、電極間のなす空間の端面から0.5mm以上離れていることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1 or 2, wherein the position where the end surface of the object to be processed is placed is separated by 0.5 mm or more from the end surface of the space formed between the electrodes. 被処理物の端面が載置される位置は、電極間のなす空間の端面から10mm以下であることを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1 or 2, wherein the position where the end surface of the object to be processed is placed is 10 mm or less from the end surface of the space formed between the electrodes. 処理用ガスが不活性ガスを50%以上の割合で含むことを特徴とする請求項1または2に記載のプラズマ処理方法。 3. The plasma processing method according to claim 1, wherein the processing gas contains an inert gas at a ratio of 50% or more. 処理用ガスは不活性ガスを99.9%以下の割合で含むことを特徴とする請求項1または2に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the processing gas contains an inert gas at a ratio of 99.9% or less. 不活性ガスとO2ガスを含むガスを用いたプラズマ処理する第1の工程と、不活性ガスと還元性ガスを含むガスを用いてプラズマ処理する第2の工程を実施することを特徴とする請求項1または2に記載のプラズマ処理方法。 A first step of performing plasma processing using a gas containing an inert gas and an O 2 gas and a second step of performing plasma processing using a gas containing an inert gas and a reducing gas are performed. The plasma processing method according to claim 1 or 2. 第1の工程で被処理物表面の有機膜を除去し、第2の工程で被処理物表面の金属元素を還元することを特徴とする請求項26記載のプラズマ処理方法。 27. The plasma processing method according to claim 26, wherein the organic film on the surface of the workpiece is removed in the first step, and the metal element on the surface of the workpiece is reduced in the second step. 還元性のガスは、H2、NH3、N2、及びCOガスのいずれかであることを特徴とする請求項26記載のプラズマ処理方法。 Reducing gas is, H 2, NH 3, N 2, and a plasma processing method of claim 26, wherein a is any of CO gas. 処理用ガスがO2ガスを含み、且つN2、F元素含有ガスの少なくとも1種類を含むことを特徴とする請求項1または2に記載のプラズマ処理方法。 3. The plasma processing method according to claim 1, wherein the processing gas contains O 2 gas and contains at least one of N 2 and F element-containing gas. F元素含有ガスはF2、CHF3、HF、CF4、C24、C26、C36、C46、C38、C48、C58、NF3及びSF6ガスのいずれかであることを特徴とする請求項21または22に記載のプラズマ処理方法。 F element-containing gas is F 2, CHF 3, HF, CF 4, C 2 F 4, C 2 F 6, C 3 F 6, C 4 F 6, C 3 F 8, C 4 F 8, C 5 F 8 The plasma processing method according to claim 21, wherein the plasma processing method is any one of NF 3 and SF 6 gases. 一対の電極間の少なくとも一方に固体誘電体を設け、電極間に処理用ガスを供給しつつ高周波電力を供給することで、大気圧近傍の圧力下でプラズマを生成し、プラズマ状態のガスを被処理物に対して照射し、複数の、且つ少なくとも一箇所が接触する被処理物を、一対の電極間のなす空間に被処理物を載置させずに、プラズマ状態のガスを被処理面に照射させることでプラズマ処理する工程と、複数の被処理物の周囲を金属部材で囲んで、機械的な圧力を与えることで被処理物と金属部材を接触させる工程により、被処理物と金属部材を導通させること
を特徴とする導線。
A solid dielectric is provided on at least one of the pair of electrodes, and high-frequency power is supplied while supplying a processing gas between the electrodes, so that plasma is generated under a pressure near atmospheric pressure, and the plasma state gas is covered. Irradiate the object to be processed, and a plurality of objects to be processed that are in contact with each other at least at one point are placed on the surface to be processed without placing the object to be processed in the space between the pair of electrodes. The object to be processed and the metal member include a step of performing plasma treatment by irradiating and surrounding a plurality of objects to be processed with a metal member and bringing the object to be processed into contact with the metal member by applying mechanical pressure. Conductive wire characterized by conducting.
機械的な圧力を与える工程が、かしめる工程であることを特徴とする請求項31記載の導線。 32. The conducting wire according to claim 31, wherein the step of applying mechanical pressure is a step of caulking. 金属部材が圧着端子であることを特徴とする請求項31記載の導線。 32. The conducting wire according to claim 31, wherein the metal member is a crimp terminal. 一対の電極間の少なくとも一方に固体誘電体を設け、電極に連結可能な高周波電源と電極間に処理用ガスを供給できるガス供給装置を設け、電極間のなす空間に備えるガス流路を経由して、被処理物の被処理面に処理用ガスを供給することが可能なプラズマ処理装置において、電極間のなす空間に連結し、且つ少なくとも対向する2面の絶縁体からなる壁を備えること
を特徴とするプラズマ処理装置。
A solid dielectric is provided on at least one of the pair of electrodes, a high-frequency power source that can be connected to the electrode, and a gas supply device that can supply a processing gas between the electrodes are provided, via a gas flow path provided in a space formed between the electrodes. In the plasma processing apparatus capable of supplying the processing gas to the processing surface of the processing object, the plasma processing apparatus includes a wall made of at least two opposing insulators connected to the space formed between the electrodes. A plasma processing apparatus.
一対の電極間の少なくとも一方に固体誘電体を設け、電極に連結可能な高周波電源と電極間に処理用ガスを供給できるガス供給装置を設け、電極間のなす空間に備えるガス流路を経由して、被処理物の被処理面全体に処理用ガスを供給することが可能なプラズマ処理装置において、電極間のなす空間に連結し、且つ少なくとも対向する2面の絶縁体からなる壁を備え、尚且つ該ガス流路を少なくとも2系統備えること
を特徴とするプラズマ処理装置。
A solid dielectric is provided on at least one of the pair of electrodes, a high-frequency power source that can be connected to the electrode, and a gas supply device that can supply a processing gas between the electrodes are provided, via a gas flow path provided in a space formed between the electrodes. In the plasma processing apparatus capable of supplying the processing gas to the entire processing surface of the processing object, the plasma processing apparatus includes a wall that is connected to a space formed between the electrodes and is made of at least two opposing insulators, A plasma processing apparatus comprising at least two gas flow paths.
電極に対する被処理物の位置を相対的に変化することが可能な移動機構を備えることを特徴とする請求項34または35に記載のプラズマ処理装置。 36. The plasma processing apparatus according to claim 34 or 35, further comprising a moving mechanism capable of changing a position of an object to be processed relative to an electrode. 移動機構は、振動を伝達することが可能な機構、あるいは回転を伝達することが可能なことを特徴とする請求項36記載のプラズマ処理装置。 The plasma processing apparatus according to claim 36, wherein the moving mechanism is capable of transmitting vibrations or transmitting rotation. 互いに隣接する被処理物同士の接触面積を小さくすることが可能な解し機構を備えることを特徴とする請求項34または35記載のプラズマ処理装置。 36. The plasma processing apparatus according to claim 34 or 35, further comprising a breaking mechanism capable of reducing a contact area between objects to be processed adjacent to each other.
JP2005245595A 2005-08-26 2005-08-26 Plasma processing method Expired - Fee Related JP4577155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245595A JP4577155B2 (en) 2005-08-26 2005-08-26 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245595A JP4577155B2 (en) 2005-08-26 2005-08-26 Plasma processing method

Publications (3)

Publication Number Publication Date
JP2007059305A true JP2007059305A (en) 2007-03-08
JP2007059305A5 JP2007059305A5 (en) 2008-06-26
JP4577155B2 JP4577155B2 (en) 2010-11-10

Family

ID=37922595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245595A Expired - Fee Related JP4577155B2 (en) 2005-08-26 2005-08-26 Plasma processing method

Country Status (1)

Country Link
JP (1) JP4577155B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117713A1 (en) * 2011-03-01 2012-09-07 パナソニック株式会社 Plasma processing device and plasma processing method
JP2017037811A (en) * 2015-08-12 2017-02-16 日本電子株式会社 Charged particle beam device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292775A (en) * 1988-05-18 1989-11-27 Toshiba Corp Connecting method for stranded conductor
JPH06244528A (en) * 1993-02-19 1994-09-02 Toppan Printing Co Ltd Manufacture of printed-wiring board
JP2000340599A (en) * 1999-05-26 2000-12-08 Canon Inc Wire-bonding device and wire-bonding method using the same
JP2001077097A (en) * 1999-06-30 2001-03-23 Matsushita Electric Works Ltd Plasma processing device and method
JP2002158219A (en) * 2000-09-06 2002-05-31 Sekisui Chem Co Ltd Discharge plasma processor and processing method using the same
JP2003003266A (en) * 2001-06-22 2003-01-08 Konica Corp Atmospheric pressure plasma treatment equipment, atmosphere pressure plasma treatment method, base material, optical film and image display element
JP2003168597A (en) * 2001-11-29 2003-06-13 Sekisui Chem Co Ltd Discharge plasma treatment method
JP2003218099A (en) * 2002-01-21 2003-07-31 Sekisui Chem Co Ltd Method and system for discharge plasma processing
JP2004115896A (en) * 2002-09-27 2004-04-15 Sekisui Chem Co Ltd Discharge plasma treatment device, and discharge plasma treatment method
JP2005129692A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Device and method for treating electronic component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292775A (en) * 1988-05-18 1989-11-27 Toshiba Corp Connecting method for stranded conductor
JPH06244528A (en) * 1993-02-19 1994-09-02 Toppan Printing Co Ltd Manufacture of printed-wiring board
JP2000340599A (en) * 1999-05-26 2000-12-08 Canon Inc Wire-bonding device and wire-bonding method using the same
JP2001077097A (en) * 1999-06-30 2001-03-23 Matsushita Electric Works Ltd Plasma processing device and method
JP2002158219A (en) * 2000-09-06 2002-05-31 Sekisui Chem Co Ltd Discharge plasma processor and processing method using the same
JP2003003266A (en) * 2001-06-22 2003-01-08 Konica Corp Atmospheric pressure plasma treatment equipment, atmosphere pressure plasma treatment method, base material, optical film and image display element
JP2003168597A (en) * 2001-11-29 2003-06-13 Sekisui Chem Co Ltd Discharge plasma treatment method
JP2003218099A (en) * 2002-01-21 2003-07-31 Sekisui Chem Co Ltd Method and system for discharge plasma processing
JP2004115896A (en) * 2002-09-27 2004-04-15 Sekisui Chem Co Ltd Discharge plasma treatment device, and discharge plasma treatment method
JP2005129692A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Device and method for treating electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117713A1 (en) * 2011-03-01 2012-09-07 パナソニック株式会社 Plasma processing device and plasma processing method
JP2017037811A (en) * 2015-08-12 2017-02-16 日本電子株式会社 Charged particle beam device

Also Published As

Publication number Publication date
JP4577155B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4256763B2 (en) Plasma processing method and plasma processing apparatus
JP3229504B2 (en) Method and apparatus for dry fluxing of metal surfaces prior to soldering or tinning
JP5487473B2 (en) Wiring board and manufacturing method thereof
JP2014049529A (en) Plasma processing apparatus and method of cleaning oxide film of metal
KR20050022953A (en) Method for bonding substrates and method for irradiating particle beam to be utilized therefor
TW200926284A (en) Method and system of post etch polymer residue removal
JP4732699B2 (en) Soldering method
KR19990045115A (en) Reflow Soldering Apparatus and Method for Metal Surfaces
JP2007067132A (en) Manufacturing method of semiconductor device
CN105355566B (en) The surface treatment method of pad and the production method of pad
JP4577155B2 (en) Plasma processing method
KR20020081042A (en) Method and apparatus for fabricating printed circuit board using atmospheric pressure capillary discharge plasma shower
JP4896367B2 (en) Electronic component processing method and apparatus
JP2006196761A (en) Method for manufacturing wiring circuit board
CN105097564A (en) Processing method of chip packaging structure
TW511135B (en) Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber
JP4325280B2 (en) Processing method of electronic parts
TW202226380A (en) Substrate bonding system and substrate bonding method
JP4501703B2 (en) Plasma processing equipment
JP2007262551A (en) Method of forming silicon type thin film
JP2007081221A (en) Plasma treatment apparatus and treatment method
JP2005169444A (en) Method for joining insulation coated conductor and apparatus therefor
JP2000068653A (en) Smear removing method of multilayer board
JPH09122905A (en) Method to dry-flux-treat metal surface prior to soldering ortin plating for which atmosphere containing steam, is used
KR20110047582A (en) Apparatus for manufacturing bonding wires using atmosphere plasma cleaning and method of manufacturing bonding wires using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees