JP4501703B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP4501703B2
JP4501703B2 JP2005018053A JP2005018053A JP4501703B2 JP 4501703 B2 JP4501703 B2 JP 4501703B2 JP 2005018053 A JP2005018053 A JP 2005018053A JP 2005018053 A JP2005018053 A JP 2005018053A JP 4501703 B2 JP4501703 B2 JP 4501703B2
Authority
JP
Japan
Prior art keywords
plasma
guide
dielectric cylinder
cylinder
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005018053A
Other languages
Japanese (ja)
Other versions
JP2006211769A (en
Inventor
和孝 西川
智洋 奥村
光央 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005018053A priority Critical patent/JP4501703B2/en
Publication of JP2006211769A publication Critical patent/JP2006211769A/en
Application granted granted Critical
Publication of JP4501703B2 publication Critical patent/JP4501703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、糸状物体のプラズマ処理を行うための糸状物体の処理装置及び方法に関するもので、特に電子部品の導線及び端子の表面処理を行うためのプラズマ処理装置に関するものである。   The present invention relates to an apparatus and method for processing a filamentous object for plasma processing of a filamentous object, and more particularly to a plasma processing apparatus for performing a surface treatment of conductors and terminals of electronic components.

糸状物体の一例として、コイルの端子部が挙げられる。これは、銅を主成分とする線材の表面にエナメル線に代表されるような樹脂を被覆した被覆線である。   An example of the thread-like object is a terminal portion of a coil. This is a coated wire in which the surface of a wire mainly composed of copper is coated with a resin typified by an enameled wire.

プリント回路基板のはんだ接合面に予めプラズマを用いた処理、とりわけ設備のコストやフップリントに関して利点のある低温大気圧プラズマを用いて処理することで、フラックスを用いずに良好なはんだ接合を実現する技術が特許文献1で述べられている。   By using plasma on the solder joint surface of the printed circuit board in advance, especially by using low-temperature atmospheric pressure plasma, which is advantageous in terms of equipment cost and footprint, it realizes good solder joint without using flux The technique is described in US Pat.

しかしながら、プリント回路基板へのプラズマ処理に代表されるように、低温大気圧プラズマによる表面処理の目的は接合表面の清浄化、及び表面改質であり、被覆線の有機被覆のような比較的厚い膜(50μm)の除去工法に適用するには、膨大な処理時間を要するという問題があった。   However, as represented by plasma processing on printed circuit boards, the purpose of surface treatment with low-temperature atmospheric pressure plasma is to clean the bonding surface and to modify the surface, which is relatively thick like organic coating of coated wire There is a problem that enormous processing time is required to apply to the removal method of the film (50 μm).

この問題を解決する方法として、特許文献2に述べられているような微小領域に高密度なマイクロプラズマを生成する方法により、有機被覆膜を短時間で除去することが実現できる。   As a method for solving this problem, the organic coating film can be removed in a short time by a method for generating a high-density microplasma in a minute region as described in Patent Document 2.

このマイクロプラズマによる、糸状物体に対するプラズマ処理の従来例として、導線の表面処理について、直方体型のマイクロプラズマ処理装置を例にとり、図17を用いて説明する。   As a conventional example of the plasma treatment for the filamentous object by the microplasma, the surface treatment of the conductive wire will be described with reference to FIG. 17, taking a rectangular parallelepiped microplasma treatment apparatus as an example.

なお、導線は、一般に、銅を主成分とする線材の表面に、エナメル線に代表されるような樹脂を被覆した被覆線を意味し、樹脂は、ポリウレタン系、イミド系、ポリエステル系などが用いられる。   In addition, the conducting wire generally means a coated wire in which the surface of a wire mainly composed of copper is coated with a resin represented by an enameled wire, and the resin is a polyurethane-based, imide-based, or polyester-based resin. It is done.

マイクロプラズマ源は、誘電体製筒2と、誘電体製筒2を挟んで相対する2つの電極3及び4から成り、誘電体製筒2内にガスを供給するガス供給装置(図示せず)と、2つの電極3及び4間に電力を供給する電源(図示せず)とを備える。図の右から左に向かって、誘電体製筒2内に希ガス及び反応性ガスの混合ガスを供給しつつ、電極3及び4間に数百kHz〜数GHzの高周波電圧もしくは高周波をパルス変調したもの、あるいは、パルス状の直流電圧を供給することにより、誘電体製筒2内にプラズマ9が発生する。誘電体製筒2内に導線を挿入し、プラズマ9を発生させることで、図17に示すように、導線から樹脂の被覆を除去することができる。
特開平09−235686号公報 特開2004−363152号公報
The microplasma source includes a dielectric cylinder 2 and two electrodes 3 and 4 opposed to each other with the dielectric cylinder 2 interposed therebetween, and a gas supply device (not shown) for supplying gas into the dielectric cylinder 2 And a power source (not shown) for supplying power between the two electrodes 3 and 4. From the right to the left of the figure, a high frequency voltage or high frequency of several hundred kHz to several GHz is pulse-modulated between the electrodes 3 and 4 while supplying a mixed gas of a rare gas and a reactive gas into the dielectric cylinder 2. The plasma 9 is generated in the dielectric cylinder 2 by supplying a pulsed DC voltage. By inserting a conducting wire into the dielectric cylinder 2 and generating the plasma 9, the resin coating can be removed from the conducting wire as shown in FIG.
JP 09-235686 A JP 2004-363152 A

しかしながら、従来例のプラズマ処理においては、プラズマ照射中に、被処理物が、誘電体製筒2内のプラズマ処理領域で、内壁に接触した場合、被処理物の接触した部分はプラズマの処理が施されない、または処理速度が小さくなるという問題点が生じていた。   However, in the plasma processing of the conventional example, when the processing object comes into contact with the inner wall in the plasma processing region in the dielectric cylinder 2 during the plasma irradiation, the plasma processing is performed on the contacted portion of the processing object. There has been a problem that it is not applied or the processing speed is reduced.

図17を参照して説明した導線のプラズマ処理において、導線1が誘電体製筒2のプラズマ照射部分の内壁面に接触していると、接触面にはプラズマが照射されず、樹脂の被覆も除去されない。特に、樹脂の被覆以外に、接着剤成分が含まれている場合、プラズマの熱により、接着剤が溶け、導線1が誘電体製筒2の内壁面に接着されてしまう。   In the plasma processing of the conductive wire described with reference to FIG. 17, if the conductive wire 1 is in contact with the inner wall surface of the plasma irradiation portion of the dielectric cylinder 2, the contact surface is not irradiated with plasma, and the resin coating is not performed. Not removed. In particular, when an adhesive component is included in addition to the resin coating, the adhesive melts due to the heat of the plasma, and the conductive wire 1 is bonded to the inner wall surface of the dielectric cylinder 2.

このような事情から、プラズマ処理時に、導線1を誘電体製筒2の内壁面に接触しないように設置する必要があり、導線1が誘電体製筒2の内壁面に接触した際には、導線を設置しなおした上で、再度、プラズマ処理を実施する必要があった。   From such circumstances, it is necessary to install the conductor 1 so as not to contact the inner wall surface of the dielectric cylinder 2 during the plasma treatment. When the conductor 1 contacts the inner wall surface of the dielectric cylinder 2, It was necessary to carry out the plasma treatment again after re-installing the conductors.

一方、マイクロプラズマの特性上、電極間の距離が大きくなるほど、プラズマが生成しにくくなるため、誘電体製筒2の内部の空間は必然的に狭くなる。このため、導線1を誘電体製筒2内壁面に接触しないように設置するのは非常に困難であった。同時に、被処理物の挿入口も狭いため、導線1を誘電体製筒2内に挿入することも困難であった。   On the other hand, because of the characteristics of microplasma, the greater the distance between the electrodes, the more difficult it is to generate plasma, so the space inside the dielectric cylinder 2 is inevitably narrowed. For this reason, it was very difficult to install the conductor 1 so as not to contact the inner wall surface of the dielectric cylinder 2. At the same time, since the insertion port for the object to be processed is also narrow, it is difficult to insert the conductive wire 1 into the dielectric cylinder 2.

本発明は、上記従来の問題点に鑑み、狭い空間内でも、被処理物を容易に設置できる構造を有することで、被処理物を内壁に接触させることなく、所望のプラズマ処理を実施できるプラズマ処理装置を提供することを目的としている。   In view of the above-described conventional problems, the present invention has a structure in which an object to be processed can be easily installed even in a narrow space, so that a plasma can be performed without causing the object to be processed to contact the inner wall. An object is to provide a processing apparatus.

願発明のプラズマ処理装置は、被処理物の挿入口を備えた筒と、被処理物を支持するためのガイドと、前記筒を挟んで配置された電極と、前記筒と連結されたガス供給装置と、前記電極に高周波電圧を供給する電力供給装置と、を備えたプラズマ処理装置であって、前記筒と前記ガイドとは空間を有して配置され、前記ガイドには前記ガイドの内部に向かって被処理物挿入口が絞られるようにテーパが設けられると共に、前記ガイド内部の前記被処理物の挿入方向に垂直な断面のうち、直径が最小となる内接円で構成される第1空間が設けられ、前記筒には前記第1空間の直径よりも大きい内接円で構成される第2空間を有し、かつ、前記ガイドの外周には前記電極が位置しない構造であることを特徴とする。 The plasma processing apparatus of the present gun onset Ming, a cylinder having an insertion port of the article to be treated, a guide for supporting an object to be processed, an electrode disposed across the tube, which is connected to the tube A plasma processing apparatus comprising: a gas supply device; and a power supply device that supplies a high-frequency voltage to the electrode, wherein the tube and the guide are disposed with a space, and the guide includes the guide A taper is provided so that the workpiece insertion port is narrowed toward the inside, and the inner diameter of the cross section perpendicular to the insertion direction of the workpiece inside the guide is the inscribed circle having the smallest diameter. A first space is provided, the cylinder has a second space constituted by an inscribed circle larger than the diameter of the first space, and the electrode is not positioned on the outer periphery of the guide. It is characterized by that.

このような構成により、被処理物を内壁に接触させることなく、所望のプラズマ処理を行うことが可能となる。   With such a configuration, it is possible to perform a desired plasma process without bringing the object to be processed into contact with the inner wall.

願発明のプラズマ処理装置において、好適には、前記ガイド内部の空間の直径が最小である内接円の直径が、前記筒内部の空間、且つ前記電極間が成す空間における内接円の直径の最小値と比して、0.02mm以上2mm以下、小さくなっていることが望ましい。 In the plasma processing apparatus of the present gun onset bright, preferably, the guide inner diameter of the inscribed circle diameter of the smallest space, the cylindrical inner space, of the inscribed circle in a space and between the electrodes forms It is desirable to be smaller than the minimum value of the diameter by 0.02 mm or more and 2 mm or less.

また、好適には、前記ガイドが少なくとも被処理物の挿入口側に設けられていることが望ましい。   Preferably, the guide is preferably provided at least on the insertion port side of the workpiece.

また、好適には、前記ガイドが前記筒と離れて設けられていることが望ましい。   Preferably, the guide is provided apart from the cylinder.

以上のように、本発明のプラズマ処理装置によれば、被処理物の挿入口がテーパ形状をとっているため、狭い空間内でも被処理物を容易に設置でき、被処理物の設置場所に比べ、プラズマ照射部分が広くなっているため、被処理物を内壁に接触させることなく、所望のプラズマ処理を実施できる。 As described above, according to the plasma processing apparatus of the present invention, since the insertion port of the object to be processed has a tapered shape, the object to be processed can be easily installed even in a narrow space. In comparison, since the plasma irradiation portion is wide, a desired plasma treatment can be performed without bringing the workpiece into contact with the inner wall.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
以下、本発明の第1実施形態について、図1から図6を参照して説明する。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、電子部品に用いられる導線の樹脂被覆を除去するための、マイクロプラズマ処理装置の概略構成を示す斜視図である。図1において、導線1は、一般に、銅を主成分とする線材の表面に樹脂が被覆された被覆線である。マイクロプラズマ源は、誘電体製筒2と、誘電体製筒2を挟んで相対する電極3及び4から成り、誘電体製筒2内にガスを供給するガス供給装置5と、2つの電極間に電力を供給する電源6とを備える。ガス供給装置5から、誘電体製筒2内に希ガスと反応性ガスの混合ガスを供給しつつ、電極3及び4間に電源6から電力を供給することにより、誘電体製筒2内に局所的なプラズマ(図示せず)を発生させることができ、導線1を誘電体製筒2内に挿入しつつ、プラズマを発生させることで、導線1の樹脂被覆を除去することができる。   FIG. 1 is a perspective view showing a schematic configuration of a microplasma processing apparatus for removing a resin coating on a conductive wire used for an electronic component. In FIG. 1, the conducting wire 1 is generally a coated wire in which a resin is coated on the surface of a wire material mainly composed of copper. The microplasma source includes a dielectric cylinder 2 and electrodes 3 and 4 facing each other with the dielectric cylinder 2 interposed therebetween, and a gas supply device 5 for supplying gas into the dielectric cylinder 2 and between the two electrodes. And a power source 6 for supplying power to the power source. By supplying power from the power source 6 between the electrodes 3 and 4 while supplying a mixed gas of a rare gas and a reactive gas from the gas supply device 5 into the dielectric cylinder 2, the dielectric cylinder 2 is supplied into the dielectric cylinder 2. Local plasma (not shown) can be generated, and the resin coating of the conductor 1 can be removed by generating plasma while the conductor 1 is inserted into the dielectric cylinder 2.

なお、本実施の形態において、電極3及び4は誘電体製筒2を挟んで相対する一対のみを設けているが、電極3及び4の位置が相対する状態からずれていたり、二対以上設けられていたりしてもよい。また、電極3及び4の形状を筒状にし、図2のように配置してもよい。   In the present embodiment, the electrodes 3 and 4 are provided with only one pair facing each other with the dielectric cylinder 2 in between. However, the positions of the electrodes 3 and 4 are shifted from the facing state, or two or more pairs are provided. It may be done. Alternatively, the electrodes 3 and 4 may be cylindrical and arranged as shown in FIG.

図3は、マイクロプラズマ源と電子部品の導線1の断面図である。導線1は被覆線であり、銅を主成分とする線材7の表面に、樹脂8が被覆されている。図の右から左に向かって誘電体製筒2内に希ガスと反応性ガスの混合ガスを供給しつつ、電極3及び4間に13.56MHzの高周波電圧を供給することにより、誘電体製筒2内にプラズマ9が発生する。印加する電圧は、数百kHz〜数GHzの高周波電圧でもよいし、高周波をパルス変調したものでもよく、あるいは、パルス状の直流電流でもよい。このようなプラズマ源は数Paから数気圧まで動作可能であるが、典型的には10000Paから3気圧程度の範囲の圧力で動作する。とくに、大気圧付近での動作は、厳重な密閉構造や特別な排気装置が不要であるとともに、プラズマや活性粒子の拡散が適度に抑制されるため、好ましい。   FIG. 3 is a cross-sectional view of the microplasma source and the lead 1 of the electronic component. The conducting wire 1 is a covered wire, and the surface of a wire 7 containing copper as a main component is covered with a resin 8. By supplying a high frequency voltage of 13.56 MHz between the electrodes 3 and 4 while supplying a mixed gas of a rare gas and a reactive gas into the dielectric cylinder 2 from the right to the left in the figure, Plasma 9 is generated in the cylinder 2. The applied voltage may be a high frequency voltage of several hundred kHz to several GHz, a pulse modulated high frequency, or a pulsed direct current. Such a plasma source can operate from several Pa to several atmospheres, but typically operates at a pressure in the range of about 10,000 Pa to 3 atmospheres. In particular, operation near atmospheric pressure is preferable because a strict sealing structure and a special exhaust device are not required, and diffusion of plasma and active particles is moderately suppressed.

また、誘電体製筒2の被処理物挿入口には、テーパ10が設けられており、テーパ10がガイドの役割を為すため、導線1を誘電体製筒2内へ容易に挿入することが可能となっている。   Further, a taper 10 is provided at the workpiece insertion port of the dielectric cylinder 2, and the taper 10 serves as a guide, so that the conductor 1 can be easily inserted into the dielectric cylinder 2. It is possible.

図4は、電子部品の導線にプラズマを照射している状態の断面図である。導線1を誘電体製筒2内に発生しているプラズマ9中に挿入し、プラズマ9を照射する。すると、プラズマ中の活性粒子が、被覆された樹脂8と化学反応して揮発し、挿入した導線1の先端部において、線材7が露出する。   FIG. 4 is a cross-sectional view of a state in which plasma is applied to the lead wires of the electronic component. The conducting wire 1 is inserted into the plasma 9 generated in the dielectric cylinder 2 and irradiated with the plasma 9. Then, active particles in the plasma are volatilized by chemical reaction with the coated resin 8, and the wire 7 is exposed at the tip of the inserted conductor 1.

なお、プラズマの発生には、希ガスと反応ガス及び電力が必要であり、ランニングコスト低減のため、導線1を挿入してからガスを供給し、プラズマ9を発生させてもよい。   Note that generation of plasma requires a rare gas, a reactive gas, and electric power, and the plasma 9 may be generated by supplying the gas after inserting the conducting wire 1 in order to reduce running costs.

図5(A)及び(B)はそれぞれ、図4における点線a−a’、b−b’で切断した、マイクロプラズマ源の断面図である。誘電体製筒2内の領域において、導線の挿入方向に対して垂直な面で切断した断面に内接する最大円11の直径のうち、電極3及び4間の成す領域の直径(R’)より短い直径(R)となる領域を設けている(R’>R)。この領域を被処理物の挿入口側だけでなく、そのガスの導入口側にも設けることで、被処理物が長く、柔らかいものの場合であっても、確実に処理を行うことが可能となる。この直径の最小値は、電極3及び4間の成す領域の直径の最小値と比べ、0.02mm以上2mm以下、短くなっている。この範囲より差が小さいと、被処理物と壁面が接触し、大きいと、プラズマの放電開始電圧が上がることになる。ただし、図2のような電極の配置の場合、図6に示すように、電極3及び4間の成す領域とは、電極3及び4が囲んでいる領域及び、その領域が成す領域を指す。このような構成により、プラズマ照射部分において、導線1が誘電体製筒2の内壁面に接触するのを防ぐことができ、導線1に未処理部分が残るという問題を避けることが可能となる。   5A and 5B are cross-sectional views of the microplasma source taken along dotted lines a-a ′ and b-b ′ in FIG. 4, respectively. From the diameter (R ′) of the region formed between the electrodes 3 and 4 among the diameters of the maximum circle 11 inscribed in the cross section cut by the plane perpendicular to the insertion direction of the conducting wire in the region in the dielectric cylinder 2. A region having a short diameter (R) is provided (R ′> R). By providing this region not only on the insertion port side of the object to be processed but also on the gas inlet side, it is possible to reliably perform processing even when the object to be processed is long and soft. . The minimum value of the diameter is shorter than the minimum value of the diameter of the region formed between the electrodes 3 and 4 by 0.02 mm or more and 2 mm or less. When the difference is smaller than this range, the workpiece and the wall surface are in contact with each other, and when the difference is larger, the discharge start voltage of the plasma is increased. However, in the case of the electrode arrangement as shown in FIG. 2, as shown in FIG. 6, the region formed between the electrodes 3 and 4 indicates a region surrounded by the electrodes 3 and 4 and a region formed by the region. With such a configuration, it is possible to prevent the conductive wire 1 from coming into contact with the inner wall surface of the dielectric cylinder 2 in the plasma irradiation portion, and it is possible to avoid the problem that an untreated portion remains in the conductive wire 1.

また、誘電体製筒2内のプラズマ照射部分と、被処理物の挿入口及び混合ガスの導入口との間において、誘電体製筒2内壁に傾斜12を設けており、混合ガスの流れの乱れを防止し、反応効率をよくすることが可能となる。   In addition, an inclination 12 is provided on the inner wall of the dielectric cylinder 2 between the plasma irradiation portion in the dielectric cylinder 2 and the insertion port for the object to be processed and the inlet for the mixed gas, so that the flow of the mixed gas can be reduced. Disturbance can be prevented and reaction efficiency can be improved.

なお、図3を用いて説明したテーパ10の傾斜角度は、テーパ10の延長線が、テーパ10と傾斜12の間の壁面に当たるよう設けられている。このような構成により、テーパ10によって挿入方向を補正された導線が、そのまま電極3及び4間の成す領域の壁面に接触するのを防ぐことができる。   Note that the inclination angle of the taper 10 described with reference to FIG. 3 is provided so that the extended line of the taper 10 hits the wall surface between the taper 10 and the inclination 12. With such a configuration, it is possible to prevent the conducting wire whose insertion direction has been corrected by the taper 10 from directly contacting the wall surface of the region formed between the electrodes 3 and 4.

(実施の形態2)
次に、本発明の第2実施形態について、図7から図9を参照して説明する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIGS.

図7は、マイクロプラズマ源と電子部品の導線1の断面図である。導線1は、一般に、銅を主成分とする線材7の表面に、樹脂8が被覆された被覆線である。マイクロプラズマ源は、誘電体製筒2と、導線1を支持するガイド13と、誘電体製筒2を挟んで相対する2つの電極3及び4から成り、誘電体製筒2内にガスを供給するガス供給装置(図示せず)と、2つの電極間に電力を供給する電源(図示せず)とを備える。図の右から左に向かって誘電体製筒2内に希ガスと反応性ガスの混合ガスを供給しつつ、電極3及び4間に13.56MHzの高周波電圧を供給することにより、誘電体製筒2内にプラズマ9が発生する。印加する電圧は、数百kHz〜数GHzの高周波電圧でもよいし、高周波をパルス変調したものでもよく、あるいは、パルス状の直流電流でもよい。このようなプラズマ源は数Paから数気圧まで動作可能であるが、典型的には10000Paから3気圧程度の範囲の圧力で動作する。とくに、大気圧付近での動作は、厳重な密閉構造や特別な排気装置が不要であるとともに、プラズマや活性粒子の拡散が適度に抑制されるため、好ましい。   FIG. 7 is a cross-sectional view of the lead 1 for the microplasma source and the electronic component. The conducting wire 1 is generally a coated wire in which a resin 8 is coated on the surface of a wire 7 containing copper as a main component. The microplasma source includes a dielectric cylinder 2, a guide 13 that supports the conducting wire 1, and two electrodes 3 and 4 that are opposed to each other with the dielectric cylinder 2 interposed therebetween, and supplies gas into the dielectric cylinder 2. A gas supply device (not shown), and a power supply (not shown) for supplying power between the two electrodes. By supplying a high frequency voltage of 13.56 MHz between the electrodes 3 and 4 while supplying a mixed gas of a rare gas and a reactive gas into the dielectric cylinder 2 from the right to the left in the figure, Plasma 9 is generated in the cylinder 2. The applied voltage may be a high frequency voltage of several hundred kHz to several GHz, a pulse modulated high frequency, or a pulsed direct current. Such a plasma source can operate from several Pa to several atmospheres, but typically operates at a pressure in the range of about 10,000 Pa to 3 atmospheres. In particular, operation near atmospheric pressure is preferable because a strict sealing structure and a special exhaust device are not required, and diffusion of plasma and active particles is moderately suppressed.

また、導線1はガイド13を通して誘電体製筒2内に挿入する。ガイド13の被処理物挿入口にはテーパ14が設けてあり、導線1をガイド13に容易に通すことが可能となっている。   The conducting wire 1 is inserted into the dielectric cylinder 2 through the guide 13. A taper 14 is provided at the workpiece insertion port of the guide 13 so that the conductor 1 can be easily passed through the guide 13.

テーパ14の角度、及びガイド13の長さは、その延長線がガイド14の内壁に当たる角度及び長さとなっている。このような構成によって、導線1が誘電体製筒2内の壁面に接触するのを、より確実に防ぐことが可能となる。   The angle of the taper 14 and the length of the guide 13 are such that the extension line hits the inner wall of the guide 14. With such a configuration, it is possible to more reliably prevent the lead wire 1 from contacting the wall surface in the dielectric cylinder 2.

なお、ガイド13の形状に関しては、図中では筒状のものを記しているが、この形状にこだわる必要はなく、導線を支持可能な形状であればよい。例えば、複数の爪状のもので導線を挟み込む形状をとってもよい。   In addition, although the cylindrical shape is described in the drawing regarding the shape of the guide 13, it is not necessary to stick to this shape, and any shape that can support the conducting wire may be used. For example, a shape in which a conductive wire is sandwiched between a plurality of claw-like objects may be used.

なお、本実施の形態において、電極3及び4は誘電体製筒2を挟んで相対する一対のみを設けているが、電極3及び4の位置が相対する状態からずれていたり、二対以上設けられていたりしてもよい。また、図2のように電極3及び4の形状を筒状にしてもよい。   In the present embodiment, the electrodes 3 and 4 are provided with only one pair facing each other with the dielectric cylinder 2 in between. However, the positions of the electrodes 3 and 4 are shifted from the facing state, or two or more pairs are provided. It may be done. Moreover, you may make the shape of the electrodes 3 and 4 into a cylinder shape like FIG.

図8は、電子部品の導線をマイクロプラズマ源に挿入し、プラズマを照射している状態の断面図である。導線1を誘電体製筒2内に発生しているプラズマ9中に挿入し、プラズマ9を照射する。すると、プラズマ中の活性粒子が、被覆された樹脂8と化学反応して揮発し、挿入した導線1の先端部において、線材7が露出する。   FIG. 8 is a cross-sectional view of a state in which a lead wire of an electronic component is inserted into a microplasma source and plasma is irradiated. The conducting wire 1 is inserted into the plasma 9 generated in the dielectric cylinder 2 and irradiated with the plasma 9. Then, active particles in the plasma are volatilized by chemical reaction with the coated resin 8, and the wire 7 is exposed at the tip of the inserted conductor 1.

なお、プラズマの発生には、希ガスと反応ガス及び電力が必要であり、ランニングコスト低減のため、導線1を挿入しつつ、ガスを供給し、プラズマ9を発生させてもよい。   In order to generate plasma, a rare gas, a reactive gas, and electric power are required, and the plasma 9 may be generated by supplying gas while inserting the conducting wire 1 in order to reduce running cost.

図9(A)及び(B)はそれぞれ、図8における点線a−a’、b−b’で切断した、マイクロプラズマ源の断面図である。導線の挿入方向に対して垂直な面で切断した断面に内接する最大円11の直径において、ガイド13内の領域の直径の最大値(R)が、誘電体製筒2内の領域、且つ電極3及び4間の成す領域の直径の最小値(R’)より短い領域を設けている(R’>R)。この領域を持つガイドを、ガスの導入口側にも設ける、もしくは、誘電体製筒2内の、電極3及び4間の成す領域、もしくはコイルに囲まれた領域に対してガスの導入口側にも設ける事で、被処理物が長く、柔らかいものの場合であっても、確実に処理を行うことが可能となる。この直径の最小値は、電極3及び4間の成す領域もしくは、コイルに囲まれた領域の直径の最小値と比べ、0.02mm以上2mm以下、短くなっている。この範囲より差が小さいと、被処理物と壁面が接触し、大きいと、プラズマの放電開始電圧が上がることになる。ただし、図2のような電極の配置の場合、電極3及び4間の成す領域とは、電極3及び4が囲んでいる領域及び、その領域が成す領域を指す。このような構成により、プラズマ照射部分において、導線1が誘電体製筒2の内壁面に接触するのを防ぐことができ、導線1に未処理部分が残るという問題を避けることが可能となる。また、誘電体製筒2とガイド13の間には間隔があり、そこからガスを逃がすことで、ガス流路の径の縮小による流れの乱れを防ぐことが可能となり、反応効率を上げることができる。   FIGS. 9A and 9B are cross-sectional views of the microplasma source taken along dotted lines a-a ′ and b-b ′ in FIG. 8, respectively. In the diameter of the maximum circle 11 inscribed in a cross section cut by a plane perpendicular to the insertion direction of the conducting wire, the maximum value (R) of the area in the guide 13 is the area in the dielectric cylinder 2 and the electrode. A region shorter than the minimum value (R ′) of the diameter of the region formed between 3 and 4 is provided (R ′> R). A guide having this region is also provided on the gas inlet side, or on the gas inlet side of the region between the electrodes 3 and 4 in the dielectric cylinder 2 or the region surrounded by the coil. In addition, even when the object to be processed is long and soft, it is possible to reliably perform the processing. The minimum value of this diameter is 0.02 mm or more and 2 mm or less shorter than the minimum value of the diameter of the region formed between the electrodes 3 and 4 or the region surrounded by the coil. When the difference is smaller than this range, the workpiece and the wall surface are in contact with each other, and when the difference is larger, the discharge start voltage of the plasma is increased. However, in the case of the arrangement of the electrodes as shown in FIG. 2, the region formed between the electrodes 3 and 4 indicates a region surrounded by the electrodes 3 and 4 and a region formed by the region. With such a configuration, it is possible to prevent the conductive wire 1 from coming into contact with the inner wall surface of the dielectric cylinder 2 in the plasma irradiation portion, and it is possible to avoid the problem that an untreated portion remains in the conductive wire 1. In addition, there is a gap between the dielectric cylinder 2 and the guide 13, and by letting the gas escape there, it becomes possible to prevent the disturbance of the flow due to the reduction of the diameter of the gas flow path, and increase the reaction efficiency. it can.

(実施の形態3)
次に、本発明の第3実施形態について、図10から図16を参照して説明する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIGS.

図10は、電子部品に用いられる導線の樹脂被覆を除去するための、マイクロプラズマ処理装置の概略構成を示す斜視図である。図10において、導線1は、一般に、銅を主成分とする線材の表面に樹脂が被覆された被覆線である。マイクロプラズマ源は、誘電体製筒2と、誘電体製筒2を挟んで相対する電極3及び4から成り、誘電体製筒2内にガスを供給するガス供給装置5と、2つの電極間に電力を供給する電源6とを備える。誘電体製筒2は内部で概ねT字型の空間を形成しており、うち一方からは導線1を挿入し、残り二方のうち一方からガスを供給してもよいし、両方からガスを供給するようにしてもよい。また、誘電体製筒2内の形状を、概ね十字型にし、一方を導線の挿入口に、残り三方のうち、少なくとも一方からガスを供給するようにしてもよいし、複数の枝分かれを持つ形状にしてもよいが、ガスの流出の点から、多数の分岐は反応効率を下げることになる。ガス供給装置5から、誘電体製筒2内に希ガスと反応性ガスの混合ガスを供給しつつ、電極3及び4間に電源6から電力を供給すると、誘電体製筒2内に局所的なプラズマ(図示せず)を発生させることができ、導線1を誘電体製筒2内に挿入し、プラズマを発生させることで、導線1の樹脂被覆を除去することができる。   FIG. 10 is a perspective view showing a schematic configuration of a microplasma processing apparatus for removing a resin coating on a conductive wire used for an electronic component. In FIG. 10, the conducting wire 1 is generally a coated wire in which a resin is coated on the surface of a wire material mainly composed of copper. The microplasma source includes a dielectric cylinder 2 and electrodes 3 and 4 facing each other with the dielectric cylinder 2 interposed therebetween, and a gas supply device 5 for supplying gas into the dielectric cylinder 2 and between the two electrodes. And a power source 6 for supplying power to the power source. The dielectric cylinder 2 forms a generally T-shaped space inside, and the conductor 1 may be inserted from one of them, and gas may be supplied from one of the remaining two, or gas may be supplied from both. You may make it supply. Further, the shape inside the dielectric cylinder 2 may be substantially cross-shaped, and one may be supplied to the insertion opening of the conducting wire, and gas may be supplied from at least one of the remaining three sides, or a shape having a plurality of branches However, from the viewpoint of gas outflow, a large number of branches will lower the reaction efficiency. When electric power is supplied from the power source 6 between the electrodes 3 and 4 while supplying a mixed gas of a rare gas and a reactive gas from the gas supply device 5 into the dielectric cylinder 2, the dielectric cylinder 2 is localized in the dielectric cylinder 2. Plasma (not shown) can be generated, and the resin coating of the conductor 1 can be removed by inserting the conductor 1 into the dielectric cylinder 2 and generating plasma.

なお、本実施の形態において、電極3及び4は誘電体製筒2を挟んで相対する一対のみを設けているが、電極3及び4の位置が相対する状態からずれていたり、二対以上設けられていたりしてもよい。また、電極3及び4の形状を筒状にし、図11のように配置してもよい。   In the present embodiment, the electrodes 3 and 4 are provided with only one pair facing each other with the dielectric cylinder 2 in between. However, the positions of the electrodes 3 and 4 are shifted from the facing state, or two or more pairs are provided. It may be done. Further, the electrodes 3 and 4 may be formed in a cylindrical shape and arranged as shown in FIG.

図12(A)及び(B)は、それぞれ図10における平面(A)、(B)で切断した断面図である。導線1は、一般に、銅を主成分とする線材7の表面に、樹脂8が被覆された被覆線である。図12(A)(B)の右から左及び図12(B)の下から上に向かって誘電体製筒2内に希ガスと反応性ガスの混合ガスを供給しつつ、電極3及び4間に13.56MHzの高周波電圧を供給することにより、誘電体製筒2内にプラズマ9が発生する。印加する電圧は、数百kHz〜数GHzの高周波電圧でもよいし、高周波をパルス変調したものでもよく、あるいは、パルス状の直流電流でもよい。このようなプラズマ源は数Paから数気圧まで動作可能であるが、典型的には10000Paから3気圧程度の範囲の圧力で動作する。とくに、大気圧付近での動作は、厳重な密閉構造や特別な排気装置が不要であるとともに、プラズマや活性粒子の拡散が適度に抑制されるため、好ましい。   12A and 12B are cross-sectional views taken along planes (A) and (B) in FIG. 10, respectively. The conducting wire 1 is generally a coated wire in which a resin 8 is coated on the surface of a wire 7 containing copper as a main component. While supplying a mixed gas of a rare gas and a reactive gas into the dielectric cylinder 2 from the right to the left in FIGS. 12A and 12B and from the bottom to the top in FIG. 12B, the electrodes 3 and 4 are supplied. By supplying a high frequency voltage of 13.56 MHz between them, plasma 9 is generated in the dielectric cylinder 2. The applied voltage may be a high frequency voltage of several hundred kHz to several GHz, a pulse modulated high frequency, or a pulsed direct current. Such a plasma source can operate from several Pa to several atmospheres, but typically operates at a pressure in the range of about 10,000 Pa to 3 atmospheres. In particular, operation near atmospheric pressure is preferable because a strict sealing structure and a special exhaust device are not required, and diffusion of plasma and active particles is moderately suppressed.

誘電体製筒2の被処理物挿入口には、テーパ10が設けてあり、テーパ10がガイドの役割を為すため、導線1を誘電体製筒2内へ容易に挿入することが可能となっている。   The workpiece insertion port of the dielectric cylinder 2 is provided with a taper 10, and the taper 10 serves as a guide, so that the conducting wire 1 can be easily inserted into the dielectric cylinder 2. ing.

図13は、電子部品の導線にプラズマを照射している状態の断面図であり、(A)は図10における平面(A)で切断した断面図であり、(B)は図10における平面(B)で切断した断面図である。導線1を誘電体製筒2内に発生しているプラズマ9中に挿入し、プラズマ9を照射する。すると、プラズマ中の活性粒子が、被覆された樹脂8と化学反応して揮発し、挿入した導線1の先端部において、線材7が露出する。   13 is a cross-sectional view of a state in which plasma is applied to the lead wires of the electronic component, (A) is a cross-sectional view taken along plane (A) in FIG. 10, and (B) is a plane view in FIG. It is sectional drawing cut | disconnected by B). The conducting wire 1 is inserted into the plasma 9 generated in the dielectric cylinder 2 and irradiated with the plasma 9. Then, active particles in the plasma are volatilized by chemical reaction with the coated resin 8, and the wire 7 is exposed at the tip of the inserted conductor 1.

なお、プラズマの発生には、希ガスと反応ガス及び電力が必要であり、ランニングコスト低減のため、導線1を挿入してからガスを供給し、プラズマ9を発生させてもよい。   Note that generation of plasma requires a rare gas, a reactive gas, and electric power, and the plasma 9 may be generated by supplying the gas after inserting the conducting wire 1 in order to reduce running costs.

また、図13では、導線を一直線上に配置しているが、図14に示すように、概ねL字型になるように配置してもよい。ただし、図14は電極3及び4間を通る水平面で切断した断面図である。   Further, in FIG. 13, the conducting wires are arranged on a straight line, but as shown in FIG. 14, they may be arranged so as to be generally L-shaped. However, FIG. 14 is a cross-sectional view cut along a horizontal plane passing between the electrodes 3 and 4.

図15(A)及び(B)はそれぞれ、図13における点線a−a’、b−b’で切断した、マイクロプラズマ源の断面図である。誘電体製筒2内の領域において、導線の挿入方向に対して垂直な面で切断した断面に内接する最大円11の直径(R)において、電極3及び4間の成す領域の直径(R’)より短い直径となる領域を設けている(R’>R)。この領域を被処理物の挿入口側だけでなく、他の開口部にも設けることで、被処理物が長く、柔らかいもの、あるいは概ね直角に曲がっているようなものの場合であっても、確実に処理を行うことが可能となる。この直径の最小値は、電極3及び4間の成す領域の直径の最小値と比べ、0.02mm以上2mm以下、短くなっている。この範囲より差が小さいと、被処理物と壁面が接触し、大きいと、プラズマの放電開始電圧が上がることになる。ただし、図11のような電極の配置の場合、図16(A)及び(B)に示すように、電極3及び4間の成す領域とは、電極3及び4が囲んでいる領域及び、その領域が成す領域を指す。このような構成により、プラズマ照射部分において、導線1が誘電体製筒2の内壁面に接触するのを防ぐことができ、導線1に未処理部分が残るという問題を避けることが可能となる。また、誘電体製筒2内のプラズマ照射部分と、被処理物の挿入口及び混合ガスの導入口との間において、誘電体製筒2内壁に傾斜12を設けており、混合ガスの流れの乱れを防止し、反応効率をよくすることが可能となる。   FIGS. 15A and 15B are cross-sectional views of the microplasma source taken along dotted lines a-a ′ and b-b ′ in FIG. 13, respectively. In the region in the dielectric cylinder 2, the diameter (R ′) of the region formed between the electrodes 3 and 4 in the diameter (R) of the maximum circle 11 inscribed in the cross section cut by the plane perpendicular to the insertion direction of the conducting wire. ) A region having a shorter diameter is provided (R ′> R). By providing this area not only at the insertion port side of the workpiece, but also at other openings, it is reliable even when the workpiece is long, soft, or bent at a substantially right angle. It becomes possible to perform processing. The minimum value of the diameter is shorter than the minimum value of the diameter of the region formed between the electrodes 3 and 4 by 0.02 mm or more and 2 mm or less. When the difference is smaller than this range, the workpiece and the wall surface are in contact with each other, and when the difference is larger, the plasma discharge start voltage is increased. However, in the case of the arrangement of the electrodes as shown in FIG. 11, as shown in FIGS. 16A and 16B, the region formed between the electrodes 3 and 4 is the region surrounded by the electrodes 3 and 4, An area formed by an area. With such a configuration, it is possible to prevent the conductive wire 1 from coming into contact with the inner wall surface of the dielectric cylinder 2 in the plasma irradiation portion, and it is possible to avoid the problem that an untreated portion remains in the conductive wire 1. In addition, an inclination 12 is provided on the inner wall of the dielectric cylinder 2 between the plasma irradiation portion in the dielectric cylinder 2 and the insertion port for the object to be processed and the inlet for the mixed gas, so that the flow of the mixed gas can be reduced. Disturbance can be prevented and reaction efficiency can be improved.

なお、図12を用いて説明したテーパ10の傾斜角度は、テーパ10の延長線が、テーパ10及と傾斜12の間の壁面に当たるよう設けられている。このような構成により、テーパ10によって挿入方向を補正された導線が、そのまま電極3及び4間の成す領域の壁面に接触するのを防ぐことができる。   The inclination angle of the taper 10 described with reference to FIG. 12 is provided so that the extension line of the taper 10 hits the wall surface between the taper 10 and the inclination 12. With such a configuration, it is possible to prevent the conducting wire whose insertion direction has been corrected by the taper 10 from directly contacting the wall surface of the region formed between the electrodes 3 and 4.

本発明の糸状物体の処理装置は、電子部品の端子部の樹脂被覆を効果的に剥離できる装置、電子部品の端子部に鉛フリーはんだをメッキする処理装置、電子部品を鉛フリーはんだ実装工程に適応させる処理装置を提供でき、コイル、トランスをはじめとする電子部品の製造や、電子部品を実装する工程に適用可能である。   The apparatus for processing a thread-like object of the present invention is an apparatus that can effectively peel off the resin coating of the terminal part of the electronic component, a processing apparatus that plating lead-free solder on the terminal part of the electronic part, and the electronic part in the lead-free solder mounting process The processing apparatus to which it adapts can be provided, and it can apply to the process of manufacturing electronic parts including a coil and a transformer, and the process of mounting electronic parts.

本発明の実施の形態1におけるマイクロプラズマ処理装置の概略構成を示す斜視図The perspective view which shows schematic structure of the microplasma processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における他のマイクロプラズマ処理装置の概略構成を示す斜視図The perspective view which shows schematic structure of the other microplasma processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1において導線をマイクロプラズマ源に挿入する状態を示す断面図Sectional drawing which shows the state which inserts conducting wire in the microplasma source in Embodiment 1 of this invention 本発明の実施の形態1において導線にプラズマを照射している状態を示す断面図Sectional drawing which shows the state which is irradiating plasma to conducting wire in Embodiment 1 of this invention (A)図4における点線a−a’で切断したマイクロプラズマ処理装置の断面図、(B)図4における点線b−b’で切断したマイクロプラズマ処理装置の断面図4A is a cross-sectional view of the microplasma processing apparatus cut along a dotted line a-a ′ in FIG. 4, and FIG. 4B is a cross-sectional view of the microplasma processing apparatus cut along a dotted line b-b ′ in FIG. 4. 本発明の実施の形態1における他の装置において導線にプラズマを照射している状態を示す断面図Sectional drawing which shows the state which has irradiated the conducting wire in the other apparatus in Embodiment 1 of this invention 本発明の実施の形態2において導線をマイクロプラズマ源に挿入する状態を示す断面図Sectional drawing which shows the state which inserts conducting wire in the microplasma source in Embodiment 2 of this invention 本発明の実施の形態2において導線にプラズマを照射している状態を示す断面図Sectional drawing which shows the state which is irradiating plasma to conducting wire in Embodiment 2 of this invention (A)図8における点線a−a’で切断したマイクロプラズマ処理装置の断面図、(B)図8における点線b−b’で切断したマイクロプラズマ処理装置の断面図(A) Cross-sectional view of the microplasma processing apparatus cut along a dotted line a-a 'in FIG. 8, (B) Cross-sectional view of the microplasma processing apparatus cut along a dotted line b-b' in FIG. 本発明の実施の形態3におけるマイクロプラズマ処理装置の概略構成を示す斜視図The perspective view which shows schematic structure of the microplasma processing apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における他のマイクロプラズマ処理装置の概略構成を示す斜視図The perspective view which shows schematic structure of the other microplasma processing apparatus in Embodiment 3 of this invention. (A)本発明の実施の形態3において導線をマイクロプラズマ源に挿入する状態を示す垂直面での断面図、(B)本発明の実施の形態3において導線をマイクロプラズマ源に挿入する状態を示す水平面での断面図(A) Cross-sectional view in a vertical plane showing a state in which the conducting wire is inserted into the microplasma source in Embodiment 3 of the present invention, (B) State in which the conducting wire is inserted into the microplasma source in Embodiment 3 of the present invention. Cross section at horizontal plane (A)本発明の実施の形態3において導線にプラズマを照射している状態を示す図10における平面(A)での断面図、(B)本発明の実施の形態3において導線にプラズマを照射している状態を示す図10における平面(B)での断面図(A) Sectional view at plane (A) in FIG. 10 showing a state in which plasma is applied to the conducting wire in Embodiment 3 of the present invention, (B) Plasma is applied to the conducting wire in Embodiment 3 of the present invention. Sectional drawing in the plane (B) in FIG. 10 which shows the state which is carrying out 本発明の実施の形態3における他の導線の挿入方法において、導線にプラズマを照射している状態を示す図10における平面(B)での断面図Sectional drawing in the plane (B) in FIG. 10 which shows the state which is irradiating the plasma to the conducting wire in the other conducting wire insertion method in Embodiment 3 of this invention (A)図13(A)における点線a−a’で切断したマイクロプラズマ処理装置の断面図、(B)図13(A)における点線b−b’で切断したマイクロプラズマ処理装置の断面図FIG. 13A is a cross-sectional view of the microplasma processing apparatus cut along a dotted line a-a ′ in FIG. 13A, and FIG. 13B is a cross-sectional view of the microplasma processing apparatus cut along a dotted line b-b ′ in FIG. (A)本発明の実施の形態3における他の装置において導線にプラズマを照射している状態を示す、図10における平面(A)での断面図、(B)本発明の実施の形態3における他の装置において導線にプラズマを照射している状態を示す、図10における平面(B)での断面図(A) Cross-sectional view at plane (A) in FIG. 10 showing a state in which plasma is applied to the conducting wire in another apparatus according to the third embodiment of the present invention, (B) in the third embodiment of the present invention. Sectional drawing in the plane (B) in FIG. 10 which shows the state which is irradiating plasma to conducting wire in another apparatus. 従来例において、導線にプラズマを照射している状態を示す断面図Sectional drawing which shows the state which irradiates plasma to a conducting wire in a prior art example

1 導線
2 誘電体製筒
3 電極
4 電極
5 ガス供給装置
6 電源
7 線材
8 樹脂
9 プラズマ
10 テーパ
11 内接円
12 傾斜
DESCRIPTION OF SYMBOLS 1 Conductor 2 Dielectric cylinder 3 Electrode 4 Electrode 5 Gas supply device 6 Power supply 7 Wire material 8 Resin 9 Plasma 10 Taper 11 Inscribed circle 12 Inclination

Claims (4)

被処理物の挿入口を備えた筒と、被処理物を支持するためのガイドと、前記筒を挟んで配置された電極と、前記筒と連結されたガス供給装置と、前記電極に高周波電圧を供給する電力供給装置と、を備えたプラズマ処理装置であって、
前記筒と前記ガイドとは空間を有して配置され、前記ガイドには前記ガイドの内部に向かって被処理物挿入口が絞られるようにテーパが設けられると共に、前記ガイド内部の前記被処理物の挿入方向に垂直な断面のうち、直径が最小となる内接円で構成される第1空間が設けられ、前記筒には前記第1空間の直径よりも大きい内接円で構成される第2空間を有し、かつ、前記ガイドの外周には前記電極が位置しない構造であること
を特徴とするプラズマ処理装置。
A cylinder having an insertion port for the object to be processed, a guide for supporting the object to be processed, an electrode arranged with the cylinder interposed therebetween, a gas supply device connected to the cylinder, and a high-frequency voltage applied to the electrode A plasma processing apparatus comprising: a power supply device for supplying
The cylinder and the guide are arranged with a space, and the guide is tapered so that a workpiece insertion port is narrowed toward the inside of the guide, and the workpiece inside the guide A first space constituted by an inscribed circle having a minimum diameter is provided in a cross section perpendicular to the insertion direction of the first, and the cylinder is provided with an inscribed circle constituted by an inscribed circle larger than the diameter of the first space. A plasma processing apparatus having two spaces and a structure in which the electrode is not positioned on an outer periphery of the guide.
前記ガイド内部の空間の直径が最小である内接円の直径が、前記筒内部の空間、且つ前記電極間が成す空間における内接円の直径の最小値と比して、0.02mm以上2mm以下、小さくなっている、請求項に記載のプラズマ処理装置。 The diameter of the inscribed circle in which the diameter of the space inside the guide is the smallest is 0.02 mm or more and 2 mm compared with the minimum value of the diameter of the inscribed circle in the space inside the cylinder and the space formed between the electrodes. hereinafter is smaller, the plasma processing apparatus according to claim 1. 前記ガイドが少なくとも被処理物の挿入口側に設けられている、請求項に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1 , wherein the guide is provided at least on an insertion port side of an object to be processed. 前記ガイドが前記筒と離れて設けられている、請求項に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1 , wherein the guide is provided apart from the tube.
JP2005018053A 2005-01-26 2005-01-26 Plasma processing equipment Expired - Fee Related JP4501703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018053A JP4501703B2 (en) 2005-01-26 2005-01-26 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018053A JP4501703B2 (en) 2005-01-26 2005-01-26 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2006211769A JP2006211769A (en) 2006-08-10
JP4501703B2 true JP4501703B2 (en) 2010-07-14

Family

ID=36968009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018053A Expired - Fee Related JP4501703B2 (en) 2005-01-26 2005-01-26 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4501703B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274791B2 (en) * 2007-06-11 2013-08-28 矢崎総業株式会社 Surface modification apparatus and surface modification method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151220A (en) * 1981-03-11 1982-09-18 Furukawa Electric Co Ltd Method of producing cable gas dam
JPS59187302A (en) * 1983-04-07 1984-10-24 Dainichi Nippon Cables Ltd Jacket removing method of optical fiber cable
JPH09140023A (en) * 1995-09-11 1997-05-27 Giyoutoku Denshi Kk Method and apparatus for cutting coaxial cable constituent element for apparatus wiring
JP2002368389A (en) * 2001-06-06 2002-12-20 Matsushita Electric Works Ltd Method and device for treating printed wiring board
JP2004363152A (en) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd Electronic component and method and device for processing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151220A (en) * 1981-03-11 1982-09-18 Furukawa Electric Co Ltd Method of producing cable gas dam
JPS59187302A (en) * 1983-04-07 1984-10-24 Dainichi Nippon Cables Ltd Jacket removing method of optical fiber cable
JPH09140023A (en) * 1995-09-11 1997-05-27 Giyoutoku Denshi Kk Method and apparatus for cutting coaxial cable constituent element for apparatus wiring
JP2002368389A (en) * 2001-06-06 2002-12-20 Matsushita Electric Works Ltd Method and device for treating printed wiring board
JP2004363152A (en) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd Electronic component and method and device for processing the same

Also Published As

Publication number Publication date
JP2006211769A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US5722581A (en) Method and device for wave soldering incorporating a dry fluxing operation
JP3312377B2 (en) Method and apparatus for joining with brazing material
US5735451A (en) Method and apparatus for bonding using brazing material
JP3229504B2 (en) Method and apparatus for dry fluxing of metal surfaces prior to soldering or tinning
EP0914895A1 (en) Method and apparatus for reflow soldering metallic surfaces
JP5339232B2 (en) Electrical component connection method and connection device
US6776330B2 (en) Hydrogen fluxless soldering by electron attachment
JP6678232B2 (en) Plasma generator
US7176402B2 (en) Method and apparatus for processing electronic parts
JP4501703B2 (en) Plasma processing equipment
EP2487002A1 (en) Apparatus and method for removal of surface oxides via fluxless technique involving electron attachment
JP4325280B2 (en) Processing method of electronic parts
JP4577155B2 (en) Plasma processing method
JP2002368389A (en) Method and device for treating printed wiring board
JP4983713B2 (en) Atmospheric pressure plasma generator
JP4154838B2 (en) Plasma processing method
EP2288240A2 (en) Plasma treatment of organic solderability preservative coatings during printed circuit board assembly.
KR100321353B1 (en) Method of dry fluxing at least one metal surface of a product before soldering or tin plating using alloys
JP4506432B2 (en) Circuit board manufacturing method
JP3159937B2 (en) Metal surface pre-treatment equipment
JP2002141325A (en) Vacuum plasma device of magazine electrode method
KR101468077B1 (en) Apparatus for processing substrate with atmospheric pressure plasma
JP2002110735A (en) Method for mounting flip-chip and plasma processing apparatus
RU2498543C1 (en) Method for elimination of dielectric by laser radiation from conductors and outputs of integrated circuit
JP2013172086A (en) Die bonder and die bonding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees