JP2007059280A - Plasma display panel, its manufacturing method and silica-based insulating coating film forming composition of plasma display panel - Google Patents

Plasma display panel, its manufacturing method and silica-based insulating coating film forming composition of plasma display panel Download PDF

Info

Publication number
JP2007059280A
JP2007059280A JP2005245046A JP2005245046A JP2007059280A JP 2007059280 A JP2007059280 A JP 2007059280A JP 2005245046 A JP2005245046 A JP 2005245046A JP 2005245046 A JP2005245046 A JP 2005245046A JP 2007059280 A JP2007059280 A JP 2007059280A
Authority
JP
Japan
Prior art keywords
silica
based insulating
plasma display
display panel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005245046A
Other languages
Japanese (ja)
Other versions
JP4589202B2 (en
Inventor
Shigeru Suzuki
鈴木  茂
Tomoyuki Inoue
朋之 井上
Kimitoku Oshio
公徳 押尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2005245046A priority Critical patent/JP4589202B2/en
Publication of JP2007059280A publication Critical patent/JP2007059280A/en
Application granted granted Critical
Publication of JP4589202B2 publication Critical patent/JP4589202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma display panel having an electrode capable of impressing predetermined driving voltage by restraining occurrence of bubble-like foreign matter by preventing oxidation of a metallic layer, and to provide its manufacturing method, and a silica-based insulating coating film forming composition for manufacturing the plasma display panel. <P>SOLUTION: This plasma display panel is characterized by having the electrode formed on a substrate, a silica-based insulating coating film formed on the substrate so as to cover the electrode, and a dielectric layer formed on the silica-based insulating coating film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、気体放電を用いた自発光形式のプラズマディスプレイにおけるプラズマディスプレイパネル(以下、PDPと記す)及びその製造方法及びプラズマディスプレイパネルのシリカ系絶縁被膜形成用組成物に関するものである。   The present invention relates to a plasma display panel (hereinafter referred to as PDP) in a self-luminous plasma display using gas discharge, a method for producing the same, and a composition for forming a silica-based insulating film of the plasma display panel.

放電現象を利用して多数の微細なセルを自己発光させることにより画像を形成するプラズマディスプレイは、大画面、薄型、軽量、フラットという、従来のディスプレイでは実現できなかった、優れた特徴を有しており、その普及が図られている。   Plasma displays that form images by using a discharge phenomenon to self-emit many fine cells have large screens, thinness, lightness, and flatness, which were not possible with conventional displays. It is being promoted.

従来のプラズマディスプレイは、縦方向にリブを入れたストレート構造のセルが主流であった。近年では、プラズマディスプレイ前面への効率的な導光を図るため、縦方向だけでなく横方向にもリブを入れたワッフル構造のセルも開発されている。セルをワッフル構造にすることで、隣接セルからの漏光を防ぎ、極めて高効率な前面への導光を実現できる(特許文献1)。   A conventional plasma display has been mainly a straight cell having ribs in the vertical direction. In recent years, in order to efficiently guide light to the front surface of the plasma display, a waffle structure cell having ribs not only in the vertical direction but also in the horizontal direction has been developed. By making the cell a waffle structure, light leakage from adjacent cells can be prevented and light can be guided to the front surface with extremely high efficiency (Patent Document 1).

図1は、従来のPDPの前面板を示す要部断面図である。PDPはAC型、DC型、表示色、対向放電、面放電などにより分けることができるが、例えば、一般的なAC型三電極面放電PDPは、図1のように透明電極14とバス電極18からなる複合電極11、誘電体層、保護膜が形成された前面板と、アドレス電極、誘電体層、リブ、蛍光体が形成された背面板とが対向して配設され、一体化されてなる表示素子である。なお、バス電極18としては、Cr(クロム)/Cu(銅)/Cr(クロム)から成る三層構造のバス電極等も使用される。このようなPDPでは、前面板1の複合電極11間に交流電源から所定の電圧を印加して電場を形成することにより、発光セル内で放電が行われ、この放電により生じる紫外線により蛍光体を発光させる。   FIG. 1 is a cross-sectional view of a main part showing a front plate of a conventional PDP. The PDP can be classified into AC type, DC type, display color, counter discharge, surface discharge, etc. For example, a general AC type three-electrode surface discharge PDP has a transparent electrode 14 and a bus electrode 18 as shown in FIG. A composite electrode 11, a front plate on which a dielectric layer and a protective film are formed, and a back plate on which address electrodes, dielectric layers, ribs and phosphors are formed are arranged oppositely and integrated. This is a display element. As the bus electrode 18, a bus electrode having a three-layer structure made of Cr (chromium) / Cu (copper) / Cr (chromium) is also used. In such a PDP, a predetermined voltage is applied from the AC power source between the composite electrodes 11 of the front plate 1 to form an electric field, whereby a discharge is performed in the light emitting cell, and the phosphor is removed by ultraviolet rays generated by the discharge. Make it emit light.

このような前面板1を製造する方法としては、スクリーン印刷法やホトリソグラフィー法を利用した製造方法が挙げられるが、スクリーン印刷法を利用した製造方法では、パターンの位置精度が悪いという問題があった。   As a method for manufacturing such a front plate 1, a manufacturing method using a screen printing method or a photolithography method may be mentioned. However, the manufacturing method using the screen printing method has a problem that the pattern position accuracy is poor. It was.

複数の電極が形成された基板上に低融点ガラスからなる誘電体層を直接形成すると、材質の異なる電極面と基板面に対する低融点ガラスの濡れ特性及び熱伝導率の差異により誘電体層の厚さが不均一になり、絶縁耐圧が低下する問題があった。
これを解決するために、特許文献2では、基板面と誘電体層との間に絶縁用無機材料、例えばMgO,SiO2,Al23,CrO等からなる中間層を形成することが開示されている。
When a dielectric layer made of low-melting glass is directly formed on a substrate on which a plurality of electrodes are formed, the thickness of the dielectric layer depends on the electrode surface of different materials and the difference in wetting characteristics and thermal conductivity of the low-melting glass with respect to the substrate surface. Therefore, there is a problem that the insulation withstand voltage is lowered.
In order to solve this, Patent Document 2 discloses that an intermediate layer made of an insulating inorganic material such as MgO, SiO 2 , Al 2 O 3 , CrO or the like is formed between the substrate surface and the dielectric layer. Has been.

また、下地の電極と、その上に形成される誘電体層との濡れ特性を改善するために、特許文献3では、膜厚500Å以下のシロキサン系薄膜又は酸化チタン系薄膜を形成している。さらに、特許文献4は、3μm以上の膜厚の誘電体層をクラック及び剥離を伴わずに形成するために、少なくとも−Si−O−結合を有する高分子化合物と、易分解性樹脂との混合物からなる被膜を基板に形成した後、加熱又はエネルギー線の照射により誘電体層を形成している。   Further, in order to improve the wetting characteristics between the underlying electrode and the dielectric layer formed thereon, in Patent Document 3, a siloxane-based thin film or a titanium oxide-based thin film having a thickness of 500 mm or less is formed. Furthermore, Patent Document 4 discloses a mixture of a polymer compound having at least a —Si—O— bond and an easily decomposable resin in order to form a dielectric layer having a thickness of 3 μm or more without cracking and peeling. After forming a coating made of the above on the substrate, a dielectric layer is formed by heating or irradiation with energy rays.

誘電体層を形成する方法としては、バインダーに分散した低融点ガラスをスクリーン印刷法、グリーンシート法で形成する場合があるが、その場合、形成したバインダーを除去し、ガラスをリフローさせるために、その低融点ガラス層を500〜600℃の温度で焼成する工程が必要である。この焼成時に、バス電極または透明電極周辺に、泡状の異物が発生する現象が確認された。そして、この電極に発生した泡状の異物によって電極に所定の駆動電圧が印加できない等の問題があった。   As a method of forming the dielectric layer, there is a case where low melting glass dispersed in a binder is formed by a screen printing method, a green sheet method, in that case, in order to remove the formed binder and reflow the glass, The process of baking the low melting glass layer at the temperature of 500-600 degreeC is required. It was confirmed that a bubble-like foreign matter was generated around the bus electrode or the transparent electrode during firing. And there existed problems, such as a predetermined drive voltage not being able to be applied to an electrode by the foam-like foreign material which generate | occur | produced in this electrode.

この問題を解決するために、特許文献5では、透明電極とバス電極との間に、SiO2,Si34のようなシリコンの窒素化合物膜や、酸窒化シリコン膜(SiON)のようなシリコンの酸窒素化合物膜、燐珪酸ガラス膜、硼珪酸ガラス膜等の絶縁膜を介在させている。 In order to solve this problem, in Patent Document 5, between a transparent electrode and a bus electrode, a silicon nitrogen compound film such as SiO 2 or Si 3 N 4 or a silicon oxynitride film (SiON) is used. An insulating film such as a silicon oxynitrogen compound film, a phosphosilicate glass film, or a borosilicate glass film is interposed.

特開2004−355881号公報JP 2004-355881 A 特開昭62−194225号公報Japanese Patent Laid-Open No. 62-194225 特開2000−260332号公報JP 2000-260332 A 特開2001−135222号公報JP 2001-135222 A 特開平8−13168号公報JP-A-8-13168

しかしながら、特許文献5では透明電極とバス電極との間に、シリコンの窒素化合物膜や燐珪酸ガラス膜等の絶縁膜を介在させているが、バス電極が絶縁膜で覆われていないために、泡状の異物の発生を十分に抑制することが困難であり、依然として電極に所定の駆動電圧が印加できないという問題点があった。   However, in Patent Document 5, an insulating film such as a silicon nitrogen compound film or a phosphosilicate glass film is interposed between the transparent electrode and the bus electrode, but the bus electrode is not covered with the insulating film. There is a problem that it is difficult to sufficiently suppress the generation of foam-like foreign matters, and a predetermined drive voltage cannot be applied to the electrodes.

本発明は、上記に鑑みてなされたものであって、電極の酸化を防止し泡状の異物の発生を抑制することにより、所定の駆動電圧を印加し得るプラズマディスプレイパネル及びその製造方法及びプラズマディスプレイパネルのシリカ系絶縁被膜形成用組成物を提供することを目的とする。   The present invention has been made in view of the above, and a plasma display panel capable of applying a predetermined drive voltage by preventing the oxidation of electrodes and suppressing the generation of foamy foreign substances, a method for manufacturing the same, and plasma It aims at providing the composition for silica-type insulating film formation of a display panel.

上述した課題を解決し、目的を達成するために、本発明の請求項1に記載のプラズマディスプレイパネルは、基板上に形成された電極と、該電極を覆うように前記基板上に形成されたシリカ系絶縁被膜と、該シリカ系絶縁被膜上に形成された誘電体層とを備えてなることを特徴とする。   In order to solve the above-described problems and achieve the object, a plasma display panel according to claim 1 of the present invention is formed on an electrode formed on a substrate and on the substrate so as to cover the electrode. It is characterized by comprising a silica-based insulating coating and a dielectric layer formed on the silica-based insulating coating.

請求項1に記載の発明によれば、基板上に形成された電極を覆うように基板上にシリカ系絶縁被膜が形成されているので、電極を備えた基板を高温で焼成しても、シリカ系絶縁被膜が電極を覆っているため、電極は酸素に触れることなく泡状の異物が発生するのを防止できる。   According to the first aspect of the present invention, since the silica-based insulating film is formed on the substrate so as to cover the electrode formed on the substrate, even if the substrate provided with the electrode is baked at a high temperature, the silica Since the system insulating coating covers the electrode, the electrode can prevent the generation of bubble-like foreign matters without touching oxygen.

また、本発明の請求項2に記載のプラズマディスプレイパネルにあっては、電極が、透明電極とその上に設けられたバス電極とから構成されていることを特徴とする。   In the plasma display panel according to claim 2 of the present invention, the electrode is composed of a transparent electrode and a bus electrode provided thereon.

請求項2に記載の発明によれば、電極が透明電極とその上に設けられたバス電極とから構成されるので、透明電極及びバス電極が共にシリカ系絶縁被膜で覆われるため、透明電極及びバス電極は酸素に接触するのを妨げられ、泡状の異物が発生するのを防止できる。   According to invention of Claim 2, since an electrode is comprised from a transparent electrode and the bus electrode provided on it, since both a transparent electrode and a bus electrode are covered with a silica-type insulating film, a transparent electrode and The bus electrode is prevented from coming into contact with oxygen, and the generation of foamy foreign matter can be prevented.

また、本発明の請求項3に記載のプラズマディスプレイパネルにあっては、バス電極が、シリカ系絶縁被膜との接触面の少なくとも一部に銅を有する電極であることを特徴とする。   In the plasma display panel according to claim 3 of the present invention, the bus electrode is an electrode having copper on at least a part of a contact surface with the silica-based insulating coating.

請求項3に記載の発明によれば、バス電極の少なくとも一部が銅で形成されていても、酸化し易い銅部分がシリカ系絶縁被膜で覆われているので、この銅部分に酸素が接触するのが妨げられ、泡状の異物が発生するのを防止できる。   According to the third aspect of the present invention, even if at least a part of the bus electrode is made of copper, the copper part that is easily oxidized is covered with the silica-based insulating film, so that the copper part is in contact with oxygen. This prevents the generation of foamy foreign matter.

また、本発明の請求項4に記載のプラズマディスプレイパネルにあっては、シリカ系絶縁被膜の膜厚が0.1μm〜2μmであることを特徴とする。   In the plasma display panel according to claim 4 of the present invention, the thickness of the silica-based insulating coating is 0.1 μm to 2 μm.

請求項4に記載の発明によれば、基板上に形成されるシリカ系絶縁被膜の膜厚が0.1μm〜2μmの範囲であるので、クラックのないシリカ系絶縁被膜を形成することができる。   According to the fourth aspect of the invention, since the film thickness of the silica-based insulating film formed on the substrate is in the range of 0.1 μm to 2 μm, a silica-based insulating film without cracks can be formed.

また、本発明の請求項5に記載のプラズマディスプレイパネルにあっては、シリカ系絶縁被膜が、下記一般式(1)
1 4-nSi(OR2n (1)
(式中、R1は炭素数1〜3のアルキル基、フェニル基であり;R2は炭素数1〜3のアルキル基であり、nは2〜4の整数である)で表されるアルコキシシラン化合物の少なくとも1種を加水分解して得られる反応生成物を含有するシリカ系絶縁被膜形成用溶液を用いて得られた絶縁被膜であることを特徴とする。
In the plasma display panel according to claim 5 of the present invention, the silica-based insulating coating has the following general formula (1).
R 1 4-n Si (OR 2 ) n (1)
(Wherein R 1 is an alkyl group having 1 to 3 carbon atoms and a phenyl group; R 2 is an alkyl group having 1 to 3 carbon atoms, and n is an integer of 2 to 4). It is an insulating film obtained by using a silica-based insulating film forming solution containing a reaction product obtained by hydrolyzing at least one silane compound.

請求項5に記載の発明によれば、所定のアルコキシシラン化合物の少なくとも1種を加水分解して得られる反応生成物を含有するシリカ系絶縁被膜形成用溶液を用いて得られたシリカ系絶縁被膜を使用するので、緻密で耐熱性のある絶縁被膜で基板上に形成された電極を覆うため、金属層の酸化を効果的に防止し、泡状の異物の発生が抑制され、請求項1に記載の発明と同様な効果をより確実に得ることができる。   According to invention of Claim 5, the silica type insulation film obtained using the solution for silica type insulation film formation containing the reaction product obtained by hydrolyzing at least 1 sort (s) of the predetermined alkoxysilane compound In order to cover the electrode formed on the substrate with a dense and heat-resistant insulating film, the metal layer is effectively prevented from being oxidized and the generation of foamy foreign matter is suppressed. The same effects as those of the described invention can be obtained more reliably.

また、本発明の請求項6に記載のプラズマディスプレイパネルのシリカ系絶縁被膜形成用組成物にあっては、基板上に形成された電極と、該電極を覆うように前記基板上に形成されたシリカ系絶縁被膜と、該シリカ系絶縁被膜上に形成された誘電体層とを備えてなるプラズマディスプレイパネルの前記シリカ系絶縁被膜を形成するためのプラズマディスプレイ用シリカ系絶縁被膜形成用組成物であって、
下記一般式(1)
1 4-nSi(OR2n (1)
(式中、R1は炭素数1〜3のアルキル基、フェニル基であり;R2は炭素数1〜3のアルキル基であり、nは2〜4の整数である)で表されるアルコキシシラン化合物の少なくとも1種を加水分解して得られる反応生成物を含有することを特徴とする。
Moreover, in the composition for forming a silica-based insulating film for a plasma display panel according to claim 6 of the present invention, the electrode is formed on the substrate so as to cover the electrode formed on the substrate. A composition for forming a silica-based insulating coating for a plasma display for forming the silica-based insulating coating of a plasma display panel comprising a silica-based insulating coating and a dielectric layer formed on the silica-based insulating coating. There,
The following general formula (1)
R 1 4-n Si (OR 2 ) n (1)
(Wherein R 1 is an alkyl group having 1 to 3 carbon atoms and a phenyl group; R 2 is an alkyl group having 1 to 3 carbon atoms, and n is an integer of 2 to 4). It contains a reaction product obtained by hydrolyzing at least one silane compound.

請求項6に記載の発明によれば、プラズマディスプレイパネルのシリカ系絶縁被膜を形成するためのシリカ系絶縁被膜形成用組成物が所定のアルコキシシラン化合物の少なくとも1種を加水分解して得られる反応生成物を含有するので、緻密で耐熱性のある絶縁被膜で基板上に形成された電極を覆うため、金属層の酸化を効果的に防止し、泡状の異物の発生が抑制され、請求項1に記載の発明と同様な効果をより確実に得ることができる。   According to invention of Claim 6, the reaction obtained by hydrolyzing at least 1 sort (s) of the predetermined alkoxysilane compound for the composition for silica type insulating film formation for forming the silica type insulating film of a plasma display panel Since the product is contained, the electrode formed on the substrate is covered with a dense and heat-resistant insulating coating, so that the oxidation of the metal layer is effectively prevented and the generation of foamy foreign matters is suppressed, The effect similar to that of the invention described in 1 can be obtained more reliably.

また、本発明の請求項7に記載のプラズマディスプレイパネルの製造方法にあっては、基板上に電極を形成した後、該電極を覆うように前記基板上に請求項6に記載のシリカ系絶縁被膜形成用組成物を塗布し、得られた塗布膜を焼成してシリカ系絶縁被膜を形成し、該シリカ系絶縁被膜が形成された基板上に誘電体層形成用組成物を層状に形成し、得られた誘電体形成用組成物層を焼成して誘電体層を形成することを特徴とする。   Moreover, in the manufacturing method of the plasma display panel of Claim 7 of this invention, after forming an electrode on a board | substrate, the silica type insulation of Claim 6 is covered on the said board | substrate so that this electrode may be covered. A coating film-forming composition is applied, the obtained coating film is baked to form a silica-based insulating film, and the dielectric layer-forming composition is formed in layers on the substrate on which the silica-based insulating film is formed. The obtained dielectric forming composition layer is fired to form a dielectric layer.

請求項7に記載の発明によれば、緻密で耐熱性のある絶縁被膜で基板上に形成された電極を覆うため、金属層の酸化を効果的に防止し、泡状の異物の発生が抑制されたプラズマディスプレイパネルを製造することができる。   According to the seventh aspect of the present invention, since the electrode formed on the substrate is covered with a dense and heat-resistant insulating film, the metal layer is effectively prevented from being oxidized and the generation of foamy foreign matters is suppressed. The manufactured plasma display panel can be manufactured.

本発明によれば、電極を誘電体層で被覆した構成のプラズマディスプレイパネルにおいて、前記電極と誘電体との間に、緻密で耐熱性があるシリカ系絶縁被膜を介在させることで、金属層の酸化を防ぐことができるため、泡状の異物が発生しなくなる。上記絶縁被膜はシリカ系被膜であるため、前面板に対する要求性能である光透過率を低下させない。絶縁被膜の形成方法は、シリカ系絶縁被膜形成用溶液の塗布、ベーク処理によるので、真空設備を必要とせず、低コストで簡便である。また、シリカ系絶縁被膜により、基板表面凹凸がカバーされ、誘電体層形成時に泡噛みが発生し難くなるという効果を奏する。   According to the present invention, in a plasma display panel having a structure in which an electrode is covered with a dielectric layer, a dense and heat-resistant silica-based insulating film is interposed between the electrode and the dielectric, thereby Since oxidation can be prevented, no foamy foreign matter is generated. Since the insulating coating is a silica-based coating, it does not lower the light transmittance, which is a required performance for the front plate. The insulating film is formed by applying a solution for forming a silica-based insulating film and baking, and thus does not require vacuum equipment and is low-cost and simple. In addition, the silica-based insulating coating covers the substrate surface irregularities, and there is an effect that it is difficult for bubble biting to occur when the dielectric layer is formed.

以下に、本発明に係るプラズマディスプレイパネル及びその製造方法及びプラズマディスプレイパネルのシリカ系絶縁被膜形成用組成物の実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。   Embodiments of a plasma display panel according to the present invention, a method for producing the same, and a composition for forming a silica-based insulating film of a plasma display panel will be described in detail below. In addition, this invention is not limited by this embodiment.

[プラズマディスプレイパネルの要部構成]
図1は、本発明によるプラズマディスプレイパネルの前面板を示す要部断面図である。
なお、図1は、背景技術におけるPDPを説明する際に用いたが、本発明によるプラズマディスプレイパネルの前面板を説明する際にも援用する。
[Principal configuration of plasma display panel]
FIG. 1 is a cross-sectional view of a main part showing a front plate of a plasma display panel according to the present invention.
Although FIG. 1 is used when explaining the PDP in the background art, it is also used when explaining the front plate of the plasma display panel according to the present invention.

図1において、表示面となる透明基板10上には、透明電極14が形成されており、この透明電極14上にはバス電極18が形成されている。これらの透明電極14及びバス電極18により表示電極である複合電極11が構成される。透明電極14及びバス電極18を覆って、透明基板10上にシリカ系絶縁被膜30が形成されている。シリカ系絶縁被膜30は、後述するシリカ系絶縁被膜形成用組成物を用いて形成される。シリカ系絶縁被膜30上には、誘電体層12が形成されている。   In FIG. 1, a transparent electrode 14 is formed on a transparent substrate 10 serving as a display surface, and a bus electrode 18 is formed on the transparent electrode 14. The transparent electrode 14 and the bus electrode 18 constitute a composite electrode 11 that is a display electrode. A silica-based insulating coating 30 is formed on the transparent substrate 10 so as to cover the transparent electrode 14 and the bus electrode 18. The silica-based insulating coating 30 is formed using a silica-based insulating coating forming composition that will be described later. A dielectric layer 12 is formed on the silica-based insulating coating 30.

[シリカ系絶縁被膜形成用組成物]
上記シリカ系絶縁被膜は、以下のようなシリカ系絶縁被膜形成用組成物から形成される。シリカ系絶縁被膜形成用組成物は、下記一般式(1)
1 4-nSi(OR2n (1)
(式中、R1は炭素数1〜3のアルキル基、フェニル基であり;R2は炭素数1〜3のアルキル基であり、nは2〜4の整数である)で表されるアルコキシシラン化合物の少なくとも1種を加水分解して得られる反応生成物を含有する。シリカ系絶縁被膜は、このようなシリカ系絶縁被膜形成用組成物を用いて得られた絶縁被膜である。
[Silica-based insulating film forming composition]
The silica-based insulating film is formed from the following composition for forming a silica-based insulating film. The composition for forming a silica-based insulating coating has the following general formula (1)
R 1 4-n Si (OR 2 ) n (1)
(Wherein R 1 is an alkyl group having 1 to 3 carbon atoms and a phenyl group; R 2 is an alkyl group having 1 to 3 carbon atoms, and n is an integer of 2 to 4). It contains a reaction product obtained by hydrolyzing at least one silane compound. The silica-based insulating coating is an insulating coating obtained using such a composition for forming a silica-based insulating coating.

上記一般式(1)で表わされるアルコキシシラン化合物としては、下記一般式(2)〜(4)で表される化合物が挙げられる。
1 2Si(OR22 (2)
1Si(OR23 (3)
Si(OR24 (4)
なお、式(2)〜(4)中、R1,R2,nは、式(1)と同じ意味である。
Examples of the alkoxysilane compound represented by the general formula (1) include compounds represented by the following general formulas (2) to (4).
R 1 2 Si (OR 2 ) 2 (2)
R 1 Si (OR 2 ) 3 (3)
Si (OR 2 ) 4 (4)
In formulas (2) to (4), R 1 , R 2 and n have the same meaning as in formula (1).

上記アルコキシシラン化合物は、具体的には、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノメチルトリプロポキシシラン、モノエチルトリメトキシシラン、モノエチルトリエトキシシラン、モノエチルトリプロポキシシラン、モノプロピルトリメトキシシラン、モノプロピルトリエトキシシラン、モノプロピルトリプロポキシシラン、モノフェニルトリメトキシシラン、モノフェニルトリエトキシシラン、モノフェニルトリプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランなどを例示することができる。   Specific examples of the alkoxysilane compound include monomethyltrimethoxysilane, monomethyltriethoxysilane, monomethyltripropoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, monoethyltripropoxysilane, monopropyltrimethoxysilane, Monopropyltriethoxysilane, monopropyltripropoxysilane, monophenyltrimethoxysilane, monophenyltriethoxysilane, monophenyltripropoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, diethyldi Ethoxysilane, diethyldipropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipropoxysilane Diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyl propoxysilane, tetramethoxysilane, tetraethoxysilane, and the like can be exemplified tetrapropoxysilane.

シリカ系絶縁被膜は、これらのアルコキシシラン化合物の1種、又は2種以上を組み合わせて用いることができる。アルコキシシラン化合物を2種以上組み合わせて用いる場合、その組合せについて特に制限はなく、任意の組合せが可能であるが、実用上好ましい組合せとしては、R1Si(OR23とR1 2Si(OR22とSi(OR24との組合せ、R1Si(OR23とSi(OR24との組合せ、Si(OR24とR1 2Si(OR22との組合せを挙げることができる。 The silica-based insulating coating can be used alone or in combination of two or more of these alkoxysilane compounds. When two or more alkoxysilane compounds are used in combination, the combination is not particularly limited, and any combination is possible. However, as a practically preferable combination, R 1 Si (OR 2 ) 3 and R 1 2 Si ( OR 2 ) 2 and Si (OR 2 ) 4 , R 1 Si (OR 2 ) 3 and Si (OR 2 ) 4 , Si (OR 2 ) 4 and R 1 2 Si (OR 2 ) 2 And combinations thereof.

シリカ系絶縁被膜形成用溶液は、シリカ系絶縁被膜形成用組成物から調製される。シリカ系絶縁被膜形成用溶液の調製に、Si(OR24のみを用いる場合、得られる溶液の粘性が不足し、1回の塗布ではおよそ0.4μmの厚さの被膜が得られる。厚膜を形成させるには、多数の塗布操作を繰り返して行う。これに対し、Si(OR24に、R1Si(OR23やR1 2Si(OR22を組み合わせた場合、またはR1Si(OR23やR1 2Si(OR22を単独で用いた場合、加水分解後にまだ有機基が残存するため、得られる溶液は適度の粘性を有し、1回の塗布で1μm又はそれ以上の膜厚を与えることができる。 The silica-based insulating film forming solution is prepared from the silica-based insulating film forming composition. When only Si (OR 2 ) 4 is used for the preparation of the silica-based insulating film forming solution, the viscosity of the obtained solution is insufficient, and a film having a thickness of about 0.4 μm can be obtained by one application. In order to form a thick film, a number of coating operations are repeated. In contrast, the Si (OR 2) 4, when combining R 1 Si (OR 2) 3 and R 1 2 Si (OR 2) 2, or R 1 Si (OR 2) 3 and R 1 2 Si ( When OR 2 ) 2 is used alone, organic groups still remain after hydrolysis, so that the resulting solution has an appropriate viscosity and can give a film thickness of 1 μm or more in one application. .

本発明において、クラックのないシリカ系絶縁被膜を形成するために、形成されるシリカ系絶縁被膜の膜厚は、0.1μm〜2μmが好ましく、0.3μm〜1.8μmがさらに好ましく、0.5μm〜1.5μmが最も好ましい。好ましい膜厚を得るために、異なるアルコキシシラン化合物の混合割合を適宜変更することや、塗布回数を変更することができる。   In the present invention, in order to form a silica-based insulating coating without cracks, the thickness of the formed silica-based insulating coating is preferably 0.1 μm to 2 μm, more preferably 0.3 μm to 1.8 μm, and 5 μm to 1.5 μm is most preferable. In order to obtain a preferable film thickness, the mixing ratio of different alkoxysilane compounds can be changed as appropriate, and the number of coatings can be changed.

アルコキシシラン化合物の混合割合は、R1Si(OR23、R1 2Si(OR22、Si(OR24の各化合物において、R1Si(OR231モル当り、R1 2Si(OR22の0〜2モル、Si(OR24の0.5〜5モルが好ましく、またR1 2Si(OR22とSi(OR24との組合せでは、Si(OR241モル当り、R1 2Si(OR22の0.2〜2モルの割合で用いるのが好ましい。ここで、アルコキシシラン混合物中のSi(OR24の量が多くなると、形成される被膜は厚膜とならず、また被膜にクラックが生じやすくなるため好ましくない。一方、R1Si(OR23やR1 2Si(OR22が多くなると、耐熱性、耐湿性に優れた被膜を得ることができず、実用上好ましくない。従って、上記の範囲の膜厚が得られるように、アルコキシシラン化合物の混合割合や塗布回数を適宜調整することが望ましい。 The mixing ratio of the alkoxysilane compounds, the R 1 Si (OR 2) 3 , R 1 2 Si (OR 2) 2, Si each compound (OR 2) 4, R 1 Si (OR 2) 3 1 mol, R 1 2 Si (OR 2) 2 0-2 moles, Si (OR 2) 4 of 0.5 to 5 moles are preferred, also with R 1 2 Si (OR 2) 2 and Si (OR 2) 4 In combination, it is preferably used at a ratio of 0.2 to 2 moles of R 1 2 Si (OR 2 ) 2 per mole of Si (OR 2 ) 4 . Here, when the amount of Si (OR 2 ) 4 in the alkoxysilane mixture increases, the formed film does not become a thick film, and cracks are likely to occur in the film, which is not preferable. On the other hand, if the amount of R 1 Si (OR 2 ) 3 or R 1 2 Si (OR 2 ) 2 increases, a film excellent in heat resistance and moisture resistance cannot be obtained, which is not preferable in practice. Therefore, it is desirable to appropriately adjust the mixing ratio and the number of coatings of the alkoxysilane compound so that the film thickness in the above range can be obtained.

本発明において、実用上特に好ましいアルコキシシラン化合物の組合せとしては、モノメチルトリメトキシシラン1モル部とテトラメトキシシラン1〜3モル部との組合せを挙げることができる。   In the present invention, a particularly preferred combination of alkoxysilane compounds practically includes a combination of 1 mol part of monomethyltrimethoxysilane and 1 to 3 mol parts of tetramethoxysilane.

本発明においては、上記アルコキシシラン化合物の少なくとも1種を有機溶媒中に溶解し、次に水を加えることにより加水分解して得られる反応生成物を含有するシリカ系絶縁被膜形成用溶液を使用する。この際に使用する有機溶媒としては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールのような一価アルコール、エチレングリコール、ジエチレングリコール、プロピレングリコールのような多価アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテルのようなエーテル類、酢酸、プロピオン酸のような脂肪酸などを挙げることができる。これらの中で、一価アルコール、多価アルコール及びエーテル類が好適である。これらの有機溶媒は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよく、また、その使用量については、通常アルコキシシラン化合物100重量部当り、50〜100重量部の割合で用いられる。   In the present invention, a silica-based insulating film forming solution containing a reaction product obtained by dissolving at least one of the above alkoxysilane compounds in an organic solvent and then hydrolyzing by adding water is used. . Examples of the organic solvent used here include monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol, polyhydric alcohols such as ethylene glycol, diethylene glycol, and propylene glycol, ethylene glycol monomethyl ether, and ethylene glycol mono Examples include ethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethers such as propylene glycol monopropyl ether, fatty acids such as acetic acid and propionic acid, and the like. . Of these, monohydric alcohols, polyhydric alcohols and ethers are preferred. These organic solvents may be used alone or in combination of two or more, and the amount used is usually 50 to 100 parts by weight per 100 parts by weight of the alkoxysilane compound. Used in

上記一般式(1)で表わされるアルコキシシラン化合物に水を加える加水分解は、触媒の存在下、又は触媒の不存在下で行うことができる。加水分解における水の添加量は、アルコキシシラン化合物、またはその混合物を含む有機溶媒中に、アルコキシシラン化合物の混合物の合計モルに対し2〜5倍モル量の水であり、この量の水を上記有機溶媒中に加えて攪拌し、室温下で加水分解させる。この反応は通常20〜120時間程度で完了する。また、80℃を超えない加熱温度で、アルコキシシラン化合物、またはその混合物を含む有機溶媒に水を滴下して反応させることにより、短い反応時間で反応を完了させることもできる。   Hydrolysis of adding water to the alkoxysilane compound represented by the general formula (1) can be performed in the presence of a catalyst or in the absence of a catalyst. The amount of water added in the hydrolysis is 2 to 5 times the amount of water in the organic solvent containing the alkoxysilane compound or a mixture thereof with respect to the total mole of the mixture of alkoxysilane compounds. Add to organic solvent, stir and hydrolyze at room temperature. This reaction is usually completed in about 20 to 120 hours. Alternatively, the reaction can be completed in a short reaction time by dropping water into an organic solvent containing an alkoxysilane compound or a mixture thereof at a heating temperature not exceeding 80 ° C.

このようにして調製されたシリカ系絶縁被膜形成用溶液は、このままでも使用できるが、塗布液中の固形分濃度(近似的には塗布液中のSiO2換算濃度)の調整のため、希釈溶媒で希釈してから使用してもよい。この場合の希釈溶媒としては、前記した有機溶媒の他に、例えばアセトン、メチルエチルケトン、アセチルアセトン、メチルイソブチルケトンのようなケトン類、酢酸メチル、酢酸エチル、酢酸ブチルのようなエステル類などを挙げることができる。これらの希釈溶媒は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The silica-based insulating film forming solution thus prepared can be used as it is, but in order to adjust the solid content concentration in the coating solution (approximately, the SiO 2 equivalent concentration in the coating solution) It may be used after being diluted with Examples of the diluting solvent in this case include, in addition to the organic solvents described above, ketones such as acetone, methyl ethyl ketone, acetyl acetone, and methyl isobutyl ketone, and esters such as methyl acetate, ethyl acetate, and butyl acetate. it can. These dilution solvents may be used alone or in combination of two or more.

以上のようにして、シリカ系絶縁被膜形成用溶液から形成されたシリカ系絶縁被膜は、緻密で耐熱性があるため、電極11の金属層の酸化を非常に効果的に防止できる。これにより、電極に泡状の異物が発生せず、所定の駆動電圧を印加し得るプラズマディスプレイパネルが得られる。また、絶縁被膜はシリカ系被膜であるため、プラズマディスプレイの前面板に対する要求性能である光透過率を低下させないという利点も有する。   As described above, since the silica-based insulating coating formed from the silica-based insulating coating forming solution is dense and heat-resistant, oxidation of the metal layer of the electrode 11 can be very effectively prevented. Thereby, the plasma display panel which can apply a predetermined drive voltage without generating a bubble-like foreign material in an electrode is obtained. In addition, since the insulating coating is a silica-based coating, there is an advantage that the light transmittance, which is the required performance for the front plate of the plasma display, is not reduced.

[プラズマディスプレイパネルの製造方法]
次に、プラズマディスプレイパネルの前面板の製造方法について説明する。透明基板としてはアクリル基板やガラス基板等が挙げられるが、熱軟化点が高く、光透過率に優れる点から特にガラス基板が好ましい。上記透明基板上に電極をスパッタ法、ホトリソグラフィー法等を用いて形成する。電極としては開口率と導電性を確保する為、透明電極とバス電極の積層が好ましい。透明電極としてはパターニングされたITO(Indium Tin Oxide)層が好ましく、バス電極としてはクロム、アルミ、銀、銅等の金属から成るパターニングされた金属層が好ましい。電極は例えば透明基板上に透明電極としてITO層をRFスパッタ法で被着した後、ホトリソグラフィー法を用いてパターニングし、さらにその上にバス電極を、スパッタ法、ホトリソグラフィー法等を用いて形成する。
[Plasma display panel manufacturing method]
Next, a method for manufacturing the front plate of the plasma display panel will be described. Examples of the transparent substrate include an acrylic substrate and a glass substrate, and a glass substrate is particularly preferable because it has a high heat softening point and excellent light transmittance. An electrode is formed on the transparent substrate using a sputtering method, a photolithography method, or the like. As an electrode, in order to ensure an aperture ratio and electrical conductivity, lamination of a transparent electrode and a bus electrode is preferable. The transparent electrode is preferably a patterned ITO (Indium Tin Oxide) layer, and the bus electrode is preferably a patterned metal layer made of a metal such as chromium, aluminum, silver, or copper. For example, after depositing an ITO layer as a transparent electrode on a transparent substrate by RF sputtering, patterning is performed using photolithography, and a bus electrode is formed thereon using sputtering, photolithography, or the like. To do.

ここで、上記バス電極は、クロム層、金属層、クロム層より成る三層構造のバス電極等であってもよい。この場合、三層構造のバス電極はスパッタ法、ホトリソグラフィー法を用いて形成する。この際、上層クロム層は金属層を保護層し、金属層の酸化を防止する。また、下層クロム層は金属層との密着性を上げ、透明電極による金属層に対する影響を防止することができる。   Here, the bus electrode may be a bus electrode having a three-layer structure including a chromium layer, a metal layer, and a chromium layer. In this case, the bus electrode having a three-layer structure is formed using a sputtering method or a photolithography method. At this time, the upper chromium layer protects the metal layer and prevents the metal layer from being oxidized. In addition, the lower chromium layer can increase the adhesion with the metal layer and prevent the transparent electrode from affecting the metal layer.

バス電極は、クロム、アルミ、銀、銅等の金属からなる。特にコスト、導電性の観点から銅が好ましい。本願絶縁被膜により金属層の泡状異物の発生を抑制するが、その効果は金属層が銅である場合により顕著であり、特に電極とシリカ系絶縁被膜との接触面の少なくとも一部に銅を有する場合にさらにより顕著な効果を有する。また、バス電極は、三層構造に限らず、二層や四層以上の積層構造であってもよい。   The bus electrode is made of a metal such as chromium, aluminum, silver, or copper. Copper is particularly preferable from the viewpoints of cost and conductivity. The insulating coating of the present application suppresses the generation of foamy foreign matter in the metal layer, but the effect is more pronounced when the metal layer is copper. In particular, copper is applied to at least a part of the contact surface between the electrode and the silica-based insulating coating. It has an even more remarkable effect when it has. The bus electrode is not limited to a three-layer structure, and may have a two-layer structure or a stacked structure of four or more layers.

次に、透明電極とバス電極とからなる複合電極上に、上記シリカ系絶縁被膜形成用溶液をスピンナー法、ロールコータ法、浸漬引上げ法、スプレー法、スクリーン印刷法、刷毛塗り法などで塗布し、塗布膜を形成する。この場合、特にスリットコーターにより塗布することで、液ロスの少ないプロセスが可能となり好ましい。続いて、この塗布膜を350〜600℃、好ましくは400〜500℃の温度範囲で焼成、すなわちベーク処理することにより、シリカ系絶縁被膜を形成することができる。なお、このベーク処理は、シリカ系絶縁被膜を形成するためだけではなく、下記の誘電体層形成用組成物層を焼成して誘電体層を形成する際に、シリカ系絶縁被膜形成用溶液の塗布膜からの脱ガスを抑えるためにも有効である。   Next, the silica-based insulating film forming solution is applied onto a composite electrode composed of a transparent electrode and a bus electrode by a spinner method, a roll coater method, a dip pulling method, a spray method, a screen printing method, a brush coating method, or the like. Then, a coating film is formed. In this case, application by a slit coater is particularly preferable because a process with little liquid loss is possible. Subsequently, this coating film is baked, that is, baked in a temperature range of 350 to 600 ° C., preferably 400 to 500 ° C., whereby a silica-based insulating film can be formed. This baking treatment is not only for forming a silica-based insulating film, but also when the dielectric layer is formed by baking the following dielectric layer-forming composition layer. It is also effective for suppressing degassing from the coating film.

次に、形成されたシリカ系絶縁被膜上に、低融点ガラスから成る誘電体層形成用組成物をスクリーン印刷法等で塗布する。塗布した誘電体層形成用組成物層を350〜600℃、好ましくは400〜500℃で焼成することにより、シリカ系絶縁被膜上に誘電体層を形成することができる。
さらに、誘電体層上に、スペーサ層、MgO等よりなる保護層をスパッタ法等で形成してもよい。
Next, a dielectric layer forming composition made of low-melting glass is applied on the formed silica-based insulating coating by a screen printing method or the like. By firing the applied dielectric layer forming composition layer at 350 to 600 ° C., preferably 400 to 500 ° C., a dielectric layer can be formed on the silica-based insulating coating.
Further, a protective layer made of a spacer layer, MgO, or the like may be formed on the dielectric layer by sputtering or the like.

以上のようにして製造されたプラズマディスプレイパネル前面板は、基板上に形成された電極を覆うように基板上にシリカ系絶縁被膜が形成されているので、電極を備えた基板を高温で焼成しても、緻密で耐熱性があるシリカ系絶縁被膜が電極を覆っているため、電極は酸素に触れることなく泡状の異物が発生するのを防止できる。また、絶縁被膜の形成方法は、シリカ系絶縁被膜形成用溶液の塗布、ベーク処理によるので、真空設備を必要とせず、低コストで簡便である。また、シリカ系絶縁被膜により、基板表面凸凹がカバーされ、誘電体層形成時に泡噛みが発生し難くなるなどの利点を有する。   Since the plasma display panel front plate manufactured as described above has a silica-based insulating film formed on the substrate so as to cover the electrode formed on the substrate, the substrate having the electrodes is baked at a high temperature. However, since the silica-based insulating coating that is dense and heat-resistant covers the electrode, the electrode can prevent the generation of bubble-like foreign matters without touching oxygen. Moreover, since the formation method of an insulating film is based on the application | coating of the solution for silica-type insulating film formation, and a baking process, a vacuum installation is not required and it is low-cost and simple. In addition, the surface of the substrate surface is covered with the silica-based insulating coating, and there is an advantage that foam biting hardly occurs when forming the dielectric layer.

次に、本発明に係るプラズマディスプレイパネル及びその製造方法及びプラズマディスプレイパネルのシリカ系絶縁被膜形成用組成物について、実施例に基づきさらに具体的に説明する。   Next, the plasma display panel according to the present invention, the method for producing the same, and the composition for forming a silica-based insulating film of the plasma display panel will be described more specifically based on examples.

(実施例1)
トリエトキシシラン73.9g(0.45モル)をエチレングリコールジメチルエーテル799.0g(8.87モル)に溶解しかき混ぜた。次いで、純水24.2g(1.34モル)と濃硝酸5ppmを混合したものを、ゆっくりかき混ぜながら滴下した後、約3時間かき混ぜ、その後室温で6日間静置させて溶液を得た。この溶液を120〜140mmHg、40℃にて1時間減圧蒸留し、固形分濃度を8重量%、エタノールの濃度を3重量%の溶液とした。この溶液にシリコーン系界面活性剤であるSH30PA(東レ・ダウコーニング・シリコーン(株)製)を2,000ppm添加し、シリカ系絶縁被膜形成用塗布液とした。
Example 1
73.9 g (0.45 mol) of triethoxysilane was dissolved or mixed in 799.0 g (8.87 mol) of ethylene glycol dimethyl ether. Next, a mixture of 24.2 g (1.34 mol) of pure water and 5 ppm of concentrated nitric acid was added dropwise while slowly stirring, then stirred for about 3 hours, and then allowed to stand at room temperature for 6 days to obtain a solution. This solution was distilled under reduced pressure at 120 to 140 mmHg and 40 ° C. for 1 hour to obtain a solution having a solid content concentration of 8 wt% and an ethanol concentration of 3 wt%. To this solution, 2,000 ppm of SH30PA (manufactured by Toray Dow Corning Silicone Co., Ltd.), which is a silicone-based surfactant, was added to obtain a coating solution for forming a silica-based insulating film.

ITO透明電極(厚さ0.2μm)、銀バス電極(厚さ3μm)を含むガラス基板上に、この塗布液をスリットコーターにより塗布し、80℃、150℃及び200℃で順次それぞれ1分間乾燥させて塗膜を得たのち、窒素雰囲気にて400℃で30分間焼成することにより、厚さ0.4μmのシリカ系絶縁被膜を形成させた。絶縁被膜を形成した基板に、低融点ガラス70部、アクリル樹脂と可塑剤からなるバインダー30部で構成されたグリーンシートをラミネートし、600℃で1時間焼成し、PDP用前面板を形成した。誘電体層の膜厚は最薄部で20μmだった。焼成後、表面を金属顕微鏡により、断面を電子顕微鏡により観察したところ、泡噛みはなく、Cuが露出している電極エッジ付近に泡状の異物は観察されなかった。HZ-2透過率測定装置(スガ試験機株式会社製、光源:D65光 シングルビーム(JIS-K7136))により透過率を測定した。ガラス基板の透過率は90.79% Haze0.22、シリカ系絶縁被膜形成後の透過率は90.86% Haze0.24と、良好な透過率だった。以下、透過率はすべてこの装置で測定した。   This coating solution is applied by a slit coater onto a glass substrate containing an ITO transparent electrode (thickness 0.2 μm) and a silver bus electrode (thickness 3 μm), and sequentially dried at 80 ° C., 150 ° C. and 200 ° C. for 1 minute each. Then, after obtaining a coating film, it was baked at 400 ° C. for 30 minutes in a nitrogen atmosphere to form a silica-based insulating film having a thickness of 0.4 μm. A green sheet composed of 70 parts of low-melting glass and 30 parts of a binder made of an acrylic resin and a plasticizer was laminated on the substrate on which the insulating film was formed, and baked at 600 ° C. for 1 hour to form a PDP front plate. The thickness of the dielectric layer was 20 μm at the thinnest part. After firing, the surface was observed with a metal microscope and the cross section was observed with an electron microscope. As a result, there was no bubble biting and no bubble-like foreign matter was observed near the electrode edge where Cu was exposed. The transmittance was measured with an HZ-2 transmittance measuring device (manufactured by Suga Test Instruments Co., Ltd., light source: D65 light single beam (JIS-K7136)). The transmittance of the glass substrate was 90.79% Haze 0.22, and the transmittance after forming the silica-based insulating film was 90.86% Haze 0.24, which was a favorable transmittance. Hereinafter, all transmittances were measured with this apparatus.

(実施例2)
トリエトキシシラン129.6g(0.79モル)とテトラメトキシシラン60.1g(0.40モル)を混合し、エチレングリコールジメチルエーテル662.7g(7.36モル)を加えかき混ぜた。次いで、純水35.6g(2.0モル)と濃硝酸333ppmを混合したものを、ゆっくりかき混ぜながら滴下した後、約3時間かき混ぜ、その後室温で5日間静置させて溶液を得た。この溶液を120〜140mmHg、40℃にて1時間減圧蒸留し、固形分濃度を8重量%、アルコール濃度を8重量%の溶液とした。この溶液にシリコーン系界面活性剤であるSH30PA(東レ・ダウコーニング・シリコーン(株)製)を2,000ppm添加し、シリカ系被膜形成用塗布液とした。
(Example 2)
129.6 g (0.79 mol) of triethoxysilane and 60.1 g (0.40 mol) of tetramethoxysilane were mixed, and 662.7 g (7.36 mol) of ethylene glycol dimethyl ether was added and stirred. Next, a mixture of 35.6 g (2.0 mol) of pure water and 333 ppm of concentrated nitric acid was added dropwise while slowly stirring, then stirred for about 3 hours, and then allowed to stand at room temperature for 5 days to obtain a solution. This solution was distilled under reduced pressure at 120 to 140 mmHg and 40 ° C. for 1 hour to obtain a solution having a solid concentration of 8 wt% and an alcohol concentration of 8 wt%. To this solution, 2,000 ppm of SH30PA (manufactured by Toray Dow Corning Silicone Co., Ltd.), which is a silicone surfactant, was added to obtain a coating solution for forming a silica coating.

Cr/Cu/Crの三層構造膜のバス電極(厚さ3μm)を含むガラス基板上に、実施例1と同様にしてシリカ系絶縁被膜厚さ0.2μmのPDP用前面板を形成した。焼成後、表面を金属顕微鏡により、断面を電子顕微鏡により観察したところ、泡噛みはなく、Cuが露出している電極エッジ付近に泡状の異物は観察されなかった。シリカ系絶縁被膜形成後の透過率は90.80% Haze0.23と、良好な透過率だった。   A front plate for PDP having a silica-based insulating film thickness of 0.2 μm was formed on a glass substrate including a bus electrode (thickness 3 μm) of a three-layer structure film of Cr / Cu / Cr in the same manner as in Example 1. After firing, the surface was observed with a metal microscope and the cross section was observed with an electron microscope. As a result, there was no bubble biting and no bubble-like foreign matter was observed near the electrode edge where Cu was exposed. The transmittance after the formation of the silica-based insulating film was 90.80% Haze 0.23, which was a favorable transmittance.

(実施例3)
テトラメトキシシラン246g(1.62モル)とモノメチルトリメトキシシラン220g(1.62モル)をエチレングリコールモノブチルエーテル635g(5.37モル)に溶解しかき混ぜた。次いで、純水194g(10.78モル)と硝酸24ppmを混合したものを、ゆっくりかき混ぜながら滴下した後、約5時間かき混ぜ、その後室温で5日間静置させて固形分濃度15重量%の溶液とし、シリコーン系界面活性剤であるSH30PA(東レ・ダウコーニング・シリコーン(株)製)を100ppm添加し、シリカ系絶縁被膜形成用塗布液とした。
(Example 3)
246 g (1.62 mol) of tetramethoxysilane and 220 g (1.62 mol) of monomethyltrimethoxysilane were dissolved or stirred in 635 g (5.37 mol) of ethylene glycol monobutyl ether. Next, a mixture of 194 g (10.78 mol) of pure water and 24 ppm of nitric acid was added dropwise while slowly stirring, then stirred for about 5 hours, and then allowed to stand at room temperature for 5 days to obtain a solution having a solid content concentration of 15% by weight. 100 ppm of SH30PA (manufactured by Toray Dow Corning Silicone Co., Ltd.), which is a silicone-based surfactant, was added to obtain a coating solution for forming a silica-based insulating coating.

ITO透明電極(厚さ0.2μm)、Cr/Cu/Crの三層構造膜のバス電極(厚さ3μm)を含むガラス基板上に、実施例1と同様にしてシリカ系絶縁被膜厚さ1μmのPDP用前面板を形成した。焼成後、表面を金属顕微鏡により、断面を電子顕微鏡により観察したところ、泡噛みはなく、Cuが露出している電極エッジ付近に泡状の異物は観察されなかった。シリカ系絶縁被膜形成後の透過率は90.81% Haze0.26と、良好な透過率だった。   On a glass substrate including an ITO transparent electrode (thickness 0.2 μm) and a bus electrode (thickness 3 μm) of a three-layer structure of Cr / Cu / Cr, a silica-based insulating film thickness 1 μm is obtained in the same manner as in Example 1. The front plate for PDP was formed. After firing, the surface was observed with a metal microscope and the cross section was observed with an electron microscope. As a result, there was no bubble biting and no bubble-like foreign matter was observed near the electrode edge where Cu was exposed. The transmittance after the formation of the silica-based insulating coating was 90.81% Haze 0.26, which was a favorable transmittance.

(実施例4)
テトラメトキシシラン304.4g(2モル)とモノメチルトリメトキシシラン272.4g(2モル)とジメチルジメトキシシラン120.2g(1モル)とをブチルアルコール608.6g(8.21モル)に溶解しかき混ぜた。次いで、純水194.4g(2.7モル)と硝酸27ppmを混合したものを、ゆっくりかき混ぜながら滴下した後、約5時間かき混ぜ、その後室温で5日間静置させて固形分濃度20重量%の溶液とし、シリコーン系界面活性剤であるSH30PAを1,000ppm添加し、シリカ系絶縁被膜形成用塗布液とした。
Example 4
304.4 g (2 mol) of tetramethoxysilane, 272.4 g (2 mol) of monomethyltrimethoxysilane and 120.2 g (1 mol) of dimethyldimethoxysilane are dissolved in 608.6 g (8.21 mol) of butyl alcohol and mixed. It was. Next, a mixture of 194.4 g (2.7 mol) of pure water and 27 ppm of nitric acid was added dropwise while slowly stirring, then stirred for about 5 hours, and then allowed to stand at room temperature for 5 days to obtain a solid content concentration of 20% by weight. As a solution, 1,000 ppm of SH30PA, which is a silicone-based surfactant, was added to obtain a coating solution for forming a silica-based insulating coating.

ITO透明電極(厚さ0.2μm)、Cr/Cu/Crの三層構造膜のバス電極(厚さ3μm)を含むガラス基板上に、実施例1と同様にしてシリカ系絶縁被膜厚さ0.8μmのPDP用前面板を形成した。焼成後、表面を金属顕微鏡により、断面を電子顕微鏡により観察したところ、泡噛みはなく、Cuが露出している電極エッジ付近に泡状の異物は観察されなかった。シリカ系絶縁被膜形成後の透過率は90.76% Haze0.26と、良好な透過率だった。   On a glass substrate including an ITO transparent electrode (thickness 0.2 μm) and a bus electrode (thickness 3 μm) of a three-layer structure film of Cr / Cu / Cr, the silica-based insulating film thickness is 0 as in the case of Example 1. A front plate for PDP of 8 μm was formed. After firing, the surface was observed with a metal microscope and the cross section was observed with an electron microscope. As a result, there was no bubble biting and no bubble-like foreign matter was observed near the electrode edge where Cu was exposed. The transmittance after the formation of the silica-based insulating coating was 90.76% Haze 0.26, which was a favorable transmittance.

(実施例5)
テトラエトキシシラン80.76g(0.53モル)をエタノール298g(6.48モル)に溶解しかき混ぜた。次いで、純水76.5g(4.25モル)と硝酸200ppmを混合したものを、ゆっくりかき混ぜながら滴下した後、約5時間かき混ぜ、その後室温で5日間静置させて固形分濃度8重量%の溶液とし、シリコーン系界面活性剤であるSH30PAを1,000ppm添加し、シリカ系絶縁被膜形成用塗布液とした。
(Example 5)
80.76 g (0.53 mol) of tetraethoxysilane was dissolved or mixed in 298 g (6.48 mol) of ethanol. Next, a mixture of 76.5 g (4.25 mol) of pure water and 200 ppm of nitric acid was added dropwise while slowly stirring, then stirred for about 5 hours, and then allowed to stand at room temperature for 5 days to obtain a solid content concentration of 8% by weight. As a solution, 1,000 ppm of SH30PA, which is a silicone-based surfactant, was added to obtain a coating solution for forming a silica-based insulating coating.

ITO透明電極(厚さ0.2μm)、上部Cr層をエッチングしたCu/Crの二層構造膜のバス電極(厚さ3μm)を含むガラス基板上に、絶縁被膜形成工程を2回繰り返した以外は実施例1と同様にして、シリカ系絶縁被膜厚さ1.5μmのPDP用前面板を形成した。焼成後、表面を金属顕微鏡により、断面を電子顕微鏡により観察したところ、泡噛みはなく、Cuが露出している電極エッジ付近に泡状の異物は観察されなかった。シリカ系絶縁被膜形成後の透過率は90.79% Haze0.26と、良好な透過率だった。   In addition to repeating the insulating film forming process twice on the glass substrate including the ITO transparent electrode (thickness 0.2 μm) and the bus electrode (thickness 3 μm) of Cu / Cr two-layer structure film obtained by etching the upper Cr layer In the same manner as in Example 1, a PDP front plate having a silica insulating film thickness of 1.5 μm was formed. After firing, the surface was observed with a metal microscope and the cross section was observed with an electron microscope. As a result, there was no bubble biting and no bubble-like foreign matter was observed near the electrode edge where Cu was exposed. The transmittance after the formation of the silica-based insulating coating was 90.79% Haze 0.26, which was a favorable transmittance.

(比較例)
(1)Cr/Cu/Cr三層構造のバス電極を使用
ITO透明電極(厚さ0.2μm)、Cr/Cu/Crの三層構造膜のバス電極(厚さ3μm)を含むガラス基板上に、低融点ガラス70部、アクリル樹脂と可塑剤からなるバインダー30部で構成されたグリーンシートをラミネートし、600℃で1時間焼成し、膜厚20μmの誘電体層を形成した。焼成後、表面を金属顕微鏡により、断面を電子顕微鏡により観察したところ、Cuが露出している電極エッジ付近に泡状の異物が無数に観察された。
(Comparative example)
(1) Using a bus electrode of Cr / Cu / Cr three-layer structure On a glass substrate including an ITO transparent electrode (thickness 0.2 μm) and a bus electrode (thickness 3 μm) of a three-layer structure film of Cr / Cu / Cr A green sheet composed of 70 parts of low melting point glass and 30 parts of a binder made of acrylic resin and plasticizer was laminated and fired at 600 ° C. for 1 hour to form a dielectric layer having a thickness of 20 μm. After firing, the surface was observed with a metal microscope and the cross section was observed with an electron microscope. As a result, countless foamy foreign substances were observed in the vicinity of the electrode edge where Cu was exposed.

以上のように、本発明にかかるプラズマディスプレイパネル及びその製造方法及びプラズマディスプレイパネル製造用シリカ系絶縁被膜形成用組成物は、銅層の酸化を防止し、泡状の異物の発生を抑制して所定の駆動電圧を印加し得るバス電極を備えているので、信頼性の高いプラズマディスプレイに有用である。   As described above, the plasma display panel, the manufacturing method thereof, and the silica-based insulating film forming composition for manufacturing a plasma display panel according to the present invention prevent the oxidation of the copper layer and suppress the generation of foamy foreign matters. Since the bus electrode to which a predetermined driving voltage can be applied is provided, it is useful for a highly reliable plasma display.

本発明及び背景技術におけるプラズマディスプレイパネルの前面板を示す要部断面図である。It is principal part sectional drawing which shows the front plate of the plasma display panel in this invention and background art.

符号の説明Explanation of symbols

1 前面板
10 透明基板
11 複合電極
12 誘電体層
14 透明電極
18 バス電極
30 シリカ系絶縁被膜
DESCRIPTION OF SYMBOLS 1 Front plate 10 Transparent substrate 11 Composite electrode 12 Dielectric layer 14 Transparent electrode 18 Bus electrode 30 Silica-type insulating film

Claims (7)

基板上に形成された電極と、該電極を覆うように前記基板上に形成されたシリカ系絶縁被膜と、該シリカ系絶縁被膜上に形成された誘電体層とを備えてなることを特徴とするプラズマディスプレイパネル。   An electrode formed on a substrate, a silica-based insulating film formed on the substrate so as to cover the electrode, and a dielectric layer formed on the silica-based insulating film Plasma display panel. 前記電極が、透明電極とその上に設けられたバス電極とから構成されていることを特徴とする請求項1に記載のプラズマディスプレイパネル。   The plasma display panel according to claim 1, wherein the electrode includes a transparent electrode and a bus electrode provided thereon. 前記バス電極が、前記シリカ系絶縁被膜との接触面の少なくとも一部に銅を有する電極であることを特徴とする請求項1又は請求項2に記載のプラズマディスプレイパネル。   The plasma display panel according to claim 1, wherein the bus electrode is an electrode having copper on at least a part of a contact surface with the silica-based insulating coating. 前記シリカ系絶縁被膜の膜厚が0.1μm〜2μmであることを特徴とする請求項1から請求項3のいずれか1項に記載のプラズマディスプレイパネル。   The plasma display panel according to any one of claims 1 to 3, wherein a film thickness of the silica-based insulating coating is 0.1 µm to 2 µm. 前記シリカ系絶縁被膜が、下記一般式(1)
1 4-nSi(OR2n (1)
(式中、R1は炭素数1〜3のアルキル基、フェニル基であり;R2は炭素数1〜3のアルキル基であり、nは2〜4の整数である)で表されるアルコキシシラン化合物の少なくとも1種を加水分解して得られる反応生成物を含有するシリカ系絶縁被膜形成用溶液を用いて得られた絶縁被膜であることを特徴とする請求項1から請求項4のいずれか1項に記載のプラズマディスプレイパネル。
The silica-based insulating coating has the following general formula (1)
R 1 4-n Si (OR 2 ) n (1)
(Wherein R 1 is an alkyl group having 1 to 3 carbon atoms and a phenyl group; R 2 is an alkyl group having 1 to 3 carbon atoms, and n is an integer of 2 to 4). 5. The insulating film obtained by using a silica-based insulating film forming solution containing a reaction product obtained by hydrolyzing at least one silane compound. 2. The plasma display panel according to claim 1.
基板上に形成された電極と、該電極を覆うように前記基板上に形成されたシリカ系絶縁被膜と、該シリカ系絶縁被膜上に形成された誘電体層とを備えてなるプラズマディスプレイパネルの前記シリカ系絶縁被膜を形成するためのプラズマディスプレイパネルのシリカ系絶縁被膜形成用組成物であって、
下記一般式(1)
1 4-nSi(OR2n (1)
(式中、R1は炭素数1〜3のアルキル基、フェニル基であり;R2は炭素数1〜3のアルキル基であり、nは2〜4の整数である)で表されるアルコキシシラン化合物の少なくとも1種を加水分解して得られる反応生成物を含有することを特徴とするプラズマディスプレイパネルのシリカ系絶縁被膜形成用組成物。
A plasma display panel comprising: an electrode formed on a substrate; a silica-based insulating film formed on the substrate so as to cover the electrode; and a dielectric layer formed on the silica-based insulating film. A composition for forming a silica-based insulating film of a plasma display panel for forming the silica-based insulating film,
The following general formula (1)
R 1 4-n Si (OR 2 ) n (1)
(Wherein R 1 is an alkyl group having 1 to 3 carbon atoms and a phenyl group; R 2 is an alkyl group having 1 to 3 carbon atoms, and n is an integer of 2 to 4). A composition for forming a silica-based insulating film for a plasma display panel, comprising a reaction product obtained by hydrolyzing at least one silane compound.
請求項1から請求項5のいずれか1項に記載のプラズマディスプレイパネルの製造方法であって、
基板上に電極を形成した後、該電極を覆うように前記基板上に請求項6に記載のシリカ系絶縁被膜形成用組成物を塗布し、得られた塗布膜を焼成してシリカ系絶縁被膜を形成し、該シリカ系絶縁被膜が形成された基板上に誘電体層形成用組成物を層状に形成し、得られた誘電体形成用組成物層を焼成して誘電体層を形成することを特徴とするプラズマディスプレイパネルの製造方法。
A method for manufacturing a plasma display panel according to any one of claims 1 to 5,
After forming an electrode on a substrate, the composition for forming a silica-based insulating film according to claim 6 is applied on the substrate so as to cover the electrode, and the obtained coating film is baked to form a silica-based insulating film Forming a dielectric layer forming composition on the substrate on which the silica-based insulating coating is formed, and firing the obtained dielectric forming composition layer to form a dielectric layer. A method of manufacturing a plasma display panel characterized by the above.
JP2005245046A 2005-08-25 2005-08-25 Plasma display panel, method for producing the same, and composition for forming a silica-based insulating film of plasma display panel Expired - Fee Related JP4589202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245046A JP4589202B2 (en) 2005-08-25 2005-08-25 Plasma display panel, method for producing the same, and composition for forming a silica-based insulating film of plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245046A JP4589202B2 (en) 2005-08-25 2005-08-25 Plasma display panel, method for producing the same, and composition for forming a silica-based insulating film of plasma display panel

Publications (2)

Publication Number Publication Date
JP2007059280A true JP2007059280A (en) 2007-03-08
JP4589202B2 JP4589202B2 (en) 2010-12-01

Family

ID=37922573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245046A Expired - Fee Related JP4589202B2 (en) 2005-08-25 2005-08-25 Plasma display panel, method for producing the same, and composition for forming a silica-based insulating film of plasma display panel

Country Status (1)

Country Link
JP (1) JP4589202B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270749A (en) * 1975-12-10 1977-06-13 Fujitsu Ltd Manufacture of electrode of gas discharge panel
JPS62194225A (en) * 1986-02-20 1987-08-26 Fujitsu Ltd Production of electrode substrate for display pannel
JPH11281989A (en) * 1998-03-26 1999-10-15 Nippon Shokubai Co Ltd Electrode protective coating agent for liquid crystal display, and liquid crystal display cell
JP2000011890A (en) * 1998-06-19 2000-01-14 Hitachi Ltd Gas-discharge type display device
JP2000260332A (en) * 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd Gas discharge panel and its manufacture
JP2001135222A (en) * 1999-11-02 2001-05-18 Fujitsu Ltd Gas discharge panel and producing method therefor
JP2005047778A (en) * 2003-07-31 2005-02-24 Central Glass Co Ltd Lead-free low melting point glass
JP2005053746A (en) * 2003-08-05 2005-03-03 Asahi Glass Co Ltd Glass powder composition for electrode coating, glass paste, green sheet and method for producing plasma display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270749A (en) * 1975-12-10 1977-06-13 Fujitsu Ltd Manufacture of electrode of gas discharge panel
JPS62194225A (en) * 1986-02-20 1987-08-26 Fujitsu Ltd Production of electrode substrate for display pannel
JPH11281989A (en) * 1998-03-26 1999-10-15 Nippon Shokubai Co Ltd Electrode protective coating agent for liquid crystal display, and liquid crystal display cell
JP2000011890A (en) * 1998-06-19 2000-01-14 Hitachi Ltd Gas-discharge type display device
JP2000260332A (en) * 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd Gas discharge panel and its manufacture
JP2001135222A (en) * 1999-11-02 2001-05-18 Fujitsu Ltd Gas discharge panel and producing method therefor
JP2005047778A (en) * 2003-07-31 2005-02-24 Central Glass Co Ltd Lead-free low melting point glass
JP2005053746A (en) * 2003-08-05 2005-03-03 Asahi Glass Co Ltd Glass powder composition for electrode coating, glass paste, green sheet and method for producing plasma display panel

Also Published As

Publication number Publication date
JP4589202B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP3389243B1 (en) Plasma display panel and method of manufacturing the same
JP4372807B2 (en) Plasma display panel and manufacturing method thereof
TW200406806A (en) Substrate assembly for gas discharge panel, process for manufacturing the same, and gas discharge panel
JPWO2008149748A1 (en) Inorganic particle-containing composition, inorganic layer forming method, and plasma display panel
JP4589202B2 (en) Plasma display panel, method for producing the same, and composition for forming a silica-based insulating film of plasma display panel
JP2007059263A (en) Plasma display panel, its manufacturing method and silica-based insulating coating film forming composition of plasma display panel
JP4851554B2 (en) Method for manufacturing plasma display panel
US8004193B2 (en) Glass composition and display panel using the same
JP2009143729A (en) Glass composition and display panel using the same
CN104745076B (en) Photocurable coating composition, photocurable coating film, and touch panel
KR20140014737A (en) Paste composition for electrode, electrode fabricated using the same and plasma display panel comprising the same
JP4928766B2 (en) Oxide glass and display panel using the same
JP4663776B2 (en) Plasma display panel and manufacturing method thereof
JP2010132462A (en) Glass composition and display panel using the same
JP2007314376A (en) Glass for covering electrode and display using the same
JP4017816B2 (en) Manufacturing method of plasma display
JP2003338248A (en) Plasma display panel
JP2007308320A (en) Dielectric composition, dielectric paste composition, and dielectric obtained by using the paste composition
JP2008239396A (en) Glass composition and display panel using the same
JP2005053746A (en) Glass powder composition for electrode coating, glass paste, green sheet and method for producing plasma display panel
JP2011108468A (en) Plasma display panel, and method of manufacturing plasma display panel
JP2007076947A (en) Oxide glass, and display panel using the same
JP2010159370A (en) Composition containing inorganic particle, method for forming inorganic layer using the same, and plasma display panel
KR20050081078A (en) Plasma display panel and manufacturing method thereof
JP2011238467A (en) Plasma display panel and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080514

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100825

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100909

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130917

LAPS Cancellation because of no payment of annual fees