JP2007049046A - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- JP2007049046A JP2007049046A JP2005233787A JP2005233787A JP2007049046A JP 2007049046 A JP2007049046 A JP 2007049046A JP 2005233787 A JP2005233787 A JP 2005233787A JP 2005233787 A JP2005233787 A JP 2005233787A JP 2007049046 A JP2007049046 A JP 2007049046A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- processing chamber
- film
- substrate
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
【課題】 処理室内に付着した膜の膜中不純物を容易に脱離することが可能で、膜中不純物脱離による悪影響を低減する。
【解決手段】 シリコン基板8を処理室1内に搬入する工程と、処理室1内に処理ガス(TMA、H2O)を供給してシリコン基板8上に膜を形成する工程と、処理室1よりシリコン基板8を搬出する工程と、シリコン基板8を搬出した処理室1内に、プラズマで活性化したガス(O2)を供給することにより、処理室1内に付着した膜の膜中不純物を除去する工程と、を有する。
【選択図】 図1
【解決手段】 シリコン基板8を処理室1内に搬入する工程と、処理室1内に処理ガス(TMA、H2O)を供給してシリコン基板8上に膜を形成する工程と、処理室1よりシリコン基板8を搬出する工程と、シリコン基板8を搬出した処理室1内に、プラズマで活性化したガス(O2)を供給することにより、処理室1内に付着した膜の膜中不純物を除去する工程と、を有する。
【選択図】 図1
Description
本発明は半導体装置の製造方法に係り、特に処理室内に付着した膜の膜中不純物を脱離させるための方法に関する。
近年、半導体の微細化に伴い、高品質な半導体膜の要求が高まりつつあるなか、二種類の反応ガスを交互に供給して、原子層レベルの堆積膜を形成する成膜方法(ALD:Atomic Layer Deposition)が注目されている。
反応ガスの材料としては、金属含有原料と酸素又は窒素を含有するガスとが用いられる。基本的なガス供給方法を、図2を用いて説明する。
図2(a)はフローチャート、図2(b)はガス供給タイミング図である。
図示例では、ガス化した金属含有原料を原料A、酸素又は窒素を含有するガスを原料Bとしている。
図2(a)はフローチャート、図2(b)はガス供給タイミング図である。
図示例では、ガス化した金属含有原料を原料A、酸素又は窒素を含有するガスを原料Bとしている。
ALDは、原料Aを処理室内の基板へ供給して吸着させ(工程1)、吸着後残留原料Aを排気し(工程2)、排気後原料Bを基板へ供給して原料Aと反応させて成膜し(工程3)、成膜後残留原料Bを排気する(工程4)、という4つの工程を1サイクルとしてこれを複数回繰り返す方法である。
ガス供給タイミングは、図2(b)に示すように、原料Aと原料Bとを交互に供給する間に、パージガスによる排気を挟むようになっている。
一般に、ALDの成膜温度は低い。これは原料Aを基板上に飽和吸着させる必要があるからである。これにより、原料Aが基板上に均一に吸着されるので、膜厚均一性、被覆段差性に優れた成膜が可能となる。
しかし、成膜温度が低いために、原料Bを供給することで、原料Aが分解するときに生成される副生成物や余剰の原料が、基板上に形成される膜中に取り込まれやすく、その膜中に多くの不純物を含んだ状態となるので、膜質の劣る膜が形成される。
そこで、この膜質を改善するために、別の処理室で基板を熱処理し、膜中の不純物を脱離させている。
一方、基板以外の処理室内にも膜は形成され、処理室内壁、基板保持具等の処理室内の部材に堆積、蓄積することになる。これにより、処理室内に堆積した膜中から不純物が脱離することにより処理室の真空度が劣化したり、基板処理中に、処理室内に堆積した膜中から原料成分が脱離することにより膜厚が制御できなくなったり、基板面内で膜厚のバラツキが生じたりすることが懸念される。
そこで、この膜質を改善するために、別の処理室で基板を熱処理し、膜中の不純物を脱離させている。
一方、基板以外の処理室内にも膜は形成され、処理室内壁、基板保持具等の処理室内の部材に堆積、蓄積することになる。これにより、処理室内に堆積した膜中から不純物が脱離することにより処理室の真空度が劣化したり、基板処理中に、処理室内に堆積した膜中から原料成分が脱離することにより膜厚が制御できなくなったり、基板面内で膜厚のバラツキが生じたりすることが懸念される。
上述したように、基板上に形成した膜については、この膜を熱処理し、膜中の不純物を脱離させて膜質を改善することは容易である。しかし、処理室内に付着、堆積した膜については、この膜を熱処理し、膜中の不純物を脱離させて膜質を改善することは、次の理由から困難である。
処理室内の堆積膜を熱処理し、膜中の不純物を脱離させて膜質を改善するためには、処理室内を700℃〜900℃の高温にしなければならない。ALDは、通常150℃〜300℃以下で成膜しているので、処理室部材はコスト上の問題から耐熱性が低く設計されており、処理室部材にはアルミニウムやステンレスなどの金属が用いられている。また、ALD処理室は、構造上、ガス置換効率を挙げるために容積を小さくしているので、ゲートバルブや枚葉用のヒータなど、高温に耐えられない部材が処理室に近接して設けられている。処理室を熱処理して膜質を改質する場合、処理室は高温にさらされるが、これらの部材は高温に耐えられない。高温に耐えるためには、石英やSiCなどの高価で難加工性の部材を用いる必要があるが、コスト上の問題から、そのような部材で処理室を構成することは困難である。したがって処理室内に付着、堆積した膜の膜中不純物を脱離することが困難であった。
本発明の課題は、処理室内に付着した膜の膜中不純物を容易に除去することが可能な半導体装置の製造方法を提供することにある。
本発明者等は、前記課題を達成すべく種々検討を重ねた結果、処理室内を熱処理するのではなく、処理室内に活性化したガスを供給することによって、処理室内に付着した膜中から不純物を脱離することが可能であることを見出し、本発明に到達した。
すなわち、第1の発明は、基板を処理室内に搬入する工程と、前記処理室内に処理ガスを供給して前記基板上に膜を形成する工程と、前記処理室より前記基板を搬出する工程と、前記基板を搬出した前記処理室内に、プラズマで活性化したガスを供給することにより、前記処理室内に付着した膜の膜中不純物を除去する工程と、を有することを特徴とする半導体装置の製造方法である。
処理室内にプラズマで活性化したガスを供給すると、プラズマで活性化したガスが処理室内に付着した膜の膜中不純物と反応して、膜中不純物が膜から容易に脱離して、処理室内から除去される。したがって、次の基板上に膜を形成する工程において、処理室内に付着した膜の膜中不純物の脱離による悪影響を低減することができる。
すなわち、第1の発明は、基板を処理室内に搬入する工程と、前記処理室内に処理ガスを供給して前記基板上に膜を形成する工程と、前記処理室より前記基板を搬出する工程と、前記基板を搬出した前記処理室内に、プラズマで活性化したガスを供給することにより、前記処理室内に付着した膜の膜中不純物を除去する工程と、を有することを特徴とする半導体装置の製造方法である。
処理室内にプラズマで活性化したガスを供給すると、プラズマで活性化したガスが処理室内に付着した膜の膜中不純物と反応して、膜中不純物が膜から容易に脱離して、処理室内から除去される。したがって、次の基板上に膜を形成する工程において、処理室内に付着した膜の膜中不純物の脱離による悪影響を低減することができる。
第2の発明は、第1の発明において、前記処理ガスは、炭素(C)原子、水素(H)原子、酸素(O)原子、塩素(Cl)原子のいずれかの原子を含むガスを含むことを特徴とする半導体装置の製造方法である。
炭素(C)原子、水素(H)原子、酸素(O)原子、塩素(Cl)原子のいずれかの原子を含むガスを含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
炭素(C)原子、水素(H)原子、酸素(O)原子、塩素(Cl)原子のいずれかの原子を含むガスを含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
第3の発明は、第1の発明において、前記処理ガスは、H2O(水蒸気)を含むことを特徴とする半導体装置の製造方法である。
H2O(水蒸気)を含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
H2O(水蒸気)を含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
第4の発明は、第1の発明において、前記処理ガスは複数種類のガスを含み、前記基板上に膜を形成する工程は、前記基板に対して少なくとも1種類のガスを供給する工程と、前記基板に対してH2O(水蒸気)を供給する工程とを、1回行う工程または複数回繰り返す工程を含むことを特徴とする半導体装置の製造方法である。
複数種類のガスを含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
複数種類のガスを含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
第5の発明は、第1の発明において、前記処理ガスは、複数種類のガスを含み、前記基板上に膜を形成する工程は、前記基板に対して少なくとも1種類のガスを供給して前記基板上に吸着させる工程と、吸着させたガスに対してH2O(水蒸気)を供給して成膜反応を生じさせる工程とを、複数回繰り返す工程を含むことを特徴とする半導体装置の製造方法である。
複数種類のガスを含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
複数種類のガスを含む処理ガスを用いて、このようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
第6の発明は、第1の発明において、前記処理ガスは、TMA(Al(CH3)3:トリメチルアルミニウム)とH2O(水蒸気)を含み、前記基板上に膜を形成する工程は、前記TMAを供給して基板上に吸着させる工程と、吸着させたTMAに対してH2O(水蒸気)を供給して成膜反応を生じさせる工程とを、1回または複数回繰り返す工程を含むことを特徴とする半導体装置の製造方法である。
TMAとH2Oを含む処理ガスを用いてこのようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
TMAとH2Oを含む処理ガスを用いてこのようなプロセスを行う場合に、特に上述のような問題が生じやすいが、本発明によればこのような問題を解決できる。
第7の発明は、第1の発明において、前記プラズマで活性化するガスは、窒素(N)原子、酸素(O)原子、水素(H)原子のいずれかの原子を含むことを特徴とする半導体装置の製造方法である。
プラズマで活性化するガスとしてこのようなガスを用いれば、これらのガスが処理室内に付着した膜の膜中不純物と反応して、膜中不純物を膜から脱離させて処理室内から容易に除去できる。
プラズマで活性化するガスとしてこのようなガスを用いれば、これらのガスが処理室内に付着した膜の膜中不純物と反応して、膜中不純物を膜から脱離させて処理室内から容易に除去できる。
第8の発明は、第1の発明において、前記プラズマで活性化するガスは、非エッチング性のガスであることを特徴とする半導体装置の製造方法である。
プラズマで活性化するガスとして非エッチング性のガスを用いると、処理室内に付着した膜の膜中不純物を除去する際に、処理室内の金属部材をエッチングして金属汚染を発生するというような問題が生じない。
プラズマで活性化するガスとして非エッチング性のガスを用いると、処理室内に付着した膜の膜中不純物を除去する際に、処理室内の金属部材をエッチングして金属汚染を発生するというような問題が生じない。
本発明によれば、処理室内に付着した膜の膜中不純物を容易に除去することができ、処理室内に付着した膜の膜中不純物脱離による悪影響を低減することができる。
以下に本発明の実施の形態を説明する。
図1は、本発明の半導体装置の製造方法を実施するための枚葉式の基板処理装置の縦断面図である。
図1は、本発明の半導体装置の製造方法を実施するための枚葉式の基板処理装置の縦断面図である。
図1に示すように基板処理装置は、例えば1枚のシリコン基板8を内部で略水平姿勢で処理する偏平な処理室1と、処理室1内にガスを供給するガス供給口19、20、61と、処理室1内を排気する排気口16と、シリコン基板8を略水平に保持する基板保持具としてのサセプタ3と、サセプタ3上に保持されたシリコン基板8の周囲に略水平に支持されるコンダクタンスプレート2(以下、単にプレート2ということもある)と、コンダクタンスプレート2よりも下方の空間33にガスを排出する排出口11とを主に備える。ここでプレート2よりも下方の空間33には、基板下の空間、すなわちサセプタ3の裏側の空間も含まれる。
処理室1は、上容器26と下容器27とにより構成されて、密閉された内部空間でシリコン基板8を処理するように構成されている。
上容器26には、シリコン基板8に対してガスを供給する複数のガス供給口、例えば三つのガス供給口19、20、61が設けられる。ガス供給口19、20、61は、シリコン基板8が保持されている基板保持領域の上方ではなく、シリコン基板8が保持されている基板保持領域からはずれたシリコン基板8の側方であって、しかもシリコン基板8の周囲に設けられたプレート2の外側であって、プレート2の表面レベルよりも上方に設けられる。
上容器26には、シリコン基板8に対してガスを供給する複数のガス供給口、例えば三つのガス供給口19、20、61が設けられる。ガス供給口19、20、61は、シリコン基板8が保持されている基板保持領域の上方ではなく、シリコン基板8が保持されている基板保持領域からはずれたシリコン基板8の側方であって、しかもシリコン基板8の周囲に設けられたプレート2の外側であって、プレート2の表面レベルよりも上方に設けられる。
ガス供給口19、20、61は、処理室1のプレート2よりも上方の空間34に連通している。ガス供給口19は処理室1内に第1の反応ガス又はパージガスを選択的に供給するように構成される。ガス供給口20は、ガス供給口19に隣接して設けられ処理室1内に第2の反応ガス又はパージガスを選択的に供給するように構成される。ガス供給口61は、ガス供給口20に隣接して設けられ処理室1内にプラズマで活性化したガスを供給するように構成される。
ガス供給口19、20、61には、ガスを供給するための3系統のラインがそれぞれ連結される。第1の系統は金属酸化膜、例えばアルミニウム酸化膜の有機液体原料であるTMAを供給するTMA供給ライン4であり、第2の系統は例えば原料と反応性の高いガスである水蒸気(H2O)を供給する水蒸気供給ライン5である。第3の系統は例えばプラズマで活性化した酸素ガス(O2ガス)を供給する酸素供給ライン63である。
ガス供給口19、20、61には、ガスを供給するための3系統のラインがそれぞれ連結される。第1の系統は金属酸化膜、例えばアルミニウム酸化膜の有機液体原料であるTMAを供給するTMA供給ライン4であり、第2の系統は例えば原料と反応性の高いガスである水蒸気(H2O)を供給する水蒸気供給ライン5である。第3の系統は例えばプラズマで活性化した酸素ガス(O2ガス)を供給する酸素供給ライン63である。
TMA供給ライン4には、TMA液体を流量制御する液体流量制御手段22、流量制御されたTMA液体を気化する気化手段23、及びTMA供給ライン4を開閉するバルブ9が設けられる。このTMA供給ライン4の気化手段23とバルブ9との間には、Ar供給ライン17が接続されて、流量制御手段21で流量制御されたArガスを、バルブ12を介してTMA供給ライン4に供給できるように構成されている。
このように構成することによって、ガス供給口19へのガス導入は次の3通りの選択が可能となる。(1)TMA供給ライン4のバルブ9を開け、Ar供給ライン17のバルブ12を閉じることによって、気化手段23で気化したTMAガスのみを、TMA供給ライン4から単独でガス供給口19に導入する。(2)さらにAr供給ライン17のバルブ12を開けることによって、TMAガスとArガスとの混合ガスを、TMA供給ライン4からガス供給口19に導入する。(3)気化手段23からのTMAガスを止めて、TMA供給ライン4からArガスのみを単独でガス供給口19に導入する。
このように構成することによって、ガス供給口19へのガス導入は次の3通りの選択が可能となる。(1)TMA供給ライン4のバルブ9を開け、Ar供給ライン17のバルブ12を閉じることによって、気化手段23で気化したTMAガスのみを、TMA供給ライン4から単独でガス供給口19に導入する。(2)さらにAr供給ライン17のバルブ12を開けることによって、TMAガスとArガスとの混合ガスを、TMA供給ライン4からガス供給口19に導入する。(3)気化手段23からのTMAガスを止めて、TMA供給ライン4からArガスのみを単独でガス供給口19に導入する。
水蒸気供給ライン5には、水を流量制御する液体流量制御手段24、流量制御された水を気化する気化手段25、及び水蒸気供給ライン5を開閉するバルブ10が設けられる。この水蒸気供給ライン5の気化手段25とバルブ10との間には、前述したAr供給ライン17が分岐ライン17aにより分岐接続されて、流量制御手段21で流量制御されたArガスをバルブ13を介して水蒸気供給ライン5に供給できるように構成されている。 このように構成することによって、ガス供給口20へのガス導入は次の3通りの選択が可能となる。
(1)水蒸気供給ライン5のバルブ10を開け、分岐ラインのバルブ13を閉じることによって、気化手段25で気化した水蒸気のみを、水蒸気供給ライン5から単独でガス供給口20に導入する。(2)さらに、分岐ラインのバルブ13を開けることによって、水蒸気とArガスとの混合ガスを、水蒸気供給ライン5からガス供給口20に導入する。(3)気化手段25からの水蒸気を止めて、水蒸気供給ライン5からArガスのみを単独でガス供給口20に導入する。
(1)水蒸気供給ライン5のバルブ10を開け、分岐ラインのバルブ13を閉じることによって、気化手段25で気化した水蒸気のみを、水蒸気供給ライン5から単独でガス供給口20に導入する。(2)さらに、分岐ラインのバルブ13を開けることによって、水蒸気とArガスとの混合ガスを、水蒸気供給ライン5からガス供給口20に導入する。(3)気化手段25からの水蒸気を止めて、水蒸気供給ライン5からArガスのみを単独でガス供給口20に導入する。
酸素供給ライン63には、O2ガスを流量制御する流量制御装置68、O2ガスの供給を停止するバルブ66、流量制御されたO2ガスを活性化するリモートプラズマユニット64、及び酸素供給ライン63を開閉するバルブ62が設けられる。この酸素供給ライン63のリモートプラズマユニット64とバルブ66との間には、Ar供給ライン69が接続されて、流量制御装置67で流量制御されたArガスをバルブ65を介して酸素供給ライン63に供給できるように構成されている。このArガスは放電用のガスである。このように構成することによって、ガス供給口61へのガス導入は次の2通りの選択が可能となる。(1)酸素供給ライン63のバルブ62、66、Ar供給ライン69のバルブ65を開けて、リモートプラズマユニット64で形成したArプラズマで酸素を活性化し、この活性化した酸素(以下、活性化酸素ともいう)をArプラズマとともに、酸素供給ライン63からガス供給口61に導入する。(2)酸素供給ライン63のバルブ66を閉じて酸素供給ライン63からArプラズマのみを単独でガス供給口61に導入する。
下容器27の一側壁には排気口16が設けられている。排気口16は、略水平に保持されたシリコン基板8を略水平方向から挟んでガス供給口19、20と反対側であって、プレート2よりも下方の空間33に開口している。これにより、排気口16はプレート2よりも下方の空間33を介して排出口11と連通する。この排気口16は、圧力制御手段15及び真空ポンプ37を介設した排気配管としてのガス排気ライン6に接続されて、処理室1内の雰囲気を排出するようになっている。処理室1内は、圧力制御手段15によって所定の圧力に制御できるようになっている。なお、この圧力制御手段15は使用しなくても構わない。
また、下容器27の一側壁と対向する他側壁には、基板搬入出口30が設けられている。この基板搬入出口30から外側に延出された延出部の開口にゲートバルブ7が設けられ、このゲートバルブ7を開放した状態において、搬送手段としての搬送ロボット38により、基板搬入出口30を介してシリコン基板8を処理室1内外に搬送できるようになっている。
上容器26と下容器27とは、例えば安価で耐熱性が低いアルミニウム、ステンレスなどの金属で構成される。
上容器26と下容器27とは、例えば安価で耐熱性が低いアルミニウム、ステンレスなどの金属で構成される。
サセプタ3は、処理室1内に設けられ、円板状をしており、その上にシリコン基板8を保持するように構成されている。サセプタ3は、セラミックスヒータなどのヒータ55を内蔵してシリコン基板8を所定温度に加熱するとともに、保持されたシリコン基板8の外周にプレート2を支持するように構成される。サセプタ3は支持軸29を備えている。支持軸29は、処理室1の下容器27の底部中央に設けられた貫通孔28より鉛直方向に挿入されて、サセプタ3を昇降機構56により上下動させるようになっている。サセプタ3が上方にある成膜位置(図示位置)で成膜処理がなされ、下方の待機位置でシリコン基板8の搬送が行われる。プレート2を支持したサセプタ3が前述した成膜位置にあるとき、処理室1内を上下に仕切るプレート2、シリコン基板8及びサセプタ3によって、プレート2よりも上方の空間34と、プレート2よりも下方の空間33とが処理室1内の上下に形成される。
サセプタは、例えば、石英、カーボン、セラミックス、炭化ケイ素(SiC)、酸化アルミニウム(Al2O3)、又は窒化アルミニウム(AlN)などで構成される。
サセプタは、例えば、石英、カーボン、セラミックス、炭化ケイ素(SiC)、酸化アルミニウム(Al2O3)、又は窒化アルミニウム(AlN)などで構成される。
コンダクタンスプレート2は、シリコン基板8の周囲に設けられ、基板上に流れるガス流を制御するように構成される。ここでは、コンダクタンスプレート2は、サセプタ3から処理室内壁32に向かって張り出すように、サセプタ3の外周上に支持される。また、プレート2は、その表面とシリコン基板8の表面とが面一になるように設けられる。もしくは、プレート2は、上容器26に固定され、シリコン基板8がサセプタ3と共に上昇して成膜位置に達したところで、プレート2とシリコン基板8が面一になるように設けられる。これにより、反応ガス又はパージガス(以下、単にガスという場合もある)を基板面上に平行にまた均一に供給することができるようになっている。
また、コンダクタンスプレート2の外周に、コンダクタンスプレート2よりも下方の空間33にガスを排出する排出口11が設けられる。この排出口11の排気コンダクタンスは、プレート2の位置を偏椅させたり、プレート2の形状を変えたりすることによって調整できるようになっている。なお、プレート2の厚さは、図示例ではシリコン基板8よりも若干厚くなっているが、シリコン基板8の厚さと同じか、又はシリコン基板8よりも薄くてもよい。プレート2は例えばセラミックスで構成される。
また、コンダクタンスプレート2の外周に、コンダクタンスプレート2よりも下方の空間33にガスを排出する排出口11が設けられる。この排出口11の排気コンダクタンスは、プレート2の位置を偏椅させたり、プレート2の形状を変えたりすることによって調整できるようになっている。なお、プレート2の厚さは、図示例ではシリコン基板8よりも若干厚くなっているが、シリコン基板8の厚さと同じか、又はシリコン基板8よりも薄くてもよい。プレート2は例えばセラミックスで構成される。
排出口11は、コンダクタンス調整用開口であって、プレート2よりも上方の空間34から、この排出口11を介してプレート2よりも下方の空間33に排出されるガスの量を制御して、シリコン基板8上に供給されるガスのガス圧力を制御する。
排出口11は、プレート2のシリコン基板8よりも少なくともガス流れの上流側と下流側とに設けられ、プレート2よりも上方の空間34からプレート2よりも下方の空間33に上流側の排出口11A及び下流側の排出口11Bを介してガスを排出するようになっている。
排出口11は、プレート2のシリコン基板8よりも少なくともガス流れの上流側と下流側とに設けられ、プレート2よりも上方の空間34からプレート2よりも下方の空間33に上流側の排出口11A及び下流側の排出口11Bを介してガスを排出するようになっている。
排出口11を、プレート2の上流側と下流側に設ける理由は、上流側、下流側それぞれの排出口のコンダクタンスを調整することによりガス流を制御し、シリコン基板8上の圧力分布を均一化するのに有効だからである。
また、排出口11を、プレート2よりも下方の空間33にガスを排出するように設ける理由は、ガス供給口19、20、61から供給されるガスのうち、プレート2よりも上方の空間34に流れるガスに対して、プレート2よりも下方の空間33へ流れるガス量を変えることにより、基板上の圧力分布を制御することが可能で、プレート2よりも下方の空間33のパージ効率を向上させることが可能となるからである。
また、排出口11を、プレート2よりも下方の空間33にガスを排出するように設ける理由は、ガス供給口19、20、61から供給されるガスのうち、プレート2よりも上方の空間34に流れるガスに対して、プレート2よりも下方の空間33へ流れるガス量を変えることにより、基板上の圧力分布を制御することが可能で、プレート2よりも下方の空間33のパージ効率を向上させることが可能となるからである。
処理室1内のガス流れについて説明する。図示するように、処理室内壁32のうち、ガス供給口19、20、61の直下部分の処理室内壁32では、プレート面と面一となる箇所に内方に突出した突出内壁32aを設け、この突出内壁32aとこの突出内壁に対向するプレート2の外周部との間に上流側の排出口11Aを設けるようにしている。
ガス供給口19、20、61から、処理室1内のプレート2よりも上方の空間34に流れ込んだガスは、この突出内壁32aにぶつかり、進路を変えられ、一部は上流側の排出口11Aから矢印で示すようにプレート2よりも下方の空間33に流れ込み、基板下を排気口16に向かって一方向に流れる。残りは上流側のプレート2に沿って矢印で示すようにシリコン基板8上を流れ、下流側のプレート2に沿って排出口11B、排気口16に向かって一方向に流れる。
このようにガス供給口19、20、61の直下に、ガスを受け流す突出内壁32aを設けることによって、ガス供給口19、20、61が処理室1の上容器26の上部に設けられているにもかかわらず、プレート2よりも上方の空間34に供給されたガスが、プレート2に沿ってシリコン基板8上に平行に流れることを可能にしている。
そして、シリコン基板8上を流れて下流側のプレート2を経て下流側の排出口11Bからプレート2よりも下方の空間33内に排出されてきたガスと、上流側の排出口11Aから下方の空間33内に排出されてサセプタ3の下側を流れてきたガスとが、排気口16で合流して、ガス排気ライン6から排気される。
以上述べたように実施の形態の基板処理装置が構成される。
ガス供給口19、20、61から、処理室1内のプレート2よりも上方の空間34に流れ込んだガスは、この突出内壁32aにぶつかり、進路を変えられ、一部は上流側の排出口11Aから矢印で示すようにプレート2よりも下方の空間33に流れ込み、基板下を排気口16に向かって一方向に流れる。残りは上流側のプレート2に沿って矢印で示すようにシリコン基板8上を流れ、下流側のプレート2に沿って排出口11B、排気口16に向かって一方向に流れる。
このようにガス供給口19、20、61の直下に、ガスを受け流す突出内壁32aを設けることによって、ガス供給口19、20、61が処理室1の上容器26の上部に設けられているにもかかわらず、プレート2よりも上方の空間34に供給されたガスが、プレート2に沿ってシリコン基板8上に平行に流れることを可能にしている。
そして、シリコン基板8上を流れて下流側のプレート2を経て下流側の排出口11Bからプレート2よりも下方の空間33内に排出されてきたガスと、上流側の排出口11Aから下方の空間33内に排出されてサセプタ3の下側を流れてきたガスとが、排気口16で合流して、ガス排気ライン6から排気される。
以上述べたように実施の形態の基板処理装置が構成される。
次に上述した基板処理装置を用いて半導体装置を製造する工程の一工程として基板を処理する方法を説明する。ここでは、シリコン基板上にアルミニウム酸化膜の成膜を行うプロセスを例にとって説明する。成膜方法には、金属含有原料と酸素又は窒素を含有するガスとを交互に供給して、膜を堆積させるALDを用いる。また、金属含有原料には常温で液体のTMAを用い、酸素又は窒素を含有するガスにはH2O(水蒸気)を用いる。
基板処理では先ず、サセプタ3を待機位置に下降させた上で、ゲートバルブ7を開放する。搬送ロボット38により、1枚のシリコン基板8を基板搬入出口30を介して処理室1内に搬入して、サセプタ3上に移載して保持する(搬入工程)。
ゲートバルブ7を閉じた後、昇降機構56により、サセプタ3を所定の成膜位置まで上昇させる。ヒータ55によりサセプタ3を加熱して、温度制御手段14によりシリコン基板8が所定の温度となるように制御する。処理室1内を真空ポンプ37で真空引きし、圧力制御手段15によって処理室1内が所定の圧力となるように制御する。基板が所定温度に加熱されて安定すると共に処理室1内の圧力が安定した後、基板上への成膜を開始して、基板上に膜を形成する(形成工程)。
形成工程は次の4つの工程からなり、4つの工程を1サイクルとして、所望厚さの膜が形成されるまで複数サイクル繰り返される。
ゲートバルブ7を閉じた後、昇降機構56により、サセプタ3を所定の成膜位置まで上昇させる。ヒータ55によりサセプタ3を加熱して、温度制御手段14によりシリコン基板8が所定の温度となるように制御する。処理室1内を真空ポンプ37で真空引きし、圧力制御手段15によって処理室1内が所定の圧力となるように制御する。基板が所定温度に加熱されて安定すると共に処理室1内の圧力が安定した後、基板上への成膜を開始して、基板上に膜を形成する(形成工程)。
形成工程は次の4つの工程からなり、4つの工程を1サイクルとして、所望厚さの膜が形成されるまで複数サイクル繰り返される。
工程1では、バルブ9が開かれて、液体流量制御手段22で流量制御された液体原料TMAが気化手段23へ供給されて、気化手段23により気化された第1の反応ガスとしてのTMAガスが、TMA供給ライン4からガス供給口19を介して処理室1内に供給される。
TMAガスを希釈する場合は、さらにバルブ12を開いて、流量制御手段21で流量制御されたArガスを、Ar供給ライン17からTMA供給ライン4に流し、Arガスと混合されたTMAガスが、TMA供給ライン4からガス供給口19を介して処理室1内に供給される。TMAガスはシリコン基板8上に供給されて、その表面に吸着する。余剰ガスはプレート2の外周に設けた排出口11からプレート2よりも下方の空間33に排出され、この空間33を図中の矢印の方向に流れて排気口16から排気される。
TMAガスを希釈する場合は、さらにバルブ12を開いて、流量制御手段21で流量制御されたArガスを、Ar供給ライン17からTMA供給ライン4に流し、Arガスと混合されたTMAガスが、TMA供給ライン4からガス供給口19を介して処理室1内に供給される。TMAガスはシリコン基板8上に供給されて、その表面に吸着する。余剰ガスはプレート2の外周に設けた排出口11からプレート2よりも下方の空間33に排出され、この空間33を図中の矢印の方向に流れて排気口16から排気される。
工程2では、バルブ9を開に保ったまま、気化手段23からのTMAガスの供給を停止する。このときバルブ12が閉のときはこれを開にする。流量制御手段21により流量制御されたArガスをAr供給ライン17からTMA供給ライン4に流し、ガス供給口19を介して処理室1内に供給し、TMA供給ライン4及び、処理室1内に残留しているTMAガスをArガスで置換し、排気口16から排気する。
工程3では、バルブ9、12をともに閉じ、代わりにバルブ10を開いて、液体流量制御手段24で流量制御された水が気化手段25へ供給されて、気化手段25により気化された水蒸気が水蒸気供給ライン5からガス供給口20を介して処理室1内に供給される。又は、バルブ13を開いて、流量制御手段21で流量制御されたキャリアガスArをAr供給ライン17から分岐ライン17aを介して水蒸気供給ライン5に流して、Arガスと混合した水蒸気が、水蒸気供給ライン5からガス供給口20を介して処理室1内に供給される。シリコン基板8上には、工程1で吸着したTMAと水蒸気とが反応し、アルミニウム酸化膜が形成される。余剰ガスは、プレート2の外周に設けた排出口11からプレート2よりも下方の空間33に排出され、この空間33を図中の矢印の方向に流れて排気口16から排気される。
工程4では、バルブ10を開に保ったまま、気化手段25からの水蒸気の供給を停止する。バルブ13が閉のときはこれを開にする。流量制御手段21により流量制御されたArガスをAr供給ライン17から分岐ライン17aを介して水蒸気供給ライン5に流し、ガス供給口20を介して処理室1内に供給し、水蒸気供給ライン5、及び処理室1内に残留している水蒸気をArガスで置換し、排気口16から排気する。
上述した工程1〜4に要する時間は、スループット向上のために、各工程で1秒以下が望ましい。この4つの工程を1サイクルとして、これを複数回繰り返して、所望の膜厚を有するアルミニウム酸化膜をシリコン基板8上に成膜する。
成膜終了後、サセプタ3は昇降機構56により待機位置まで降下する。ゲートバルブ7を開放した後、成膜処理後のシリコン基板8は、搬送ロボット38により基板搬入出口30を介して処理室1外に搬出される(搬出工程)。基板搬出後、ゲートバルブ7は閉じられる。
上記処理条件の範囲として、基板温度:100〜500℃、処理室内圧力:13.3〜133Pa(0.1〜1Torr)、キャリアガスと反応ガスを加えた総流量:0.1〜2slm、膜厚:1〜50nmが好ましい。
処理室1内からシリコン基板8を搬出した後に、次のシリコン基板8を処理室1内へ投入するまでの間に処理室1内に付着、堆積した膜の膜中不純物を除去する(除去工程)。
除去工程では、バルブ9、10、12、13をともに閉じ、代わりにバルブ62、65、66を開いて、流量制御装置67、68でそれぞれ流量制御されたAr及びO2ガスがリモートプラズマユニット64へ供給される。まずArガスをリモートプラズマユニット64へ供給することによりArが放電を起こしてArプラズマを形成し、このArプラズマが形成されたリモートプラズマユニット64にO2ガスを供給することによりO2ガスを活性化(励起)してO2プラズマを形成する。活性化したO2ガスすなわちO2プラズマは、Arプラズマとともに酸素供給ライン63からガス供給口61を介してシリコン基板8を搬出した空の状態の処理室1内に供給されつつ排気口16から排気される。これにより処理室1内に付着したアルミニウム酸化膜の膜中不純物が除去される。以下、このことを詳細に説明する。
除去工程では、バルブ9、10、12、13をともに閉じ、代わりにバルブ62、65、66を開いて、流量制御装置67、68でそれぞれ流量制御されたAr及びO2ガスがリモートプラズマユニット64へ供給される。まずArガスをリモートプラズマユニット64へ供給することによりArが放電を起こしてArプラズマを形成し、このArプラズマが形成されたリモートプラズマユニット64にO2ガスを供給することによりO2ガスを活性化(励起)してO2プラズマを形成する。活性化したO2ガスすなわちO2プラズマは、Arプラズマとともに酸素供給ライン63からガス供給口61を介してシリコン基板8を搬出した空の状態の処理室1内に供給されつつ排気口16から排気される。これにより処理室1内に付着したアルミニウム酸化膜の膜中不純物が除去される。以下、このことを詳細に説明する。
上述した形成工程で、シリコン基板8上にH2Oを含む処理ガスを用いてアルミニウム酸化膜を形成すると、処理室1内、例えば上容器26、下容器27の内壁、あるいはサセプタ3の表面等にアルミニウム酸化膜が付着し、このアルミニウム酸化膜中に膜中不純物が取り込まれることになる。この膜中不純物は、次に処理するシリコン基板8上にアルミニウム酸化膜を形成する際に、次のような悪影響があるため、これを除去しなければならない。
上記処理室1内に堆積した膜から水蒸気(H2O)などが脱離して真空度の劣化が起きる。また、ALDサイクル中の原料導入ステップ時に、H2Oが脱離してきた場合、H2Oが基板表面に吸着する前に気相中で反応を起こし、ALD表面反応でなくなることによって膜厚の制御不能が起こる。さらに、膜厚制御不能の状態で膜厚が増加すると、基板面内での膜厚のバラツキが生じる。
ここで、シリコン基板上にH2Oを含む処理ガスを用いてアルミニウム酸化膜を形成する場合に、シリコン基板処理中に、処理室内に付着、堆積した膜の膜中から不純物が脱離する問題が生じる理由は次の通りである。
処理室内には、H2OによりTMAが分解したときに生成されるCxHyなどの副生成物がH2Oを介して付着する。この副生成物が次のシリコン基板8に対する成膜中に脱離してくる場合があり、脱離した副生成物がシリコン基板8上に形成される薄膜の膜中に取り込まれると、膜の絶縁性を悪化する。
処理室内には、H2OによりTMAが分解したときに生成されるCxHyなどの副生成物がH2Oを介して付着する。この副生成物が次のシリコン基板8に対する成膜中に脱離してくる場合があり、脱離した副生成物がシリコン基板8上に形成される薄膜の膜中に取り込まれると、膜の絶縁性を悪化する。
H2OによるTMAの分解反応式は、一例を挙げれば、
2Al(CH3)3+3H2O→Al2O3+6CH4
となる。このときに生成される副生成物は、この例ではCH4となり、これが形成される膜の膜中に含まれる不純物となる。この不純物は上述したCH4の他に、C2H6、CH3OH、C2H5OH、またはH2O等の有機物または水蒸気である。これらの不純物が、予備加熱状態の基板処理前、あるいは基板処理中に、処理室内の部材に堆積、蓄積した膜中から脱離する。
2Al(CH3)3+3H2O→Al2O3+6CH4
となる。このときに生成される副生成物は、この例ではCH4となり、これが形成される膜の膜中に含まれる不純物となる。この不純物は上述したCH4の他に、C2H6、CH3OH、C2H5OH、またはH2O等の有機物または水蒸気である。これらの不純物が、予備加熱状態の基板処理前、あるいは基板処理中に、処理室内の部材に堆積、蓄積した膜中から脱離する。
そこで、処理室1内にシリコン基板8が存在しない状態でプラズマにより活性化したO2ガスを処理室1内に供給する。膜中不純物は前述したように主にCxHyといった構造の有機物である。処理室1内に活性化したO2ガスを供給すると処理室1内に付着した膜の膜中不純物は活性化したO2と反応し、COxやH2Oに分解されて脱離する。脱離した不純物は排気口16から排気されて処理室1外へ除去される。
ここで、処理室内に付着した膜中の不純物が脱離する反応メカニズムは次の通りである。
CxHyOz+zO2→xCO2+1/2(yH2O)
ここで、処理室内に付着した膜中の不純物が脱離する反応メカニズムは次の通りである。
CxHyOz+zO2→xCO2+1/2(yH2O)
上記除去工程の条件として、処理室内壁温度:100〜150℃、サセプタ温度:150〜500℃、処理室内圧力:10.0〜500Pa、Arガス流量:0.2〜1.5slm、O2ガス流量:0.2〜1.5slmが好ましい。
プラズマで活性化するガスはO2ガスに代えて、NH3、H2、HClでも良く、この場合、これらのガス流量はO2ガスと同じ0.2〜1.5slmが好ましい。なお、放電用のガスにはArガスが共通に用いられる。
プラズマで活性化するガスはO2ガスに代えて、NH3、H2、HClでも良く、この場合、これらのガス流量はO2ガスと同じ0.2〜1.5slmが好ましい。なお、放電用のガスにはArガスが共通に用いられる。
なお、各工程における基板温度、処理室内圧力はそれぞれ、温度制御手段14、圧力制御手段15で制御される。また、この温度制御手段14、圧力制御手段15、リモートプラズマユニット64、及び各バルブ9、10、12、13、62、65、66や気化手段23、25、流量制御手段21、22、24、67、68は、制御手段40により統合制御される。
以上述べたように、本実施の形態によれば、半導体デバイスの製造方法に、基板を搬出した処理室内にプラズマで活性化したO2を供給するという簡単な工程を導入するだけで、処理室内に付着した膜の膜中不純物を容易に除去でき、処理室内に付着した膜の膜質を容易に改質できる。したがって、次の形成工程において、処理室内に付着した膜の膜中不純物の脱離による悪影響を低減することができる。
また、プラズマで活性化したO2ガスを膜中不純物と反応させるので、このO2ガスと膜中不純物との反応温度を下げることができ(処理室内壁温度:100〜150℃、サセプタ温度:150〜500℃)、高温に耐えられない部材を用いて構成された処理室であっても、その処理室内に付着した膜の膜中不純物を低温で有効に脱離させて除去することができる。
また、プラズマで活性化したO2ガスを膜中不純物と反応させるので、このO2ガスと膜中不純物との反応温度を下げることができ(処理室内壁温度:100〜150℃、サセプタ温度:150〜500℃)、高温に耐えられない部材を用いて構成された処理室であっても、その処理室内に付着した膜の膜中不純物を低温で有効に脱離させて除去することができる。
なお、実施の形態では、基板処理毎に膜中不純物の除去工程を行う場合について説明したが、スループットを考慮した場合、所定枚数処理する毎に、膜中不純物の除去工程を行うことも可能である。
また、上述した実施の形態において、「処理ガス」は、原料Aとしての金属含有原料と、これに反応することが可能な原料Bとしての化合物及び要素である。具体的な金属含有原料(原料A)としては、例示したAlを含むTMAガスの他に、Si、Ti、Sr、Y、Zr、Nb、Ru、Sn、Ba、La、Hf、Ta、Ir、Pt、W、Pb、Biのいずれかの金属を含むガスがある。
また、化合物及び要素(原料B)としては、適切な非金属反応物、すなわち通常、水、酸素、アンモニア等の酸素又は窒素を含有するガスでよいが、ときには何らかの方法で活性化されたラジカルやイオンの場合もある。また、実際には金属含有原料と反応を起こさないが、金属含有原料の自己分解反応にエネルギーを与えるものでもよい。例えば、プラズマなどで活性化された希ガスや不活性ガスの場合もある。酸素又は窒素を含有するガスとして、具体的には、例示したH2Oの他に、O2、O3、NO、N2O、H2O2、N2、NH3、N2H6のいずれかと、いずれかを活性化手段により活性化させることにより生成した、これらのラジカル種、又はイオン種がある。
また、「パージガス」は、処理室に供給されて、シリコン基板に吸着した反応物以外の不要な反応物を取り除く場合や、二つの異なった基の反応ガスがシリコン基板の面内以外の場所で混ざり合い、反応するのを防ぐために用いられる。このパージガスには、例示したArの他に、それ以外の希ガスや、窒素ガスなどの不活性ガスが用いられる。
プラズマにより活性化するガスは、炭素(C)原子、水素(H)原子、酸素(O)原子、塩素(Cl)原子のいずれかの原子を含むガスを含む非エッチング性ガスが用いられる。具体的には、例示したH2O(水蒸気)、NH3、H2、HClの他に、NO、N2O、NO2が用いられる。プラズマで活性化するガスにエッチング性のガスを用いる場合、処理室内部材をエッチングして金属汚染を発生するという問題が考えられるが、上述したように非エッチング性のガスを用いれば、このような問題が生じない。
本発明は、特に、処理室の容積が小さく、耐熱性を低くして設計されたALD用の装置を用いて半導体デバイスを製造する場合に適用すると効果が大きいが、これに限定されず、例えば数原子層のMOCVD成膜と活性化酸素の導入とを繰り返すサイクリックMOCVDや、通常のMOCVD用の装置を用いて半導体デバイスを製造する場合にも適用可能である。
また、本発明は特に、H2Oを含む処理ガスを用いて、基板を処理する場合に適用すると効果が大きいが、これに限定されず、基板処理中に処理室内に付着した膜中から不純物が脱離する問題を引き起こす他のガスを用いて基板を処理する場合にも適用可能である。
また、本発明は特に、H2Oを含む処理ガスを用いて、基板を処理する場合に適用すると効果が大きいが、これに限定されず、基板処理中に処理室内に付着した膜中から不純物が脱離する問題を引き起こす他のガスを用いて基板を処理する場合にも適用可能である。
1 処理室
8 基板
19、20、61 ガス供給口
38 搬送ロボット
64 リモートプラズマユニット
8 基板
19、20、61 ガス供給口
38 搬送ロボット
64 リモートプラズマユニット
Claims (1)
- 基板を処理室内に搬入する工程と、
前記処理室内に処理ガスを供給して前記基板上に膜を形成する工程と、
前記処理室より基板を搬出する工程と、
前記基板を搬出した前記処理室内に、プラズマで活性化したガスを供給することにより、前記処理室内に付着した膜の膜中不純物を除去する工程と、
を有することを特徴とする半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005233787A JP2007049046A (ja) | 2005-08-11 | 2005-08-11 | 半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005233787A JP2007049046A (ja) | 2005-08-11 | 2005-08-11 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007049046A true JP2007049046A (ja) | 2007-02-22 |
Family
ID=37851607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005233787A Pending JP2007049046A (ja) | 2005-08-11 | 2005-08-11 | 半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007049046A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008041719A (ja) * | 2006-08-01 | 2008-02-21 | Tokyo Electron Ltd | 中間搬送室、基板処理システム、及び当該中間搬送室の排気方法 |
-
2005
- 2005-08-11 JP JP2005233787A patent/JP2007049046A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008041719A (ja) * | 2006-08-01 | 2008-02-21 | Tokyo Electron Ltd | 中間搬送室、基板処理システム、及び当該中間搬送室の排気方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101063854B1 (ko) | 반도체 디바이스의 제조 방법 및 기판 처리 장치 | |
US7825039B2 (en) | Vertical plasma processing method for forming silicon containing film | |
TWI458017B (zh) | 半導體裝置之製造方法、基板處理方法及基板處理裝置 | |
TWI415190B (zh) | 半導體裝置之製造方法及基板處理裝置 | |
TWI409897B (zh) | A substrate processing apparatus, and a method of manufacturing the semiconductor device | |
JP4961381B2 (ja) | 基板処理装置、基板処理方法及び半導体装置の製造方法 | |
JP5692842B2 (ja) | 半導体装置の製造方法及び基板処理装置 | |
US7884034B2 (en) | Method of manufacturing semiconductor device and substrate processing apparatus | |
TWI483313B (zh) | 半導體裝置之製造方法及基板處理裝置 | |
TWI523104B (zh) | 半導體裝置的製造方法、基板處理方法及基板處理裝置 | |
US20080014758A1 (en) | Film formation apparatus for semiconductor process and method for using the same | |
JP2007154297A (ja) | 成膜方法および成膜装置 | |
KR20110129344A (ko) | 반도체 장치의 제조 방법 및 기판 처리 장치 | |
KR20100129236A (ko) | 반도체 장치의 제조 방법 및 기판 처리 장치 | |
JP7166431B2 (ja) | 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム | |
WO2022080153A1 (ja) | 基板処理方法および基板処理装置 | |
JP2007049046A (ja) | 半導体装置の製造方法 | |
JP5421812B2 (ja) | 半導体基板の成膜装置及び方法 | |
TWI857401B (zh) | 基板處理方法,半導體裝置的製造方法,程式及基板處理裝置 | |
JP2007227804A (ja) | 半導体装置の製造方法 | |
JP2006216597A (ja) | 基板処理装置 | |
JP2024110439A (ja) | 基板処理方法 | |
JP2024120206A (ja) | 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム |