JP2007042859A - Magnesium heat radiating material superior in thermal emissivity and its manufacturing method - Google Patents

Magnesium heat radiating material superior in thermal emissivity and its manufacturing method Download PDF

Info

Publication number
JP2007042859A
JP2007042859A JP2005225241A JP2005225241A JP2007042859A JP 2007042859 A JP2007042859 A JP 2007042859A JP 2005225241 A JP2005225241 A JP 2005225241A JP 2005225241 A JP2005225241 A JP 2005225241A JP 2007042859 A JP2007042859 A JP 2007042859A
Authority
JP
Japan
Prior art keywords
magnesium
less
magnesium alloy
spark discharge
hue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225241A
Other languages
Japanese (ja)
Other versions
JP4957984B2 (en
Inventor
Masahiro Akimoto
政弘 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKA HIMAKU KOGYO KK
Original Assignee
DENKA HIMAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKA HIMAKU KOGYO KK filed Critical DENKA HIMAKU KOGYO KK
Priority to JP2005225241A priority Critical patent/JP4957984B2/en
Publication of JP2007042859A publication Critical patent/JP2007042859A/en
Application granted granted Critical
Publication of JP4957984B2 publication Critical patent/JP4957984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a light weight heat radiating material superior in absorption and radiation of the thermal energy, by forming a surface layer having a specific composition on the surface of a magnesium alloy. <P>SOLUTION: The light weight radiating material has a spinel structure or porous structure layer containing MgO or Mg(OH)<SB>2</SB>as a main component formed by anodic oxidation with spark discharge or non-spark discharge on the surface of a magnesium alloy. This surface layer has a maximum emissivity of 0.85 or higher at a material temperature of 100°C in an IR range of 4-25 μm, and a surface roughness of Ra 5 μm or less; and the material has color tones of green, blue, purple and reddish yellow, or a hue (H) of 5GY-10YR, a value of color (V) of 1-7 and a chroma (C) of 0.2-12 in the Munsell system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パソコン、携帯電話など本体部に発熱を伴うCPUなど電子部品を有する電子機器に用いる熱エネルギーの吸収性及び放熱性に優れたマグネシウム系金属の放熱部材及びその製造法に関する。 The present invention relates to a magnesium-based metal heat radiating member excellent in heat energy absorbability and heat radiability used in electronic devices such as personal computers and mobile phones having electronic components such as a CPU that generates heat in a main body, and a method for manufacturing the same.

従来、液晶表示装置などを有する電子機器はCPU作動時に発熱を伴う電子部品が実装された回路基板などを内蔵しており、この発熱により各種の誤作動を生じることがあるので放熱板などを設けた放熱処置がとられている。 Conventionally, an electronic device having a liquid crystal display device or the like has a built-in circuit board on which electronic components that generate heat during CPU operation are mounted, and various heat malfunctions may occur due to this heat generation. Heat dissipation measures have been taken.

従来の放熱部材としてはアルミ板、銅板などの金属や、炭素繊維などの放熱シートが多用されてきた。しかし、これら放熱材料は赤外、特に遠赤外線領域における熱吸収率で表される放射率が低いので小面積での放熱作用が充分でなく、特に金属板においては重量増加も無視できない要因であった。マグネシウム系の材料は熱伝導性が他の金属と同様である上に軽量であるため放熱板として有用であると考えられたが、活性が高いために酸化腐食されやすく、又表面において熱を反射してしまう割合が大きく、マグネシウム材料内部への熱吸収が遅く、放熱効果が思ったほど発揮されていない。材料の酸化腐食を防ぐために塗装を行うことが一般的となっているが、塗装すると一層熱吸収が悪くなり、放熱板としての効果が不十分となる問題点を有している。 As conventional heat radiating members, metals such as aluminum plates and copper plates, and heat radiating sheets such as carbon fibers have been frequently used. However, these heat radiating materials have low emissivity expressed by heat absorption in the infrared region, particularly in the far infrared region, so that the heat radiating action in a small area is not sufficient. It was. Magnesium-based materials are considered to be useful as heat sinks because they have the same thermal conductivity as other metals and are lightweight, but because of their high activity, they are susceptible to oxidative corrosion and reflect heat on the surface. The rate of heat dissipation is large, the heat absorption into the magnesium material is slow, and the heat dissipation effect is not exerted as expected. Coating is generally performed to prevent oxidative corrosion of the material. However, when the coating is performed, heat absorption is further deteriorated, and there is a problem that an effect as a heat sink becomes insufficient.

一方、従来公知のアルミ材、銅材又は炭素繊維などの放熱板の構造、設置場所などを工夫した試みは種々なされているが(例えば特許文献1又は特許文献2)、材料自体の改良を試みた文献類は非常に少ない。
特開平11−95871号公報 特開2000−151164号公報
On the other hand, various attempts have been made to devise the structure and installation location of heat sinks such as conventionally known aluminum materials, copper materials, or carbon fibers (for example, Patent Document 1 or Patent Document 2), but attempts to improve the materials themselves. There are very few references.
JP-A-11-95871 JP 2000-151164 A

しかしながら、放熱板材料自体の改良が進めば構造設計や配置場所などの選定も自由に出来る利点が生じる。本発明は、軽量なマグネシウム材料の表面を熱吸収の良いものに変える事により本来の熱伝導性を保ちながら発熱体からの熱を効率よく吸収し、放熱する事のできる放熱板材料の提供を目的とする。 However, if the heat sink material itself is improved, there is an advantage that the structural design, the arrangement location, etc. can be freely selected. The present invention provides a heat sink material that can efficiently absorb and dissipate heat from a heating element while maintaining its original thermal conductivity by changing the surface of a lightweight magnesium material to one with good heat absorption. Objective.

本発明は、4μm以上25μm未満の赤外線又は遠赤外線領域において、被測定物温度を100℃とした時の、最大放射率が0.85以上で面粗さRa5μm以下の表層を持つ、熱吸収性及び熱放出性に優れたマグネシウムまたはマグネシウム合金からなる放熱材料及びその製造法である。 In the infrared or far infrared region of 4 μm or more and less than 25 μm, the present invention has a surface absorption layer having a maximum emissivity of 0.85 or more and a surface roughness Ra of 5 μm or less when the temperature of the object to be measured is 100 ° C. And a heat dissipating material made of magnesium or a magnesium alloy having excellent heat release properties and a method for producing the same.

この様な最大放射率を持つ放熱板材料の製造は、マグネシウムまたはマグネシウム合金材料を金属化合物を含む電解液中で火花放電型の陽極酸化処理を施し、MgOを50%以上と金属酸化物を含む多孔質型構造の皮膜を形成することにより、波長が4μm以上25μm未満の遠赤外線領域において、被測定物温度を100℃にした時の、最大放射率が0.85以上で面粗さRa5μm以下の表層を形成したマグネシウム系の材料とすることによって達成される。 Production of a heat sink material having such maximum emissivity is performed by subjecting magnesium or a magnesium alloy material to a spark discharge type anodizing treatment in an electrolytic solution containing a metal compound, and containing 50% or more of MgO and a metal oxide. By forming a porous structure film, the maximum emissivity is 0.85 or more and the surface roughness Ra is 5 μm or less when the temperature of the object to be measured is 100 ° C. in the far infrared region where the wavelength is 4 μm or more and less than 25 μm. This is achieved by using a magnesium-based material in which the surface layer is formed.

また、本発明の放熱材料は、マグネシウムまたはマグネシウム合金材料に火花放電型またはノン火花放電型の陽極酸化処理を施して多孔質構造の皮膜を形成した後、着色処理を施し、入射角及び測定角が85°における光沢度が0〜70%、色調が緑、青、紫及び赤みの黄系でマンセル表示では、色相(H)は5GY〜10YR、明度(V)は1〜7、彩度(C)は0.2〜12の範囲である表層を形成し、波長が4μm以上25μm未満の遠赤外線領域において、被測定物温度を100℃にした時の、最大放射率が0.85以上で、面粗さRa5μm以下の表層を持つマグネシウム系の材料とする事によって製造できる。 Further, the heat dissipation material of the present invention is formed by subjecting magnesium or a magnesium alloy material to spark discharge type or non-spark discharge type anodizing treatment to form a porous structure film, and then color treatment, incident angle and measurement angle. In a Munsell display with a glossiness of 0 to 70% and a hue of green, blue, purple and reddish at 85 °, the hue (H) is 5 GY to 10 YR, the lightness (V) is 1 to 7, and the saturation ( C) forms a surface layer in the range of 0.2 to 12, and has a maximum emissivity of 0.85 or more when the temperature of the object to be measured is 100 ° C. in the far infrared region having a wavelength of 4 μm or more and less than 25 μm. It can be manufactured by using a magnesium-based material having a surface layer with a surface roughness Ra of 5 μm or less.

最大放射率の計測方法は被測定物温度を100℃に加熱した時の熱放射を、波長が4μm以上25μm未満の遠赤外線領域において計測する方法である。この時の基準を各波長に於いて黒体を1(全て光を吸収した時の数値)とした時の測定波長における熱放射の割合を現している。参考までに反射率+放射率=1になる。この放射率数値が大きいほど熱吸収の良い事を示している。 The measurement method of the maximum emissivity is a method of measuring thermal radiation when the temperature of an object to be measured is heated to 100 ° C. in a far infrared region having a wavelength of 4 μm or more and less than 25 μm. The ratio at this time represents the ratio of thermal radiation at the measurement wavelength when the black body is set to 1 (the value when all the light is absorbed) at each wavelength. For reference, reflectance + emissivity = 1. The larger the emissivity value, the better the heat absorption.

本発明の放熱材料を火花放電型陽極酸化処理によって製造するには、アルカリまたはアルカリ土類金属のリン酸塩、ホウ酸塩、ケイ酸塩、フッ化物塩 、重フッ化物塩もしくは水酸化物の1種類以上を0.2〜7モル/リットルと、皮膜添加剤としてフッ化物塩、重フッ化物塩、マンガン酸塩、過マンガン酸塩、硫酸塩、と亜鉛、コバルト、クロム、インジウム、タングステン、チタン、モリブデン、イリシウム、鉄の金属酸化物、又はアルコール基、カルボキシル基、スルホン基などを含む環状又は鎖状の有機化合物の一種以上を0.01〜5モル/リットルの割合で含む電解液を用い、電解条件を、浴温0〜60℃、電流密度0.5〜20A/dm、電圧20V以上で火花放電を生じさせながら陽極酸化処理を行うことによって前記のスピネル型構造の表面を有するマグネシウム金属材料を形成することが出来る。なお、ここで用いる電源の波形は、周波数70Hz〜2KHzの交流波、140〜4000回/秒のPR波又は正側が70〜2000/秒と負側が70〜2000/秒の反転波を一つ又は二つ以上を組み合わせて用いることが好ましい。 In order to produce the heat-dissipating material of the present invention by spark discharge type anodizing treatment, an alkali or alkaline earth metal phosphate, borate, silicate, fluoride salt, bifluoride salt or hydroxide is used. 0.2-7 mol / liter of one or more types, fluoride salt, bifluoride salt, manganate, permanganate, sulfate, and zinc, cobalt, chromium, indium, tungsten as film additives An electrolytic solution containing at least 0.01 to 5 mol / liter of a metal oxide of titanium, molybdenum, iridium, iron, or a cyclic or chain organic compound containing an alcohol group, a carboxyl group, a sulfone group, or the like The above-mentioned electrolysis conditions were performed by performing anodizing treatment while generating spark discharge at a bath temperature of 0 to 60 ° C., a current density of 0.5 to 20 A / dm 2 , and a voltage of 20 V or more. A magnesium metal material having a surface with a pinel structure can be formed. In addition, the waveform of the power supply used here is one alternating wave with a frequency of 70 Hz to 2 KHz, a PR wave with 140 to 4000 times / second, or one inverted wave with a positive side of 70 to 2000 / second and a negative side of 70 to 2000 / second It is preferable to use a combination of two or more.

ここで用いられるアルカリ又はアルカリ土類金属のリン酸塩、ホウ酸塩、ケイ酸塩、もしくは水酸化物の具体例としては、HPO, NaPO、NaHPO、NaHPO、Na、Na、Na、Na、Na10、KPO、KHPO、KHPO、K、K(POのリン酸塩、NaBO,Na、NaBo、KBO、Kのホウ酸塩、NaSiO、NaSiO、KSiO、KSiO7、Si4Oのケイ酸塩及び、NaOH,KOH,BaOHの水酸化物があげられる。 Specific examples of the alkali, alkaline earth metal phosphate, borate, silicate, or hydroxide used here include H 3 PO 4 , Na 3 PO 4 , Na 2 HPO 4 , and NaH 2. PO 4, Na 4 P 2 O 6, Na 2 H 2 P 2 O 6, Na 4 P 2 O 7, Na 2 H 2 P 2 O 7, Na 5 P 3 O 10, K 3 PO 4, K 2 HPO 4 , Phosphate of KH 2 PO 4 , K 4 P 2 O 7 , K 6 (PO 3 ) 6 , NaBO 2 , Na 2 B 4 O 7 , NaBo 3 , KBO 2 , K 2 B 4 O 7 Examples thereof include silicates such as acid salts, Na 2 SiO 3 , Na 4 SiO 4 , K 2 SiO 3 , K 2 SiO 7, and K 2 Si 4 O 9 , and hydroxides such as NaOH, KOH, and BaOH.

本発明の放熱材料に火花放電型陽極酸化を施して製造する場合、そこで使用する電解液中にマンガン、亜鉛、コバルト、クロム、インジウム、タングステン、チタン、モリブデン、イリシウム、鉄,ニオブ化合物が含まれている場合には形成された多孔質型構造皮膜に着色処理を施すことなく最大放射率が0.85以上で、面粗さRa5μm以下の表層を持つマグネシウム系の材料とする事ができる。この材料に着色処理を施しても差し支えないことは勿論である。 When manufacturing the heat dissipation material of the present invention by subjecting it to spark discharge type anodization, the electrolyte used therein contains manganese, zinc, cobalt, chromium, indium, tungsten, titanium, molybdenum, iridium, iron, niobium compounds. In this case, a magnesium-based material having a surface layer with a maximum emissivity of 0.85 or more and a surface roughness Ra of 5 μm or less can be obtained without applying a coloring treatment to the formed porous structure film. Of course, this material can be colored.

ここで形成された表面層は陽極酸化条件により、MgOを50%以上、その他の成分として合金または電解液成分から誘導されてくるAl、Mn、Si、Co,Ti,Ir,Cr,V,W,Mo,Zr,Zn、In,など種々の金属酸化物を含んでいる。この皮膜は多孔質構造を有し、1〜80μmの厚さを有している。皮膜成分の具体例としてはMgO・AL,MgO・SiO,MgO・AL・SiO,MgO・MnO,MgO・AL,MgO・V,MgO・V・AL,MgO・ZnO・Co,MgO・ZnO・AL,MgO・MoO,MgO・B,MgO・TiO,MgO・AL・TiO,MgO・W・AL,MgO・W,MgO・AL・ZrO・SiO、MgO・InOがあげられるが、特にMgO・AL,MgO・SiO,MgO・AL・SiO,MgO・MnO,MgO・AL・MnOなどが好ましい。 The surface layer formed here is 50% or more of MgO depending on the anodic oxidation conditions, and Al, Mn, Si, Co, Ti, Ir, Cr, V, W derived from an alloy or electrolyte component as other components. , Mo, Zr, Zn, In, and other various metal oxides. This film has a porous structure and has a thickness of 1 to 80 μm. MgO · AL 2 O Specific examples of the coating components 3, MgO · SiO 2, MgO · AL 2 O 3 · SiO 2, MgO · MnO 2, MgO · AL 2 O 3, MgO · V 2 O 3, MgO · V 2 O 3 · AL 2 O 3, MgO · Zn 2 O · Co 2 O 4, MgO · ZnO · AL 2 O 3, MgO · MoO 2, MgO · B 2 O 3, MgO · TiO 2, MgO · AL 2 O 3 · TiO 2, but MgO · W 2 O 5 · AL 2 O 3, MgO · W 2 O 5, MgO · AL 2 O 3 · ZrO 2 · SiO 2, MgO · InO 3 and the like, in particular MgO · AL 2 O 3, MgO · SiO 2, MgO · AL 2 O 3 · SiO 2, MgO · MnO 2, etc. MgO · AL 2 O 3 · MnO 2 is preferred.

また、本発明の放熱材料をノン火花放電型陽極酸化処理によって製造するには、アルカリまたはアルカリ土類金属の炭酸塩、重炭酸塩、ケイ酸塩、ケイフッ化物塩、硼フッ化物塩もしくは水酸化物の1種類以上と、必要に応じて前記の皮膜添加剤含む電解液を用い、電解条件を、浴温10〜80℃、電流密度0.05〜5A/dm、電圧1〜30Vで火花放電を生じさせない様にしながら陽極酸化処理を行うことによって前記の多孔質型構造の表面を有するマグネシウム金属材料を形成することが出来る。ここで用いる電源波形としては、直流波、脈流波、パルス波、PR波、反転波、周波数20Hz〜2KHzの交流波が用いられる。これらは2つ以上を組み合わせて用いても良い。 In order to produce the heat dissipating material of the present invention by non-spark discharge type anodizing treatment, an alkali or alkaline earth metal carbonate, bicarbonate, silicate, silicofluoride salt, borofluoride salt or hydroxide is used. Using one or more kinds of electrolytes and an electrolytic solution containing the above-mentioned film additive as necessary, the electrolytic conditions are sparked at a bath temperature of 10 to 80 ° C., a current density of 0.05 to 5 A / dm 2 and a voltage of 1 to 30 V. A magnesium metal material having the surface of the porous structure can be formed by performing anodizing treatment without causing discharge. As the power supply waveform used here, a DC wave, a pulsating wave, a pulse wave, a PR wave, an inverted wave, and an AC wave having a frequency of 20 Hz to 2 KHz are used. Two or more of these may be used in combination.

皮膜添加剤の具体例としては、フッ化物としてはKF、NHFなど、重フッ化物としてはNHFHF、NaFHF、KFHFなど、マンガン酸塩としてはKMnO,NaMnO,NaMnOなど、過マンガン酸塩としてはKMnO,NaMnO,Mg(MnO,Ca(MnO,など、ケイ酸化合物としてはNaSiO、NaSiO、KSiOなど、ケイフッ化物としてはNaSiF、MgSiF、(NHSiFなど、硫酸塩としてはNaSO,KSO,AL(SO,MgSO、NaNO,KNO,など、金属酸化物としてはAL,HBO,SiO,TiO,TiO,Ti,VO,V,VO,Mo,Mo,ZrO,SnO,WO、W,W,NbO,NbO,MnO,Mn,Mn,MnO,Mn,Ir,IrO,IrO,CrO,CrO,Cr,Cr,CoO,Co,Co,In,InO,ZnO,ZrOなどで、またこれらを金属酸化物塩としても用いられる。有機化合物としては(CHOH)、(CHCHOH)O、(CHOH)CHOHなどのアルコール類、(COOH)、(CHCHCOOH)、〔CH(OH)COOH〕、C(OHCOOH)、CCOOH、C6(COOH)どのカルボン酸又はこれらの塩、C(SOH・COOH)、C(COOH・OH・SOH)などのスルホン基を有する有機化合物が用いられる。これらの皮膜添加剤は単独でも混合して用いても良い。特に無機化合物と有機カルボン酸を組み合わせて使用するときは液管理が容易となり好ましい。 Specific examples of the film additive include KF and NH 4 F as fluoride, NH 4 FHF, NaFHF and KFHF as bifluoride, and K 2 MnO 4 , Na 2 MnO 4 and Na as manganate. 3 MnO 4, etc., KMnO 4 , NaMnO 4 , Mg (MnO 4 ) 2 , Ca (MnO 4 ) 2 , etc. as permanganate, and Na 2 SiO 3 , Na 4 SiO 4 , K 2 as silicate compounds For example, SiO 2 , Na 2 SiF 6 , MgSiF 6 , (NH 4 ) 2 SiF 6 such as silicofluoride, and Na 2 SO 4 , K 2 SO 4 , AL 2 (SO 4 ) 3 , MgSO 4 , NaNO 3, KNO 3, etc., AL 2 O 3 as a metal oxide, H 3 BO 3, SiO 2 , TiO, TiO 2, Ti 2 O , VO, V 2 O 3, VO 2, Mo 2 O 3, Mo 2 O 5, ZrO, SnO, WO, W 2 O 3, W 2 O 5, NbO, NbO 2, MnO, Mn 3 O 4, Mn 2 O 4 , MnO 2 , Mn 2 O 7 , Ir 2 O 3 , IrO 2 , IrO, CrO, CrO 2 , Cr 2 O 3 , Cr 2 O 5 , CoO, Co 2 O 3 , Co 3 O 4 , In 2 O 3 , In 2 O, Zn 2 O, ZrO, etc., and these are also used as metal oxide salts. Examples of the organic compound include (CH 2 OH) 2 , (CH 2 CH 2 OH) O, (CH 2 OH) 2 CHOH and other alcohols, (COOH) 2 , (CH 2 CH 2 COOH) 2 , [CH (OH ) COOH] 2 , C 6 H 4 (OHCOOH), C 6 H 5 COOH, C 6 H 4 (COOH) 2 Any carboxylic acid or salt thereof, C 6 H 4 (SO 3 H · COOH), C 6 H 3 An organic compound having a sulfone group such as (COOH.OH.SO 3 H) is used. These film additives may be used alone or in combination. In particular, when an inorganic compound and an organic carboxylic acid are used in combination, liquid management becomes easy, which is preferable.

ノン火花放電型の陽極酸化処理によって形成された皮膜が白色系または灰色系の色相を有しているのでこれに着色処理を施して、色調が緑、青、紫及び赤みの黄系でマンセル表示では、色相(H)は5GY〜10YR、明度(V)は1〜7、彩度(C)は0.2〜12の範囲である表層とする。 The film formed by non-spark discharge type anodizing treatment has a white or gray hue, so it is colored to give a Munsell display with a yellowish hue of green, blue, purple and red. Then, the hue (H) is 5 GY to 10 YR, the lightness (V) is 1 to 7, and the saturation (C) is the surface layer in the range of 0.2 to 12.

ここで形成された表面層は陽極酸化条件により、Mg(OH)を50%以上、その他の成分としてMgO,MgO+Mg(OH)を含んでいる。この皮膜は多孔質型構造を有し、1〜80μmの厚さを有している。 The surface layer formed here contains 50% or more of Mg (OH) 2 and MgO and MgO + Mg (OH) 2 as other components depending on the anodic oxidation conditions. This film has a porous structure and has a thickness of 1 to 80 μm.

本発明で使用するマグネシウム金属材料は広範囲に応用可能で、純マグネシウム系、マグネシウム‐アルミニウム系、マグネシウム‐アルミニウム‐亜鉛系、マグネシウム‐アルミニウム‐ケイ素系、マグネシウム‐ジルコニウム‐希土類‐銀系、マグネシウム‐亜鉛‐ジルコニウム系、マグネシウム‐亜鉛系、マグネシウム‐希土類‐ジルコニウム系、マグネシウム‐アルミニウム‐希土類系、マグネシウム‐イットリウム‐希土類系、マグネシウム‐カルシウム‐亜鉛系など全て利用可能である。 The magnesium metal material used in the present invention can be widely applied, pure magnesium system, magnesium-aluminum system, magnesium-aluminum-zinc system, magnesium-aluminum-silicon system, magnesium-zirconium-rare earth-silver system, magnesium-zinc -Zirconium series, magnesium-zinc series, magnesium-rare earth-zirconium series, magnesium-aluminum-rare earth series, magnesium-yttrium-rare earth series, magnesium-calcium-zinc series, etc. are all available.

ここで得られたマグネシウム材料は、4〜25μmの遠赤外線領域での最大放射率が0.85以上で、面粗さがRa5以下の表層を有するもので、色調は緑、青、紫及び赤みの黄系でマンセル表示では、色相(H)は5GY〜10YR、明度(V)は1〜7、彩度(C)は0.2〜12の範囲の表層を有している。この材料の一般的表面粗さはRa0.8〜2.0の範囲にある平滑さを有し、外観部品としても優れている。しかも耐食性は従来品の3〜5倍ある。 The obtained magnesium material has a surface layer with a maximum emissivity in the far-infrared region of 4 to 25 μm of 0.85 or more and a surface roughness of Ra5 or less, and the color tone is green, blue, purple and red. In Munsell display, the hue (H) is 5 GY to 10 YR, the lightness (V) is 1 to 7, and the saturation (C) is 0.2 to 12. The general surface roughness of this material has a smoothness in the range of Ra 0.8 to 2.0 and is excellent as an external part. Moreover, the corrosion resistance is 3 to 5 times that of conventional products.

一方、アルカリ性の陽極酸化皮膜の代表格であるHAEでは自然発色から濃い茶色系で、放射率は0.8あるが、表面粗さはRa10.8で表面がレンガの様な凹凸を有し、外観部品として使用に耐えない。一方、酸性浴陽極酸化の代表格であるDOW17は自然発色から濃いグリー系で、放射率は0.7ある。しかし表面粗さはRa7.6で表面がHAE同様に凹凸がひどく、外観部品として使用に耐えない。更に、陽極酸化処理を一切施さない場合は表面酸化腐食が著しく放熱板として長期間使用できない。又、表面の酸化防止としてクリヤー塗装処理した場合の放射率はおよそ0.1以下で、また、黒系の塗装を行う事で放射率を0.9位まで向上させることが出来るが、皮膜が厚い為に熱伝導率が悪く、放熱板としての熱吸収、熱伝導、熱放射としての一連のサイクルを考えると効果が従来公知のアルミ板や銅板に比較して劣る。 On the other hand, HAE, which is a representative example of an alkaline anodic oxide film, has a dark brown color from natural color, has an emissivity of 0.8, has a surface roughness of Ra10.8, and has a rough surface like a brick, It cannot be used as an external part. On the other hand, DOW17, which is a representative example of acidic bath anodization, has a dark green color due to natural coloration and an emissivity of 0.7. However, the surface roughness is Ra 7.6, and the surface is as rough as HAE, so it cannot be used as an external part. Further, when no anodizing treatment is performed, the surface oxidation corrosion is remarkable and the heat sink cannot be used for a long time. In addition, the emissivity when the clear coating treatment is applied to prevent oxidation of the surface is about 0.1 or less, and the emissivity can be improved to about 0.9 by applying black coating, Since it is thick, the thermal conductivity is poor, and the effect is inferior to that of conventionally known aluminum plates and copper plates when considering a series of cycles as heat absorption, heat conduction, and heat radiation as a heat sink.

本発明の放熱材料は、熱エネルギーの吸収性、伝導性、放熱性に優れており、且つ軽量、耐食性、平滑性にも優れているので、パソコン、携帯電話など本体部に発熱を伴うCPUなど電子部品を有する電子機器、特に小型電子機器に用いる放熱部材として優れている。 The heat dissipating material of the present invention has excellent heat energy absorbability, conductivity, heat dissipating property, and is lightweight, corrosion resistant, and smooth. It is excellent as a heat dissipating member for use in electronic devices having electronic components, particularly small electronic devices.

以下、本発明の実施の形態を具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.

板厚1mm、30×30×t5mmのマグネシウム合金AZ91Dダイカスト材を両面荒削り後、ダイヤモンドバイトにて仕上げ加工を行った所、寸法精度は3.5±0.001mm、面粗さRa0.3μmとなった。この試料を脱脂、酸処理後、NaOH;3±0.05モル/リットル、NaHPO;0.3モル/リットル、皮膜添加剤としてNaSiO ;0.25モル/リットルと、酒石酸ナトリウム;0.3モル/リットル、KF;0.2モル/リットルを添加した電解液で液温24±2℃、1000Hzの交流波形を用い、電流密度1〜2A/dm,火花放電開始電圧約45V,最終電圧85V,電解時間50分火花放電型陽極酸化処理を行った。水洗後黒の染料(SANDOZ:Deep・Black・MLW:10g/L)で60℃、20分処理して染色後、封孔処理を行った。この皮膜の断面を電子顕微鏡(日本電子(株)社製JSM−T20)で観察すると、皮膜厚さが約20〜25μmであった。このものについてFTIRにて100℃で4〜25μmの遠赤外線領域で放射率を測定すると、8μm以上の波長領域では全て0.85以上の放射率を示した。測定域全体での全放射率は0.88、表面粗さはRa1.1μmであった。ここでの全放射率とは4〜25μmの全測定域における各波長での放射率の積分平均値である。 After roughing both sides of a magnesium alloy AZ91D die-cast material with a plate thickness of 1 mm and 30 x 30 x t5 mm, and finishing with a diamond tool, the dimensional accuracy is 3.5 ± 0.001 mm and the surface roughness Ra is 0.3 μm. It was. After degreasing and acid-treating this sample, NaOH: 3 ± 0.05 mol / liter, Na 2 HPO 4 ; 0.3 mol / liter, Na 2 SiO 3 as a film additive: 0.25 mol / liter, and tartaric acid Sodium: 0.3 mol / liter, KF: 0.2 mol / liter of electrolyte added with an AC waveform at a liquid temperature of 24 ± 2 ° C. and 1000 Hz, current density of 1-2 A / dm 2 , spark discharge starting voltage The spark discharge type anodizing treatment was performed at about 45 V, final voltage 85 V, and electrolysis time 50 minutes. After washing with water, the dye was treated with black dye (SANDOZ: Deep / Black / MLW: 10 g / L) at 60 ° C. for 20 minutes, followed by sealing and sealing. When the cross section of this film was observed with an electron microscope (JSM-T20 manufactured by JEOL Ltd.), the film thickness was about 20 to 25 μm. When the emissivity was measured in the far-infrared region of 4 to 25 μm at 100 ° C. by FTIR, the emissivity was 0.85 or more in the wavelength region of 8 μm or more. The total emissivity in the entire measurement region was 0.88, and the surface roughness was Ra 1.1 μm. Here, the total emissivity is an integral average value of emissivities at each wavelength in the entire measurement region of 4 to 25 μm.

(比較例1)実施例1と同様のダイカスト材、前処理、電解液を用いて行った。但し、電解条件としては直流電源を用い、電流密度2.0±0.5A/dm、火花放電開始電圧46Vであった。陽極酸化処理後、染色、封孔処理は実施例1と同様に行った。厚さ15〜20μmの表面が凹凸の灰色系の陽極酸化皮膜を得た。この試料を実施例1同様、放射率を計測したところ、4〜25μmの全遠赤外線測定領域において全放射率は0.83を示した。しかし面粗さはRa8.7で、表面が凹凸状態で放熱板製品として使用に耐えられない状態である。 (Comparative Example 1) The same die casting material, pretreatment and electrolytic solution as in Example 1 were used. However, as the electrolysis conditions, a DC power source was used, the current density was 2.0 ± 0.5 A / dm 2 , and the spark discharge starting voltage was 46V. After the anodizing treatment, dyeing and sealing treatment were performed in the same manner as in Example 1. A gray anodic oxide film having an uneven surface with a thickness of 15 to 20 μm was obtained. When the emissivity of this sample was measured in the same manner as in Example 1, the total emissivity was 0.83 in the all-infrared measurement region of 4 to 25 μm. However, the surface roughness is Ra 8.7, and the surface is uneven and cannot be used as a heat sink product.

(比較例2)実施例1と同様のダイカスト材、前処理、電解液を用いて行った。電解条件は交流電源を用い、周波数は50Hzで電流密度2.0±0.5A/dm、火花放電開始電圧52Vはであった。得られた試料の封孔処理を行い厚さ17〜32μmの白色系の陽極酸化皮膜を得た。この試料を実施例1同様、放射率を計測したところ、4〜25μmの遠赤外線測定領域において0.85以上を示すことはなく、全放射率は0.2であった。面粗さはRa9.6で、凹凸が著しく、光沢のない磁器の様な表面であった。これは放熱材料としては不適である。 (Comparative Example 2) The same die casting material, pretreatment and electrolytic solution as in Example 1 were used. As the electrolysis conditions, an AC power source was used, the frequency was 50 Hz, the current density was 2.0 ± 0.5 A / dm 2 , and the spark discharge start voltage was 52V. The obtained sample was sealed to obtain a white anodic oxide film having a thickness of 17 to 32 μm. When the emissivity of this sample was measured in the same manner as in Example 1, it did not show 0.85 or more in the far infrared measurement region of 4 to 25 μm, and the total emissivity was 0.2. The surface roughness was Ra 9.6, and the surface was remarkably uneven, and was a glossy porcelain surface. This is not suitable as a heat dissipation material.

実施例1と同様の素材、前処理を行い、実施例1の電解液にKMnO15g/Lを加えた液中で実施例1と同様の電解条件で処理を行った。電解後に着色処理を行わずに同様の封孔を行った。皮膜厚さは約20〜25μmであった。このものについてFTIRにて100℃で4〜25μmの遠赤外線領域で放射率を測定すると、波長が18μm以上では放射率が全て0.9を示した。測定域全体での全放射率は0.87、表面粗さはRa1.3μmであった。 The same material and pretreatment as in Example 1 were performed, and the treatment was performed under the same electrolytic conditions as in Example 1 in a solution obtained by adding 15 g / L of KMnO 4 to the electrolytic solution of Example 1. The same sealing was performed without performing a coloring treatment after electrolysis. The film thickness was about 20-25 μm. When the emissivity was measured in the far-infrared region of 4 to 25 μm at 100 ° C. by FTIR, the emissivity was 0.9 at all wavelengths of 18 μm or more. The total emissivity in the entire measurement region was 0.87, and the surface roughness was Ra 1.3 μm.

(比較例3)実施例2と同じダイカスト材を用い、同じ前処理を施し、同じ電解液を用いて、但し、電解条件としては50Hzの交流電源を用い、電流密度2.0±0.5A/dm、火花放電開始電圧48Vとした他は実施例2同じにして陽極酸化を行い、封孔処理は実施例2と同様に行った。厚さ15〜30μmの表面が凹凸の茶色系陽極酸化皮膜を得た。この試料は4〜25μmの遠赤外線測定領域において全放射率は0.82を示した。しかし面粗さはRa11.2で、凹凸が激しく使用に耐えるものではなかった。 (Comparative Example 3) The same die-cast material as in Example 2 was used, the same pretreatment was applied, and the same electrolytic solution was used, except that a 50 Hz AC power source was used as the electrolysis condition, and the current density was 2.0 ± 0.5 A. / dm 2, except that the spark discharge starting voltage 48V performs anodization in the second embodiment the same, sealing treatment was carried out in the same manner as in example 2. A brown anodic oxide film having an uneven surface with a thickness of 15 to 30 μm was obtained. This sample showed a total emissivity of 0.82 in the far infrared measurement region of 4 to 25 μm. However, the surface roughness was Ra 11.2, and the unevenness was so severe that it could not be used.

本発明のマグネシウム材料は精密機械製品内部において、軽量で放熱効果の大きい材料として各種電子部品の放熱板部品として使用できる。
The magnesium material of the present invention can be used as a heat radiating plate component of various electronic components as a lightweight material having a large heat radiating effect inside a precision machine product.

Claims (5)

波長が4μm以上25μm未満の遠赤外線領域において、被測定物温度を100℃とした時の、最大放射率が0.85以上で面粗さがRa5μm以下の表層を持つ、熱放射性に優れたマグネシウムまたはマグネシウム合金からなる放熱材料 Magnesium with excellent thermal radiation, having a surface layer with a maximum emissivity of 0.85 or more and a surface roughness of Ra of 5 μm or less when the temperature of the object to be measured is 100 ° C. in the far infrared region where the wavelength is 4 μm or more and less than 25 μm Or heat dissipation material made of magnesium alloy 光沢度が0〜70%(入射角、測定角85°)、色調は緑、青、紫及び赤みの黄系でマンセル表示では、色相(H)は5GY〜10YR、明度(V)は1〜7、彩度(C)は0.2〜12の範囲である事を特徴とする請求項1のマグネシウム合金製放熱材料 Glossiness is 0 to 70% (incident angle, measurement angle 85 °), color tone is green, blue, purple and reddish yellow, and in Munsell display, hue (H) is 5 GY to 10 YR, brightness (V) is 1 to 7. The magnesium alloy heat dissipation material according to claim 1, wherein the saturation (C) is in the range of 0.2-12. マグネシウムまたはマグネシウム合金材料を火花放電型陽極酸化処理し、MgOを50%以上と合金または電解液からの誘導体または酸化物を含む皮膜厚さ0.5〜80μmの多孔質型構造の皮膜を形成し、これに着色処理を施し、光沢度が0〜70%(入射角、測定角85°)、色調が緑、青、紫及び赤みの黄系でマンセル表示では、色相(H)は5GY〜10YR、明度(V)は1〜7、彩度(C)は0.2〜12の範囲とし、波長が4μm以上25μm未満の遠赤外線領域において、被測定物温度を100℃にした時の最大放射率が0.85以上で面粗さRa5μm以下の表層とすることからなる、熱放射性に優れたマグネシウムまたはマグネシウム合金からなる放熱材料の製造法 Magnesium or magnesium alloy material is subjected to spark discharge type anodizing treatment to form a porous film having a thickness of 0.5 to 80 μm containing 50% or more of MgO and a derivative or oxide from the alloy or electrolyte. This is colored, the gloss is 0-70% (incident angle, measurement angle 85 °), the color tone is green, blue, purple and reddish yellow, and the hue (H) is 5GY to 10YR in Munsell display. In the far-infrared region where the lightness (V) is in the range of 1 to 7, the saturation (C) is in the range of 0.2 to 12, and the wavelength is 4 μm or more and less than 25 μm, the maximum radiation when the temperature of the object to be measured is 100 ° C. A method for producing a heat dissipation material made of magnesium or a magnesium alloy having excellent thermal radiation, comprising a surface layer with a surface ratio of 0.85 or more and a surface roughness Ra of 5 μm or less マグネシウムまたはマグネシウム合金材料をマンガン、亜鉛、コバルト、クロム、インジウム、タングステン、チタン、モリブデン、イリシウム、鉄,ジルコニウム化合物を1つまたは2つ以上組合わせたものを含む電解液を用い、周波数70Hz以上の交流波、140〜4000回/秒のPR波、又は正側が70〜2000/秒と負側が70〜2000/秒の反転波を一つ又は二つ以上を組み合わせた電源波形を用いて火花放電型陽極酸化処理し、MgOを50%以上と金属酸化物を含む皮膜厚さ0.5〜80μmの多孔質型構造の皮膜を形成し、波長が4μm以上25μm未満の遠赤外線領域において、被測定物温度を100℃にした時の最大放射率が0.85以上で面粗さRa5μm以下の表層を形成することからなる、熱放射性に優れたマグネシウムまたはマグネシウム合金からなる放熱材料の製造法 Using an electrolyte containing magnesium or a magnesium alloy material containing one or a combination of two or more of manganese, zinc, cobalt, chromium, indium, tungsten, titanium, molybdenum, iridium, iron, and zirconium compounds, and having a frequency of 70 Hz or more Spark discharge type using an AC wave, a PR wave of 140 to 4000 times / second, or a power supply waveform combining one or two or more inversion waves of 70 to 2000 / second on the positive side and 70 to 2000 / second on the negative side Anodized to form a porous type film with a thickness of 0.5 to 80 μm containing 50% or more of MgO and a metal oxide, and in the far infrared region with a wavelength of 4 μm to less than 25 μm It has excellent thermal radiation by forming a surface layer with a maximum emissivity of 0.85 or more and a surface roughness Ra of 5 μm or less when the temperature is 100 ° C. Preparation of thermally conductive material made of magnesium or a magnesium alloy マグネシウムまたはマグネシウム合金材料をノン火花放電型陽極酸化処理し、Mg(OH)を50%以上と合金または電解液からの誘導体を含む皮膜厚さ0.5〜50μmの多孔質型構造の皮膜を形成し、これに着色処理を施し、光沢度が0〜70%(入射角、測定角85°)、色調が緑、青、紫及び赤みの黄系でマンセル表示では、色相(H)は5GY〜10YR、明度(V)は1〜7、彩度(C)は0.2〜12の範囲とし、波長が4μm以上25μm未満の遠赤外線領域において、被測定物温度を100℃にした時の、最大放射率が0.85以上で面粗さRa5μm以下の表層とすることからなる、熱放射性に優れたマグネシウムまたはマグネシウム合金からなる放熱材料の製造法
Non-spark discharge type anodizing treatment of magnesium or magnesium alloy material, and a porous type structure film having a thickness of 0.5 to 50 μm containing 50% or more of Mg (OH) 2 and a derivative from the alloy or electrolyte Formed, and subjected to a coloring treatment, with a glossiness of 0 to 70% (incident angle, measurement angle of 85 °), a hue of green, blue, purple, and reddish yellow, and in Munsell display, the hue (H) is 5GY 10YR, brightness (V) is 1-7, saturation (C) is in the range of 0.2-12, and in the far infrared region where the wavelength is 4 μm or more and less than 25 μm, the temperature of the object to be measured is 100 ° C. A method for producing a heat dissipation material made of magnesium or a magnesium alloy having excellent thermal radiation, comprising a surface layer having a maximum emissivity of 0.85 or more and a surface roughness Ra of 5 μm or less
JP2005225241A 2005-08-03 2005-08-03 Magnesium heat dissipation material with excellent thermal emissivity and method for producing the same Active JP4957984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225241A JP4957984B2 (en) 2005-08-03 2005-08-03 Magnesium heat dissipation material with excellent thermal emissivity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225241A JP4957984B2 (en) 2005-08-03 2005-08-03 Magnesium heat dissipation material with excellent thermal emissivity and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007042859A true JP2007042859A (en) 2007-02-15
JP4957984B2 JP4957984B2 (en) 2012-06-20

Family

ID=37800568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225241A Active JP4957984B2 (en) 2005-08-03 2005-08-03 Magnesium heat dissipation material with excellent thermal emissivity and method for producing the same

Country Status (1)

Country Link
JP (1) JP4957984B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203310A (en) * 2009-03-03 2010-09-16 Ishikawa Gasket Co Ltd Heat insulator
JP2010242538A (en) * 2009-04-02 2010-10-28 Ishikawa Gasket Co Ltd Insulator for internal combustion engine and method for manufacturing the same
CN109183094A (en) * 2018-10-11 2019-01-11 西安科技大学 A kind of preparation method of Mg alloy surface high emissivity coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158096A (en) * 1996-11-25 1998-06-16 Fujikura Ltd Far infrared ray radiator and its production
JP2005103505A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Method for manufacturing magnesium metallic material having photocatalytically active surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158096A (en) * 1996-11-25 1998-06-16 Fujikura Ltd Far infrared ray radiator and its production
JP2005103505A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Method for manufacturing magnesium metallic material having photocatalytically active surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203310A (en) * 2009-03-03 2010-09-16 Ishikawa Gasket Co Ltd Heat insulator
JP2010242538A (en) * 2009-04-02 2010-10-28 Ishikawa Gasket Co Ltd Insulator for internal combustion engine and method for manufacturing the same
CN109183094A (en) * 2018-10-11 2019-01-11 西安科技大学 A kind of preparation method of Mg alloy surface high emissivity coating

Also Published As

Publication number Publication date
JP4957984B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
CN102242364B (en) Preparation method of ceramic film through chemical conversion and micro-arc oxidation of aluminum and aluminum alloy
Hsiao et al. Anodization of AZ91D magnesium alloy in silicate-containing electrolytes
JP3279958B2 (en) Reflector having reflectance improving composite layer and method of manufacturing the same
CN103014804B (en) Surface has aluminium alloy of green black colour ceramic coating formed by micro-arc oxidation and preparation method thereof
CN103628114B (en) The surface treatment method of magnadure
CN102154673A (en) Method for preparing environment-friendly micro-arc oxidation black ceramic film on aluminum alloy surface
CN101469439A (en) Preparation of magnesium alloy surface high corrosion resistance differential arc oxidation compound film
KR20100116546A (en) Method for treating the surface of metal
JP4957984B2 (en) Magnesium heat dissipation material with excellent thermal emissivity and method for producing the same
TWI462662B (en) Composite double-side blackening foil and manufacturing method thereof
JP5074561B2 (en) Magnesium metal surface treatment method
JP2006291278A (en) Magnesium metallic material having excellent corrosion resistance, and method for producing the same
CN104131326A (en) Electrolyte for magnesium alloy micro-arc oxidation
JP4825002B2 (en) Method for producing magnesium metal material
CN100342063C (en) Composite ceramic film on surface of magnesium alloy and its forming process
CN103469280A (en) Magnesium alloy micro-arc oxidation electrolyte and technology for carrying out black ceramic processing on magnesium alloy surface by using electrolyte
CN107964673A (en) A kind of method that aluminum alloy differential arc oxidation prepares black ceramic film layer
JP2006322044A (en) Metallic material, and surface treatment method
KR20120091538A (en) Method of cooking container
Zemanova et al. Nickel electrolytic colouring of anodic alumina for selective solar absorbing films
JP2005068555A (en) Metallic material and surface treatment method
Takenaka et al. Formation of black anodic films on aluminum in acid electrolytes containing titanium complex anion
Arurault et al. Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrodeposition
KR101545858B1 (en) Manufacturing method of metaloxide/coating compositions of alumium heat exchanger for home appliance
JP2569422B2 (en) Aluminum oxide laminated structure film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180330

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4957984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250