JP5074561B2 - Magnesium metal surface treatment method - Google Patents

Magnesium metal surface treatment method Download PDF

Info

Publication number
JP5074561B2
JP5074561B2 JP2010163225A JP2010163225A JP5074561B2 JP 5074561 B2 JP5074561 B2 JP 5074561B2 JP 2010163225 A JP2010163225 A JP 2010163225A JP 2010163225 A JP2010163225 A JP 2010163225A JP 5074561 B2 JP5074561 B2 JP 5074561B2
Authority
JP
Japan
Prior art keywords
magnesium
based metal
treatment method
surface treatment
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010163225A
Other languages
Japanese (ja)
Other versions
JP2011256458A (en
Inventor
キム,ジョンブ
リ,キョンムン
ド,スーヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuc Electronics Co Ltd
Original Assignee
Nuc Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuc Electronics Co Ltd filed Critical Nuc Electronics Co Ltd
Publication of JP2011256458A publication Critical patent/JP2011256458A/en
Application granted granted Critical
Publication of JP5074561B2 publication Critical patent/JP5074561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、マグネシウム系金属の表面処理方法に関し、より詳しくは、環境に優しく、金属質感を実現するマグネシウム系金属の表面処理方法に関する。   The present invention relates to a surface treatment method for a magnesium-based metal, and more particularly to a surface treatment method for a magnesium-based metal that is environmentally friendly and realizes a metal texture.

マグネシウム系金属は、重量的な側面からアルミニウム系金属に代えて将来最も有望なエンジニアリング材料となるものと予想されている。   Magnesium-based metals are expected to become the most promising engineering materials in the future in place of aluminum-based metals in terms of weight.

現在、マグネシウムとアルミニウムの価格が殆ど同じであるが、マグネシウムは、アルミニウムよりも質量が軽いということで、軽量化に大きな比重を置いた自動車、飛行機、ラップトップコンピュータまたは携帯電話等においてさらに有利な位置を占めている。例えば、自動車分野では、燃費の向上を目的とする車両軽量化のために、鉄鋼やアルミニウム合金を用いていた部材にマグネシウム合金を適用し始めている。   At present, the prices of magnesium and aluminum are almost the same. However, magnesium is lighter than aluminum, so it is even more advantageous for automobiles, airplanes, laptop computers, mobile phones, etc. that place great weight on weight reduction. Occupies a position. For example, in the automobile field, in order to reduce vehicle weight for the purpose of improving fuel efficiency, magnesium alloys have begun to be applied to members that used steel or aluminum alloys.

最近、環境的な側面からも、リサイクル性に優れたマグネシウム合金を構造用金属材料として積極的に用いる傾向にある。例えば、家電分野では、ノート型コンピュータ、パーソナルコンピュータ、携帯電話のケースを中心として、従来のプラスチックからリサイクル性に優れたマグネシウム合金に移る傾向にある。   Recently, from the environmental aspect, magnesium alloys having excellent recyclability tend to be actively used as structural metal materials. For example, in the home appliance field, there is a tendency to shift from conventional plastics to magnesium alloys with excellent recyclability, mainly in the case of notebook computers, personal computers, and mobile phones.

このようなマグネシウム合金は、常用金属のうち、最も化学的活性度が大きな金属であり、一般に、表面処理されない場合、大気中や溶液中で極めて速く腐食する特徴を示すので、鉄鋼やアルミニウム合金の場合よりも、表面処理工程で緻密かつ均一な皮膜を形成させることが重要である。しかし、マグネシウム合金は、緻密かつ均一な皮膜を形成させることが極めて難しい材料でもある。これは、マグネシウム合金の表面が、化学的に均一でないからである。マクロ偏析とミクロ偏析により、マグネシウム合金表面が化学的に不均一になり、これにより、緻密かつ均一な皮膜を形成させ難くしている。また、表面に生成する酸化膜は、Mg(OH)からなる不透過性酸化膜(不透明酸化膜)であるため、マグネシウム特有の金属質感を実現することができなかった。 Such a magnesium alloy is a metal having the highest chemical activity among ordinary metals, and generally shows a feature that it corrodes very quickly in the air or in a solution when it is not surface-treated. It is more important than the case to form a dense and uniform film in the surface treatment process. However, magnesium alloys are also extremely difficult to form a dense and uniform film. This is because the surface of the magnesium alloy is not chemically uniform. Due to macrosegregation and microsegregation, the magnesium alloy surface becomes chemically non-uniform, which makes it difficult to form a dense and uniform film. In addition, since the oxide film generated on the surface is an impermeable oxide film (opaque oxide film) made of Mg (OH) 2 , a metal texture peculiar to magnesium cannot be realized.

マグネシウム合金の表面処理方法のうち、最も多く用いられている方法は、化成処理方法または陽極酸化処理方法である。両方法共に、脱脂、酸洗等の前処理工程を経てから実施されるが、マグネシウム合金の表面に機能性を加えることができるのは陽極酸化方法に限られる。   Of the surface treatment methods for magnesium alloys, the most frequently used method is a chemical conversion treatment method or an anodization treatment method. Both methods are carried out after passing through pretreatment steps such as degreasing and pickling, but the ability to add functionality to the surface of the magnesium alloy is limited to the anodic oxidation method.

従来のマグネシウム合金の表面処理方法のうち、陽極酸化方法としてはHAE法、DOW17法、ガルバノ法等が広く知られているが、これらの方法は、重金属であるマンガン、クロム等を含有する電解液を用いるので、重金属を含有する廃水の発生及び製品の有害性を引き起こすという問題点があった。   Among the conventional surface treatment methods for magnesium alloys, HAE method, DOW17 method, galvano method and the like are widely known as anodizing methods. These methods are electrolytes containing heavy metals such as manganese and chromium. Therefore, there is a problem that generation of waste water containing heavy metals and product toxicity are caused.

また、従来の陽極酸化処理方法では、特許文献1に開示されたように、強塩基性電解液において100V以上の高電圧を印加して酸化皮膜を形成するか、または、特許文献2に開示されたように、弱塩基性電解液において−200〜400Vの交流電圧をパルス方式で印加して不透過性の酸化皮膜を形成している。   Further, in the conventional anodizing method, as disclosed in Patent Document 1, an oxide film is formed by applying a high voltage of 100 V or higher in a strongly basic electrolyte, or disclosed in Patent Document 2. As described above, an impermeable oxide film is formed by applying an AC voltage of −200 to 400 V in a weakly basic electrolytic solution by a pulse method.

しかしながら、上述した従来技術は、白色、褐色等に着色された不透過性膜を生成するので、マグネシウム系金属本来の質感を表現し難い。したがって、マグネシウム合金の表面に透明な陽極酸化膜を形成し、マグネシウム合金の金属質感を実現する技術の必要性が当該技術の分野に存在する。また、マグネシウム合金の表面に良質の陽極酸化膜を形成するに当たって、マグネシウム合金の表面を陽極酸化膜の形成に適した表面に変える作業が要求される。陽極酸化処理方法の前処理用研磨技術として、クロム酸とHF等を含む化学研磨液を用いる化学研磨技術が知られている。しかし、この技術は、化学研磨液の危険性が高くかつ高価であるという重大な問題点が指摘されている。   However, since the above-described conventional technology produces an impermeable film colored in white, brown, etc., it is difficult to express the original texture of the magnesium-based metal. Accordingly, there is a need in the art for a technique for forming a transparent anodic oxide film on the surface of a magnesium alloy and realizing the metallic texture of the magnesium alloy. Further, in forming a good quality anodic oxide film on the surface of the magnesium alloy, an operation of changing the surface of the magnesium alloy to a surface suitable for forming the anodic oxide film is required. As a pretreatment polishing technique for the anodizing method, a chemical polishing technique using a chemical polishing liquid containing chromic acid and HF is known. However, this technique has been pointed out to have a serious problem that the chemical polishing liquid has a high risk and is expensive.

韓国公開特許第10‐2004‐94105号公報Korean Published Patent No. 10-2004-94105 韓国公開特許第10‐2003‐40824号公報Korean Published Patent No. 10-2003-40824

本発明は、上記問題点に鑑みなされたものであり、その目的は、環境に優しい電解液を用いながらも、金属質感を実現する良質の透明陽極酸化膜をマグネシウム系金属の表面に形成することができる、マグネシウム系金属の表面処理方法を提供することにある。
また、本発明の他の目的は、陽極酸化膜の形成前に、安価で安全な化学研磨を通じて、より良質の陽極酸化膜を実現することができるマグネシウム系金属の表面処理方法を提供することにある。
The present invention has been made in view of the above problems, and its purpose is to form a high-quality transparent anodic oxide film on the surface of a magnesium-based metal that achieves a metallic texture while using an environmentally friendly electrolyte. An object of the present invention is to provide a surface treatment method for a magnesium-based metal.
Another object of the present invention is to provide a magnesium-based metal surface treatment method capable of realizing a higher quality anodic oxide film through cheap and safe chemical polishing before the formation of the anodic oxide film. is there.

上記目的を達成するために、本発明の一側面によると、硝酸ナトリウムとクエン酸ナトリウムを含む化学研磨液を用いてマグネシウム系金属の表面を化学研磨する光沢研磨ステップと、前記光沢研磨ステップを経たマグネシウム系金属をpH11以上の強塩基性電解液内に浸漬させるステップと、前記強塩基性電解液内で前記マグネシウム系金属に電流密度0.01〜1A/dmの電流を印加することによって、前記マグネシウム系金属の表面に透明な陽極酸化膜を形成する陽極酸化処理ステップと、を含むマグネシウム系金属の表面処理方法が提供される。 In order to achieve the above object, according to one aspect of the present invention, a gloss polishing step of chemically polishing a surface of a magnesium-based metal using a chemical polishing liquid containing sodium nitrate and sodium citrate, and the gloss polishing step is performed. Immersing the magnesium-based metal in a strongly basic electrolyte having a pH of 11 or more, and applying a current having a current density of 0.01 to 1 A / dm 2 to the magnesium-based metal in the strongly basic electrolyte. There is provided a surface treatment method for a magnesium-based metal, comprising an anodizing step of forming a transparent anodized film on the surface of the magnesium-based metal.

前記陽極酸化処理ステップにおいて、前記電流の電流密度が0.01〜1A/dmであることが好ましく、電流密度が1A/dmを超過する場合、マグネシウム系金属の表面に不規則な酸化膜が生成し、このような不規則な酸化膜は、金属質感を実現し難くする。また、電流密度が0.01A/dm未満である場合は、透明な陽極酸化膜の形成が難しい。より好ましくは、前記電流密度は、0.2〜0.7A/dmであり、この際、酸化処理ステップは約3分で行われる。また、前記陽極酸化処理ステップにおいて印加される電圧を10V以下に制限することが好ましい。 In the anodizing step, it is preferable that the current density of the current is 0.01~1A / dm 2, when the current density exceeds 1A / dm 2, irregular oxide film on the surface of the magnesium-based metal Such an irregular oxide film makes it difficult to achieve a metal texture. Moreover, when the current density is less than 0.01 A / dm 2 , it is difficult to form a transparent anodic oxide film. More preferably, the current density is 0.2 to 0.7 A / dm 2 , wherein the oxidation treatment step is performed in about 3 minutes. Moreover, it is preferable to limit the voltage applied in the anodizing treatment step to 10 V or less.

前記光沢研磨ステップにおいて、前記化学研磨液は、硫酸、硝酸、硝酸ナトリウム、及びクエン酸ナトリウムを含むことが好ましい。   In the gloss polishing step, the chemical polishing liquid preferably includes sulfuric acid, nitric acid, sodium nitrate, and sodium citrate.

前記電解液は、水酸化カリウム100〜300重量部と、KF0.5〜50重量部と、Na SiO5〜50重量部と、Al0.1〜0.5重量部とを含むことが好ましく、前記電解液の温度は、20〜70℃に維持されることが好ましい。前記陽極酸化処理ステップ後に得られる酸化膜は、下部構造(下部組織)であるマグネシウム合金の金属質感を実現可能な程度に透明であるが、この酸化膜に染料を浸透させると、マグネシウム系金属の金属質感を有する表面にカラー(着色)を施したように見える。染料は、酢酸コバルト、過マンガン酸カリウム、硫化アンモニウム、硫酸第二鉄、フェロシアン化カリウム、硫酸ニッケル、硫酸銅、硫酸第一スズから選ばれた少なくとも一つであってもよい。マグネシウム系金属は、マグネシウムまたはマグネシウム合金のいずれかであってもよい。 The electrolytic solution preferably includes 100 to 300 parts by weight of potassium hydroxide, 0.5 to 50 parts by weight of KF, 5 to 50 parts by weight of Na 4 SiO 4 , and 0.1 to 0.5 parts by weight of Al. The temperature of the electrolytic solution is preferably maintained at 20 to 70 ° C. The oxide film obtained after the anodizing treatment step is transparent to the extent that the metal texture of the magnesium alloy, which is the lower structure (substructure), can be realized. It looks as if the surface with a metallic texture is colored. The dye may be at least one selected from cobalt acetate, potassium permanganate, ammonium sulfide, ferric sulfate, potassium ferrocyanide, nickel sulfate, copper sulfate, and stannous sulfate. The magnesium-based metal may be either magnesium or a magnesium alloy.

本発明によれば、安価で安全な化学研磨液を用いた化学研磨によって、マグネシウム系金属の表面を陽極酸化処理に適した表面とすることができ、その表面上に重金属を含まない環境に優しい電解液を用いた最適の陽極酸化処理を行うことにより、マグネシウム合金の金属質感を実現する透明な陽極酸化膜を表面に有する高級化したマグネシウム系金属製品を製造することができる。   According to the present invention, the surface of the magnesium-based metal can be made suitable for anodizing by chemical polishing using an inexpensive and safe chemical polishing liquid, and the environment-friendly environment does not contain heavy metals on the surface. By performing the optimum anodic oxidation treatment using the electrolytic solution, it is possible to produce a high-grade magnesium-based metal product having a transparent anodic oxide film on the surface that realizes the metallic texture of the magnesium alloy.

従来のマグネシウム系金属の表面処理方法を示すフローチャートである。It is a flowchart which shows the surface treatment method of the conventional magnesium type metal. (a)及び(b)は本発明によるマグネシウム系金属の表面処理方法を示すフローチャートである。(A) And (b) is a flowchart which shows the surface treatment method of the magnesium type metal by this invention. 本発明で用いられるマグネシウム系金属の表面処理装置を示す概略図である。It is the schematic which shows the surface treatment apparatus of the magnesium type metal used by this invention. 化学研磨及び表面調整(またはアルカリ脱脂)を経た後、透明な陽極酸化膜が形成されたマグネシウム系金属の表面を示す光学顕微鏡写真である。It is an optical micrograph which shows the surface of the magnesium-type metal in which the transparent anodic oxide film was formed after passing through chemical polishing and surface adjustment (or alkali degreasing). 図4の写真と質感を比較するためのものであり、陽極酸化膜が形成されていないマグネシウム系金属の表面を示す光学顕微鏡写真である。FIG. 5 is an optical micrograph showing a surface of a magnesium-based metal on which a anodic oxide film is not formed, for comparing the texture with the photograph of FIG. 4.

以下、添付した図面に基づき、本発明の好適な実施例について詳述する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、マグネシウム合金の一般的な陽極酸化処理方法を説明するための図であり、図2は、本発明の実施例によるマグネシウム系金属の表面処理方法のフローチャートである。   FIG. 1 is a diagram for explaining a general anodizing method of a magnesium alloy, and FIG. 2 is a flowchart of a surface treatment method of a magnesium-based metal according to an embodiment of the present invention.

図2に示すように、本実施例によるマグネシウム系金属の表面処理方法は、光沢研磨ステップ21、脱脂または表面調整ステップ22、陽極酸化処理ステップ23及び水洗ステップ24を含む。   As shown in FIG. 2, the magnesium-based metal surface treatment method according to the present embodiment includes a gloss polishing step 21, a degreasing or surface conditioning step 22, an anodizing treatment step 23, and a water washing step 24.

光沢研磨ステップ21は、化学研磨方式を用いる。前記光沢研磨ステップ21と前記脱脂または表面調整ステップ22を経たマグネシウム系金属は、陽極酸化処理用の強アルカリ電解液内に浸漬された後、その電解液内で陽極酸化処理ステップ23が行われる。陽極酸化処理により透明な陽極酸化膜が形成されたマグネシウム系金属製品に対して、水洗ステップ24を含む後処理ステップが行われる。   The gloss polishing step 21 uses a chemical polishing method. The magnesium-based metal that has undergone the gloss polishing step 21 and the degreasing or surface adjustment step 22 is immersed in a strong alkaline electrolyte for anodization, and then an anodization step 23 is performed in the electrolyte. A post-treatment step including a water washing step 24 is performed on the magnesium-based metal product on which the transparent anodic oxide film is formed by the anodic oxidation treatment.

以下、上記したステップのうち、光沢研磨ステップ21と陽極酸化処理ステップ23についてさらに具体的に説明する。   Hereinafter, among the steps described above, the gloss polishing step 21 and the anodizing step 23 will be described more specifically.

(光沢研磨ステップ)
硫酸100g/L、硝酸15g/L、硝酸ナトリウム130g/L、クエン酸ナトリウム150g/Lを含む化学研磨液が調整される。室温で調整された化学研磨液にマグネシウム合金を約5秒〜30秒間浸漬し、マグネシウム合金の表面を化学研磨する。化学研磨液の組成比は、上述したものに限られず、化学研磨液の成分範囲が硫酸50〜500重量部、硝酸10〜100重量部、硝酸ナトリウム100〜300重量部、クエン酸ナトリウム100〜300重量部であるとき、良質の研磨が行われることが判った。
(Glossy polishing step)
A chemical polishing liquid containing 100 g / L sulfuric acid, 15 g / L nitric acid, 130 g / L sodium nitrate, and 150 g / L sodium citrate is prepared. The magnesium alloy is immersed in a chemical polishing liquid adjusted at room temperature for about 5 seconds to 30 seconds, and the surface of the magnesium alloy is chemically polished. The composition ratio of the chemical polishing liquid is not limited to that described above, and the component range of the chemical polishing liquid is 50 to 500 parts by weight of sulfuric acid, 10 to 100 parts by weight of nitric acid, 100 to 300 parts by weight of sodium nitrate, and 100 to 300 of sodium citrate. It was found that good quality polishing was performed when the amount was in parts by weight.

化学研磨後、光学顕微鏡で観察すると、マグネシウム合金の金属質感を確認することができ、また、表面に孔が多く発生したことを確認することができる。この孔は、化学研磨の後に続く陽極酸化処理ステップにより形成される透明陽極酸化膜との付着力を高めるのに寄与する。   When observed with an optical microscope after chemical polishing, the metal texture of the magnesium alloy can be confirmed, and it can be confirmed that many holes are generated on the surface. This hole contributes to increasing the adhesion to the transparent anodic oxide film formed by the anodizing step subsequent to chemical polishing.

光沢研磨ステップの前に、アルカリ脱脂ステップを行ってもよい。アルカリ脱脂ステップでは、蒸留水に水酸化ナトリウムと炭酸ナトリウムを7:1の比率で投入することで得られた温度が80℃の脱脂液内に、光沢研磨ステップ前のマグネシウム合金を約5分間浸漬する。   An alkaline degreasing step may be performed before the gloss polishing step. In the alkaline degreasing step, the magnesium alloy before the polishing step is immersed for about 5 minutes in a degreasing solution at a temperature of 80 ° C. obtained by adding sodium hydroxide and sodium carbonate in distilled water at a ratio of 7: 1. To do.

前記光沢研磨ステップの後に、表面調整ステップを行ってもよい。表面調整ステップでは、クロム酸100g/L、硝酸鉄20g/L及びフッ酸1g/Lを含む表面調整液内に、光沢研磨ステップ後のマグネシウム合金を約15秒間浸漬する。この際、表面調整ステップにおいて攪拌を伴うことがよい。   A surface adjustment step may be performed after the gloss polishing step. In the surface conditioning step, the magnesium alloy after the gloss polishing step is immersed for about 15 seconds in a surface conditioning solution containing 100 g / L of chromic acid, 20 g / L of iron nitrate and 1 g / L of hydrofluoric acid. At this time, the surface adjustment step may be accompanied by stirring.

(陽極酸化処理ステップ)
陽極酸化処理ステップは強塩基性電解液内で行われるが、皮膜の特性に影響を及ぼす処理条件としては、電解液の組成、電流密度、温度、作業時間等があり、この中でも、最も重要なものは、電解液の組成及び電流密度である。本実施例において用いられる強塩基性電解液は、pH11以上の強塩基性とするために、全体の水溶液1L当たり、水酸化カリウム50〜300gが必ず含まれる。水酸化カリウムは、重金属ではないので、環境に優しい。より具体的には、前記電解液としては、全体の水溶液1L当たり、水酸化カリウム100〜300gと、KF0.5〜50g/Lと、Na SiO5〜50g/Lと、Al0.1〜0.5g/Lとを含むものが用いられる。
(Anodizing step)
The anodizing step is performed in a strongly basic electrolyte, but the processing conditions that affect the properties of the coating include the composition of the electrolyte, current density, temperature, working time, etc. What is the composition and current density of the electrolyte. In order to make the strongly basic electrolyte used in the present example strongly basic having a pH of 11 or more, 50 to 300 g of potassium hydroxide is necessarily contained per 1 L of the entire aqueous solution. Since potassium hydroxide is not a heavy metal, it is environmentally friendly. More specifically, the electrolyte solution includes 100 to 300 g of potassium hydroxide, 0.5 to 50 g / L of KF, 5 to 50 g / L of Na 4 SiO 4 , and 0.1 to 0.1 of Al per 1 L of the entire aqueous solution. Those containing 0.5 g / L are used.

このように調整したpH11以上の強塩基性電解液にマグネシウムまたはマグネシウム合金を浸漬させると、10V以下の電圧にて良質の酸化皮膜が形成される。   When magnesium or a magnesium alloy is immersed in a strongly basic electrolyte having a pH of 11 or more adjusted as described above, a good quality oxide film is formed at a voltage of 10 V or less.

一方、電解液中に着色剤(染料)を加えると、多様な質感効果をもたらす(図2(b)参照)。添加される染料は、所望の色相により異なり、本発明では、酢酸コバルト、過マンガン酸カリウム、硫化アンモニウム、硫酸第二鉄、フェロシアン化カリウム、硫酸ニッケル、硫酸銅、硫酸第一スズ等のうちの一つ以上の染料を加えると、赤、オレンジ、黄、青緑、青、黒等の様々な色の酸化皮膜層が形成される。   On the other hand, when a colorant (dye) is added to the electrolytic solution, various texture effects are brought about (see FIG. 2B). The dye to be added varies depending on the desired hue, and in the present invention, one of cobalt acetate, potassium permanganate, ammonium sulfide, ferric sulfate, potassium ferrocyanide, nickel sulfate, copper sulfate, stannous sulfate and the like is used. When one or more dyes are added, oxide layers of various colors such as red, orange, yellow, blue-green, blue, and black are formed.

また、金属質感を実現するためにこのような陽極酸化処理ステップを行うと、別途の塗装処理を行う場合に生じる作業環境の問題点も避けることができる。   In addition, when such an anodizing step is performed in order to realize a metal texture, problems in the working environment that occur when a separate coating process is performed can also be avoided.

図3に示すように、電解槽1内に貯留された電解液2に、マグネシウムまたはマグネシウム合金3及び陰極基板4を浸漬させた状態で、マグネシウム合金3に整流電源5の陽極を連結し、陰極基板4に整流電源5の陰極を連結して電圧を印加することにより、透明な陽極酸化皮膜が形成されるようにする。このとき、用いられた電流密度は、0.01〜1A/dmであり、より好ましくは0.2〜0.7A/dmに調整され、電圧は10V以下に制限した。これにより、マグネシウムまたはマグネシウム合金3の表面に均一かつ緻密な膜が形成された。電解液の温度は、20℃〜70℃に維持する。 As shown in FIG. 3, an anode of a rectifying power source 5 is connected to the magnesium alloy 3 in a state where the magnesium or magnesium alloy 3 and the cathode substrate 4 are immersed in the electrolytic solution 2 stored in the electrolytic cell 1. A transparent anodic oxide film is formed by connecting a cathode of the rectifying power source 5 to the substrate 4 and applying a voltage. At this time, the current density used was 0.01 to 1 A / dm 2 , more preferably 0.2 to 0.7 A / dm 2 , and the voltage was limited to 10 V or less. As a result, a uniform and dense film was formed on the surface of magnesium or magnesium alloy 3. The temperature of the electrolytic solution is maintained at 20 ° C to 70 ° C.

本実施例における表面調整は、マグネシウム系金属の表面を調整する必要に応じて行い、これは、研磨ステップ後の表面調整の目的で行われるが、表面処理に対する要求性能及びこの表面の汚染程度により適切に分けて用いる。   The surface adjustment in this example is performed as necessary to adjust the surface of the magnesium-based metal, and this is performed for the purpose of surface adjustment after the polishing step. However, depending on the required performance for the surface treatment and the degree of contamination of this surface. Appropriately divided and used.

図4は、本発明の実施例によって、陽極酸化処理により陽極酸化膜が形成されたマグネシウム合金表面の微細組織を示す写真であり、図5は、表面処理前のマグネシウム合金(元素材)表面の微細組織を示す写真である。   FIG. 4 is a photograph showing a microstructure of a magnesium alloy surface on which an anodized film is formed by an anodizing treatment according to an embodiment of the present invention, and FIG. 5 is a view of the surface of the magnesium alloy (original material) before the surface treatment. It is a photograph which shows a fine structure.

図4と図5を比較してみると、図4に示した表面は、陽極酸化膜が形成されたにもかかわらず、陽極酸化膜が形成されていない図5に示したマグネシウム合金表面とほぼ類似した質感を示す。但し、線と線間の幅が狭まるが、これは、透明な陽極酸化膜の形成による光屈折に起因する。   Comparing FIG. 4 and FIG. 5, the surface shown in FIG. 4 is almost the same as the magnesium alloy surface shown in FIG. 5 where the anodized film is not formed even though the anodized film is formed. Shows similar texture. However, the line-to-line width is narrowed due to light refraction due to the formation of a transparent anodic oxide film.

以上、本発明が特定の実施例を中心として説明されたが、本発明の趣旨及び添付の特許請求の範囲を逸脱しない範囲内で、様々な変形、変更、または修正が当該技術の分野において可能であり、したがって、上述した説明及び図面は、本発明の技術思想を限定するものではなく、本発明を例示するものと解釈されなければならない。   Although the present invention has been described above with reference to specific embodiments, various changes, modifications, or modifications can be made in the art without departing from the spirit of the present invention and the scope of the appended claims. Therefore, the above description and drawings should not be construed as limiting the technical idea of the present invention but should be construed as illustrating the present invention.

21 光沢研磨ステップ
22 表面調整(または脱脂)ステップ
23 陽極酸化処理ステップ
24 水洗ステップ

21 Glossy polishing step 22 Surface adjustment (or degreasing) step 23 Anodizing step 24 Water washing step

Claims (5)

硝酸ナトリウムとクエン酸ナトリウムを含む化学研磨液を用いてマグネシウム系金属の表面を化学研磨する光沢研磨ステップと、
前記光沢研磨ステップを経たマグネシウム系金属をpH11以上の強塩基性電解液内に浸漬させる浸漬ステップと、
前記強塩基性電解液内で前記マグネシウム系金属に電流密度0.01〜1A/dmの電流を印加することによって、前記マグネシウム系金属の表面に透明な陽極酸化膜を形成する陽極酸化処理ステップと、を含むことを特徴とするマグネシウム系金属の表面処理方法。
A gloss polishing step for chemically polishing the surface of the magnesium-based metal using a chemical polishing liquid containing sodium nitrate and sodium citrate ,
An immersion step of immersing the magnesium-based metal that has undergone the gloss polishing step in a strongly basic electrolyte solution having a pH of 11 or more;
Anodizing treatment step of forming a transparent anodic oxide film on the surface of the magnesium-based metal by applying a current density of 0.01-1 A / dm 2 to the magnesium-based metal in the strongly basic electrolyte. And a surface treatment method for a magnesium-based metal.
前記陽極酸化処理ステップにおいて、10V以下の電圧を印加することを特徴とする請求項1に記載のマグネシウム系金属の表面処理方法。   The magnesium-based metal surface treatment method according to claim 1, wherein a voltage of 10 V or less is applied in the anodizing treatment step. 前記陽極酸化処理ステップにおいて、前記電解液は、水酸化カリウム100〜300重量部と、KF0.5〜50重量部と、Na SiO5〜50重量部と、Al0.1〜0.5重量部とを含み、前記電解液は、20〜70℃の温度に維持されることを特徴とする請求項1に記載のマグネシウム系金属の表面処理方法。 In the anodizing step, the electrolytic solution contains 100 to 300 parts by weight of potassium hydroxide, 0.5 to 50 parts by weight of KF, 5 to 50 parts by weight of Na 4 SiO 4 , and 0.1 to 0.5 parts by weight of Al. The magnesium-based metal surface treatment method according to claim 1, wherein the electrolytic solution is maintained at a temperature of 20 to 70 ° C. 前記陽極酸化処理ステップにおいて、前記電解液が、酢酸コバルト、過マンガン酸カリウム、硫化アンモニウム、硫酸第二鉄、フェロシアン化カリウム、硫酸ニッケル及び硫酸銅、硫酸第一スズのうちの少なくとも一つを含むことを特徴とする請求項1に記載のマグネシウム系金属の表面処理方法。   In the anodizing treatment step, the electrolytic solution contains at least one of cobalt acetate, potassium permanganate, ammonium sulfide, ferric sulfate, potassium ferrocyanide, nickel sulfate, copper sulfate, and stannous sulfate. The surface treatment method for a magnesium-based metal according to claim 1. 前記光沢研磨ステップにおいて、前記化学研磨液は、硫酸、硝酸、硝酸ナトリウム、及びクエン酸ナトリウムを含むことを特徴とする請求項に記載のマグネシウム系金属の表面処理方法。 2. The magnesium-based metal surface treatment method according to claim 1 , wherein, in the gloss polishing step, the chemical polishing liquid contains sulfuric acid, nitric acid, sodium nitrate, and sodium citrate.
JP2010163225A 2010-06-09 2010-07-20 Magnesium metal surface treatment method Expired - Fee Related JP5074561B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0054535 2010-06-09
KR1020100054535A KR101200526B1 (en) 2010-06-09 2010-06-09 Method for surface treating available the metallic effect

Publications (2)

Publication Number Publication Date
JP2011256458A JP2011256458A (en) 2011-12-22
JP5074561B2 true JP5074561B2 (en) 2012-11-14

Family

ID=45095350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163225A Expired - Fee Related JP5074561B2 (en) 2010-06-09 2010-07-20 Magnesium metal surface treatment method

Country Status (4)

Country Link
US (1) US20110303545A1 (en)
JP (1) JP5074561B2 (en)
KR (1) KR101200526B1 (en)
CN (1) CN102277611A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668392A (en) * 2012-09-13 2014-03-26 汉达精密电子(昆山)有限公司 Surface treatment method of magnesium alloy with metal texture and product thereof
US10941501B2 (en) 2013-03-29 2021-03-09 Analytical Specialties, Inc. Method and composition for metal finishing
KR101629585B1 (en) 2014-12-26 2016-06-13 주식회사 포스코 Color-treated substrate and color-treatment method thereof
KR101584413B1 (en) 2013-12-26 2016-01-11 주식회사 포스코 Surface treated metallic material and surface treatment method for metallic material
CN105849316B (en) 2013-12-26 2018-06-12 Posco公司 The base material of color development treatment and the base material color development treatment method for it
KR20160085669A (en) 2015-01-08 2016-07-18 주식회사 케이에이치바텍 The metal exterior case with metal appearance and Method of manufacturing the same
KR101655039B1 (en) 2015-07-24 2016-09-23 주식회사 포스코 Color-treated substrate and color-treatment method thereof
KR101674316B1 (en) 2015-09-21 2016-11-08 주식회사 포스코 Color-treated substrate and color-treatment method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86108405A (en) * 1985-10-25 1988-05-18 奥托·科萨克 The solution and coating method of magnesium goods and used electrolytic solution
US4620904A (en) * 1985-10-25 1986-11-04 Otto Kozak Method of coating articles of magnesium and an electrolytic bath therefor
US4744872A (en) * 1986-05-30 1988-05-17 Ube Industries, Ltd. Anodizing solution for anodic oxidation of magnesium or its alloys
US5527423A (en) 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
JP2002047597A (en) * 2000-08-01 2002-02-15 Boshin Ro Electrolytic coloring agent and electrolytic coloring method for magnesium or alloy thereof
JP2003041382A (en) * 2001-08-02 2003-02-13 Murai:Kk Method for manufacturing eyeglasses frame
JP2004091852A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Method for forming highly corrosion resistant anodically oxidized film to magnesium material and cabinet made of magnesium material formed thereby
JP4203942B2 (en) * 2002-08-30 2009-01-07 アイシン軽金属株式会社 Method for forming a design surface of a metal material
AU2003265019B2 (en) * 2002-09-09 2008-08-14 Keronite International Limited Surface treatment of magnesium and its alloys
JP4214369B2 (en) 2002-09-13 2009-01-28 株式会社カサタニ Method for anodizing magnesium alloy
JP4825002B2 (en) * 2005-12-27 2011-11-30 本田技研工業株式会社 Method for producing magnesium metal material
CN100570002C (en) * 2006-10-31 2009-12-16 佛山市顺德区汉达精密电子科技有限公司 Magnesium alloy etching technique
KR100796633B1 (en) 2006-12-20 2008-01-22 주식회사 엔유씨전자 Method for surface treating magnesium metal
KR20090115034A (en) * 2008-04-30 2009-11-04 주식회사 엔유씨전자 Method for surface treating available colour performance and luster of magnesium metal
CN101634019B (en) * 2008-07-21 2011-10-26 中国科学院宁波材料技术与工程研究所 Pretreatment method for chemical nickel plating of zinc/aluminum-based alloy and application thereof
CN101671821B (en) * 2008-09-12 2010-12-08 中国科学院金属研究所 Chemical conversion solution and chemical conversion process for magnesium alloy surface treatment
CN101660114B (en) * 2009-09-23 2012-06-20 江苏大学 Magnesium or magnesium alloy surface hot-dip tinning or tin base alloy method
CN101768738B (en) * 2010-01-04 2011-12-14 郑州大学 Preconditioning liquid for splicing magnesium or magnesium alloy products and preconditioning method

Also Published As

Publication number Publication date
CN102277611A (en) 2011-12-14
KR101200526B1 (en) 2012-11-13
KR20110134769A (en) 2011-12-15
US20110303545A1 (en) 2011-12-15
JP2011256458A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5074561B2 (en) Magnesium metal surface treatment method
CN100588740C (en) Non-chromium treatment fluid for preparation of corrosion-resistant oxidation film on magnesium alloy surface and method of use thereof
US20080149492A1 (en) Surface dyeing process for metal articles
US20080274375A1 (en) Anodizing Aluminum and Alloys Thereof
US20040004003A1 (en) Methods for treating the surfaces of aluminium alloys by means of formulations containing alkane sulfonic acid
US20170325347A1 (en) Oxidied and coated articles and methods of making same
CN112342591A (en) Electrolyte solution for magnesium alloy surface micro-arc oxidation and preparation method of black coating
CN105349971A (en) Aluminum alloy surface modification technology
CN103469280B (en) Magnesium alloy differential arc oxidation electrolyte and utilize the technique of this electrolyte to the processing of Mg alloy surface black ceramic
CN107964673A (en) A kind of method that aluminum alloy differential arc oxidation prepares black ceramic film layer
JP6528051B2 (en) Alumite member, method of manufacturing alumite member and treating agent
CN100383292C (en) Anodizing method for generating ceramic film on aluminium and its alloy material surface
CN108221027A (en) A kind of true black anodizing method of magnesium alloy
KR20090088199A (en) Method for anodizing surface treating magnesium metal
Runge et al. Anodizing as an industrial process
TWI238858B (en) Process for the production of gold-colored surfaces of aluminum or aluminum alloys by means of silver salt-containing formulations
JP2009270190A (en) Surface treatment method capable of embodying coloring and luster on magnesium-based metallic member
KR20170092209A (en) Anodizing Aluminum and Alloys Thereof
KR101126530B1 (en) Chemical etching method for magnesium alloy
Yerokhin et al. Anodising of light alloys
KR100796633B1 (en) Method for surface treating magnesium metal
TW201441427A (en) Micro-arc oxidation surface treatment technique for metal substrate
Lee et al. 6061 Aluminum surface treatment by high quality coloring anodic film
Shang et al. The analysis and fabrication of a novel tin-nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7 Si-0.7 Mg alloy in acidic and alkali corrosive environments
CN108930029A (en) A kind of process of surface treatment promoting aluminium alloy endurance quality

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Ref document number: 5074561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees