JP2005068555A - Metallic material and surface treatment method - Google Patents
Metallic material and surface treatment method Download PDFInfo
- Publication number
- JP2005068555A JP2005068555A JP2004224019A JP2004224019A JP2005068555A JP 2005068555 A JP2005068555 A JP 2005068555A JP 2004224019 A JP2004224019 A JP 2004224019A JP 2004224019 A JP2004224019 A JP 2004224019A JP 2005068555 A JP2005068555 A JP 2005068555A
- Authority
- JP
- Japan
- Prior art keywords
- surface layer
- magnesium
- cooh
- metal material
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000007769 metal material Substances 0.000 title claims abstract description 23
- 238000004381 surface treatment Methods 0.000 title claims abstract description 19
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 44
- 239000011148 porous material Substances 0.000 claims abstract description 42
- 239000002344 surface layer Substances 0.000 claims abstract description 41
- 239000010410 layer Substances 0.000 claims abstract description 23
- 230000004888 barrier function Effects 0.000 claims abstract description 17
- 239000002253 acid Substances 0.000 claims abstract description 8
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims description 24
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 22
- 229910052749 magnesium Inorganic materials 0.000 claims description 20
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 150000003839 salts Chemical group 0.000 claims description 11
- 239000010407 anodic oxide Substances 0.000 claims description 9
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 claims description 8
- 239000000395 magnesium oxide Substances 0.000 claims description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 7
- 150000002894 organic compounds Chemical class 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 5
- 229910010272 inorganic material Inorganic materials 0.000 claims description 4
- 239000000347 magnesium hydroxide Substances 0.000 claims description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 125000003172 aldehyde group Chemical group 0.000 claims description 3
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052794 bromium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 150000002484 inorganic compounds Chemical class 0.000 claims description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims description 2
- 125000001174 sulfone group Chemical group 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 17
- 238000000576 coating method Methods 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 15
- 239000008151 electrolyte solution Substances 0.000 abstract description 10
- 239000003381 stabilizer Substances 0.000 abstract description 10
- 230000003647 oxidation Effects 0.000 abstract description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 239000000243 solution Substances 0.000 abstract description 3
- 239000004115 Sodium Silicate Substances 0.000 abstract description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052911 sodium silicate Inorganic materials 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 description 33
- 239000002932 luster Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- -1 permanganate Chemical compound 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000007743 anodising Methods 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 239000000956 alloy Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 238000004040 coloring Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 206010019860 Hereditary angioedema Diseases 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 238000001579 optical reflectometry Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 238000004043 dyeing Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229940104869 fluorosilicate Drugs 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 description 1
- UQCVYEFSQYEJOJ-UHFFFAOYSA-N [Mg].[Zn].[Zr] Chemical compound [Mg].[Zn].[Zr] UQCVYEFSQYEJOJ-UHFFFAOYSA-N 0.000 description 1
- XVYHFPMIBWTTLH-UHFFFAOYSA-N [Zn].[Mg].[Ca] Chemical compound [Zn].[Mg].[Ca] XVYHFPMIBWTTLH-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- HZZOEADXZLYIHG-UHFFFAOYSA-N magnesiomagnesium Chemical compound [Mg][Mg] HZZOEADXZLYIHG-UHFFFAOYSA-N 0.000 description 1
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/30—Anodisation of magnesium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は、新規な酸化皮膜構造を有する金属材料、及びマグネシウム又はその合金の表面処理方法に関し、特に、金属光沢、良好な平滑面、耐食性、耐磨耗性を有する金属材料、並びに表面に金属色、良好な平滑面、耐食性、耐磨耗性をもたらす高品質な皮膜を陽極酸化にて形成する表面処理方法に関する。 The present invention relates to a metal material having a novel oxide film structure and a surface treatment method for magnesium or an alloy thereof, and more particularly, a metal material having metallic luster, good smooth surface, corrosion resistance, wear resistance, and metal on the surface. The present invention relates to a surface treatment method for forming a high-quality film by anodic oxidation that provides color, good smooth surface, corrosion resistance, and wear resistance.
マグネシウム又はマグネシウム合金材料は、実用金属材料中最も軽く、切削性が良好で、強度/密度比が高く、且つダイカストにおける鋳造性がよいことからコンピュータ、オーディオ製品、通信機器、航空機、自動車材料等の筐体、構造体、各種部品等に広く用いられている。 Magnesium or magnesium alloy materials are the lightest among practical metal materials, have good machinability, have a high strength / density ratio, and have good castability in die casting, so that they can be used in computers, audio products, communication equipment, aircraft, automobile materials, etc. Widely used in cases, structures, various parts, etc.
しかし、マグネシウム又はマグネシウム合金は、大気中で酸化され表面に薄い酸化皮膜が形成されるために塗装が難しく塗膜の密着性も悪い。また、耐食性、対摩耗性等が低い。そのため、現状では同金属表面に化成処理を施した後、塗装を行うことが一般的であるが、塗装により寸法精度が低下すること、廃棄時又は再利用時に塗装膜の剥離が必要になること等の問題点を有している。 However, magnesium or a magnesium alloy is oxidized in the atmosphere and a thin oxide film is formed on the surface, so that it is difficult to paint and the adhesion of the film is also poor. Moreover, corrosion resistance, abrasion resistance, etc. are low. Therefore, under the present circumstances, it is common to perform coating after the chemical conversion treatment is applied to the surface of the same metal, but the dimensional accuracy is reduced by coating, and the coating film must be peeled off when discarded or reused. And so on.
一方、化成処理の代わりに陽極酸化処理によりマグネシウムの酸化物、水酸化物からなる皮膜を形成し、この後に塗装処理を行うことも知られている。この場合、陽極酸化処理は、六価クロム酸塩やマンガン酸塩、過マンガン酸塩、リン酸塩等の重金属塩類を用いて行われている。この方法によってできる陽極酸化皮膜は、火花放電によって生じた孔径3〜30μm程度の大口径の孔や割れが不規則に多数存在しており皮膜表面には光沢がない。更に、これら重金属塩類を使用した陽極酸化は、重金属塩類による排水の汚染をもたらし、環境保全の観点から好ましいものではない。 On the other hand, it is also known that a film made of magnesium oxide or hydroxide is formed by anodic oxidation instead of chemical conversion, followed by coating. In this case, the anodic oxidation treatment is performed using heavy metal salts such as hexavalent chromate, manganate, permanganate, and phosphate. The anodized film formed by this method has many irregular holes and cracks with a large diameter of about 3 to 30 μm generated by spark discharge, and the surface of the film is not glossy. Furthermore, anodic oxidation using these heavy metal salts causes waste water contamination by heavy metal salts, which is not preferable from the viewpoint of environmental protection.
重金属塩類を用いない陽極酸化処理に関して、本発明者は、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩又は重炭酸塩を含む水溶液に皮膜形成安定剤を加えてなる電解液を用いて電解処理する方法を提案している(例えば、特許文献1参照。)。 Regarding the anodizing treatment without using a heavy metal salt, the present inventor uses an electrolytic solution obtained by adding a film-forming stabilizer to an aqueous solution containing an alkali metal or alkaline earth metal hydroxide, carbonate or bicarbonate. A method of electrolytic treatment has been proposed (see, for example, Patent Document 1).
ところが、特許文献1に記載の方法で得られる酸化皮膜は、重金属塩類による工業排水の汚染の虞もなく、酸化皮膜の面粗さや孔サイズにおいても従来のクロム酸塩類を用いた方法に比べると良好になっているものの、光反射率(金属光沢)、平滑性、耐食性、塗膜密着性等には、更に改良の余地が残されている。 However, the oxide film obtained by the method described in Patent Document 1 has no risk of contamination of industrial wastewater by heavy metal salts, and the surface roughness and pore size of the oxide film are also compared with the conventional method using chromates. Although improved, there is still room for improvement in light reflectance (metallic luster), smoothness, corrosion resistance, coating film adhesion, and the like.
そこで、本発明は、このような従来の実情に鑑みて提案されたものであり、基材本来の金属光沢を残しつつ塗膜密着性、着色性が良好な金属材料、並びに基材本来の金属光沢を残しつつ塗膜密着性、着色性が良好な陽極酸化皮膜構造を形成するための表面処理方法を提供することを目的とする。 Therefore, the present invention has been proposed in view of such conventional circumstances, and a metal material having good coating film adhesion and colorability while retaining the original metallic luster of the substrate, and the original metal of the substrate. An object of the present invention is to provide a surface treatment method for forming an anodized film structure having good coating film adhesion and colorability while leaving gloss.
本発明者は、上記目的を達成するため、電解処理電圧、電解液組成等の電解条件を変化させて陽極酸化処理を行った。その結果、特定条件下にて電解することによって、基材本来の金属光沢を残しつつ塗膜密着性、着色性がともに良好な陽極酸化皮膜が形成されることを見出した。 In order to achieve the above object, the present inventor performed anodizing treatment by changing electrolytic conditions such as electrolytic treatment voltage and electrolytic solution composition. As a result, it was found that by electrolyzing under specific conditions, an anodic oxide film having good coating film adhesion and colorability was formed while retaining the original metallic luster of the substrate.
本発明は、このような知見に基づいて完成されたものであって、マグネシウム又はマグネシウム合金からなる基材と、平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mm2あたり1万個以上の密度で存在する表面層と、該表面層の底部にあって実質的に無孔のバリア層とからなる陽極酸化皮膜を備える。特に、表面層には、微細孔が1mm2あたり10万個以上の密度で存在することが好ましい。 The present invention has been completed based on such knowledge, and has a base material made of magnesium or a magnesium alloy, an average pore diameter of 5 nm to 1000 nm, a length of 1 μm to 50 μm, and a ratio of the length to the pore diameter of 1 or more. An anodized film comprising a surface layer having a fine pore density of 10,000 or more per 1 mm 2 and a substantially non-porous barrier layer at the bottom of the surface layer is provided. In particular, the surface layer preferably has a fine pore density of 100,000 or more per 1 mm 2 .
ここで、本発明に係る金属材料の表面層の光反射率は、計測角度85°にて反射率測定したとき60%以上とされている。 Here, the light reflectance of the surface layer of the metal material according to the present invention is set to 60% or more when the reflectance is measured at a measurement angle of 85 °.
また、本発明は、アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩、ケイフッ化塩から選ばれる少なくとも1種以上の塩を含む電解水溶液中にマグネシウム又はマグネシウム合金を浸漬し、これを電流密度0.7〜5A/dm2、電圧2〜40Vにて火花放電を伴わずに電解することによって、表面に平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mm2あたり1万個以上の密度で存在する表面層と該表面層の底部にあって実質的に無孔のバリア層とを有する陽極酸化皮膜を形成する。 Further, the present invention provides magnesium or a magnesium alloy in an electrolytic aqueous solution containing at least one salt selected from hydroxides, carbonates, bicarbonates, silicates, and silicofluorides of alkali or alkaline earth metals. Is electrolyzed without spark discharge at a current density of 0.7 to 5 A / dm 2 and a voltage of 2 to 40 V, and the surface has an average pore diameter of 5 nm to 1000 nm and a length of 1 μm to 50 μm. An anodized film having a surface layer in which fine pores having a pore size ratio of 1 or more exist at a density of 10,000 or more per 1 mm 2 and a substantially non-porous barrier layer at the bottom of the surface layer is formed. .
本発明における陽極酸化皮膜は、長さ/孔径の比、いわゆるアスペクト比が1以上、好ましくは10以上の細長い微細孔を有し、これらが表面層からバリア層に向かって伸びており、その数は1mm2あたり少なくとも1万個以上の密度で実質的に皮膜全体を覆っている。 The anodized film in the present invention has elongated micropores having a length / pore diameter ratio, so-called aspect ratio of 1 or more, preferably 10 or more, and these extend from the surface layer toward the barrier layer. Substantially covers the entire coating at a density of at least 10,000 per mm 2 .
表面層の厚さは3〜50μmが適当である。この膜厚が3μm以下であると十分な耐食性が得られ難く、また50μmを越えると十分な金属光沢が得られ難くなる。更に、この陽極酸化皮膜は、微細孔を有する表面層と、該表面層に続く極めて薄い実質的に無孔のバリア層とを有する。 The thickness of the surface layer is suitably 3 to 50 μm. When the film thickness is 3 μm or less, sufficient corrosion resistance is difficult to obtain, and when it exceeds 50 μm, it is difficult to obtain a sufficient metallic luster. Furthermore, the anodized film has a surface layer having micropores and a very thin, substantially non-porous barrier layer following the surface layer.
陽極酸化皮膜は、酸化マグネシウム(MgO)と水酸化マグネシウム(Mg(OH)2)とが主体となって形成されており、その組成は、前者が0.1〜40%、後者が60〜99.5%の範囲で構成される。そのほかに、0〜30%の範囲でマンガン、チタン、モリブデン、ケイ素、タングステン、ジルコニウム、バナジウム、クロム、コバルト、パラジウム、リン、硫黄、臭素、フッ素、ヨウ素、ホウ素、炭素、窒素、又はこれらの化合物、更に有機化合物としてヒドロキシル基、アルデヒド基、カルボニル基、若しくはアミノ基を有する鎖状又は環状炭化水素を含有している。この陽極酸化皮膜におけるバリア層は、主として水酸化物により形成されている。 The anodized film is formed mainly of magnesium oxide (MgO) and magnesium hydroxide (Mg (OH) 2 ), and the composition is 0.1 to 40% for the former and 60 to 99 for the latter. It is composed of 5%. In addition, manganese, titanium, molybdenum, silicon, tungsten, zirconium, vanadium, chromium, cobalt, palladium, phosphorus, sulfur, bromine, fluorine, iodine, boron, carbon, nitrogen, or a compound thereof in the range of 0 to 30% Furthermore, the organic compound contains a chain or cyclic hydrocarbon having a hydroxyl group, an aldehyde group, a carbonyl group, or an amino group. The barrier layer in this anodic oxide film is mainly formed of hydroxide.
このような酸化皮膜を形成するには、マグネシウム又はマグネシウム合金をアルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩の1種以上を0.2〜7mol/L、好ましくはこれに皮膜形成安定剤を0.01〜5mol/Lの割合で含有させた電解水溶液中にて、電流密度0.7〜5A/dm2、電圧2〜40Vで火花放電を伴わない陽極酸化処理する。 In order to form such an oxide film, magnesium or a magnesium alloy is added with one or more of alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or fluorosilicate 0.2- Spark discharge at a current density of 0.7 to 5 A / dm 2 and a voltage of 2 to 40 V in an electrolytic aqueous solution containing 7 mol / L, preferably 0.01 to 5 mol / L of a film-forming stabilizer. Anodizing without accumulating.
本発明に係る表面処理方法にて使用する電解水溶液には、アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩を用いることができる。具体例としては、NaOH、KOH、Ba(OH)2等の水酸化物、Na2CO3、K2CO3、CaCO3、MgCO3等の炭酸塩、NaHCO3、KHCO3、Ca(HCO3)2等の重炭酸塩があげられ、これらを1種又は2種以上含有する水溶液が用いられる。また、電解液には液の寿命の向上を目的として皮膜形成安定剤を単独又は複数種混合して添加する。 As the electrolytic aqueous solution used in the surface treatment method according to the present invention, alkali or alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or fluorosilicate can be used. Specific examples include hydroxides such as NaOH, KOH, Ba (OH) 2 , carbonates such as Na 2 CO 3 , K 2 CO 3 , CaCO 3 , and MgCO 3 , NaHCO 3 , KHCO 3 , and Ca (HCO 3). 2 ) Bicarbonates such as 2 are listed, and an aqueous solution containing one or more of these is used. In addition, a film-forming stabilizer is added to the electrolyte for the purpose of improving the life of the solution, alone or in combination.
上述のように調製された電解液中でのマグネシウム又はマグネシウム合金材料の陽極酸化処理の条件としては、電解浴温を30〜90℃、特に好ましくは50〜80℃とし、pH9以上の弱〜強塩基性とするとよく、電解処理を行う前にマグネシウム又はマグネシウム合金に対して酸による前処理を施しておくことが好ましい。 As conditions for anodizing the magnesium or magnesium alloy material in the electrolytic solution prepared as described above, the electrolytic bath temperature is 30 to 90 ° C., particularly preferably 50 to 80 ° C., and a pH of 9 or higher is weak to strong. It may be basic, and it is preferable to pre-treat magnesium or a magnesium alloy with an acid before the electrolytic treatment.
本発明に係る陽極酸化皮膜を有するマグネシウム及びマグネシウム合金は、平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mm2あたり1万個以上の密度で存在する表面層と、該表面層の底部にあって実質的に無孔のバリア層とからなる陽極酸化皮膜を有し、表面層の光反射率が計測角度85°にて反射率測定したとき60%以上であることにより、良好な金属光沢を発現する。また、良好な塗膜密着性、着色性を備える。
Magnesium and magnesium alloys having an anodic oxide film according to the present invention, the
また、本発明に係るマグネシウム及びマグネシウム合金の表面処理方法によれば、アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩、ケイフッ化塩から選ばれる少なくとも1種以上の塩を含む電解水溶液中にマグネシウム又はマグネシウム合金を浸漬し、これを電流密度0.7〜5A/dm2、電圧2〜40Vにて火花放電を伴わずに電解することによって、表面に平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mm2あたり1万個以上の密度で存在する表面層と該表面層の底部にあって実質的に無孔のバリア層とを有する陽極酸化皮膜が形成できる。この陽極酸化皮膜は、良好な金属光沢を発現する。また、良好な塗膜密着性、着色性を備える。 Moreover, according to the surface treatment method of magnesium and magnesium alloy according to the present invention, at least one selected from alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate, and silicofluoride. By immersing magnesium or a magnesium alloy in an aqueous electrolytic solution containing the salt of, and electrolyzing it without a spark discharge at a current density of 0.7 to 5 A / dm 2 and a voltage of 2 to 40 V, an average pore diameter is formed on the surface. 5 nm to 1000 nm, a length of 1 μm to 50 μm, a ratio of length to hole diameter of 1 or more micropores present at a density of 10,000 or more per 1 mm 2 and the bottom of the surface layer are substantially non-porous An anodized film having a barrier layer can be formed. This anodized film exhibits a good metallic luster. Moreover, it has favorable coating-film adhesiveness and coloring property.
本発明に係る金属材料1は、図1に示すように、マグネシウム又はマグネシウム合金からなる基材2と、平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔3が1mm2あたり1万個以上の密度で存在する表面層4と、該表面層4の底部にあって実質的に無孔のバリア層5とからなる陽極酸化皮膜6を備える。特に、この表面層4には、微細孔3が1mm2あたり10万個以上の密度で存在するとよい。
As shown in FIG. 1, the metal material 1 according to the present invention includes a base material 2 made of magnesium or a magnesium alloy, fine pores having an average pore diameter of 5 nm to 1000 nm, a length of 1 μm to 50 μm, and a ratio of length to pore diameter of 1 or more. 3 is provided with an
このような表面に特定構造の微細孔3を有する酸化皮膜6を形成するには、マグネシウム又はマグネシウム合金をアルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩の1種以上を0.2〜7mol/L、好ましくはこれに皮膜形成安定剤を0.01〜5mol/Lの割合で含有させた電解水溶液中にて、電流密度0.7〜5A/dm2、電圧2〜40Vで火花放電を伴わない陽極酸化処理することによって達成される。使用電流は、直流又は交流を整流した電流等が好ましい。
In order to form the
ここで特徴的な点は、電圧2〜40V、特に好ましくは4〜10Vという低電圧で火花放電を生じさせない条件で陽極酸化させながら酸化マグネシウムを形成させつつ、1μm以上の酸化皮膜を形成させることである。 A characteristic point here is that an oxide film of 1 μm or more is formed while forming magnesium oxide while anodizing under conditions that do not cause spark discharge at a voltage of 2 to 40 V, particularly preferably 4 to 10 V. It is.
従来の電解処理では、50V以上、特に通常90V以上の電圧で電解処理していたために火花放電が生じ、その結果3〜30μm以上の大きな孔を不規則に有する酸化皮膜が形成されていたため、酸化皮膜表面は光反射率が低く光沢がなかった。 In the conventional electrolytic treatment, spark discharge occurred because the electrolytic treatment was performed at a voltage of 50 V or higher, particularly usually 90 V or higher, and as a result, an oxide film having irregularly large pores of 3 to 30 μm or more was formed. The film surface had low light reflectance and no gloss.
本発明の条件で電解処理すると火花放電が起こらず、表面層4に形成される微細孔3の平均孔径が実質的に1μm以下の微細孔3で覆われ、更にその殆どは700nm以下であり、またこれら微細孔3の多くは、その孔径をほぼ保ったまま、或いは多少の広狭を伴いながら、表面層4からバリア層5に向かってほぼ垂直に形成される。このため、金属素材と実質的に変わらない光沢を有し、且つ耐食性、平滑性、耐摩耗性のよい酸化皮膜6が形成できる。
When electrolytic treatment is performed under the conditions of the present invention, spark discharge does not occur, the average pore diameter of the
この表面処理方法にて使用する電解水溶液には、アルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩を用いることができる。具体例としては、NaOH、KOH、Ba(OH)2等の水酸化物、Na2CO3、K2CO3、CaCO3、MgCO3等の炭酸塩、NaHCO3、KHCO3、Ca(HCO3)2等の重炭酸塩があげられ、これらを1種又は2種以上含有する水溶液が用いられる。このアルカリ溶液の濃度は、0.2〜7mol/Lとすることが好ましい。0.2モル以下では形成される酸化皮膜にムラが発生し易くなり、7モル以上では粉ふきが生じ光沢のない灰色〜灰黒色となり目的とする酸化皮膜が得られない。 Alkaline earth metal hydroxides, carbonates, bicarbonates, silicates or fluorosilicates can be used in the electrolytic aqueous solution used in this surface treatment method. Specific examples include hydroxides such as NaOH, KOH, Ba (OH) 2 , carbonates such as Na 2 CO 3 , K 2 CO 3 , CaCO 3 , and MgCO 3 , NaHCO 3 , KHCO 3 , and Ca (HCO 3). 2 ) Bicarbonates such as 2 are listed, and an aqueous solution containing one or more of these is used. The concentration of the alkaline solution is preferably 0.2-7 mol / L. If the amount is 0.2 mol or less, unevenness is likely to occur in the formed oxide film, and if it is 7 mol or more, powdering occurs, resulting in a non-glossy gray to gray-black color, and the desired oxide film cannot be obtained.
また、本発明では、電解液には液の寿命の向上を目的として皮膜形成安定剤を添加する。皮膜形成安定剤としては、無機化合物、有機化合物を用いることができ、具体的には、NaNO3、CaNO3、MgNO3、Na2SO4、K2SO4、CaSO4、MgSO4等の鉱酸塩、KF、NH4F等のフッ化物、Na2SiO3、Na4SiO4、K2SiO2等のケイ酸化合物Na2SiF6、MgSiF6、(NH4)2SiF6等のケイフッ化物、有機化合物としては(CH2OH)2、(CH2CH2OH)O、(CH2OH)2CHOH等のアルコール類、(COOH)2、(CH2CH2COOH)2、[CH(OH)COOH]2、C6H4(OHCOOH)、C6H5COOH、C6H4(COOH)2等のカルボン酸、C6H4(SO3H・COOH)、C6H3(COOH・OH・SO3H)等のスルホン基を有する有機化合物を用いることができる。 In the present invention, a film-forming stabilizer is added to the electrolytic solution for the purpose of improving the life of the solution. As the film formation stabilizer, inorganic compounds and organic compounds can be used. Specifically, minerals such as NaNO 3 , CaNO 3 , MgNO 3 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , and MgSO 4 are used. Acid salts, fluorides such as KF, NH 4 F, silicic acid compounds such as Na 2 SiO 3 , Na 4 SiO 4 , K 2 SiO 2 Na 2 SiF 6 , MgSiF 6 , silica fluorides such as (NH 4 ) 2 SiF 6 And (CH 2 OH) 2 , (CH 2 CH 2 OH) O, (CH 2 OH) 2 CHOH and other alcohols, (COOH) 2 , (CH 2 CH 2 COOH) 2 , [CH (OH) COOH] 2 , C 6 H 4 (OHCOOH), C 6 H 5 COOH, C 6 H 4 (COOH) 2 and other carboxylic acids, C 6 H 4 (SO 3 H · COO H) and organic compounds having a sulfone group such as C 6 H 3 (COOH · OH · SO 3 H) can be used.
これらの皮膜形成安定剤は、単独でも混合して用いてもよい。特に、無機化合物と有機化合物とを組み合わせて使用すると液管理が容易となる。この皮膜形成安定剤の添加量は、電解液中に0.01〜5mol/Lの範囲であることが好ましい。0.01mol/L以下であると液の安定性が不十分となり、5mol/Lを越えると、形成される皮膜に、いわゆるかぶり、ムラ、スマット等の現象が生じてしまうためである。 These film formation stabilizers may be used alone or in combination. In particular, liquid management becomes easy when an inorganic compound and an organic compound are used in combination. The amount of the film formation stabilizer added is preferably in the range of 0.01 to 5 mol / L in the electrolytic solution. If it is 0.01 mol / L or less, the stability of the liquid is insufficient, and if it exceeds 5 mol / L, phenomena such as so-called fogging, unevenness, and smut occur in the formed film.
上述のように調製された電解液中でのマグネシウム又はマグネシウム合金材料の陽極酸化処理の条件としては、電解浴温を30〜90℃、特に好ましくは50〜80℃とし、pH9以上の弱〜強塩基性とする。 As conditions for anodizing the magnesium or magnesium alloy material in the electrolytic solution prepared as described above, the electrolytic bath temperature is 30 to 90 ° C., particularly preferably 50 to 80 ° C., and a pH of 9 or higher is weak to strong. Basic.
なお、電解処理を行う前にマグネシウム又はマグネシウム合金に対して酸による前処理を施しておくことが好ましい。前処理に用いる酸としては、硫酸、硝酸、リン酸、クロム酸等の鉱酸、ギ酸、シュウ酸、安息香酸等の一価又は多価脂肪族カルボン酸や芳香族カルボン酸、スルホン酸、及びこれらの塩から選ばれる1種以上の酸を用いることができる。 In addition, it is preferable to pre-process with magnesium with respect to magnesium or a magnesium alloy before performing an electrolytic treatment. Examples of the acid used for the pretreatment include mineral acids such as sulfuric acid, nitric acid, phosphoric acid and chromic acid, monovalent or polyvalent aliphatic carboxylic acids such as formic acid, oxalic acid and benzoic acid, aromatic carboxylic acids, sulfonic acids, and One or more acids selected from these salts can be used.
以上のように、本発明方法を用いて形成される陽極酸化皮膜6は、酸化マグネシウム(MgO)と水酸化マグネシウム(Mg(OH)2)とを主体として形成されており、その組成は、前者が0.1〜40%、後者が60〜99.5%の範囲で構成される。このほかに、0〜30%の範囲でマンガン、チタン、モリブデン、ケイ素、タングステン、ジルコニウム、バナジウム、クロム、コバルト、パラジウム、リン、硫黄、臭素、フッ素、ヨウ素、ホウ素、炭素、窒素、又はこれらの化合物、更に有機化合物としてヒドロキシル基、アルデヒド基、カルボニル基、若しくはアミノ基を有する鎖状又は環状炭化水素を含有している。また、この陽極酸化皮膜6におけるバリア層5は、主として水酸化物により形成されている。
As described above, the
本発明方法により形成された陽極酸化皮膜6は、長さ/孔径の比、いわゆるアスペクト比が1以上であり、表面層4からバリア層5に向かって形成される細長い微細孔3によって、1mm2あたり少なくとも1万個以上の密度で覆われている。したがって、実質的に酸化皮膜6の表面全体がこの微細孔3によって覆われていることになる。ここで、実質的とは皮膜全体の約80%以上を占めていることを意味する。微細孔3の占める割合が80%以下になると酸化皮膜6の光沢が低下し、本発明の目的に合致しない。なお、ここでアスペクト比は、10以上であることが好ましい。
The
また、表面層4の厚さD1は3〜50μmが適当である。この膜厚D1が3μm以下であると十分な耐食性が得られ難く、また50μmを越えると十分な金属光沢が得られ難くなる。更に、この陽極酸化皮膜6は、図1に示すように、微細孔3を有する表面層4と、該表面層4に続く極めて薄い実質的に無孔のバリア層5とを有しているが、バリア層5は、孔径が5nm以下程度の測定不能に近い超微少細孔があってもよい。
The thickness D 1 of the surface layer 4 is suitably 3 to 50 [mu] m. When the thickness D 1 is at 3μm or less difficult sufficient corrosion resistance can be obtained and it becomes difficult enough metallic luster obtained exceeds 50 [mu] m. Further, as shown in FIG. 1, the
また、ダイヤカット面を計測角度85゜で測定したときの光反射率を100%として光反射率を測定したところ、陽極酸化処理前の基材、例えばマグネシウム合金元来の光反射率が84%であるのに対して、本発明に係る陽極酸化皮膜6は、光反射率が最低でも60%を保持し、微細孔3の平均孔径が500nm、50nmと小さくなるにしたがって光反射率が68%から87%へと向上する。特に、平均孔径が50nm程度になると基材2の持つ光沢よりも優れた光沢を有するという顕著な効果を奏する。このように、本発明に係る陽極酸化皮膜2は、マグネシウム自体又はマグネシウム合金自体の金属光沢と同等、若しくは同等に近い光沢を有する。
Further, when the light reflectivity was measured by setting the light reflectivity when the diamond cut surface was measured at a measurement angle of 85 ° as 100%, the original light reflectivity of the base material before anodizing treatment, for example, a magnesium alloy was 84%. On the other hand, the
したがって、本発明に係る金属材料1は、基材2を成形加工後に、本発明方法による陽極酸化処理することにより、表面に光沢を付与するための種々の処理を施すことなく、そのままで十分実用に供することができる。 Therefore, the metal material 1 according to the present invention is sufficiently practical as it is without performing various treatments for imparting gloss to the surface by subjecting the base material 2 to an anodizing treatment by the method of the present invention after the forming process. Can be used.
また、本発明方法に係る表面処理が施されて形成された酸化皮膜5は、塗膜密着性、着色性も良好であるため、必要に応じて、染料・顔料含有浴に浸漬すること又は電解着色によって着色してもよい。この場合、基材2が本来有する金属光沢を十分に維持したまま鮮明な着色ができる。
Moreover, since the
なお、本発明に係る金属材料1においては、表面層4上には、封孔層7が設けられる。封孔層7は、表面層4に形成された微細孔3内に水分等の異物が侵入しないようにし、さらに、このような表面層4が形成された金属材料1の耐食性の向上を図るために設けられる。
In the metal material 1 according to the present invention, the
封孔層7は、表面層4上に透明な合成樹脂製の塗料を塗布し、あるいはこのような塗料を含有する塗液に金属材料1を浸積することによって形成される。
The
また、封孔層7は、無機材料を含むシリケート液に金属材料1を浸積することにより形成される。ここで得られる封孔層7は、酸化被膜層4を透視し得る光透過性を有する被膜として形成される。
The
以下、本発明を適用した実施例について詳細に説明する。 Examples to which the present invention is applied will be described in detail below.
陽極酸化処理
・実施例1
被処理材として、マグネシウム合金AZ31Bの0.5mm厚の圧延材を用い、酸による表面処理後、陽極電解酸化処理を施した。水酸化カリウム2±0.5mol/Lに、皮膜形成安定剤としてケイ酸ナトリウム+ジエチレングリコールを0.1±0.05mol/L添加し電解液とした。液温65±2℃、電流密度2.0±0.5A/dm2、電圧4〜8Vの電解条件にて30分間浸漬し、引き上げ後、公知の方法で封孔処理した。この処理により、厚さ10μmの陽極酸化皮膜を得た。
Anodizing treatment , Example 1
As a material to be treated, a rolled material of magnesium alloy AZ31B having a thickness of 0.5 mm was used, and after an acid surface treatment, an anodic electrolytic oxidation treatment was performed. 0.1 ± 0.05 mol / L of sodium silicate + diethylene glycol as a film formation stabilizer was added to 2 ± 0.5 mol / L of potassium hydroxide to obtain an electrolytic solution. It was immersed for 30 minutes under electrolytic conditions of a liquid temperature of 65 ± 2 ° C., a current density of 2.0 ± 0.5 A / dm 2 , and a voltage of 4 to 8 V, and after lifting, it was sealed by a known method. By this treatment, an anodized film having a thickness of 10 μm was obtained.
実施例1における陽極酸化皮膜の表面層に形成された微細孔の平均孔径は、レーザ顕微鏡による測定で約500nm、孔の長さは光学顕微鏡による断面観察で8〜10μm、微細孔密度は約100万個/mm2であることが判った。したがって、アスペクト比(微細孔の平均長さと孔径の比)は16〜20(8〜10μm/0.5μm)であった。 The average pore diameter of the micropores formed in the surface layer of the anodized film in Example 1 was about 500 nm as measured with a laser microscope, the length of the pores was 8 to 10 μm when observed with a cross section with an optical microscope, and the micropore density was about 100. It was found to be 10,000 pieces / mm 2 . Therefore, the aspect ratio (ratio of the average length of micropores to the pore diameter) was 16 to 20 (8 to 10 μm / 0.5 μm).
・比較例1
JIS―H8651に規定された火花放電型陽極酸化の代表であるMX−11処理(HAE処理)にて上記実施例1と同一のマグネシウム合金を処理した。この処理により、平均孔径5000nm以上の微細孔を有し約50μmの皮膜厚さを有する金属表面が得られた。
Comparative example 1
The same magnesium alloy as in Example 1 was treated by MX-11 treatment (HAE treatment), which is representative of spark discharge type anodization defined in JIS-H8651. By this treatment, a metal surface having fine pores with an average pore diameter of 5000 nm or more and a film thickness of about 50 μm was obtained.
・比較例2
JISに規定されたMX−6処理にて上記実施例1と同一のマグネシウム合金を処理した。この処理により、平均孔径5000nm以下の微細孔を有する金属表面が得られた。
Comparative example 2
The same magnesium alloy as in Example 1 was treated by MX-6 treatment defined by JIS. By this treatment, a metal surface having fine pores with an average pore diameter of 5000 nm or less was obtained.
皮膜表面の反射率
反射率は、ダイヤカット面を計測角度85°で測定したときの光反射率を100%とした場合の金属表面光反射率である。なお、被処理材元来の反射率は、84%であった。
The reflectance on the surface of the film is the reflectance of the metal surface when the light reflectance when the diamond cut surface is measured at a measurement angle of 85 ° is taken as 100%. The original reflectance of the material to be processed was 84%.
・実施例1
この処理で得られる金属表面の反射率は68%であった。
Example 1
The reflectance of the metal surface obtained by this treatment was 68%.
・比較例1
この金属表面の反射率を測定すると8%であり、本実施例の処理に基づく金属表面に比べると光沢は殆どないに等しかった。
Comparative example 1
The reflectance of this metal surface was measured and found to be 8%, which was almost no gloss compared to the metal surface based on the treatment of this example.
・比較例2
この金属表面の反射率は、約50%であったが、本実施例の処理に基づく金属表面に比べると光沢が劣っていた。
Comparative example 2
The reflectivity of this metal surface was about 50%, but the gloss was inferior compared to the metal surface based on the treatment of this example.
染色性着色性評価
続いて、実施例1、比較例1、比較例2の3種の表面処理が施されたマグネシウム合金の染色性について比較検討した。
Dyeability Colorability Evaluation Subsequently, the dyeability of the magnesium alloys subjected to the three types of surface treatments of Example 1, Comparative Example 1, and Comparative Example 2 was compared and examined.
上記3種の表面処理が施されたマグネシウム合金の各々をサノダールイエロー(SanodalYellow、SANDOZ社製)3GL染料を1g/Lの濃度で含有する水溶液に70±2℃下にて30分浸漬した。引き上げ後、公知の方法で封孔処理した後、染色性を評価した。 Each of the three types of surface-treated magnesium alloys was immersed in an aqueous solution containing Sanodal Yellow (Sanodal Yellow, manufactured by SANDOZ) 3GL dye at a concentration of 1 g / L at 70 ± 2 ° C. for 30 minutes. After pulling up, after performing a sealing treatment by a known method, the dyeability was evaluated.
実施例1の表面処理を施したマグネシウム合金は、マグネシウム合金自身が元来有する金属光沢をそのまま残しつつ、鮮明且つ均一な金色に染色されていた。これに対して、HAE処理したマグネシウム合金(比較例1)は、光沢がないうえに、HAE処理後の合金が濃茶色を呈しており、実施例1と同様の染色法では染料自体の色に着色不可能であった。また、MX−6処理したマグネシウム合金(比較例2)は、約50%の反射率を有するため多少の金属光沢が認められるが、比較例2のマグネシウム合金と同様、MX−6処理後の合金が茶色を呈しており、実施例1と同様の染色法では染料自体の色に着色できないうえに染色ムラも発生し、実用に耐え得る鮮やかな染色が不可能であった。 The magnesium alloy subjected to the surface treatment of Example 1 was dyed in a clear and uniform gold color while leaving the metallic luster inherent in the magnesium alloy itself. On the other hand, the HAE-treated magnesium alloy (Comparative Example 1) has no luster and the HAE-treated alloy has a dark brown color. In the same dyeing method as in Example 1, the color of the dye itself is changed. Coloring was impossible. Further, the magnesium alloy treated with MX-6 (Comparative Example 2) has a reflectivity of about 50%, and thus some metallic luster is observed, but like the magnesium alloy of Comparative Example 2, the alloy after MX-6 treatment As a result, the dyeing method similar to that in Example 1 cannot be colored in the color of the dye itself, and uneven dyeing occurs, making vivid dyeing that can withstand practical use impossible.
酸化皮膜厚による反射率変化
反射率は、ダイヤカット面を計測角度85°で測定したときの光反射率を100%とした場合の金属表面光反射率を示す。なお、被処理材元来の反射率は、84%であった。
The reflectance change reflectance due to the oxide film thickness indicates the metal surface light reflectance when the light reflectance when the diamond cut surface is measured at a measurement angle of 85 ° is defined as 100%. The original reflectance of the material to be processed was 84%.
被処理材及び電解条件を実施例1に示した陽極酸化処理と同一とし、電解処理時間を変更することにより、酸化皮膜厚の異なるマグネシウム合金を製造した。皮膜厚さを薄くする場合には電解処理時間を短くし、厚くする場合には長くすることにより、酸化皮膜厚が3μm(実施例2)、5μm(実施例3)、10μm(上述の実施例1)、15μm(実施例4)、20μm(実施例5)のマグネシウム合金を製造した。これら各マグネシウム合金の皮膜微細孔の平均孔径をレーザ顕微鏡によって測定したところ何れも約500nmであった。 Magnesium alloys having different oxide film thicknesses were manufactured by changing the electrolytic treatment time by using the same materials and electrolytic conditions as those in Example 1 and changing the electrolytic treatment time. When the coating thickness is reduced, the electrolytic treatment time is shortened, and when the coating thickness is increased, the thickness is increased, so that the oxide coating thickness becomes 3 μm (Example 2), 5 μm (Example 3), 10 μm (the above-described example). 1), 15 μm (Example 4) and 20 μm (Example 5) magnesium alloys were produced. When the average pore diameter of the film micropores of each of these magnesium alloys was measured with a laser microscope, all were about 500 nm.
これら各マグネシウム合金表面の反射率を測定したところ、実施例1は上述のように68%、実施例2は85%、実施例3は75%、実施例4は62%、実施例5は60%であった。 When the reflectance of each magnesium alloy surface was measured, Example 1 was 68% as described above, Example 2 was 85%, Example 3 was 75%, Example 4 was 62%, and Example 5 was 60%. %Met.
一方、比較例1として示したHAE処理においても酸化皮膜厚が約5μmと約50μm(比較例1)のマグネシウム合金を製造して反射率を測定した。その結果、反射率は、酸化皮膜厚5μmでは15%、約50μmでは8%であった。 On the other hand, also in the HAE treatment shown as Comparative Example 1, magnesium alloys having oxide film thicknesses of about 5 μm and about 50 μm (Comparative Example 1) were manufactured, and the reflectance was measured. As a result, the reflectance was 15% when the oxide film thickness was 5 μm, and 8% when the thickness was about 50 μm.
微細孔径による反射率変化
実施例1と類似の電解条件にて同一の被処理材を用いて電解処理時間を調整し、酸化皮膜厚5μmのマグネシウム合金を製造した。このとき、電解液中の水酸化カリウム濃度を変更し電解条件を調整することにより微細孔平均孔径の異なるマグネシウム合金を製造した。平均孔径100nm(実施例6)、500nm(実施例7)、1000nm(実施例8)のマグネシウム合金を用意した。これら各マグネシウム合金表面の反射率を測定したところ、実施例6の反射率は95%、実施例7は75%、実施例8は65%であった。
Change in reflectivity by fine pore diameter Under the same electrolysis conditions as in Example 1, the same material to be treated was used to adjust the electrolysis time to produce a magnesium alloy with an oxide film thickness of 5 μm. At this time, magnesium alloys having different fine pore average pore diameters were produced by changing the potassium hydroxide concentration in the electrolytic solution and adjusting the electrolysis conditions. Magnesium alloys having an average pore diameter of 100 nm (Example 6), 500 nm (Example 7), and 1000 nm (Example 8) were prepared. When the reflectance of each of these magnesium alloy surfaces was measured, the reflectance of Example 6 was 95%, Example 7 was 75%, and Example 8 was 65%.
比較のために、HAE処理、MX−6処理においても平均孔径を変化させたマグネシウム合金を製造したが、これらの反射率は55%、15%であって殆ど金属光沢を失っており染色性も悪かった。 For comparison, a magnesium alloy with an average pore diameter changed also in the HAE treatment and MX-6 treatment was manufactured. However, these reflectances were 55% and 15%, and the metallic luster was almost lost, and the dyeability was also good. It was bad.
結果
以上のように、本実施例の表面処理方法によれば、塗膜密着性、着色性も良好であり、酸化皮膜後も金属光沢を有したままで鮮明な着色ができる。
Results As described above, according to the surface treatment method of this example, the coating film adhesion and the colorability are good, and a clear coloring can be achieved with a metallic luster after the oxide film.
本発明で使用する被処理材としてのマグネシウム及びその合金は、広範囲の応用が可能であって、純マグネシウム系、マグネシウム−アルミニウム系、マグネシウム−アルミニウム−亜鉛系、マグネシウム−アルミニウム−ケイ素系、マグネシウム−ジルコニウム−希土類−銀系、マグネシウム−亜鉛−ジルコニウム系、マグネシウム−亜鉛系、マグネシウム−希土類−ジルコニウム系、マグネシウム−アルミニウム−希土類系、マグネシウム−イットリウム−希土類系、マグネシウム−カルシウム−亜鉛系等のマグネシウム合金が使用可能である。本発明の表面処理方法は、これらの金属材料からなる筐体ケースや成形部材の表面処理に広く適用できる。 Magnesium and its alloys used in the present invention can be used in a wide range of applications, including pure magnesium, magnesium-aluminum, magnesium-aluminum-zinc, magnesium-aluminum-silicon, and magnesium- Magnesium alloys such as zirconium-rare earth-silver, magnesium-zinc-zirconium, magnesium-zinc, magnesium-rare earth-zirconium, magnesium-aluminum-rare earth, magnesium-yttrium-rare earth, magnesium-calcium-zinc Can be used. The surface treatment method of the present invention can be widely applied to the surface treatment of housing cases and molded members made of these metal materials.
1 金属材料1、 2基材、 3 微細孔、 4 表面層、 5 バリア層、 6 陽極酸化皮膜 DESCRIPTION OF SYMBOLS 1 Metal material 1, 2 Base material, 3 Micropore, 4 Surface layer, 5 Barrier layer, 6 Anodized film
Claims (10)
平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mm2あたり1万個以上の密度で存在する表面層と、
上記表面層の底部にあって実質的に無孔のバリア層とからなる陽極酸化皮膜を有することを特徴とする金属材料。 A substrate made of magnesium or a magnesium alloy;
A surface layer having an average pore diameter of 5 nm to 1000 nm, a length of 1 μm to 50 μm, and a ratio of the length to the hole diameter of 1 or more, and having a density of 10,000 or more per 1 mm 2 ;
A metal material comprising an anodized film formed at the bottom of the surface layer and comprising a substantially non-porous barrier layer.
とする請求項8記載の表面処理方法。 The surface treatment method according to claim 8, wherein the magnesium or the magnesium alloy is pretreated with an acid in advance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004224019A JP4468101B2 (en) | 2003-08-01 | 2004-07-30 | Metal material and surface treatment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003285037 | 2003-08-01 | ||
JP2004224019A JP4468101B2 (en) | 2003-08-01 | 2004-07-30 | Metal material and surface treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005068555A true JP2005068555A (en) | 2005-03-17 |
JP4468101B2 JP4468101B2 (en) | 2010-05-26 |
Family
ID=34425112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004224019A Expired - Lifetime JP4468101B2 (en) | 2003-08-01 | 2004-07-30 | Metal material and surface treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4468101B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006322044A (en) * | 2005-05-19 | 2006-11-30 | Denka Himaku Kogyo Kk | Metallic material, and surface treatment method |
JP2007178234A (en) * | 2005-12-27 | 2007-07-12 | Seiko Clock Inc | Pointer for timepiece, timepiece provided with the same, and method for manufacturing pointer for timepiece |
JP2007177262A (en) * | 2005-12-27 | 2007-07-12 | Honda Motor Co Ltd | Magnesium metallic material and method of manufacturing the same |
JP2007239057A (en) * | 2006-03-10 | 2007-09-20 | Magnes:Kk | Partly colored magnesium body, method of manufacturing the same and intermediate body |
JP2009019269A (en) * | 2007-06-12 | 2009-01-29 | Yamaha Motor Co Ltd | Magnesium alloy member, its production method and transportation device |
JP2010030191A (en) * | 2008-07-30 | 2010-02-12 | Chiba Inst Of Technology | Corrosion-resistant and heat-resistant magnesium composite material and its manufacturing method |
KR101067743B1 (en) * | 2009-11-18 | 2011-09-28 | 한국생산기술연구원 | Anodizing surface treatments method of magnesium or magnesium alloy |
CN102409383A (en) * | 2011-11-09 | 2012-04-11 | 嘉兴学院 | Anodic oxidation method for magnesium alloy |
JP2019039068A (en) * | 2017-08-23 | 2019-03-14 | 株式会社栗本鐵工所 | Film formation method and metallic material |
CN109926293A (en) * | 2019-03-05 | 2019-06-25 | 六盘水师范学院 | A method of improving metal material high temperature oxidation resisting |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109208054A (en) * | 2018-11-13 | 2019-01-15 | 西安庄信新材料科技有限公司 | A kind of compound coating of resistance to trowel used for plastering of differential arc oxidation and its production method |
-
2004
- 2004-07-30 JP JP2004224019A patent/JP4468101B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006322044A (en) * | 2005-05-19 | 2006-11-30 | Denka Himaku Kogyo Kk | Metallic material, and surface treatment method |
JP2007178234A (en) * | 2005-12-27 | 2007-07-12 | Seiko Clock Inc | Pointer for timepiece, timepiece provided with the same, and method for manufacturing pointer for timepiece |
JP2007177262A (en) * | 2005-12-27 | 2007-07-12 | Honda Motor Co Ltd | Magnesium metallic material and method of manufacturing the same |
JP4668062B2 (en) * | 2005-12-27 | 2011-04-13 | セイコークロック株式会社 | Timepiece for watch, timepiece having the same, and method for manufacturing timepiece for timepiece |
JP2007239057A (en) * | 2006-03-10 | 2007-09-20 | Magnes:Kk | Partly colored magnesium body, method of manufacturing the same and intermediate body |
JP2009019269A (en) * | 2007-06-12 | 2009-01-29 | Yamaha Motor Co Ltd | Magnesium alloy member, its production method and transportation device |
JP2010030191A (en) * | 2008-07-30 | 2010-02-12 | Chiba Inst Of Technology | Corrosion-resistant and heat-resistant magnesium composite material and its manufacturing method |
KR101067743B1 (en) * | 2009-11-18 | 2011-09-28 | 한국생산기술연구원 | Anodizing surface treatments method of magnesium or magnesium alloy |
CN102409383A (en) * | 2011-11-09 | 2012-04-11 | 嘉兴学院 | Anodic oxidation method for magnesium alloy |
CN102409383B (en) * | 2011-11-09 | 2014-05-14 | 嘉兴学院 | Anodic oxidation method for magnesium alloy |
JP2019039068A (en) * | 2017-08-23 | 2019-03-14 | 株式会社栗本鐵工所 | Film formation method and metallic material |
CN109926293A (en) * | 2019-03-05 | 2019-06-25 | 六盘水师范学院 | A method of improving metal material high temperature oxidation resisting |
Also Published As
Publication number | Publication date |
---|---|
JP4468101B2 (en) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4468101B2 (en) | Metal material and surface treatment method | |
US10309029B2 (en) | Method for forming a multi-layer anodic coating | |
CN103628114B (en) | The surface treatment method of magnadure | |
KR20090035891A (en) | Surface modification method for self cleaning property of aluminium material | |
CN101985768A (en) | Micro-arc oxidation electrolyte and micro-arc oxidation method | |
CA2250136C (en) | Thermoplastic resin-coated aluminum alloy plate and process and apparatus for producing the same | |
JP2004502877A (en) | Surface treatment method of aluminum or aluminum alloy by blending containing alkanesulfonic acid | |
JP2006291278A (en) | Magnesium metallic material having excellent corrosion resistance, and method for producing the same | |
JPH09176894A (en) | Surface treatment | |
JP4825002B2 (en) | Method for producing magnesium metal material | |
JP6369745B2 (en) | Anodized film and sealing method thereof | |
AU2020327479B2 (en) | Electrolytic oxidation solution for use in aluminum alloy oxidative film formation, and method for aluminum alloy oxidative film formation | |
JP4830095B2 (en) | Metal material and surface treatment method | |
US20190177868A1 (en) | Durable white inorganic finish for aluminium articles | |
CA1134774A (en) | Anodising aluminium | |
KR20050065497A (en) | A composite of anodizing electrolyte for alloyed aluminum and therefor composite method | |
CN1561408A (en) | Method of producing bright anodized finishes for high magnesium, aluminum alloys | |
US5288372A (en) | Altering a metal body surface | |
JP3445134B2 (en) | Method for producing gray-colored aluminum material and its colored body | |
KR20170092209A (en) | Anodizing Aluminum and Alloys Thereof | |
JP3666375B2 (en) | Surface-treated aluminum material and method for producing the same | |
WO2022009606A1 (en) | Aluminum member and method for producing same | |
Md. Ghazazi et al. | Effect of pulse current on surface properties of aluminum oxide coating containing graphite | |
JP4957984B2 (en) | Magnesium heat dissipation material with excellent thermal emissivity and method for producing the same | |
KR101923897B1 (en) | Anodizing method of subject |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4468101 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20200305 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |