JP2005068555A - Metallic material and surface treatment method - Google Patents

Metallic material and surface treatment method Download PDF

Info

Publication number
JP2005068555A
JP2005068555A JP2004224019A JP2004224019A JP2005068555A JP 2005068555 A JP2005068555 A JP 2005068555A JP 2004224019 A JP2004224019 A JP 2004224019A JP 2004224019 A JP2004224019 A JP 2004224019A JP 2005068555 A JP2005068555 A JP 2005068555A
Authority
JP
Japan
Prior art keywords
surface layer
magnesium
cooh
metal material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004224019A
Other languages
Japanese (ja)
Other versions
JP4468101B2 (en
Inventor
Masahiro Akimoto
政弘 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKA HIMAKU KOGYO KK
Original Assignee
DENKA HIMAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKA HIMAKU KOGYO KK filed Critical DENKA HIMAKU KOGYO KK
Priority to JP2004224019A priority Critical patent/JP4468101B2/en
Publication of JP2005068555A publication Critical patent/JP2005068555A/en
Application granted granted Critical
Publication of JP4468101B2 publication Critical patent/JP4468101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic material which is excellent in adhesion to a coating film and in colorability while retaining metallic gloss inherent in its base material; and a surface treatment method for forming an anode oxidation film structure which is excellent in adhesion to a coating film and in colorability while retaining metallic gloss inherent in its base material. <P>SOLUTION: A 0.5 mm-thick rolled magnesium alloy AZ31B is subjected to a surface treatment with an acid, then immersed in an electrolytic solution containing sodium silicate+diethylene glycol in a concentration of 0.1±0.05 mol/L as a film formation stabilizer, and subjected to electrolysis under electrolytic conditions of a liquid temperature of 65±2°C, a current density of 2.0±0.5 A/dm<SP>2</SP>, and a voltage of 4-8 V. The magnesium alloy after the electrolysis has an anodic oxidation film consisting of a surface layer and a barrier layer. In the surface layer, micropores having an average pore size of about 500 nm and a pore length of 8-10 μm are present in a pore density of about 1,000,000/mm<SP>2</SP>, and the light reflectance of the surface layer is 60% or higher. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規な酸化皮膜構造を有する金属材料、及びマグネシウム又はその合金の表面処理方法に関し、特に、金属光沢、良好な平滑面、耐食性、耐磨耗性を有する金属材料、並びに表面に金属色、良好な平滑面、耐食性、耐磨耗性をもたらす高品質な皮膜を陽極酸化にて形成する表面処理方法に関する。   The present invention relates to a metal material having a novel oxide film structure and a surface treatment method for magnesium or an alloy thereof, and more particularly, a metal material having metallic luster, good smooth surface, corrosion resistance, wear resistance, and metal on the surface. The present invention relates to a surface treatment method for forming a high-quality film by anodic oxidation that provides color, good smooth surface, corrosion resistance, and wear resistance.

マグネシウム又はマグネシウム合金材料は、実用金属材料中最も軽く、切削性が良好で、強度/密度比が高く、且つダイカストにおける鋳造性がよいことからコンピュータ、オーディオ製品、通信機器、航空機、自動車材料等の筐体、構造体、各種部品等に広く用いられている。   Magnesium or magnesium alloy materials are the lightest among practical metal materials, have good machinability, have a high strength / density ratio, and have good castability in die casting, so that they can be used in computers, audio products, communication equipment, aircraft, automobile materials, etc. Widely used in cases, structures, various parts, etc.

しかし、マグネシウム又はマグネシウム合金は、大気中で酸化され表面に薄い酸化皮膜が形成されるために塗装が難しく塗膜の密着性も悪い。また、耐食性、対摩耗性等が低い。そのため、現状では同金属表面に化成処理を施した後、塗装を行うことが一般的であるが、塗装により寸法精度が低下すること、廃棄時又は再利用時に塗装膜の剥離が必要になること等の問題点を有している。   However, magnesium or a magnesium alloy is oxidized in the atmosphere and a thin oxide film is formed on the surface, so that it is difficult to paint and the adhesion of the film is also poor. Moreover, corrosion resistance, abrasion resistance, etc. are low. Therefore, under the present circumstances, it is common to perform coating after the chemical conversion treatment is applied to the surface of the same metal, but the dimensional accuracy is reduced by coating, and the coating film must be peeled off when discarded or reused. And so on.

一方、化成処理の代わりに陽極酸化処理によりマグネシウムの酸化物、水酸化物からなる皮膜を形成し、この後に塗装処理を行うことも知られている。この場合、陽極酸化処理は、六価クロム酸塩やマンガン酸塩、過マンガン酸塩、リン酸塩等の重金属塩類を用いて行われている。この方法によってできる陽極酸化皮膜は、火花放電によって生じた孔径3〜30μm程度の大口径の孔や割れが不規則に多数存在しており皮膜表面には光沢がない。更に、これら重金属塩類を使用した陽極酸化は、重金属塩類による排水の汚染をもたらし、環境保全の観点から好ましいものではない。   On the other hand, it is also known that a film made of magnesium oxide or hydroxide is formed by anodic oxidation instead of chemical conversion, followed by coating. In this case, the anodic oxidation treatment is performed using heavy metal salts such as hexavalent chromate, manganate, permanganate, and phosphate. The anodized film formed by this method has many irregular holes and cracks with a large diameter of about 3 to 30 μm generated by spark discharge, and the surface of the film is not glossy. Furthermore, anodic oxidation using these heavy metal salts causes waste water contamination by heavy metal salts, which is not preferable from the viewpoint of environmental protection.

重金属塩類を用いない陽極酸化処理に関して、本発明者は、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩又は重炭酸塩を含む水溶液に皮膜形成安定剤を加えてなる電解液を用いて電解処理する方法を提案している(例えば、特許文献1参照。)。   Regarding the anodizing treatment without using a heavy metal salt, the present inventor uses an electrolytic solution obtained by adding a film-forming stabilizer to an aqueous solution containing an alkali metal or alkaline earth metal hydroxide, carbonate or bicarbonate. A method of electrolytic treatment has been proposed (see, for example, Patent Document 1).

特開平9−176894号公報JP-A-9-176894

ところが、特許文献1に記載の方法で得られる酸化皮膜は、重金属塩類による工業排水の汚染の虞もなく、酸化皮膜の面粗さや孔サイズにおいても従来のクロム酸塩類を用いた方法に比べると良好になっているものの、光反射率(金属光沢)、平滑性、耐食性、塗膜密着性等には、更に改良の余地が残されている。   However, the oxide film obtained by the method described in Patent Document 1 has no risk of contamination of industrial wastewater by heavy metal salts, and the surface roughness and pore size of the oxide film are also compared with the conventional method using chromates. Although improved, there is still room for improvement in light reflectance (metallic luster), smoothness, corrosion resistance, coating film adhesion, and the like.

そこで、本発明は、このような従来の実情に鑑みて提案されたものであり、基材本来の金属光沢を残しつつ塗膜密着性、着色性が良好な金属材料、並びに基材本来の金属光沢を残しつつ塗膜密着性、着色性が良好な陽極酸化皮膜構造を形成するための表面処理方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of such conventional circumstances, and a metal material having good coating film adhesion and colorability while retaining the original metallic luster of the substrate, and the original metal of the substrate. An object of the present invention is to provide a surface treatment method for forming an anodized film structure having good coating film adhesion and colorability while leaving gloss.

本発明者は、上記目的を達成するため、電解処理電圧、電解液組成等の電解条件を変化させて陽極酸化処理を行った。その結果、特定条件下にて電解することによって、基材本来の金属光沢を残しつつ塗膜密着性、着色性がともに良好な陽極酸化皮膜が形成されることを見出した。   In order to achieve the above object, the present inventor performed anodizing treatment by changing electrolytic conditions such as electrolytic treatment voltage and electrolytic solution composition. As a result, it was found that by electrolyzing under specific conditions, an anodic oxide film having good coating film adhesion and colorability was formed while retaining the original metallic luster of the substrate.

本発明は、このような知見に基づいて完成されたものであって、マグネシウム又はマグネシウム合金からなる基材と、平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mmあたり1万個以上の密度で存在する表面層と、該表面層の底部にあって実質的に無孔のバリア層とからなる陽極酸化皮膜を備える。特に、表面層には、微細孔が1mmあたり10万個以上の密度で存在することが好ましい。 The present invention has been completed based on such knowledge, and has a base material made of magnesium or a magnesium alloy, an average pore diameter of 5 nm to 1000 nm, a length of 1 μm to 50 μm, and a ratio of the length to the pore diameter of 1 or more. An anodized film comprising a surface layer having a fine pore density of 10,000 or more per 1 mm 2 and a substantially non-porous barrier layer at the bottom of the surface layer is provided. In particular, the surface layer preferably has a fine pore density of 100,000 or more per 1 mm 2 .

ここで、本発明に係る金属材料の表面層の光反射率は、計測角度85°にて反射率測定したとき60%以上とされている。   Here, the light reflectance of the surface layer of the metal material according to the present invention is set to 60% or more when the reflectance is measured at a measurement angle of 85 °.

また、本発明は、アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩、ケイフッ化塩から選ばれる少なくとも1種以上の塩を含む電解水溶液中にマグネシウム又はマグネシウム合金を浸漬し、これを電流密度0.7〜5A/dm、電圧2〜40Vにて火花放電を伴わずに電解することによって、表面に平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mmあたり1万個以上の密度で存在する表面層と該表面層の底部にあって実質的に無孔のバリア層とを有する陽極酸化皮膜を形成する。 Further, the present invention provides magnesium or a magnesium alloy in an electrolytic aqueous solution containing at least one salt selected from hydroxides, carbonates, bicarbonates, silicates, and silicofluorides of alkali or alkaline earth metals. Is electrolyzed without spark discharge at a current density of 0.7 to 5 A / dm 2 and a voltage of 2 to 40 V, and the surface has an average pore diameter of 5 nm to 1000 nm and a length of 1 μm to 50 μm. An anodized film having a surface layer in which fine pores having a pore size ratio of 1 or more exist at a density of 10,000 or more per 1 mm 2 and a substantially non-porous barrier layer at the bottom of the surface layer is formed. .

本発明における陽極酸化皮膜は、長さ/孔径の比、いわゆるアスペクト比が1以上、好ましくは10以上の細長い微細孔を有し、これらが表面層からバリア層に向かって伸びており、その数は1mmあたり少なくとも1万個以上の密度で実質的に皮膜全体を覆っている。 The anodized film in the present invention has elongated micropores having a length / pore diameter ratio, so-called aspect ratio of 1 or more, preferably 10 or more, and these extend from the surface layer toward the barrier layer. Substantially covers the entire coating at a density of at least 10,000 per mm 2 .

表面層の厚さは3〜50μmが適当である。この膜厚が3μm以下であると十分な耐食性が得られ難く、また50μmを越えると十分な金属光沢が得られ難くなる。更に、この陽極酸化皮膜は、微細孔を有する表面層と、該表面層に続く極めて薄い実質的に無孔のバリア層とを有する。   The thickness of the surface layer is suitably 3 to 50 μm. When the film thickness is 3 μm or less, sufficient corrosion resistance is difficult to obtain, and when it exceeds 50 μm, it is difficult to obtain a sufficient metallic luster. Furthermore, the anodized film has a surface layer having micropores and a very thin, substantially non-porous barrier layer following the surface layer.

陽極酸化皮膜は、酸化マグネシウム(MgO)と水酸化マグネシウム(Mg(OH))とが主体となって形成されており、その組成は、前者が0.1〜40%、後者が60〜99.5%の範囲で構成される。そのほかに、0〜30%の範囲でマンガン、チタン、モリブデン、ケイ素、タングステン、ジルコニウム、バナジウム、クロム、コバルト、パラジウム、リン、硫黄、臭素、フッ素、ヨウ素、ホウ素、炭素、窒素、又はこれらの化合物、更に有機化合物としてヒドロキシル基、アルデヒド基、カルボニル基、若しくはアミノ基を有する鎖状又は環状炭化水素を含有している。この陽極酸化皮膜におけるバリア層は、主として水酸化物により形成されている。 The anodized film is formed mainly of magnesium oxide (MgO) and magnesium hydroxide (Mg (OH) 2 ), and the composition is 0.1 to 40% for the former and 60 to 99 for the latter. It is composed of 5%. In addition, manganese, titanium, molybdenum, silicon, tungsten, zirconium, vanadium, chromium, cobalt, palladium, phosphorus, sulfur, bromine, fluorine, iodine, boron, carbon, nitrogen, or a compound thereof in the range of 0 to 30% Furthermore, the organic compound contains a chain or cyclic hydrocarbon having a hydroxyl group, an aldehyde group, a carbonyl group, or an amino group. The barrier layer in this anodic oxide film is mainly formed of hydroxide.

このような酸化皮膜を形成するには、マグネシウム又はマグネシウム合金をアルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩の1種以上を0.2〜7mol/L、好ましくはこれに皮膜形成安定剤を0.01〜5mol/Lの割合で含有させた電解水溶液中にて、電流密度0.7〜5A/dm、電圧2〜40Vで火花放電を伴わない陽極酸化処理する。 In order to form such an oxide film, magnesium or a magnesium alloy is added with one or more of alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or fluorosilicate 0.2- Spark discharge at a current density of 0.7 to 5 A / dm 2 and a voltage of 2 to 40 V in an electrolytic aqueous solution containing 7 mol / L, preferably 0.01 to 5 mol / L of a film-forming stabilizer. Anodizing without accumulating.

本発明に係る表面処理方法にて使用する電解水溶液には、アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩を用いることができる。具体例としては、NaOH、KOH、Ba(OH)等の水酸化物、NaCO、KCO、CaCO、MgCO等の炭酸塩、NaHCO、KHCO、Ca(HCO等の重炭酸塩があげられ、これらを1種又は2種以上含有する水溶液が用いられる。また、電解液には液の寿命の向上を目的として皮膜形成安定剤を単独又は複数種混合して添加する。 As the electrolytic aqueous solution used in the surface treatment method according to the present invention, alkali or alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or fluorosilicate can be used. Specific examples include hydroxides such as NaOH, KOH, Ba (OH) 2 , carbonates such as Na 2 CO 3 , K 2 CO 3 , CaCO 3 , and MgCO 3 , NaHCO 3 , KHCO 3 , and Ca (HCO 3). 2 ) Bicarbonates such as 2 are listed, and an aqueous solution containing one or more of these is used. In addition, a film-forming stabilizer is added to the electrolyte for the purpose of improving the life of the solution, alone or in combination.

上述のように調製された電解液中でのマグネシウム又はマグネシウム合金材料の陽極酸化処理の条件としては、電解浴温を30〜90℃、特に好ましくは50〜80℃とし、pH9以上の弱〜強塩基性とするとよく、電解処理を行う前にマグネシウム又はマグネシウム合金に対して酸による前処理を施しておくことが好ましい。   As conditions for anodizing the magnesium or magnesium alloy material in the electrolytic solution prepared as described above, the electrolytic bath temperature is 30 to 90 ° C., particularly preferably 50 to 80 ° C., and a pH of 9 or higher is weak to strong. It may be basic, and it is preferable to pre-treat magnesium or a magnesium alloy with an acid before the electrolytic treatment.

本発明に係る陽極酸化皮膜を有するマグネシウム及びマグネシウム合金は、平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mmあたり1万個以上の密度で存在する表面層と、該表面層の底部にあって実質的に無孔のバリア層とからなる陽極酸化皮膜を有し、表面層の光反射率が計測角度85°にて反射率測定したとき60%以上であることにより、良好な金属光沢を発現する。また、良好な塗膜密着性、着色性を備える。 Magnesium and magnesium alloys having an anodic oxide film according to the present invention, the average pore diameter 5 nm to 1000 nm, the presence ratio of length to pore diameter is 1 or more micropores in 1 mm 2 per 10,000 or more density length 1μm~50μm And an anodized film consisting of a substantially non-porous barrier layer at the bottom of the surface layer, and when the light reflectance of the surface layer is measured at a measurement angle of 85 °, the reflectance is 60. When it is at least%, good metallic luster is expressed. Moreover, it has favorable coating-film adhesiveness and coloring property.

また、本発明に係るマグネシウム及びマグネシウム合金の表面処理方法によれば、アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩、ケイフッ化塩から選ばれる少なくとも1種以上の塩を含む電解水溶液中にマグネシウム又はマグネシウム合金を浸漬し、これを電流密度0.7〜5A/dm、電圧2〜40Vにて火花放電を伴わずに電解することによって、表面に平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mmあたり1万個以上の密度で存在する表面層と該表面層の底部にあって実質的に無孔のバリア層とを有する陽極酸化皮膜が形成できる。この陽極酸化皮膜は、良好な金属光沢を発現する。また、良好な塗膜密着性、着色性を備える。 Moreover, according to the surface treatment method of magnesium and magnesium alloy according to the present invention, at least one selected from alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate, and silicofluoride. By immersing magnesium or a magnesium alloy in an aqueous electrolytic solution containing the salt of, and electrolyzing it without a spark discharge at a current density of 0.7 to 5 A / dm 2 and a voltage of 2 to 40 V, an average pore diameter is formed on the surface. 5 nm to 1000 nm, a length of 1 μm to 50 μm, a ratio of length to hole diameter of 1 or more micropores present at a density of 10,000 or more per 1 mm 2 and the bottom of the surface layer are substantially non-porous An anodized film having a barrier layer can be formed. This anodized film exhibits a good metallic luster. Moreover, it has favorable coating-film adhesiveness and coloring property.

本発明に係る金属材料1は、図1に示すように、マグネシウム又はマグネシウム合金からなる基材2と、平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔3が1mmあたり1万個以上の密度で存在する表面層4と、該表面層4の底部にあって実質的に無孔のバリア層5とからなる陽極酸化皮膜6を備える。特に、この表面層4には、微細孔3が1mmあたり10万個以上の密度で存在するとよい。 As shown in FIG. 1, the metal material 1 according to the present invention includes a base material 2 made of magnesium or a magnesium alloy, fine pores having an average pore diameter of 5 nm to 1000 nm, a length of 1 μm to 50 μm, and a ratio of length to pore diameter of 1 or more. 3 is provided with an anodized film 6 comprising a surface layer 4 present at a density of 10,000 or more per 1 mm 2 and a substantially non-porous barrier layer 5 at the bottom of the surface layer 4. In particular, in the surface layer 4, it is preferable that the fine holes 3 exist at a density of 100,000 or more per 1 mm 2 .

このような表面に特定構造の微細孔3を有する酸化皮膜6を形成するには、マグネシウム又はマグネシウム合金をアルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩の1種以上を0.2〜7mol/L、好ましくはこれに皮膜形成安定剤を0.01〜5mol/Lの割合で含有させた電解水溶液中にて、電流密度0.7〜5A/dm、電圧2〜40Vで火花放電を伴わない陽極酸化処理することによって達成される。使用電流は、直流又は交流を整流した電流等が好ましい。 In order to form the oxide film 6 having the micropores 3 having a specific structure on such a surface, magnesium or a magnesium alloy is alkali or alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or silica fluoride. Current density of 0.7 to 5 A in an electrolytic aqueous solution containing at least one kind of salt in the range of 0.2 to 7 mol / L, preferably 0.01 to 5 mol / L of a film-forming stabilizer. / Dm 2 , a voltage of 2 to 40 V, and achieved by anodizing without spark discharge. The current used is preferably a direct current or a current obtained by rectifying an alternating current.

ここで特徴的な点は、電圧2〜40V、特に好ましくは4〜10Vという低電圧で火花放電を生じさせない条件で陽極酸化させながら酸化マグネシウムを形成させつつ、1μm以上の酸化皮膜を形成させることである。   A characteristic point here is that an oxide film of 1 μm or more is formed while forming magnesium oxide while anodizing under conditions that do not cause spark discharge at a voltage of 2 to 40 V, particularly preferably 4 to 10 V. It is.

従来の電解処理では、50V以上、特に通常90V以上の電圧で電解処理していたために火花放電が生じ、その結果3〜30μm以上の大きな孔を不規則に有する酸化皮膜が形成されていたため、酸化皮膜表面は光反射率が低く光沢がなかった。   In the conventional electrolytic treatment, spark discharge occurred because the electrolytic treatment was performed at a voltage of 50 V or higher, particularly usually 90 V or higher, and as a result, an oxide film having irregularly large pores of 3 to 30 μm or more was formed. The film surface had low light reflectance and no gloss.

本発明の条件で電解処理すると火花放電が起こらず、表面層4に形成される微細孔3の平均孔径が実質的に1μm以下の微細孔3で覆われ、更にその殆どは700nm以下であり、またこれら微細孔3の多くは、その孔径をほぼ保ったまま、或いは多少の広狭を伴いながら、表面層4からバリア層5に向かってほぼ垂直に形成される。このため、金属素材と実質的に変わらない光沢を有し、且つ耐食性、平滑性、耐摩耗性のよい酸化皮膜6が形成できる。   When electrolytic treatment is performed under the conditions of the present invention, spark discharge does not occur, the average pore diameter of the micropores 3 formed in the surface layer 4 is substantially covered with the micropores 3 of 1 μm or less, and most of them are 700 nm or less, Further, many of these fine holes 3 are formed substantially vertically from the surface layer 4 toward the barrier layer 5 while maintaining the diameter of the holes, or with some width. For this reason, it is possible to form the oxide film 6 having a gloss that is substantially the same as that of a metal material and having good corrosion resistance, smoothness, and wear resistance.

この表面処理方法にて使用する電解水溶液には、アルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩若しくはケイフッ化塩を用いることができる。具体例としては、NaOH、KOH、Ba(OH)等の水酸化物、NaCO、KCO、CaCO、MgCO等の炭酸塩、NaHCO、KHCO、Ca(HCO等の重炭酸塩があげられ、これらを1種又は2種以上含有する水溶液が用いられる。このアルカリ溶液の濃度は、0.2〜7mol/Lとすることが好ましい。0.2モル以下では形成される酸化皮膜にムラが発生し易くなり、7モル以上では粉ふきが生じ光沢のない灰色〜灰黒色となり目的とする酸化皮膜が得られない。 Alkaline earth metal hydroxides, carbonates, bicarbonates, silicates or fluorosilicates can be used in the electrolytic aqueous solution used in this surface treatment method. Specific examples include hydroxides such as NaOH, KOH, Ba (OH) 2 , carbonates such as Na 2 CO 3 , K 2 CO 3 , CaCO 3 , and MgCO 3 , NaHCO 3 , KHCO 3 , and Ca (HCO 3). 2 ) Bicarbonates such as 2 are listed, and an aqueous solution containing one or more of these is used. The concentration of the alkaline solution is preferably 0.2-7 mol / L. If the amount is 0.2 mol or less, unevenness is likely to occur in the formed oxide film, and if it is 7 mol or more, powdering occurs, resulting in a non-glossy gray to gray-black color, and the desired oxide film cannot be obtained.

また、本発明では、電解液には液の寿命の向上を目的として皮膜形成安定剤を添加する。皮膜形成安定剤としては、無機化合物、有機化合物を用いることができ、具体的には、NaNO、CaNO、MgNO、NaSO、KSO、CaSO、MgSO等の鉱酸塩、KF、NHF等のフッ化物、NaSiO、NaSiO、KSiO等のケイ酸化合物NaSiF、MgSiF、(NHSiF等のケイフッ化物、有機化合物としては(CHOH)、(CHCHOH)O、(CHOH)CHOH等のアルコール類、(COOH)、(CHCHCOOH)、[CH(OH)COOH]、C(OHCOOH)、CCOOH、C(COOH)等のカルボン酸、C(SOH・COOH)、C(COOH・OH・SOH)等のスルホン基を有する有機化合物を用いることができる。 In the present invention, a film-forming stabilizer is added to the electrolytic solution for the purpose of improving the life of the solution. As the film formation stabilizer, inorganic compounds and organic compounds can be used. Specifically, minerals such as NaNO 3 , CaNO 3 , MgNO 3 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , and MgSO 4 are used. Acid salts, fluorides such as KF, NH 4 F, silicic acid compounds such as Na 2 SiO 3 , Na 4 SiO 4 , K 2 SiO 2 Na 2 SiF 6 , MgSiF 6 , silica fluorides such as (NH 4 ) 2 SiF 6 And (CH 2 OH) 2 , (CH 2 CH 2 OH) O, (CH 2 OH) 2 CHOH and other alcohols, (COOH) 2 , (CH 2 CH 2 COOH) 2 , [CH (OH) COOH] 2 , C 6 H 4 (OHCOOH), C 6 H 5 COOH, C 6 H 4 (COOH) 2 and other carboxylic acids, C 6 H 4 (SO 3 H · COO H) and organic compounds having a sulfone group such as C 6 H 3 (COOH · OH · SO 3 H) can be used.

これらの皮膜形成安定剤は、単独でも混合して用いてもよい。特に、無機化合物と有機化合物とを組み合わせて使用すると液管理が容易となる。この皮膜形成安定剤の添加量は、電解液中に0.01〜5mol/Lの範囲であることが好ましい。0.01mol/L以下であると液の安定性が不十分となり、5mol/Lを越えると、形成される皮膜に、いわゆるかぶり、ムラ、スマット等の現象が生じてしまうためである。   These film formation stabilizers may be used alone or in combination. In particular, liquid management becomes easy when an inorganic compound and an organic compound are used in combination. The amount of the film formation stabilizer added is preferably in the range of 0.01 to 5 mol / L in the electrolytic solution. If it is 0.01 mol / L or less, the stability of the liquid is insufficient, and if it exceeds 5 mol / L, phenomena such as so-called fogging, unevenness, and smut occur in the formed film.

上述のように調製された電解液中でのマグネシウム又はマグネシウム合金材料の陽極酸化処理の条件としては、電解浴温を30〜90℃、特に好ましくは50〜80℃とし、pH9以上の弱〜強塩基性とする。   As conditions for anodizing the magnesium or magnesium alloy material in the electrolytic solution prepared as described above, the electrolytic bath temperature is 30 to 90 ° C., particularly preferably 50 to 80 ° C., and a pH of 9 or higher is weak to strong. Basic.

なお、電解処理を行う前にマグネシウム又はマグネシウム合金に対して酸による前処理を施しておくことが好ましい。前処理に用いる酸としては、硫酸、硝酸、リン酸、クロム酸等の鉱酸、ギ酸、シュウ酸、安息香酸等の一価又は多価脂肪族カルボン酸や芳香族カルボン酸、スルホン酸、及びこれらの塩から選ばれる1種以上の酸を用いることができる。   In addition, it is preferable to pre-process with magnesium with respect to magnesium or a magnesium alloy before performing an electrolytic treatment. Examples of the acid used for the pretreatment include mineral acids such as sulfuric acid, nitric acid, phosphoric acid and chromic acid, monovalent or polyvalent aliphatic carboxylic acids such as formic acid, oxalic acid and benzoic acid, aromatic carboxylic acids, sulfonic acids, and One or more acids selected from these salts can be used.

以上のように、本発明方法を用いて形成される陽極酸化皮膜6は、酸化マグネシウム(MgO)と水酸化マグネシウム(Mg(OH))とを主体として形成されており、その組成は、前者が0.1〜40%、後者が60〜99.5%の範囲で構成される。このほかに、0〜30%の範囲でマンガン、チタン、モリブデン、ケイ素、タングステン、ジルコニウム、バナジウム、クロム、コバルト、パラジウム、リン、硫黄、臭素、フッ素、ヨウ素、ホウ素、炭素、窒素、又はこれらの化合物、更に有機化合物としてヒドロキシル基、アルデヒド基、カルボニル基、若しくはアミノ基を有する鎖状又は環状炭化水素を含有している。また、この陽極酸化皮膜6におけるバリア層5は、主として水酸化物により形成されている。 As described above, the anodic oxide film 6 formed using the method of the present invention is formed mainly of magnesium oxide (MgO) and magnesium hydroxide (Mg (OH) 2 ), and the composition is the former. In the range of 0.1 to 40% and the latter in the range of 60 to 99.5%. In addition, manganese, titanium, molybdenum, silicon, tungsten, zirconium, vanadium, chromium, cobalt, palladium, phosphorus, sulfur, bromine, fluorine, iodine, boron, carbon, nitrogen, or these in the range of 0 to 30% The compound further contains a chain or cyclic hydrocarbon having a hydroxyl group, an aldehyde group, a carbonyl group, or an amino group as an organic compound. The barrier layer 5 in the anodic oxide film 6 is mainly formed of hydroxide.

本発明方法により形成された陽極酸化皮膜6は、長さ/孔径の比、いわゆるアスペクト比が1以上であり、表面層4からバリア層5に向かって形成される細長い微細孔3によって、1mmあたり少なくとも1万個以上の密度で覆われている。したがって、実質的に酸化皮膜6の表面全体がこの微細孔3によって覆われていることになる。ここで、実質的とは皮膜全体の約80%以上を占めていることを意味する。微細孔3の占める割合が80%以下になると酸化皮膜6の光沢が低下し、本発明の目的に合致しない。なお、ここでアスペクト比は、10以上であることが好ましい。 The anodic oxide film 6 formed by the method of the present invention has a length / hole diameter ratio, that is, a so-called aspect ratio of 1 or more, and is 1 mm 2 by the elongated micropores 3 formed from the surface layer 4 toward the barrier layer 5. It is covered with a density of at least 10,000 per unit. Therefore, substantially the entire surface of the oxide film 6 is covered with the fine holes 3. Here, “substantially” means that it accounts for about 80% or more of the entire film. When the proportion of the fine pores 3 is 80% or less, the gloss of the oxide film 6 is lowered and does not meet the object of the present invention. Here, the aspect ratio is preferably 10 or more.

また、表面層4の厚さDは3〜50μmが適当である。この膜厚Dが3μm以下であると十分な耐食性が得られ難く、また50μmを越えると十分な金属光沢が得られ難くなる。更に、この陽極酸化皮膜6は、図1に示すように、微細孔3を有する表面層4と、該表面層4に続く極めて薄い実質的に無孔のバリア層5とを有しているが、バリア層5は、孔径が5nm以下程度の測定不能に近い超微少細孔があってもよい。 The thickness D 1 of the surface layer 4 is suitably 3 to 50 [mu] m. When the thickness D 1 is at 3μm or less difficult sufficient corrosion resistance can be obtained and it becomes difficult enough metallic luster obtained exceeds 50 [mu] m. Further, as shown in FIG. 1, the anodic oxide film 6 has a surface layer 4 having micropores 3 and a very thin substantially non-porous barrier layer 5 following the surface layer 4. The barrier layer 5 may have ultra-fine pores with a pore diameter of about 5 nm or less that are almost impossible to measure.

また、ダイヤカット面を計測角度85゜で測定したときの光反射率を100%として光反射率を測定したところ、陽極酸化処理前の基材、例えばマグネシウム合金元来の光反射率が84%であるのに対して、本発明に係る陽極酸化皮膜6は、光反射率が最低でも60%を保持し、微細孔3の平均孔径が500nm、50nmと小さくなるにしたがって光反射率が68%から87%へと向上する。特に、平均孔径が50nm程度になると基材2の持つ光沢よりも優れた光沢を有するという顕著な効果を奏する。このように、本発明に係る陽極酸化皮膜2は、マグネシウム自体又はマグネシウム合金自体の金属光沢と同等、若しくは同等に近い光沢を有する。   Further, when the light reflectivity was measured by setting the light reflectivity when the diamond cut surface was measured at a measurement angle of 85 ° as 100%, the original light reflectivity of the base material before anodizing treatment, for example, a magnesium alloy was 84%. On the other hand, the anodized film 6 according to the present invention has a light reflectivity of 60% at a minimum, and the light reflectivity is 68% as the average pore diameter of the micropores 3 decreases to 500 nm and 50 nm. To 87%. In particular, when the average pore diameter is about 50 nm, a remarkable effect is achieved in that the gloss is superior to that of the base material 2. Thus, the anodized film 2 according to the present invention has a gloss equivalent to or close to the metal gloss of magnesium itself or the magnesium alloy itself.

したがって、本発明に係る金属材料1は、基材2を成形加工後に、本発明方法による陽極酸化処理することにより、表面に光沢を付与するための種々の処理を施すことなく、そのままで十分実用に供することができる。   Therefore, the metal material 1 according to the present invention is sufficiently practical as it is without performing various treatments for imparting gloss to the surface by subjecting the base material 2 to an anodizing treatment by the method of the present invention after the forming process. Can be used.

また、本発明方法に係る表面処理が施されて形成された酸化皮膜5は、塗膜密着性、着色性も良好であるため、必要に応じて、染料・顔料含有浴に浸漬すること又は電解着色によって着色してもよい。この場合、基材2が本来有する金属光沢を十分に維持したまま鮮明な着色ができる。   Moreover, since the oxide film 5 formed by the surface treatment according to the method of the present invention has good coating film adhesion and colorability, it can be immersed in a dye / pigment-containing bath or electrolyzed as necessary. You may color by coloring. In this case, clear coloring can be performed while sufficiently maintaining the metallic luster inherent in the substrate 2.

なお、本発明に係る金属材料1においては、表面層4上には、封孔層7が設けられる。封孔層7は、表面層4に形成された微細孔3内に水分等の異物が侵入しないようにし、さらに、このような表面層4が形成された金属材料1の耐食性の向上を図るために設けられる。   In the metal material 1 according to the present invention, the sealing layer 7 is provided on the surface layer 4. The sealing layer 7 prevents foreign substances such as moisture from entering the micropores 3 formed in the surface layer 4 and further improves the corrosion resistance of the metal material 1 on which the surface layer 4 is formed. Is provided.

封孔層7は、表面層4上に透明な合成樹脂製の塗料を塗布し、あるいはこのような塗料を含有する塗液に金属材料1を浸積することによって形成される。   The sealing layer 7 is formed by applying a transparent synthetic resin paint on the surface layer 4 or immersing the metal material 1 in a coating liquid containing such a paint.

また、封孔層7は、無機材料を含むシリケート液に金属材料1を浸積することにより形成される。ここで得られる封孔層7は、酸化被膜層4を透視し得る光透過性を有する被膜として形成される。   The sealing layer 7 is formed by immersing the metal material 1 in a silicate liquid containing an inorganic material. The sealing layer 7 obtained here is formed as a light-transmitting film that can be seen through the oxide film layer 4.

以下、本発明を適用した実施例について詳細に説明する。   Examples to which the present invention is applied will be described in detail below.

陽極酸化処理
・実施例1
被処理材として、マグネシウム合金AZ31Bの0.5mm厚の圧延材を用い、酸による表面処理後、陽極電解酸化処理を施した。水酸化カリウム2±0.5mol/Lに、皮膜形成安定剤としてケイ酸ナトリウム+ジエチレングリコールを0.1±0.05mol/L添加し電解液とした。液温65±2℃、電流密度2.0±0.5A/dm、電圧4〜8Vの電解条件にて30分間浸漬し、引き上げ後、公知の方法で封孔処理した。この処理により、厚さ10μmの陽極酸化皮膜を得た。
Anodizing treatment , Example 1
As a material to be treated, a rolled material of magnesium alloy AZ31B having a thickness of 0.5 mm was used, and after an acid surface treatment, an anodic electrolytic oxidation treatment was performed. 0.1 ± 0.05 mol / L of sodium silicate + diethylene glycol as a film formation stabilizer was added to 2 ± 0.5 mol / L of potassium hydroxide to obtain an electrolytic solution. It was immersed for 30 minutes under electrolytic conditions of a liquid temperature of 65 ± 2 ° C., a current density of 2.0 ± 0.5 A / dm 2 , and a voltage of 4 to 8 V, and after lifting, it was sealed by a known method. By this treatment, an anodized film having a thickness of 10 μm was obtained.

実施例1における陽極酸化皮膜の表面層に形成された微細孔の平均孔径は、レーザ顕微鏡による測定で約500nm、孔の長さは光学顕微鏡による断面観察で8〜10μm、微細孔密度は約100万個/mmであることが判った。したがって、アスペクト比(微細孔の平均長さと孔径の比)は16〜20(8〜10μm/0.5μm)であった。 The average pore diameter of the micropores formed in the surface layer of the anodized film in Example 1 was about 500 nm as measured with a laser microscope, the length of the pores was 8 to 10 μm when observed with a cross section with an optical microscope, and the micropore density was about 100. It was found to be 10,000 pieces / mm 2 . Therefore, the aspect ratio (ratio of the average length of micropores to the pore diameter) was 16 to 20 (8 to 10 μm / 0.5 μm).

・比較例1
JIS―H8651に規定された火花放電型陽極酸化の代表であるMX−11処理(HAE処理)にて上記実施例1と同一のマグネシウム合金を処理した。この処理により、平均孔径5000nm以上の微細孔を有し約50μmの皮膜厚さを有する金属表面が得られた。
Comparative example 1
The same magnesium alloy as in Example 1 was treated by MX-11 treatment (HAE treatment), which is representative of spark discharge type anodization defined in JIS-H8651. By this treatment, a metal surface having fine pores with an average pore diameter of 5000 nm or more and a film thickness of about 50 μm was obtained.

・比較例2
JISに規定されたMX−6処理にて上記実施例1と同一のマグネシウム合金を処理した。この処理により、平均孔径5000nm以下の微細孔を有する金属表面が得られた。
Comparative example 2
The same magnesium alloy as in Example 1 was treated by MX-6 treatment defined by JIS. By this treatment, a metal surface having fine pores with an average pore diameter of 5000 nm or less was obtained.

皮膜表面の反射率
反射率は、ダイヤカット面を計測角度85°で測定したときの光反射率を100%とした場合の金属表面光反射率である。なお、被処理材元来の反射率は、84%であった。
The reflectance on the surface of the film is the reflectance of the metal surface when the light reflectance when the diamond cut surface is measured at a measurement angle of 85 ° is taken as 100%. The original reflectance of the material to be processed was 84%.

・実施例1
この処理で得られる金属表面の反射率は68%であった。
Example 1
The reflectance of the metal surface obtained by this treatment was 68%.

・比較例1
この金属表面の反射率を測定すると8%であり、本実施例の処理に基づく金属表面に比べると光沢は殆どないに等しかった。
Comparative example 1
The reflectance of this metal surface was measured and found to be 8%, which was almost no gloss compared to the metal surface based on the treatment of this example.

・比較例2
この金属表面の反射率は、約50%であったが、本実施例の処理に基づく金属表面に比べると光沢が劣っていた。
Comparative example 2
The reflectivity of this metal surface was about 50%, but the gloss was inferior compared to the metal surface based on the treatment of this example.

染色性着色性評価
続いて、実施例1、比較例1、比較例2の3種の表面処理が施されたマグネシウム合金の染色性について比較検討した。
Dyeability Colorability Evaluation Subsequently, the dyeability of the magnesium alloys subjected to the three types of surface treatments of Example 1, Comparative Example 1, and Comparative Example 2 was compared and examined.

上記3種の表面処理が施されたマグネシウム合金の各々をサノダールイエロー(SanodalYellow、SANDOZ社製)3GL染料を1g/Lの濃度で含有する水溶液に70±2℃下にて30分浸漬した。引き上げ後、公知の方法で封孔処理した後、染色性を評価した。   Each of the three types of surface-treated magnesium alloys was immersed in an aqueous solution containing Sanodal Yellow (Sanodal Yellow, manufactured by SANDOZ) 3GL dye at a concentration of 1 g / L at 70 ± 2 ° C. for 30 minutes. After pulling up, after performing a sealing treatment by a known method, the dyeability was evaluated.

実施例1の表面処理を施したマグネシウム合金は、マグネシウム合金自身が元来有する金属光沢をそのまま残しつつ、鮮明且つ均一な金色に染色されていた。これに対して、HAE処理したマグネシウム合金(比較例1)は、光沢がないうえに、HAE処理後の合金が濃茶色を呈しており、実施例1と同様の染色法では染料自体の色に着色不可能であった。また、MX−6処理したマグネシウム合金(比較例2)は、約50%の反射率を有するため多少の金属光沢が認められるが、比較例2のマグネシウム合金と同様、MX−6処理後の合金が茶色を呈しており、実施例1と同様の染色法では染料自体の色に着色できないうえに染色ムラも発生し、実用に耐え得る鮮やかな染色が不可能であった。   The magnesium alloy subjected to the surface treatment of Example 1 was dyed in a clear and uniform gold color while leaving the metallic luster inherent in the magnesium alloy itself. On the other hand, the HAE-treated magnesium alloy (Comparative Example 1) has no luster and the HAE-treated alloy has a dark brown color. In the same dyeing method as in Example 1, the color of the dye itself is changed. Coloring was impossible. Further, the magnesium alloy treated with MX-6 (Comparative Example 2) has a reflectivity of about 50%, and thus some metallic luster is observed, but like the magnesium alloy of Comparative Example 2, the alloy after MX-6 treatment As a result, the dyeing method similar to that in Example 1 cannot be colored in the color of the dye itself, and uneven dyeing occurs, making vivid dyeing that can withstand practical use impossible.

酸化皮膜厚による反射率変化
反射率は、ダイヤカット面を計測角度85°で測定したときの光反射率を100%とした場合の金属表面光反射率を示す。なお、被処理材元来の反射率は、84%であった。
The reflectance change reflectance due to the oxide film thickness indicates the metal surface light reflectance when the light reflectance when the diamond cut surface is measured at a measurement angle of 85 ° is defined as 100%. The original reflectance of the material to be processed was 84%.

被処理材及び電解条件を実施例1に示した陽極酸化処理と同一とし、電解処理時間を変更することにより、酸化皮膜厚の異なるマグネシウム合金を製造した。皮膜厚さを薄くする場合には電解処理時間を短くし、厚くする場合には長くすることにより、酸化皮膜厚が3μm(実施例2)、5μm(実施例3)、10μm(上述の実施例1)、15μm(実施例4)、20μm(実施例5)のマグネシウム合金を製造した。これら各マグネシウム合金の皮膜微細孔の平均孔径をレーザ顕微鏡によって測定したところ何れも約500nmであった。   Magnesium alloys having different oxide film thicknesses were manufactured by changing the electrolytic treatment time by using the same materials and electrolytic conditions as those in Example 1 and changing the electrolytic treatment time. When the coating thickness is reduced, the electrolytic treatment time is shortened, and when the coating thickness is increased, the thickness is increased, so that the oxide coating thickness becomes 3 μm (Example 2), 5 μm (Example 3), 10 μm (the above-described example). 1), 15 μm (Example 4) and 20 μm (Example 5) magnesium alloys were produced. When the average pore diameter of the film micropores of each of these magnesium alloys was measured with a laser microscope, all were about 500 nm.

これら各マグネシウム合金表面の反射率を測定したところ、実施例1は上述のように68%、実施例2は85%、実施例3は75%、実施例4は62%、実施例5は60%であった。   When the reflectance of each magnesium alloy surface was measured, Example 1 was 68% as described above, Example 2 was 85%, Example 3 was 75%, Example 4 was 62%, and Example 5 was 60%. %Met.

一方、比較例1として示したHAE処理においても酸化皮膜厚が約5μmと約50μm(比較例1)のマグネシウム合金を製造して反射率を測定した。その結果、反射率は、酸化皮膜厚5μmでは15%、約50μmでは8%であった。   On the other hand, also in the HAE treatment shown as Comparative Example 1, magnesium alloys having oxide film thicknesses of about 5 μm and about 50 μm (Comparative Example 1) were manufactured, and the reflectance was measured. As a result, the reflectance was 15% when the oxide film thickness was 5 μm, and 8% when the thickness was about 50 μm.

微細孔径による反射率変化
実施例1と類似の電解条件にて同一の被処理材を用いて電解処理時間を調整し、酸化皮膜厚5μmのマグネシウム合金を製造した。このとき、電解液中の水酸化カリウム濃度を変更し電解条件を調整することにより微細孔平均孔径の異なるマグネシウム合金を製造した。平均孔径100nm(実施例6)、500nm(実施例7)、1000nm(実施例8)のマグネシウム合金を用意した。これら各マグネシウム合金表面の反射率を測定したところ、実施例6の反射率は95%、実施例7は75%、実施例8は65%であった。
Change in reflectivity by fine pore diameter Under the same electrolysis conditions as in Example 1, the same material to be treated was used to adjust the electrolysis time to produce a magnesium alloy with an oxide film thickness of 5 μm. At this time, magnesium alloys having different fine pore average pore diameters were produced by changing the potassium hydroxide concentration in the electrolytic solution and adjusting the electrolysis conditions. Magnesium alloys having an average pore diameter of 100 nm (Example 6), 500 nm (Example 7), and 1000 nm (Example 8) were prepared. When the reflectance of each of these magnesium alloy surfaces was measured, the reflectance of Example 6 was 95%, Example 7 was 75%, and Example 8 was 65%.

比較のために、HAE処理、MX−6処理においても平均孔径を変化させたマグネシウム合金を製造したが、これらの反射率は55%、15%であって殆ど金属光沢を失っており染色性も悪かった。   For comparison, a magnesium alloy with an average pore diameter changed also in the HAE treatment and MX-6 treatment was manufactured. However, these reflectances were 55% and 15%, and the metallic luster was almost lost, and the dyeability was also good. It was bad.

結果
以上のように、本実施例の表面処理方法によれば、塗膜密着性、着色性も良好であり、酸化皮膜後も金属光沢を有したままで鮮明な着色ができる。
Results As described above, according to the surface treatment method of this example, the coating film adhesion and the colorability are good, and a clear coloring can be achieved with a metallic luster after the oxide film.

本発明で使用する被処理材としてのマグネシウム及びその合金は、広範囲の応用が可能であって、純マグネシウム系、マグネシウム−アルミニウム系、マグネシウム−アルミニウム−亜鉛系、マグネシウム−アルミニウム−ケイ素系、マグネシウム−ジルコニウム−希土類−銀系、マグネシウム−亜鉛−ジルコニウム系、マグネシウム−亜鉛系、マグネシウム−希土類−ジルコニウム系、マグネシウム−アルミニウム−希土類系、マグネシウム−イットリウム−希土類系、マグネシウム−カルシウム−亜鉛系等のマグネシウム合金が使用可能である。本発明の表面処理方法は、これらの金属材料からなる筐体ケースや成形部材の表面処理に広く適用できる。   Magnesium and its alloys used in the present invention can be used in a wide range of applications, including pure magnesium, magnesium-aluminum, magnesium-aluminum-zinc, magnesium-aluminum-silicon, and magnesium- Magnesium alloys such as zirconium-rare earth-silver, magnesium-zinc-zirconium, magnesium-zinc, magnesium-rare earth-zirconium, magnesium-aluminum-rare earth, magnesium-yttrium-rare earth, magnesium-calcium-zinc Can be used. The surface treatment method of the present invention can be widely applied to the surface treatment of housing cases and molded members made of these metal materials.

本発明の具体例として示す表面処理により形成される陽極酸化皮膜の断面を説明する模式図である。It is a schematic diagram explaining the cross section of the anodic oxide film formed by the surface treatment shown as a specific example of this invention.

符号の説明Explanation of symbols

1 金属材料1、 2基材、 3 微細孔、 4 表面層、 5 バリア層、 6 陽極酸化皮膜   DESCRIPTION OF SYMBOLS 1 Metal material 1, 2 Base material, 3 Micropore, 4 Surface layer, 5 Barrier layer, 6 Anodized film

Claims (10)

マグネシウム又はマグネシウム合金からなる基材と、
平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mmあたり1万個以上の密度で存在する表面層と、
上記表面層の底部にあって実質的に無孔のバリア層とからなる陽極酸化皮膜を有することを特徴とする金属材料。
A substrate made of magnesium or a magnesium alloy;
A surface layer having an average pore diameter of 5 nm to 1000 nm, a length of 1 μm to 50 μm, and a ratio of the length to the hole diameter of 1 or more, and having a density of 10,000 or more per 1 mm 2 ;
A metal material comprising an anodized film formed at the bottom of the surface layer and comprising a substantially non-porous barrier layer.
上記表面層の光反射率は、計測角度85°にて反射率測定したとき60%以上であることを特徴とする請求項1記載の金属材料。   The metal material according to claim 1, wherein the light reflectance of the surface layer is 60% or more when the reflectance is measured at a measurement angle of 85 °. 上記表面層には、上記微細孔が1mmあたり10万個以上の密度で存在することを特徴とする請求項1記載の金属材料。 2. The metal material according to claim 1, wherein the fine pores are present in the surface layer at a density of 100,000 or more per 1 mm 2 . 上記表面層は、酸化マグネシウムを含有することを特徴とする請求項1記載の金属材料。   The metal material according to claim 1, wherein the surface layer contains magnesium oxide. 上記表面層は、水酸化マグネシウムが60〜99.9%、酸化マグネシウムが0.1〜40%、このほかにマンガン、チタン、モリブデン、ケイ素、タングステン、ジルコニウム、バナジウム、クロム、コバルト、パラジウム、リン、硫黄、臭素、フッ素、沃素、ホウ素、炭素、窒素、又はこれらの化合物、或いは有機化合物としてヒドロキシル基、アルデヒド基、カルボニル基、若しくはアミノ基を有する鎖状又は環状炭化水素を含有することを特徴とする請求項1記載の金属材料。   The surface layer is composed of 60 to 99.9% magnesium hydroxide and 0.1 to 40% magnesium oxide. In addition, manganese, titanium, molybdenum, silicon, tungsten, zirconium, vanadium, chromium, cobalt, palladium, phosphorus , Sulfur, bromine, fluorine, iodine, boron, carbon, nitrogen, or a compound thereof, or a linear or cyclic hydrocarbon having a hydroxyl group, an aldehyde group, a carbonyl group, or an amino group as an organic compound The metal material according to claim 1. 上記表面層の膜厚が3〜50μmであることを特徴とする請求項1記載の金属材料。   The metal material according to claim 1, wherein the surface layer has a thickness of 3 to 50 μm. 上記表面層は、電解着色されることを特徴とする請求項1記載の金属材料。   The metal material according to claim 1, wherein the surface layer is electrolytically colored. アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩、ケイフッ化塩から選ばれる少なくとも1種以上の塩を含む電解水溶液中にマグネシウム又はマグネシウム合金を浸漬し、これを電流密度0.7〜5A/dm、電圧2〜40Vにて火花放電を伴わずに電解することによって、表面に平均孔径5nm〜1000nm、長さ1μm〜50μmで長さと孔径の比が1以上の微細孔が1mmあたり1万個以上の密度で存在する表面層と該表面層の底部にあって実質的に無孔のバリア層とを有する陽極酸化皮膜を形成することを特徴とする表面処理方法。 Magnesium or a magnesium alloy is immersed in an electrolytic aqueous solution containing at least one salt selected from alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate, silicofluoride, By electrolysis without spark discharge at a current density of 0.7 to 5 A / dm 2 and a voltage of 2 to 40 V, the average pore diameter on the surface is 5 nm to 1000 nm, the length is 1 μm to 50 μm, and the ratio of length to pore diameter is 1 or more. Forming an anodic oxide film having a surface layer having a density of 10,000 or more per 1 mm 2 and a substantially non-porous barrier layer at the bottom of the surface layer Processing method. 上記マグネシウム又はマグネシウム合金が予め酸によって前処理されていることを特徴
とする請求項8記載の表面処理方法。
The surface treatment method according to claim 8, wherein the magnesium or the magnesium alloy is pretreated with an acid in advance.
上記電解水溶液は、アルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩、ケイフッ化塩を含む無機化合物、(CHOH)、(CHCHOH)O、(CHOH)CHOHを含むアルコール類、(COOH)、(CHCHCOOH)、[CH(OH)COOH]、C(OHCOOH)、CCOOH、C(COOH)を含むカルボン酸、C(SOH・COOH)、C(COOH・OH・SOH)を含むスルホン基を有する有機化合物のうち少なくとも1つを含むことを特徴とする請求項8記載の表面処理方法。 The electrolytic aqueous solution is an inorganic compound containing an alkali or alkaline earth metal hydroxide, carbonate, bicarbonate, silicate, silicofluoride, (CH 2 OH) 2 , (CH 2 CH 2 OH) O. , (CH 2 OH) 2 CHOH containing alcohols, (COOH) 2 , (CH 2 CH 2 COOH) 2 , [CH (OH) COOH] 2 , C 6 H 4 (OHCOOH), C 6 H 5 COOH, At least one of carboxylic acids containing C 6 H 4 (COOH) 2 , C 6 H 4 (SO 3 H · COOH), and organic compounds having a sulfone group containing C 6 H 3 (COOH · OH · SO 3 H) The surface treatment method according to claim 8, further comprising:
JP2004224019A 2003-08-01 2004-07-30 Metal material and surface treatment method Expired - Lifetime JP4468101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224019A JP4468101B2 (en) 2003-08-01 2004-07-30 Metal material and surface treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003285037 2003-08-01
JP2004224019A JP4468101B2 (en) 2003-08-01 2004-07-30 Metal material and surface treatment method

Publications (2)

Publication Number Publication Date
JP2005068555A true JP2005068555A (en) 2005-03-17
JP4468101B2 JP4468101B2 (en) 2010-05-26

Family

ID=34425112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224019A Expired - Lifetime JP4468101B2 (en) 2003-08-01 2004-07-30 Metal material and surface treatment method

Country Status (1)

Country Link
JP (1) JP4468101B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322044A (en) * 2005-05-19 2006-11-30 Denka Himaku Kogyo Kk Metallic material, and surface treatment method
JP2007178234A (en) * 2005-12-27 2007-07-12 Seiko Clock Inc Pointer for timepiece, timepiece provided with the same, and method for manufacturing pointer for timepiece
JP2007177262A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Magnesium metallic material and method of manufacturing the same
JP2007239057A (en) * 2006-03-10 2007-09-20 Magnes:Kk Partly colored magnesium body, method of manufacturing the same and intermediate body
JP2009019269A (en) * 2007-06-12 2009-01-29 Yamaha Motor Co Ltd Magnesium alloy member, its production method and transportation device
JP2010030191A (en) * 2008-07-30 2010-02-12 Chiba Inst Of Technology Corrosion-resistant and heat-resistant magnesium composite material and its manufacturing method
KR101067743B1 (en) * 2009-11-18 2011-09-28 한국생산기술연구원 Anodizing surface treatments method of magnesium or magnesium alloy
CN102409383A (en) * 2011-11-09 2012-04-11 嘉兴学院 Anodic oxidation method for magnesium alloy
JP2019039068A (en) * 2017-08-23 2019-03-14 株式会社栗本鐵工所 Film formation method and metallic material
CN109926293A (en) * 2019-03-05 2019-06-25 六盘水师范学院 A method of improving metal material high temperature oxidation resisting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109208054A (en) * 2018-11-13 2019-01-15 西安庄信新材料科技有限公司 A kind of compound coating of resistance to trowel used for plastering of differential arc oxidation and its production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322044A (en) * 2005-05-19 2006-11-30 Denka Himaku Kogyo Kk Metallic material, and surface treatment method
JP2007178234A (en) * 2005-12-27 2007-07-12 Seiko Clock Inc Pointer for timepiece, timepiece provided with the same, and method for manufacturing pointer for timepiece
JP2007177262A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Magnesium metallic material and method of manufacturing the same
JP4668062B2 (en) * 2005-12-27 2011-04-13 セイコークロック株式会社 Timepiece for watch, timepiece having the same, and method for manufacturing timepiece for timepiece
JP2007239057A (en) * 2006-03-10 2007-09-20 Magnes:Kk Partly colored magnesium body, method of manufacturing the same and intermediate body
JP2009019269A (en) * 2007-06-12 2009-01-29 Yamaha Motor Co Ltd Magnesium alloy member, its production method and transportation device
JP2010030191A (en) * 2008-07-30 2010-02-12 Chiba Inst Of Technology Corrosion-resistant and heat-resistant magnesium composite material and its manufacturing method
KR101067743B1 (en) * 2009-11-18 2011-09-28 한국생산기술연구원 Anodizing surface treatments method of magnesium or magnesium alloy
CN102409383A (en) * 2011-11-09 2012-04-11 嘉兴学院 Anodic oxidation method for magnesium alloy
CN102409383B (en) * 2011-11-09 2014-05-14 嘉兴学院 Anodic oxidation method for magnesium alloy
JP2019039068A (en) * 2017-08-23 2019-03-14 株式会社栗本鐵工所 Film formation method and metallic material
CN109926293A (en) * 2019-03-05 2019-06-25 六盘水师范学院 A method of improving metal material high temperature oxidation resisting

Also Published As

Publication number Publication date
JP4468101B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4468101B2 (en) Metal material and surface treatment method
US10309029B2 (en) Method for forming a multi-layer anodic coating
CN103628114B (en) The surface treatment method of magnadure
KR20090035891A (en) Surface modification method for self cleaning property of aluminium material
CN101985768A (en) Micro-arc oxidation electrolyte and micro-arc oxidation method
CA2250136C (en) Thermoplastic resin-coated aluminum alloy plate and process and apparatus for producing the same
JP2004502877A (en) Surface treatment method of aluminum or aluminum alloy by blending containing alkanesulfonic acid
JP2006291278A (en) Magnesium metallic material having excellent corrosion resistance, and method for producing the same
JPH09176894A (en) Surface treatment
JP4825002B2 (en) Method for producing magnesium metal material
JP6369745B2 (en) Anodized film and sealing method thereof
AU2020327479B2 (en) Electrolytic oxidation solution for use in aluminum alloy oxidative film formation, and method for aluminum alloy oxidative film formation
JP4830095B2 (en) Metal material and surface treatment method
US20190177868A1 (en) Durable white inorganic finish for aluminium articles
CA1134774A (en) Anodising aluminium
KR20050065497A (en) A composite of anodizing electrolyte for alloyed aluminum and therefor composite method
CN1561408A (en) Method of producing bright anodized finishes for high magnesium, aluminum alloys
US5288372A (en) Altering a metal body surface
JP3445134B2 (en) Method for producing gray-colored aluminum material and its colored body
KR20170092209A (en) Anodizing Aluminum and Alloys Thereof
JP3666375B2 (en) Surface-treated aluminum material and method for producing the same
WO2022009606A1 (en) Aluminum member and method for producing same
Md. Ghazazi et al. Effect of pulse current on surface properties of aluminum oxide coating containing graphite
JP4957984B2 (en) Magnesium heat dissipation material with excellent thermal emissivity and method for producing the same
KR101923897B1 (en) Anodizing method of subject

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Ref document number: 4468101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200305

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term