CN102409383A - Magnesium Alloy Anodizing Method - Google Patents
Magnesium Alloy Anodizing Method Download PDFInfo
- Publication number
- CN102409383A CN102409383A CN2011103600672A CN201110360067A CN102409383A CN 102409383 A CN102409383 A CN 102409383A CN 2011103600672 A CN2011103600672 A CN 2011103600672A CN 201110360067 A CN201110360067 A CN 201110360067A CN 102409383 A CN102409383 A CN 102409383A
- Authority
- CN
- China
- Prior art keywords
- magnesium alloy
- anodic oxidation
- alloy method
- add
- described additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000007743 anodising Methods 0.000 title abstract description 14
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 37
- 230000003647 oxidation Effects 0.000 claims abstract description 36
- 239000000654 additive Substances 0.000 claims abstract description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 27
- 230000000996 additive effect Effects 0.000 claims abstract description 25
- 239000003792 electrolyte Substances 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 5
- 239000004111 Potassium silicate Substances 0.000 claims abstract description 4
- FZQSLXQPHPOTHG-UHFFFAOYSA-N [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 Chemical compound [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 FZQSLXQPHPOTHG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910021538 borax Inorganic materials 0.000 claims abstract description 4
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 4
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 claims abstract description 4
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052913 potassium silicate Inorganic materials 0.000 claims abstract description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 235000010339 sodium tetraborate Nutrition 0.000 claims abstract description 4
- 239000004328 sodium tetraborate Substances 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims description 19
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 17
- 229920002472 Starch Polymers 0.000 claims description 10
- 235000019698 starch Nutrition 0.000 claims description 10
- 239000008107 starch Substances 0.000 claims description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 8
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 8
- 239000008103 glucose Substances 0.000 claims description 8
- 239000004375 Dextrin Substances 0.000 claims description 7
- 229920001353 Dextrin Polymers 0.000 claims description 7
- 229930006000 Sucrose Natural products 0.000 claims description 7
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 7
- 235000019425 dextrin Nutrition 0.000 claims description 7
- 239000008101 lactose Substances 0.000 claims description 7
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 7
- 239000005720 sucrose Substances 0.000 claims description 7
- 239000000811 xylitol Substances 0.000 claims description 7
- 235000010447 xylitol Nutrition 0.000 claims description 7
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 7
- 229960002675 xylitol Drugs 0.000 claims description 7
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 6
- 238000002203 pretreatment Methods 0.000 claims description 6
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 235000014633 carbohydrates Nutrition 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims 10
- 230000005389 magnetism Effects 0.000 claims 10
- MEIRRNXMZYDVDW-MQQKCMAXSA-N (2E,4E)-2,4-hexadien-1-ol Chemical compound C\C=C\C=C\CO MEIRRNXMZYDVDW-MQQKCMAXSA-N 0.000 claims 2
- -1 SANMALT-S Substances 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 37
- 230000007797 corrosion Effects 0.000 abstract description 33
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 abstract description 12
- 229910052804 chromium Inorganic materials 0.000 abstract description 4
- 239000011651 chromium Substances 0.000 abstract description 4
- 229910052731 fluorine Inorganic materials 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 239000011148 porous material Substances 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 abstract description 4
- 239000004115 Sodium Silicate Substances 0.000 abstract description 3
- 229910052911 sodium silicate Inorganic materials 0.000 abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 abstract description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000011737 fluorine Substances 0.000 abstract description 2
- 229910052749 magnesium Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000011574 phosphorus Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000011777 magnesium Substances 0.000 abstract 1
- 150000003839 salts Chemical class 0.000 description 16
- 239000007921 spray Substances 0.000 description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- 238000004140 cleaning Methods 0.000 description 10
- 239000012153 distilled water Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 7
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 5
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 5
- 238000005553 drilling Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000600 sorbitol Substances 0.000 description 5
- 235000010356 sorbitol Nutrition 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- 238000002525 ultrasonication Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 239000010407 anodic oxide Substances 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 125000003071 maltose group Chemical group 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Images
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种镁合金阳极氧化方法,属于金属表面处理技术。 The invention relates to a magnesium alloy anodic oxidation method, which belongs to metal surface treatment technology. the
背景技术 Background technique
镁合金具有密度小、比强度高、比刚度高、减震性好、电磁屏蔽和抗辐射能力强等优点,已成为新材料研究与使用的热点。然而,镁合金的耐蚀性在常用金属结构材料中是最低的,易发生电偶腐蚀而加速溶解腐蚀,制约了镁合金的广泛应用。对镁合金进行表面处理可以有效提升合金材料的耐腐蚀性能。在镁合金阳极氧化技术能在材料表面形成一层电绝缘性好、结合力强、耐蚀性好的氧化膜,是最具工业化应用前景的镁合金表面处理技术。 Magnesium alloy has the advantages of low density, high specific strength, high specific stiffness, good shock absorption, electromagnetic shielding and radiation resistance, and has become a hot spot in the research and application of new materials. However, the corrosion resistance of magnesium alloy is the lowest among commonly used metal structural materials, and it is prone to galvanic corrosion and accelerated dissolution corrosion, which restricts the wide application of magnesium alloy. Surface treatment of magnesium alloys can effectively improve the corrosion resistance of alloy materials. The anodic oxidation technology of magnesium alloy can form an oxide film with good electrical insulation, strong binding force and good corrosion resistance on the surface of the material, which is the most promising surface treatment technology for magnesium alloy in industrial application. the
目前,工业生产中所用镁合金表面处理的电解质溶液中大都含有Cr,P和F等有害元素,对环境污染严重,废液的处理成本高,不符合可持续发展的要求。因此,无Cr,P和F等有害元素的环保型电解液及其工艺成为现今镁合金阳极氧化研究的重点。环保型电解液体系主要有KOH-Na2SiO3-NaAlO2、NaOH-Al(OH)3-Na2SiO3、NaOH-Na2SiO3-Na2B4O7等电解液体系,然而由无机盐组成的环保型电解液得到的氧化膜表面粗糙度大,微孔分布不均、孔径较大,导致耐蚀性能较差,并且附着力不强,成膜不均匀,易产生裂纹,并且处理电压不易控制、易产生局部烧蚀等问题。 At present, most of the electrolytic solutions used in industrial production for surface treatment of magnesium alloys contain harmful elements such as Cr, P, and F, which seriously pollute the environment, and the treatment cost of waste liquid is high, which does not meet the requirements of sustainable development. Therefore, the environmentally friendly electrolyte and its technology without harmful elements such as Cr, P, and F have become the focus of current magnesium alloy anodic oxidation research. Environmentally friendly electrolyte systems mainly include KOH-Na 2 SiO 3 -NaAlO 2 , NaOH-Al(OH) 3 -Na 2 SiO 3 , NaOH-Na 2 SiO 3 -Na 2 B 4 O 7 and other electrolyte systems. The surface roughness of the oxide film obtained by the environment-friendly electrolyte composed of inorganic salts is large, the micropore distribution is uneven, and the pore size is large, resulting in poor corrosion resistance, weak adhesion, uneven film formation, and easy cracks. Dealing with problems such as difficult voltage control and easy local ablation.
发明内容 Contents of the invention
本发明旨在提出一种镁合金阳极氧化方法,能在镁合金表面生成微孔分布均匀、孔径细小、粗糙度小、耐蚀性好的氧化膜,并且电解液满足环保要求,不会造成环境污染,对镁合金进行表面处理工艺简单,成膜易于控制,而且原料易得、价格便宜,适于工业化生产。 The present invention aims to propose a magnesium alloy anodic oxidation method, which can form an oxide film with uniform micropore distribution, small pore size, small roughness and good corrosion resistance on the surface of magnesium alloy, and the electrolyte meets the requirements of environmental protection without causing environmental pollution. Pollution, the surface treatment process of magnesium alloy is simple, the film formation is easy to control, and the raw materials are easy to obtain and cheap, so it is suitable for industrial production. the
这种镁合金阳极氧化方法,先将镁合金预处理,然后放入电解液中进行阳极氧化,其中所用的电解液的组成为:氢氧化钠或氢氧化钾10-100g/L、硅酸钠或硅酸钾20-200g/L、四硼酸钠或四硼酸钾20-150g/L、添加剂和水,所述的添加剂为糖类及其衍生物葡萄糖、乳糖、蔗糖、麦芽糖、淀粉、糊精、山梨醇和木糖醇中的一种或两种。 In this magnesium alloy anodic oxidation method, the magnesium alloy is pretreated first, and then put into the electrolyte for anodic oxidation. The electrolyte used is composed of: sodium hydroxide or potassium hydroxide 10-100g/L, sodium silicate Or potassium silicate 20-200g/L, sodium tetraborate or potassium tetraborate 20-150g/L, additives and water, the additives are sugars and their derivatives glucose, lactose, sucrose, maltose, starch, dextrin , one or both of sorbitol and xylitol. the
这种镁合金阳极氧化方法中的电解液中,氢氧化物主要用于调节溶液电阻和pH值;硅酸盐是主要的成膜剂,参与镁合金阳极氧化反应,形成难溶化合物,使氧化膜膜层细化、致密,改善均匀性,可显著提高氧化膜的耐蚀性;硼酸盐主要用于增加氧化膜成膜速度,缩短反应时间;添加剂糖类及其衍生物为生物多元醇,其单分子结构中含有多个羟基,且羟基上具有的孤对电子能与镁原子空轨道结合,从而能有效地吸附于镁合金表面,在镁合 金表面起到屏蔽作用,从而减缓镁与氧的反应速率和氧化膜生长速度,使得氧化膜的致密性、均匀性和耐蚀性均显著提高。 In the electrolyte in this magnesium alloy anodic oxidation method, hydroxide is mainly used to adjust the solution resistance and pH value; silicate is the main film-forming agent, which participates in the anodic oxidation reaction of magnesium alloy to form insoluble compounds and make oxidation The film layer is thin and dense, and the uniformity is improved, which can significantly improve the corrosion resistance of the oxide film; borate is mainly used to increase the film forming speed of the oxide film and shorten the reaction time; the additive sugar and its derivatives are biopolyols , its single molecular structure contains multiple hydroxyl groups, and the lone pair of electrons on the hydroxyl group can combine with the empty orbital of the magnesium atom, so that it can be effectively adsorbed on the surface of the magnesium alloy, and play a shielding role on the surface of the magnesium alloy, thereby slowing down the magnesium alloy The reaction rate with oxygen and the growth rate of the oxide film make the compactness, uniformity and corrosion resistance of the oxide film significantly improved. the
本发明的镁合金阳极氧化方法与现有的技术相比,主要有以下优点: Magnesium alloy anodizing method of the present invention compares with existing technology, mainly has the following advantages:
(1)环保。本发明的电解液中无铬、氟、磷等有害物质,同时废液易处理,对环境无污染,属于绿色环保型配方。 (1) Environmental protection. The electrolytic solution of the invention has no harmful substances such as chromium, fluorine, phosphorus, etc., and at the same time, the waste liquid is easy to handle, has no pollution to the environment, and belongs to a green and environment-friendly formula. the
(2)添加剂是糖类及其衍生物,均为生物质化合物,对人体和自然环境无污染,且易被微生物分解。 (2) The additives are sugars and their derivatives, all of which are biomass compounds, which are non-polluting to the human body and the natural environment, and are easily decomposed by microorganisms. the
(3)能得到耐蚀性优良的氧化膜。用本发明的方法可以获得光滑,致密,均匀且耐蚀性良好的镁合金阳极氧化膜,同时氧化膜微孔分布均匀,孔径细小。 (3) An oxide film excellent in corrosion resistance can be obtained. The method of the invention can obtain smooth, dense, uniform and good corrosion resistance magnesium alloy anodic oxide film, and at the same time, the micropore distribution of the oxide film is uniform and the pore size is small. the
附图说明 Description of drawings
图1是经过本发明的方法进行表面处理的AZ31镁合金试样和AZ31镁合金基体的Tafel极化曲线,图中,a为未经阳极氧化的镁合金试样曲线,b表示经本发明方法处理后的镁合金试样曲线; Fig. 1 is the Tafel polarization curve of the AZ31 magnesium alloy sample and the AZ31 magnesium alloy substrate that are surface-treated through the method of the present invention, among the figure, a is the magnesium alloy sample curve without anodic oxidation, and b represents through the method of the present invention Treated magnesium alloy sample curve;
图2是用淀粉作为添加剂时,AZ31镁合金阳极氧化膜表面形貌SEM照片; Figure 2 is a SEM photo of the surface morphology of the AZ31 magnesium alloy anodized film when starch is used as an additive;
图3是用淀粉作为添加剂时,AZ31镁合金阳极氧化膜截面形貌SEM照片。 Figure 3 is a SEM photo of the cross-sectional morphology of the anodized film of AZ31 magnesium alloy when starch is used as an additive. the
具体实施方式 Detailed ways
这种镁合金阳极氧化方法所用的电解液的组成为:氢氧化钠或氢氧化钾10-100g/L、硅酸钠或硅酸钾20-200g/L、四硼酸钠或四硼酸钾20-150g/L、添加剂和水,所述的添加剂为糖类及其衍生物葡萄糖、乳糖、蔗糖、麦芽糖、淀粉、糊精、山梨醇和木糖醇中的一种或两种。 The composition of the electrolyte used in this magnesium alloy anodic oxidation method is: sodium hydroxide or potassium hydroxide 10-100g/L, sodium silicate or potassium silicate 20-200g/L, sodium tetraborate or potassium tetraborate 20- 150g/L, additive and water, described additive is one or both in carbohydrate and its derivative glucose, lactose, sucrose, maltose, starch, dextrin, sorbitol and xylitol. the
当添加剂为葡萄糖时,加入量可以为5-40g/L。 When the additive is glucose, the addition amount can be 5-40g/L. the
当添加剂为乳糖时,加入量可以为5-60g/L。 When the additive is lactose, the added amount can be 5-60g/L. the
当添加剂为蔗糖时,加入量可以为10-40g/L。 When the additive is sucrose, the added amount can be 10-40g/L. the
当添加剂为麦芽糖时,加入量可以为10-50g/L。 When the additive is maltose, the addition amount can be 10-50g/L. the
当添加剂为糊精时,加入量可以为5-50g/L。 When the additive is dextrin, the added amount can be 5-50 g/L. the
当添加剂为淀粉时,加入量可以为5-50g/L。 When the additive is starch, the addition amount can be 5-50g/L. the
当添加剂为山梨醇时,加入量可以为10-40g/L。 When the additive is sorbitol, the addition amount can be 10-40g/L. the
当添加剂为木糖醇时,加入量可以为5-30g/L。 When the additive is xylitol, the addition amount can be 5-30g/L. the
用上述电解液对镁合金进行阳极氧化时,可采用脉冲电源,恒流电流模式,具体步骤如下: When using the above electrolyte to anodize magnesium alloy, pulse power supply and constant current mode can be used. The specific steps are as follows:
(1)镁合金预处理:打磨、钻孔、蒸馏水清洗、丙酮超声清洗、蒸馏水清洗、吹干。 (1) Magnesium alloy pretreatment: grinding, drilling, cleaning with distilled water, ultrasonic cleaning with acetone, cleaning with distilled water, and drying. the
(2)镁合金阳极氧化:用不锈钢为阴极,镁合金为阳极,在搅拌条件下,恒流阳极氧化,电解液温度控制在5~40℃,时间为10~50min。所用电源为脉冲电源,其脉冲频率和占空比连续可调,电流密度为5mA/cm2~40mA/cm2,频率范围为100Hz~500Hz,占空比 为10%~30%。 (2) Magnesium alloy anodization: use stainless steel as the cathode and magnesium alloy as the anode, under stirring conditions, constant current anodization, the temperature of the electrolyte is controlled at 5-40°C, and the time is 10-50min. The power supply used is a pulse power supply, its pulse frequency and duty ratio are continuously adjustable, the current density is 5mA/cm 2 -40mA/cm 2 , the frequency range is 100Hz-500Hz, and the duty ratio is 10%-30%.
实施例1 Example 1
镁合金材料:AZ31镁合金板材 Magnesium alloy material: AZ31 magnesium alloy plate
将镁合金材料制成试样分别通过以下预处理:打磨、钻孔、蒸馏水清洗、丙酮超声、蒸馏水清洗、吹干。 The magnesium alloy material is made into a sample and undergoes the following pretreatments: grinding, drilling, cleaning with distilled water, ultrasonication with acetone, cleaning with distilled water, and drying. the
将上述镁合金试样(共有7个试样)在表1中所述的电解液中阳极氧化,阳极氧化条件为:脉冲电源,恒流电流模式,电流密度10mA/cm2、阳极氧化时间15min、脉冲频率100Hz、占空比10%、温度控制在10-30℃。整个阳极氧化过程在搅拌的条件下进行。 The above-mentioned magnesium alloy samples (a total of 7 samples) were anodized in the electrolyte described in Table 1, the anodizing conditions were: pulse power supply, constant current mode, current density 10mA/cm 2 , anodizing time 15min , The pulse frequency is 100Hz, the duty cycle is 10%, and the temperature is controlled at 10-30°C. The whole anodizing process is carried out under stirring conditions.
表1电解液组成 Table 1 Electrolyte composition
镁合金阳极氧化膜的性能评价:见表2。 Performance evaluation of magnesium alloy anodized film: see Table 2. the
表2镁合金阳极氧化膜性能 Table 2 Magnesium alloy anodic oxidation film properties
盐雾试验按ASTMB117和ASTMB398标准进行。试验温度为35.5±0.5℃,所用腐蚀介质为pH=7的5%NaCl溶液。未经阳极氧化处理的AZ31镁合金盐雾8h出现腐蚀点;本方案处理AZ31镁合金其盐雾130h,试样表面均未出现腐蚀点。 The salt spray test is carried out according to ASTMB117 and ASTMB398 standards. The test temperature is 35.5±0.5°C, and the corrosion medium used is 5% NaCl solution with pH=7. Corrosion spots appeared on the AZ31 magnesium alloy without anodic oxidation treatment in salt spray for 8 hours; this program treated the AZ31 magnesium alloy in salt spray for 130 hours, and no corrosion spots appeared on the surface of the sample. the
实施例2 Example 2
镁合金材料:AZ31镁合金板材 Magnesium alloy material: AZ31 magnesium alloy plate
将镁合金材料制成试样分别通过以下预处理:打磨、钻孔、蒸馏水清洗、丙酮超声、 蒸馏水清洗、吹干。 The magnesium alloy material is made into samples and undergoes the following pretreatments: grinding, drilling, cleaning with distilled water, ultrasonication with acetone, cleaning with distilled water, and drying. the
电解液组成: Electrolyte composition:
NaOH:45g/L, NaOH: 45g/L,
Na2SiO3:50g/L, Na 2 SiO 3 : 50g/L,
Na2B4O7:70g/L, Na 2 B 4 O 7 : 70g/L,
葡萄糖:15g/L。 Glucose: 15g/L. the
镁合金试样在上述电解液中进行阳极氧化,脉冲电源,恒流电流模式,采用如表3所示的5种不同的阳极氧化工艺条件,进行阳极氧化。 The magnesium alloy sample was anodized in the above electrolyte, pulsed power supply, constant current mode, and 5 different anodizing process conditions as shown in Table 3 were used for anodizing. the
表3镁合金阳极氧化工艺条件 Table 3 Magnesium alloy anodizing process conditions
所得的镁合金阳极氧化膜的性能评价见表4。 The performance evaluation of the obtained magnesium alloy anodized film is shown in Table 4. the
表4镁合金阳极氧化膜性能 Table 4 Magnesium alloy anodic oxidation film properties
盐雾试验按ASTMB117和ASTMB398标准进行。试验温度为35.5±0.5℃,所用腐蚀介质为pH=7的5%NaCl溶液。未经阳极氧化处理的AZ31镁合金盐雾8h出现腐蚀点;本方案处理AZ31镁合金其盐雾120h,试样表面均未出现腐蚀点 The salt spray test is carried out according to ASTMB117 and ASTMB398 standards. The test temperature is 35.5±0.5°C, and the corrosion medium used is 5% NaCl solution with pH=7. Corrosion spots appeared on the AZ31 magnesium alloy without anodic oxidation treatment in salt spray for 8 hours; this program treated the AZ31 magnesium alloy with salt spray for 120 hours, and no corrosion spots appeared on the surface of the sample
实施例3 Example 3
镁合金材料:AZ31镁合金板材 Magnesium alloy material: AZ31 magnesium alloy plate
将镁合金材料制成试样分别通过以下预处理:打磨、钻孔、蒸馏水清洗、丙酮超声、蒸馏水清洗、吹干。 The magnesium alloy material is made into a sample and undergoes the following pretreatments: grinding, drilling, cleaning with distilled water, ultrasonication with acetone, cleaning with distilled water, and drying. the
电解液组成: Electrolyte composition:
NaOH:45g/L, NaOH: 45g/L,
Na2SiO3:50g/L, Na 2 SiO 3 : 50g/L,
Na2B4O7:70g/L, Na 2 B 4 O 7 : 70g/L,
可溶性淀粉:15g/L。 Soluble starch: 15g/L. the
将镁合金试样在上述电解液中进行阳极氧化。阳极氧化条件为:脉冲电源,恒流电流模式,电流密度10mA/cm2、阳极氧化时间20min、脉冲频率200Hz、占空比10%、温度控制在5-40℃整个阳极氧化过程在搅拌的条件下进行。
The magnesium alloy samples were anodized in the above electrolyte. The anodizing conditions are: pulse power supply, constant current mode, current density 10mA/cm 2 , anodizing time 20min, pulse frequency 200Hz,
氧化膜外观与性能:镁合金阳极氧化膜呈灰白色,光滑、均匀、致密;膜层厚度15-17μm,粗糙度0.326μm。 Oxide film appearance and performance: Magnesium alloy anodic oxide film is off-white, smooth, uniform and dense; the film thickness is 15-17 μm, and the roughness is 0.326 μm. the
将未经阳极氧化的镁合金和经过阳极氧化处理的镁合金在3.5%的氯化钠溶液中做Tafel极化曲线进行腐蚀评价,结果如图1所示。图中a表示未经阳极氧化的镁合金试样,b表示经本发明方法处理后的镁合金试样。a腐蚀电位为-1.496V,自腐蚀电流密度为338.84μA/cm2,优化处理的AZ31镁合金氧化膜腐蚀电位为-1.215V,腐蚀电位正移了0.281V,自腐蚀电流密度为0.14μA/cm2。镁合金工件表面及截面形貌如图2、图3所示,由图可知氧化膜均匀,致密。 The non-anodized magnesium alloy and the anodized magnesium alloy were evaluated by Tafel polarization curve in 3.5% sodium chloride solution, and the results are shown in Figure 1. In the figure, a represents a magnesium alloy sample without anodic oxidation, and b represents a magnesium alloy sample treated by the method of the present invention. a The corrosion potential is -1.496V, the self-corrosion current density is 338.84μA/cm 2 , the corrosion potential of the optimized AZ31 magnesium alloy oxide film is -1.215V, the corrosion potential is positively shifted by 0.281V, and the self-corrosion current density is 0.14μA/cm 2 cm 2 . The surface and cross-sectional morphology of the magnesium alloy workpiece are shown in Figure 2 and Figure 3. It can be seen from the figure that the oxide film is uniform and dense.
盐雾试验按ASTMB117和ASTMB398标准进行。试验温度为35.5±0.5℃,所用腐蚀介质为pH=7的5%NaCl溶液。未经阳极氧化处理的AZ31镁合金盐雾8h出现腐蚀点;本方案处理AZ31镁合金其盐雾150h,试样表面未出现腐蚀点。 The salt spray test is carried out according to ASTMB117 and ASTMB398 standards. The test temperature is 35.5±0.5°C, and the corrosion medium used is 5% NaCl solution with pH=7. Corrosion spots appeared on the AZ31 magnesium alloy without anodic oxidation treatment in salt spray for 8 hours; this program treated the AZ31 magnesium alloy in salt spray for 150 hours, and no corrosion spots appeared on the surface of the sample. the
实施例4 Example 4
镁合金材料:AZ31镁合金板材。 Magnesium alloy material: AZ31 magnesium alloy plate. the
将镁合金材料制成试样分别通过以下预处理:打磨、钻孔、蒸馏水清洗、丙酮超声、蒸馏水清洗、吹干。 The magnesium alloy material is made into a sample and undergoes the following pretreatments: grinding, drilling, cleaning with distilled water, ultrasonication with acetone, cleaning with distilled water, and drying. the
电解液组成: Electrolyte composition:
NaOH:45g/L, NaOH: 45g/L,
Na2SiO3:50g/L, Na 2 SiO 3 : 50g/L,
Na2B4O7:70g/L, Na 2 B 4 O 7 : 70g/L,
可溶性淀粉:15g/L。 Soluble starch: 15g/L. the
阳极氧化工艺:脉冲电源,恒流电流模式,电流密度25mA/cm2、阳极氧化时间25min、脉冲频率100Hz、占空比10%。
Anodizing process: pulse power supply, constant current mode, current density 25mA/cm 2 , anodizing time 25min, pulse frequency 100Hz,
获得灰黑色、均匀氧化膜,其膜层厚度55-70μm。 Obtain a gray-black, uniform oxide film with a film thickness of 55-70 μm. the
将未经阳极氧化的镁合金和经过阳极氧化处理的镁合金在3.5%的氯化钠溶液中做Tafel极化曲线进行腐蚀评价,镁合金基体腐蚀电位为-1.496V,自腐蚀电流密度为338.84μA/cm2,镁合金黑色氧化膜腐蚀电位为-1.284V,腐蚀电位正移了0.112V,自腐蚀电流密度为0.32μA/cm2。 The unanodized magnesium alloy and the anodized magnesium alloy were evaluated by Tafel polarization curve in 3.5% sodium chloride solution. The corrosion potential of the magnesium alloy substrate was -1.496V, and the self-corrosion current density was 338.84 μA/cm 2 , the corrosion potential of the black oxide film of the magnesium alloy is -1.284V, the corrosion potential is positively shifted by 0.112V, and the self-corrosion current density is 0.32μA/cm 2 .
盐雾试验按ASTMB117和ASTMB398标准进行。试验温度为35.5±0.5℃,所用腐蚀介质为pH=7的5%NaCl溶液。未经阳极氧化处理的AZ31镁合金盐雾8h出现腐蚀点;本方案处理AZ31镁合金其盐雾130h,试样表面未出现腐蚀点。 The salt spray test is carried out according to ASTMB117 and ASTMB398 standards. The test temperature is 35.5±0.5°C, and the corrosion medium used is 5% NaCl solution with pH=7. Corrosion spots appeared on the AZ31 magnesium alloy without anodic oxidation treatment in salt spray for 8 hours; this program treated the AZ31 magnesium alloy with salt spray for 130 hours, and no corrosion spots appeared on the surface of the sample. the
实施例5 Example 5
按照表5配制电解液,在AZ31镁合金表面进行阳极氧化处理。 Prepare the electrolyte according to Table 5, and perform anodic oxidation treatment on the surface of the AZ31 magnesium alloy. the
表5电解液配方 Table 5 Electrolyte formula
所得的镁合金阳极氧化膜的性能评价见表6 The performance evaluation of the obtained magnesium alloy anodized film is shown in Table 6
表6镁合金阳极氧化膜性能 Table 6 Magnesium alloy anodic oxidation film properties
盐雾试验按ASTMB117和ASTMB398标准进行。试验温度为35.5±0.5℃,所用腐蚀介质为pH=7的5%NaCl溶液。未经阳极氧化处理的AZ31镁合金盐雾8h出现腐蚀点;本方案处理AZ31镁合金其盐雾110h,试样表面均未出现腐蚀点。 The salt spray test is carried out according to ASTMB117 and ASTMB398 standards. The test temperature is 35.5±0.5°C, and the corrosion medium used is 5% NaCl solution with pH=7. Corrosion spots appeared on the AZ31 magnesium alloy without anodic oxidation treatment in salt spray for 8 hours; this program treated the AZ31 magnesium alloy in salt spray for 110 hours, and no corrosion spots appeared on the surface of the sample. the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110360067.2A CN102409383B (en) | 2011-11-09 | 2011-11-09 | Anodic oxidation method for magnesium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110360067.2A CN102409383B (en) | 2011-11-09 | 2011-11-09 | Anodic oxidation method for magnesium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102409383A true CN102409383A (en) | 2012-04-11 |
CN102409383B CN102409383B (en) | 2014-05-14 |
Family
ID=45911714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110360067.2A Expired - Fee Related CN102409383B (en) | 2011-11-09 | 2011-11-09 | Anodic oxidation method for magnesium alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102409383B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102828218A (en) * | 2012-09-14 | 2012-12-19 | 戚威臣 | Electrolyte used for magnesium alloy anode oxidation treatment and treatment method |
CN103938253A (en) * | 2013-01-23 | 2014-07-23 | 汉达精密电子(昆山)有限公司 | Magnesium alloy anodic oxidation electrolyte and method of processing magnesium alloy with the electrolyte |
WO2014149002A1 (en) * | 2013-03-20 | 2014-09-25 | Singapore Polytechnic | Method of forming a coating on a metal substrate |
CN105063721A (en) * | 2015-08-26 | 2015-11-18 | 华南理工大学 | Magnesium alloy anodizing electrolyte and method for preparing anodic oxide film by electrolyte |
CN106906509A (en) * | 2017-04-10 | 2017-06-30 | 四川理工学院 | One kind improves the corrosion proof method of Anodic Film On Magnesium Alloy |
CN107287641A (en) * | 2016-03-31 | 2017-10-24 | 比亚迪股份有限公司 | A kind of method of anodic oxidation of magnetism alloy liquid, preparation method and anodic oxidation of magnetism alloy |
CN107723781A (en) * | 2017-08-28 | 2018-02-23 | 中国兵器工业第五九研究所 | The manufacture method and plater of coating |
CN107937965A (en) * | 2017-12-18 | 2018-04-20 | 嘉兴学院 | A kind of magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy |
CN108048893A (en) * | 2017-12-18 | 2018-05-18 | 嘉兴学院 | A kind of environmental-protection type magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy |
CN108315800A (en) * | 2018-01-15 | 2018-07-24 | 山东科技大学 | A kind of preparation method of the differential arc oxidation of magnesium/magnesium alloy-alumina composite coating |
WO2020190251A1 (en) * | 2019-03-20 | 2020-09-24 | Олександр Анатолийовыч САМОЙЛЕНКО | Antibacterial ceramic coating and method for coating titanium alloy implants |
CN115537895A (en) * | 2022-10-14 | 2022-12-30 | 攀钢集团攀枝花钢铁研究院有限公司 | Preparation method of pure titanium surface colorful anodic oxide film |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1392295A (en) * | 2001-06-15 | 2003-01-22 | 中国科学院金属研究所 | Environment protection type anodic oxidation electrolytic liquid of magnesium and magnesium alloy and its use |
JP2003166098A (en) * | 2001-11-30 | 2003-06-13 | Kasatani:Kk | Composition for anodizing magnesium alloy and anodizing method |
JP2005068555A (en) * | 2003-08-01 | 2005-03-17 | Denka Himaku Kogyo Kk | Metallic material and surface treatment method |
FR2877018A1 (en) * | 2004-10-25 | 2006-04-28 | Snecma Moteurs Sa | Manufacture of a coating on a metal substrate, notably of aluminium, by micro arc oxidation to produce a wearing surface for aviation applications such as turbojet engine components |
CN101423945A (en) * | 2007-11-02 | 2009-05-06 | 中国科学院宁波材料技术与工程研究所 | Method for preparing light metal super-hydrophobic surface |
-
2011
- 2011-11-09 CN CN201110360067.2A patent/CN102409383B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1392295A (en) * | 2001-06-15 | 2003-01-22 | 中国科学院金属研究所 | Environment protection type anodic oxidation electrolytic liquid of magnesium and magnesium alloy and its use |
JP2003166098A (en) * | 2001-11-30 | 2003-06-13 | Kasatani:Kk | Composition for anodizing magnesium alloy and anodizing method |
JP2005068555A (en) * | 2003-08-01 | 2005-03-17 | Denka Himaku Kogyo Kk | Metallic material and surface treatment method |
FR2877018A1 (en) * | 2004-10-25 | 2006-04-28 | Snecma Moteurs Sa | Manufacture of a coating on a metal substrate, notably of aluminium, by micro arc oxidation to produce a wearing surface for aviation applications such as turbojet engine components |
CN101423945A (en) * | 2007-11-02 | 2009-05-06 | 中国科学院宁波材料技术与工程研究所 | Method for preparing light metal super-hydrophobic surface |
Non-Patent Citations (1)
Title |
---|
汪洋等: "添加剂对镁铝合金微弧氧化作用的研究", 《腐蚀与防护》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102828218A (en) * | 2012-09-14 | 2012-12-19 | 戚威臣 | Electrolyte used for magnesium alloy anode oxidation treatment and treatment method |
CN102828218B (en) * | 2012-09-14 | 2015-04-15 | 戚威臣 | Electrolyte used for magnesium alloy anode oxidation treatment and treatment method |
CN103938253A (en) * | 2013-01-23 | 2014-07-23 | 汉达精密电子(昆山)有限公司 | Magnesium alloy anodic oxidation electrolyte and method of processing magnesium alloy with the electrolyte |
WO2014149002A1 (en) * | 2013-03-20 | 2014-09-25 | Singapore Polytechnic | Method of forming a coating on a metal substrate |
CN105121711A (en) * | 2013-03-20 | 2015-12-02 | 新加坡理工学院 | Method of forming a coating on a metal substrate |
CN105063721A (en) * | 2015-08-26 | 2015-11-18 | 华南理工大学 | Magnesium alloy anodizing electrolyte and method for preparing anodic oxide film by electrolyte |
CN107287641A (en) * | 2016-03-31 | 2017-10-24 | 比亚迪股份有限公司 | A kind of method of anodic oxidation of magnetism alloy liquid, preparation method and anodic oxidation of magnetism alloy |
CN106906509A (en) * | 2017-04-10 | 2017-06-30 | 四川理工学院 | One kind improves the corrosion proof method of Anodic Film On Magnesium Alloy |
CN107723781A (en) * | 2017-08-28 | 2018-02-23 | 中国兵器工业第五九研究所 | The manufacture method and plater of coating |
CN107723781B (en) * | 2017-08-28 | 2020-05-08 | 中国兵器工业第五九研究所 | Method for producing coating and coating apparatus |
CN107937965A (en) * | 2017-12-18 | 2018-04-20 | 嘉兴学院 | A kind of magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy |
CN108048893A (en) * | 2017-12-18 | 2018-05-18 | 嘉兴学院 | A kind of environmental-protection type magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy |
CN108048893B (en) * | 2017-12-18 | 2019-07-16 | 嘉兴学院 | A kind of environment-friendly magnesium alloy anodic oxidation electrolyte and magnesium alloy anodic oxidation method |
CN107937965B (en) * | 2017-12-18 | 2019-07-23 | 嘉兴学院 | A kind of magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy |
CN108315800A (en) * | 2018-01-15 | 2018-07-24 | 山东科技大学 | A kind of preparation method of the differential arc oxidation of magnesium/magnesium alloy-alumina composite coating |
WO2020190251A1 (en) * | 2019-03-20 | 2020-09-24 | Олександр Анатолийовыч САМОЙЛЕНКО | Antibacterial ceramic coating and method for coating titanium alloy implants |
CN115537895A (en) * | 2022-10-14 | 2022-12-30 | 攀钢集团攀枝花钢铁研究院有限公司 | Preparation method of pure titanium surface colorful anodic oxide film |
Also Published As
Publication number | Publication date |
---|---|
CN102409383B (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102409383A (en) | Magnesium Alloy Anodizing Method | |
CN105063721B (en) | The method that magnesium alloy anodic oxidation electrolyte and the electrolyte prepare anode oxide film | |
CN102605402A (en) | Preparation method of wear-resistant toughened composite ceramic layer on surface of aluminum alloy product | |
CN104250813B (en) | A kind of preparation method of magnesium alloy super-hydrophobic automatically cleaning corrosion-resistant surface | |
CN105543908B (en) | A kind of non-cyanide alkali is bright to roll copper-plated solution and method | |
CN101139729A (en) | Preparation method of micro-arc oxidation coating with high solar absorptivity and high emissivity | |
CN103205760A (en) | Preparation method of Ag2S/TiO2 composite film photoanode for photogenerated cathodic protection | |
CN103014804A (en) | Aluminum alloy with army-green micro-arc oxidation ceramic membrane on surface and preparation method of aluminum alloy | |
CN102828218B (en) | Electrolyte used for magnesium alloy anode oxidation treatment and treatment method | |
CN108950649A (en) | A kind of preparation method of magnesium/magnesium alloy surface by micro-arc oxidation water-bath sealing of hole composite coating | |
CN102747406B (en) | Magnesium alloy anodic oxidation electrolyte and magnesium alloy surface treatment method | |
CN107151810B (en) | Aluminium alloy extrusions and its manufacturing method | |
CN105297082A (en) | Method for preparing super-hydrophobic film layers on metal surfaces through one-step method | |
CN106884191A (en) | A kind of electrolyte for differential arc oxidation, differential arc oxidation method and application | |
CN100519840C (en) | Magnesium alloy surface phosphorization treatment method | |
CN107937965B (en) | A kind of magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy | |
CN103451695B (en) | High corrosion resistance nano nickel adds flawless micro-hard chrome composite deposite electroplate liquid and electrolytic coating production technique | |
CN105220216B (en) | A kind of aluminum or aluminum alloy electrochemical polishing method | |
CN105177659B (en) | A kind of process of surface treatment for improving copper foil corrosion resistance | |
CN115058727A (en) | Surface modification method for titanium-based bipolar plate of proton exchange membrane electrolytic cell | |
CN101104933B (en) | Method for preparing magnesium alloy rare-earth conversion film by cathode electrolysis | |
CN103898563A (en) | Method for electroplating nickel on surface of magnesium-lithium alloy | |
CN105386045A (en) | Magnesium alloy surface treatment method | |
Yu et al. | Effect of temperature on structure and corrosion resistance for electroless NiWP coating | |
CN107236977A (en) | A kind of electroplating pretreatment process optimization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140514 Termination date: 20141109 |
|
EXPY | Termination of patent right or utility model |