JPH10158096A - Far infrared ray radiator and its production - Google Patents
Far infrared ray radiator and its productionInfo
- Publication number
- JPH10158096A JPH10158096A JP31396896A JP31396896A JPH10158096A JP H10158096 A JPH10158096 A JP H10158096A JP 31396896 A JP31396896 A JP 31396896A JP 31396896 A JP31396896 A JP 31396896A JP H10158096 A JPH10158096 A JP H10158096A
- Authority
- JP
- Japan
- Prior art keywords
- far
- substrate
- alloy
- film
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、輻射加熱を利用す
る分野において、赤外線、遠赤外線を有効に利用し得る
遠赤外線放射体とその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a far-infrared radiator capable of effectively utilizing infrared rays and far-infrared rays in a field utilizing radiant heating, and a method for producing the same.
【0002】[0002]
【従来の技術】従来から、熱の利用形態の多くは、対流
(熱風)、伝導(直火)が主に用いられ、放射は193
0年代から自動車の塗膜塗装乾燥技術に応用されてきた
が、コスト面による制約から一般化されるには至らなか
った。しかしながら、1978年頃から市場で遠赤外線
ブームが始まると、あらゆる分野で遠赤外線の利用と応
用が試みられ、遠赤外線加熱システムも登場したが、物
理的知識の不足、誤解などもあって広く普及されるには
至っていない。ところが近年、工業製品のファイン化が
進むにつれて、ハロゲンガスを封入した近・中赤外線放
射体の開発等により、再び放射加熱方式が見直されるよ
うになってきた。特に、金属塗装物体の加熱乾燥には、
近・中赤外線と熱風を併用する方式が注目を集めてい
る。2. Description of the Related Art Conventionally, most of heat utilization forms mainly use convection (hot air) and conduction (direct fire), and radiate 193 heat.
It has been applied to the coating and drying technology of automobiles since the 0's, but was not generalized due to cost restrictions. However, when the far-infrared boom began on the market around 1978, the use and application of far-infrared rays were tried in various fields, and far-infrared heating systems also appeared. However, due to lack of physical knowledge and misunderstanding, they were widely spread. Has not been reached. However, in recent years, as industrial products have become finer, the radiant heating method has been reviewed again due to the development of near / mid infrared radiators in which halogen gas is sealed. In particular, for heating and drying metal painted objects,
Attention has been focused on a system that uses near-mid infrared and hot air together.
【0003】[0003]
【発明が解決しようとする課題】このような背景の中
で、遠赤外線を利用した加熱手段が注目されており、こ
の種の遠赤外線に対する注目は、セラミックス放射体が
開発されたことによるものと言われている。従来、遠赤
外線放射体の多くのものは、セラミックスからなるもの
であるが、セラミックス製の遠赤外線放射体の製造プロ
セスは、原料粉末を造粒して混合し、仮焼してから粉砕
し、この粉砕物を焼結原料として更に結合材を混合し、
所望の形状に成形し、更に仮焼工程と加工工程と焼結工
程を経て製造するとういうように非常に多くの工程を経
るので、少なくとも簡単な工程と言えるものではない問
題がある。また、セラミックス製の遠赤外線放射体の問
題点として、非常に脆く、壊れ易いという問題があり、
更に複雑な形状に仕上を行うことは殆ど不可能な問題が
ある。更に、その品質、経済性、並びに成膜技術を総合
的に見ると、いずれも技術的に確立されていないものが
多い問題がある。In such a background, attention has been paid to heating means using far infrared rays. This kind of far infrared rays is attributed to the development of ceramic radiators. It is said. Conventionally, many far-infrared radiators are made of ceramics.However, the manufacturing process of far-infrared radiators made of ceramics involves granulating and mixing raw material powders, calcining them, and pulverizing them. Using the pulverized material as a raw material for sintering and further mixing a binder,
Since a large number of steps such as forming into a desired shape, and further manufacturing through a calcination step, a processing step, and a sintering step are performed, there is a problem that the step is not at least a simple step. In addition, as a problem of the ceramic far-infrared radiator, there is a problem that it is very fragile and fragile,
There is a problem that it is almost impossible to finish a complicated shape. Furthermore, there is a problem that many of them are not technically established when considering the quality, economy and film forming technology comprehensively.
【0004】本願発明は前記事情に鑑みてなされたもの
で、従来のセラミックス系の遠赤外線放射体よりも遠赤
外線放射特性に優れ、経済的に安価に簡便に高品質のも
のを容易に得ることができる遠赤外線放射体およびその
製造方法を提供することを目的とする。[0004] The present invention has been made in view of the above-mentioned circumstances, and is intended to easily obtain a high-quality material easily and economically at a lower cost than conventional ceramic far-infrared radiators. It is an object of the present invention to provide a far-infrared radiator and a method for producing the same.
【0005】[0005]
【課題を解決するための手段】本発明は前記の課題を解
決するために、Ti、Al、Mg、Zr、Ta、Nbの
うちから選ばれた単体金属又は合金が少なくとも表面部
分に形成されてなる基材の表面に、前記単体金属を含む
スピネル構造を有する酸化皮膜が形成されてなることを
特徴とする。前記構成の皮膜が、基材の表面に付着され
てなる構成とすることもできる。According to the present invention, in order to solve the above-mentioned problems, a single metal or alloy selected from Ti, Al, Mg, Zr, Ta, and Nb is formed on at least a surface portion. An oxide film having a spinel structure containing the single metal is formed on a surface of the base material. The film having the above-described configuration may be configured to be attached to the surface of a substrate.
【0006】更に本発明は、遠赤外線放射体を製造する
にあたり、Ti、Al、Mg、Zr、Ta、Nbのうち
から選ばれた単体金属、又は合金からなる基材の表面に
電気化学反応あるいは化学反応によりスピネル構造をな
す酸化皮膜を形成することを特徴とする。また、前記電
気化学反応、あるいは化学反応を行わせる反応液とし
て、Cr、Fe、Co、Zn、Mn、Ni、Al、T
i、Zr、Mgのうち、少なくとも1つ以上が含有され
た水溶性化合物を用いることができる。Further, the present invention relates to a method for producing a far-infrared radiator, wherein an electrochemical reaction or a chemical reaction is carried out on the surface of a substrate made of a single metal or alloy selected from Ti, Al, Mg, Zr, Ta and Nb. It is characterized in that an oxide film having a spinel structure is formed by a chemical reaction. Further, as a reaction solution for performing the electrochemical reaction or the chemical reaction, Cr, Fe, Co, Zn, Mn, Ni, Al, T
A water-soluble compound containing at least one of i, Zr, and Mg can be used.
【0007】[0007]
【発明の実施の形態】図1は、本発明に係る遠赤外線放
射体の第1の例を示すもので、この例の遠赤外線放射体
1は、板状の基材2の全表面を皮膜3で覆って構成され
ている。前記基材2は、Al、Ti、Mg、Zr、T
a、Nbの中から選択される単体金属又は合金からな
り、具体的にはこれら元素の中の単体金属から、あるい
はこれら元素の合金から構成される。これらの元素は、
電流を一方向に流すことのできる整流効果を発揮自在な
元素であり、陽極酸化によって整流作用のできる陽極酸
化皮膜を生成可能な金属類である。なお、前記基材2と
して、前記単体金属又は合金の被覆層が、他の金属の基
材あるいは非金属基材の表面に被覆形成されたものを基
材として用いることもできる。前記皮膜3は、基材2を
構成する金属元素の酸化物、あるいは、基材2を構成す
る元素を含む複酸化物、即ち、スピネル構造物の皮膜で
ある。スピネル構造物は、金属元素AとBとがAB2O4
の化学式で示される複酸化物となったものである。より
具体的には、MgCr2O4、MgAl2O4、ZnAl2
O4、MnAl2O4、FeAl2O4、CoAl2O4、N
iAl2O4、Mg(TiMg)O4、ZnFeO4、Fe
(CuFe)O4、FeCr2O4などを例示することが
できる。FIG. 1 shows a first example of a far-infrared radiator according to the present invention. In this example, a far-infrared radiator 1 covers the entire surface of a plate-shaped base material 2. 3. The substrate 2 is made of Al, Ti, Mg, Zr, T
It is composed of a single metal or an alloy selected from a and Nb. Specifically, it is composed of a single metal of these elements or an alloy of these elements. These elements are
It is an element that can exhibit a rectifying effect that allows current to flow in one direction, and is a metal that can generate an anodic oxide film that can perform rectifying action by anodic oxidation. In addition, as the base material 2, a material in which the coating layer of the single metal or alloy is coated on the surface of another metal base material or a nonmetallic base material can be used as the base material. The film 3 is an oxide of a metal element constituting the substrate 2 or a double oxide containing the element constituting the substrate 2, that is, a film of a spinel structure. In the spinel structure, the metal elements A and B are AB 2 O 4
Is a double oxide represented by the following chemical formula: More specifically, MgCr 2 O 4 , MgAl 2 O 4 , ZnAl 2
O 4 , MnAl 2 O 4 , FeAl 2 O 4 , CoAl 2 O 4 , N
iAl 2 O 4 , Mg (TiMg) O 4 , ZnFeO 4 , Fe
(CuFe) O 4 , FeCr 2 O 4 and the like can be exemplified.
【0008】前記の遠赤外線放射体1を得るには、例え
ば、Mg-Mn合金、Mg、Al、MgとTiとZrを
含むAl合金、Ti箔、軟鋼板などからなる基材2を電
解浴に浸漬して陽極酸化処理を施す。電解浴の種類と処
理としては、以下のものを例示することができる。ま
た、各電解処理を施した際に生成されるスピネル酸化物
の組成も例示する。 電解例1:20〜30%NH4HF、7〜10%H3PO
4、6〜12%Na2Cr2O7・2H2Oの混合浴でMg-
Mn合金あるいはMg基材を電解。 スピネル酸化物:MgCr2O4 電解例2:硫酸アンモニウム(30g/l)と重クロム
酸ナトリウム(30g/l)とアンモニア水(28%:
2.5ml/l)の混合浴でAl-Mg合金基材を電解。 スピネル酸化物:MgAl2O4 In order to obtain the above-mentioned far-infrared radiator 1, for example, a substrate 2 made of a Mg—Mn alloy, Mg, Al, an Al alloy containing Mg, Ti and Zr, a Ti foil, a mild steel plate, or the like is treated with an electrolytic bath. And subjected to anodizing treatment. Examples of the type and treatment of the electrolytic bath include the following. Further, the composition of the spinel oxide generated when each electrolytic treatment is performed is also exemplified. Electrolysis example 1: 20 to 30% NH 4 HF, 7 to 10% H 3 PO
4, 6~12% Na 2 Cr 2 O 7 · 2H 2 at O mixed bath of Mg-
Electrolyze Mn alloy or Mg base. Spinel oxide: MgCr 2 O 4 Electrolysis Example 2: Ammonium sulfate (30 g / l), sodium bichromate (30 g / l) and aqueous ammonia (28%:
Electrolysis of Al-Mg alloy substrate in a mixed bath of 2.5 ml / l). Spinel oxide: MgAl 2 O 4
【0009】電解例3:3%クロム酸電解浴に、0.5
%MgSO4、0.5%Na2Cr2O7・2H2Oを添加し
た混合浴でAl基材を電解。 スピネル酸化物:MgAl2O4、MgCr2O4 電解例4:0.5%硫酸ニッケル含有硫酸浴で4Mg-1
Ti-1Zr-Al合金を電解。 スピネル酸化物:MgAl2O4、Mg(TiMg)O4 電解例5:2.5%リン酸、3.5%硫酸、1%過酸化水
素、2%Na2Cr2O7・2H2Oの混合浴でTi箔を電
解。 スピネル酸化物:TiCr2O4 電解例6:0.5%Mg(OH)2,0.5%Zn(O
H)2、0.5%水酸化銅、0.5%水酸化クロム、15
%NaOHの混合浴で電解。 スピネル酸化物:ZnFeO4、Fe(CuFe)O4、
FeCr2O4 電解例7:Mgを含むAl板を0.5%Na2Cr2O7・
2H2Oと2%NaOHを含む熱浴に浸漬する。 スピネル酸化物:MgAl2O4、MgCr2O4 Electrolysis Example 3: 0.5% chromic acid in an electrolytic bath
% MgSO 4, electrolysis Al base with mixing bath was added 0.5% Na 2 Cr 2 O 7 · 2H 2 O. Spinel oxide: MgAl 2 O 4 , MgCr 2 O 4 Electrolysis Example 4: 4Mg-1 in a sulfuric acid bath containing 0.5% nickel sulfate
Electrolysis of Ti-1Zr-Al alloy. Spinel oxides: MgAl 2 O 4, Mg ( TiMg) O 4 electrolytic Example 5: 2.5% phosphoric acid, 3.5% sulfuric acid, 1% hydrogen peroxide, 2% Na 2 Cr 2 O 7 · 2H 2 O Electrolysis of Ti foil in mixed bath. Spinel oxide: TiCr 2 O 4 Electrolysis Example 6: 0.5% Mg (OH) 2 , 0.5% Zn (O
H) 2 , 0.5% copper hydroxide, 0.5% chromium hydroxide, 15
% Electrolysis in a mixed bath of NaOH. Spinel oxide: ZnFeO 4 , Fe (CuFe) O 4 ,
FeCr 2 O 4 electrolysis example 7: 0.5% Na 2 Cr 2 O 7.
Immerse in a hot bath containing 2H 2 O and 2% NaOH. Spinel oxide: MgAl 2 O 4 , MgCr 2 O 4
【0010】以上のような電解処理あるいは浸漬処理を
施すことで基材表面に皮膜3を形成することができる。
なお、電解時の電流波形については、直流、交流、交直
重畳、交直併用、不完全整流波形、パルス波形、矩形波
などが用いられる。電解方法としては、定電流、定電
圧、定電力法および連続、断続あるいは電流回復を応用
した高速陽極酸化法などで行なうことができる。以上の
中でパルス波形や不完全整流波形を用いて不均質な陽極
酸化皮膜を生成させたり、断続電解や電流回復法により
多層構造の陽極酸化皮膜を形成させて、より高い放射率
のものとすることもできる。The film 3 can be formed on the surface of the base material by performing the electrolytic treatment or the immersion treatment as described above.
As the current waveform at the time of electrolysis, DC, AC, AC / DC superposition, AC / DC combined use, incomplete rectified waveform, pulse waveform, rectangular wave, and the like are used. As an electrolysis method, a constant current, a constant voltage, a constant power method, a high-speed anodic oxidation method using continuous, intermittent, or current recovery can be used. In the above, a nonuniform anodic oxide film is generated using pulse waveforms or incomplete rectification waveforms, or a multi-layer anodic oxide film is formed by intermittent electrolysis or current recovery method, and a higher emissivity is obtained. You can also.
【0011】前記スピネル構造の複酸化物を有する皮膜
3を備えた遠赤外線放射体1であるならば、優れた耐熱
性が得られるともに、実用上有効とされる3〜30μm
の波長領域における全放射率においても、従来特殊な合
金を用いなくては達成が困難であった70%以上の安定
した放射率が極めて薄い皮膜のもので得られる。このた
め加工性、強度など使用目的に適した種々の材料を用い
ることができる。If the far-infrared radiator 1 is provided with the coating 3 having the spinel-structured double oxide, excellent heat resistance can be obtained and practically effective 3 to 30 μm.
With respect to the total emissivity in the wavelength region of, a stable emissivity of 70% or more, which has conventionally been difficult to achieve without using a special alloy, can be obtained with an extremely thin film. For this reason, various materials suitable for the purpose of use, such as workability and strength, can be used.
【0012】なお、前記の例においては、基材2の全表
面に皮膜3を設けたが、図2に示すように基材2の一面
のみに皮膜4を設ける構成とすることもできるのは勿論
である。また、前記スピネル構造の複酸化物を有する皮
膜を粉砕して粉末として得ることで、この粉末を基板や
基材に付着させることで、遠赤外線放射体を得ることも
できる。このようにすることで、基材の形状や材質にと
らわれずに自由な形態の基材の所望の部分に必要な厚さ
に皮膜を形成できるようになり、得られる遠赤外線放射
体として任意の形状のものが得られる。また、この場合
は、基材として陽極酸化や化成処理が困難な材料でも適
用可能であるので、基材を選ぶことなく遠赤外線放射体
を得ることができる。In the above-described example, the coating 3 is provided on the entire surface of the base material 2. However, as shown in FIG. Of course. Further, the film having the spinel-structured double oxide is pulverized to obtain a powder, and by attaching the powder to a substrate or a base material, a far-infrared radiator can be obtained. By doing so, it is possible to form a film on a desired portion of a free-form base material regardless of the shape and material of the base material and to obtain a film having a desired thickness. A shape is obtained. Further, in this case, a material that is difficult to be subjected to anodic oxidation or chemical conversion treatment can be used as the substrate, so that a far-infrared radiator can be obtained without selecting a substrate.
【0013】[0013]
(実施例1)Mg-Mn合金(Mn:0.82重量%(以
下合金の組成を示す%は重量%とする。)、Fe:0.
005%、Si:0.003%、Zn:0.014%、C
u:0.001%、Ni:0.001%、Al:17pp
m、残部Mg)の押出材試料を酸性フッ化アンモン(N
H4HF 200〜300g/l)、リン酸(H3PO 4
70〜100g/l)、重クロム酸ナトリウム(Na
2Cr2O7・2H2O60〜120g/l)からなる60
〜90℃の電解浴で、60〜100Vにて陽極酸化する
ことにより厚さ約25μmの陽極酸化皮膜を生成させて
試料1を得た。 この皮膜を有する試料1について、3
〜30μmの遠赤外線波長領域での250℃における黒
体を基準とした全放射率の測定と色調検査を行い、X線
回折による生成物の同定を行ったところ、以下の表1の
結果と図3に示すX線回折チャートを得た。 (Example 1) Mg-Mn alloy (Mn: 0.82% by weight (hereinafter
The percentage indicating the composition of the lower alloy is expressed by weight%. ), Fe: 0.
005%, Si: 0.003%, Zn: 0.014%, C
u: 0.001%, Ni: 0.001%, Al: 17 pp
m, extruded material sample of the balance Mg) was treated with ammonium acid fluoride (N
HFourHF 200-300 g / l), phosphoric acid (HThreePO Four
70-100 g / l), sodium bichromate (Na
TwoCrTwoO7・ 2HTwoO60-120 g / l)
Anodize at ~ 100V in electrolytic bath at ~ 90 ° C
To form an anodic oxide film about 25 μm thick
Sample 1 was obtained. For sample 1 having this coating, 3
Black at 250 ° C. in the far infrared wavelength region of 3030 μm
Performs measurement of total emissivity and color tone based on body, and X-ray
The product was identified by diffraction.
The results and the X-ray diffraction chart shown in FIG. 3 were obtained.
【0014】また、比較のために、前記Mg-Mn合金
と同一組成の押出材試料にJISH8651の5種に従
う防食処理(陽極酸化処理)を施して得た試料2と、前
記Mg-Mn合金と同一組成の押出材試料にJISH8
651の6種に従う陽極酸化を施して得た試料3と、前
記Mg-Mn合金と同一組成の押出材試料をクロム酸に
より化成処理して得た試料4のそれぞれの試料について
も前記試料1と同等の検査を行った。For comparison, a sample 2 obtained by subjecting an extruded material sample having the same composition as that of the Mg-Mn alloy to an anticorrosion treatment (anodizing treatment) in accordance with five types of JIS H8651, and the Mg-Mn alloy Extruded material samples of the same composition
651 and an extruded sample having the same composition as the Mg-Mn alloy and a sample 4 obtained by chemical conversion treatment with chromic acid. An equivalent test was performed.
【0015】[0015]
【表1】 [Table 1]
【0016】なお、前記JIS5種の防食処理とは、硫
酸アンモニウム(30g/l)と重クロム酸ナトリウム
(30g/l)とアンモニア水(28%:2.5ml/
l)の混合浴を用い、浴温を55℃、電流密度0.6A
/dm2、電解時間20分の条件で処理するものであ
る。また、前記JIS6種の防食処理とは、苛性ソーダ
(240g/l)、エチレングリコール(83ml/
l)、シュウ酸ナトリウム(2.5g/l)の混合浴を
用い、浴温を75℃、電流密度1.5A/dm2、電解時
間を20分とする第1処理を行った後、重クロム酸ナト
リウム(50g/l)、酸性フッ化ナトリウム(50g
/l)の混合浴を用い、この混合浴に試料を浸漬して中
和後、充分に水洗と湯洗いし、乾燥するものである。The above-mentioned five kinds of anticorrosion treatments of JIS are defined as ammonium sulfate (30 g / l), sodium dichromate (30 g / l) and aqueous ammonia (28%: 2.5 ml / l).
1) using a mixed bath, a bath temperature of 55 ° C. and a current density of 0.6 A
/ Dm 2 and an electrolysis time of 20 minutes. The JIS 6 kinds of anticorrosion treatment include caustic soda (240 g / l) and ethylene glycol (83 ml /
l), using a mixed bath of sodium oxalate (2.5 g / l), performing a first treatment at a bath temperature of 75 ° C., a current density of 1.5 A / dm 2 , and an electrolysis time of 20 minutes. Sodium chromate (50 g / l), sodium acid fluoride (50 g
/ L), the sample is immersed in the mixed bath, neutralized, washed thoroughly with water and hot water, and dried.
【0017】表1に示す結果から明らかなように、表面
に酸化物とスピネル構造物とからなる複酸化物の皮膜が
存在する試料1にあっては、放射率が88%と極めて高
い値が得られた。これに対して表面に酸化物とスピネル
構造物とからなる複酸化物が存在しない試料3、4にあ
っては、放射率が18あるいは25%であり、本発明品
である試料1よりも著しく低い値であった。なお、試料
をMg-Mn合金からMg単体の押出材試料に変えて前
記と同等の処理を行って得た試料に対して前記と同等の
試験を行った結果、前記と同様の結果を得ることができ
た。As is clear from the results shown in Table 1, Sample 1 having a double oxide film composed of an oxide and a spinel structure on the surface has an extremely high emissivity of 88%. Obtained. On the other hand, in Samples 3 and 4 in which the double oxide composed of the oxide and the spinel structure does not exist on the surface, the emissivity is 18 or 25%, which is significantly higher than that of Sample 1 of the present invention. It was a low value. It should be noted that, as a result of performing a test equivalent to the above on a sample obtained by performing the same treatment as above by changing the sample from an Mg-Mn alloy to an extruded material sample of Mg alone, it is possible to obtain the same result as above. Was completed.
【0018】(実施例2)実施例1の試料1に施した処
理と同等の処理をMgの基板に施し、厚さ25μmの陽
極酸化皮膜を形成した後、この試料を10%硝酸溶液に
浸漬してMg基板を溶解し、充分に洗浄、乾燥して陽極
酸化皮膜のみを取り出し、これを陶磁器製ボールミルで
300メッシュ以下の粒径に微粉砕して粉末を得た。こ
の粉末をバインダーとして、PVA(ポリビニルアルコ
ール)を1%含む水とアルコールの溶液に2%程度分散
させて処理液を得た。基板として軟鋼板を前記処理液に
浸漬し、500Vの定電圧で電気泳動電着を行い、基板
表面に厚さ15μmの電着皮膜を形成した。この基板を
処理液から取り出し、加熱してPVAのバインダー効果
を強化後、改めて3〜30μmの遠赤外線波長領域にて
250℃で遠赤外線分光放射率を測定した。また、皮膜
のX線回折と色調も調査した。その結果、皮膜は、暗緑
色を呈し、放射率は約82%で、生成物のX線回折像は
前記実施例1の試料1のものと同じものであった。(Embodiment 2) The same processing as that performed on the sample 1 of the embodiment 1 is performed on an Mg substrate to form an anodic oxide film having a thickness of 25 μm, and then this sample is immersed in a 10% nitric acid solution. Then, the Mg substrate was melted, sufficiently washed and dried to take out only the anodic oxide film, which was finely pulverized with a ceramic ball mill to a particle size of 300 mesh or less to obtain a powder. Using this powder as a binder, about 2% was dispersed in a solution of water and alcohol containing 1% of PVA (polyvinyl alcohol) to obtain a treatment liquid. A mild steel plate as a substrate was immersed in the treatment solution, and electrophoretic deposition was performed at a constant voltage of 500 V to form an electrodeposition film having a thickness of 15 μm on the substrate surface. The substrate was taken out of the processing solution and heated to enhance the binder effect of PVA, and then the far-infrared spectral emissivity was measured again at 250 ° C. in the far-infrared wavelength region of 3 to 30 μm. The X-ray diffraction and color tone of the coating were also investigated. As a result, the film showed a dark green color, the emissivity was about 82%, and the X-ray diffraction image of the product was the same as that of the sample 1 of Example 1 described above.
【0019】Mgを4%、Tiを1%、含有するAl合
金の試料を作成し、この試料に対し硫酸ニッケルを0.
5%含有した硫酸水溶液において陽極酸化処理を行い、
表面に厚さ20μmの酸化皮膜を生成させた。この試料
について3〜30μmの遠赤外線波長域における250
℃の分光放射率を測定したところ、放射率87%の値を
得た。この皮膜の色は、黄色みがかったベージュ色を呈
した。また、X線回折結果ではAl2O3、MgAl
2O3、Mg(TiMg)O4、NiOなどの存在を確認
することができた。A sample of an Al alloy containing 4% of Mg and 1% of Ti was prepared.
Anodizing treatment is performed in an aqueous sulfuric acid solution containing 5%,
An oxide film having a thickness of 20 μm was formed on the surface. For this sample, 250 in the far infrared wavelength range of 3 to 30 μm.
Measurement of the spectral emissivity at ° C. gave an emissivity of 87%. The color of this film was yellowish beige. Also, according to the X-ray diffraction results, Al 2 O 3 , MgAl
The presence of 2 O 3 , Mg (TiMg) O 4 , NiO, etc. could be confirmed.
【0020】(実施例4)軟鋼板を水酸化マグネシウム
0.5%、水酸銅0.5%、水酸化クロム0.5%を含む
15%濃度の水酸化ナトリウム水溶液中において、定電
圧電解を行ったところ、褐色の厚さ10μmの鉄の陽極
酸化皮膜を得た。この陽極酸化皮膜の250℃の放射率
は90%を示した。この陽極酸化皮膜のX線回折の結
果、Fe2O3、ZnFe2O4、Fe(CuFe)O4、
Fe(MgFe)O4などの存在を確認することができ
た。Example 4 A mild steel sheet was subjected to constant voltage electrolysis in a 15% aqueous sodium hydroxide solution containing 0.5% magnesium hydroxide, 0.5% copper hydroxide and 0.5% chromium hydroxide. As a result, a brown anodized film of iron having a thickness of 10 μm was obtained. The emissivity of the anodized film at 250 ° C. was 90%. As a result of X-ray diffraction of this anodized film, Fe 2 O 3 , ZnFe 2 O 4 , Fe (CuFe) O 4 ,
The presence of Fe (MgFe) O 4 and the like could be confirmed.
【0021】(実施例5)Mgを含むA5052アルミ
ニウム板を重クロム酸ソーダ5%、水酸化ナトリウム2
%を含む95℃の熱浴中に30分間浸漬処理し、厚さ5
μmの化成処理皮膜を生成させた。この皮膜の250℃
の遠赤外線放射特性は90%を示し、X線回折試験結果
からAl2O3、MgAl2O4、MgCr2O4などの存在
を同定することができた。また、この皮膜の色は国防色
を呈示した。Example 5 An A5052 aluminum plate containing Mg was prepared by using sodium bichromate 5% and sodium hydroxide 2
% In a hot bath at 95 ° C. for 30 minutes to a thickness of 5%.
A μm chemical conversion coating was produced. 250 ° C of this film
Has a far-infrared radiation characteristic of 90%, and the presence of Al 2 O 3 , MgAl 2 O 4 , MgCr 2 O 4 and the like can be identified from the results of the X-ray diffraction test. Also, the color of this film exhibited national defense color.
【0022】(実施例6)純Ti箔を複数用意し、これ
らをリン酸(25g/l)と硫酸(35g/l)と過酸
化水素(10g/l)の電解浴にて陽極酸化処理して厚
さ4μmと8μmの陽極酸化皮膜をそれぞれ形成したも
のを比較材として得た。更に、本願実施例として上記の
電解液に、重クロム酸ナトリウム(Na2Cr2O7:2
0g/l)を加えて電解浴を形成し、この電解浴を用い
て前記と同様に厚さ4μmと8μmの陽極酸化皮膜をそ
れぞれ形成したものを試料として得た。250℃にて前
記各試料の3〜30μmの電磁波長域の分光遠赤外線放
射率を求め全放射率で比較した。また、各試料のX線回
折により、両者の生成物の同定を行った。以上結果を表
2にまとめて示す。(Example 6) A plurality of pure Ti foils were prepared, and these were anodized in an electrolytic bath of phosphoric acid (25 g / l), sulfuric acid (35 g / l), and hydrogen peroxide (10 g / l). The anodic oxide films having a thickness of 4 μm and 8 μm, respectively, were obtained as comparative materials. Further, as an example of the present application, the above-mentioned electrolyte solution was added to sodium dichromate (Na 2 Cr 2 O 7 : 2).
(0 g / l) was added to form an electrolytic bath. Using the electrolytic bath, anodic oxide films having a thickness of 4 μm and 8 μm were formed in the same manner as described above to obtain samples. At 250 ° C., the spectral far-infrared emissivity of each sample in the electromagnetic wavelength range of 3 to 30 μm was determined and compared with the total emissivity. Further, both products were identified by X-ray diffraction of each sample. The results are summarized in Table 2.
【0023】[0023]
【表2】 [Table 2]
【0024】表2に示すように電解液に重クロム酸ナト
リウムを用いない場合に比べて用いた方が全放射率の優
秀な遠赤外線放射体を製造できていることが明らかにな
った。また、電解液に重クロム酸ナトリウムを含ませて
処理した場合に、X線回折の結果から、複酸化物を生成
できていることが明らかになった。As shown in Table 2, it was found that the use of sodium bichromate as the electrolyte solution produced a far-infrared radiator having an excellent total emissivity as compared with the case where sodium bichromate was not used. Further, when the electrolyte was treated with sodium dichromate, the result of X-ray diffraction revealed that a double oxide could be formed.
【0025】(実施例7)A1050アルミニウム板を
3%クロム酸電解浴にて陽極酸化し、アルミニウム板の
表面に厚さ5μmの陽極酸化皮膜を形成して比較材試料
とした。次に、本願発明材として、前記の電解液に硫酸
マグネシウム(MgSO4:5g/l)と重クロム酸ナ
トリウム(Na2Cr2O7:5g/l)を加えて電解浴
を形成し、この電解浴を用いてA1050アルミニウム
板の表面に厚さ5μmの陽極酸化皮膜を形成して本発明
試料とした。これらの両試料に対して250℃にて前記
各試料の3〜30μmの電磁波長域の分光遠赤外線放射
率を求め全放射率で比較した。また、各試料のX線回折
により、両者の生成物の同定を行った。以上結果を表3
にまとめて示す。Example 7 An A1050 aluminum plate was anodized in a 3% chromic acid electrolytic bath to form an anodized film having a thickness of 5 μm on the surface of the aluminum plate to obtain a comparative material sample. Next, as a material of the present invention, magnesium sulfate (MgSO 4 : 5 g / l) and sodium dichromate (Na 2 Cr 2 O 7 : 5 g / l) were added to the above electrolytic solution to form an electrolytic bath. A sample of the present invention was formed by forming an anodized film having a thickness of 5 μm on the surface of an A1050 aluminum plate using an electrolytic bath. For each of these samples, the spectral far-infrared emissivity in the electromagnetic wavelength range of 3 to 30 μm was determined at 250 ° C. and compared with the total emissivity. Further, both products were identified by X-ray diffraction of each sample. Table 3 shows the results
Are shown together.
【0026】[0026]
【表3】 [Table 3]
【0027】表3に示すように本発明試料は比較材試料
に比べて優秀な全放射率を示し、X線回折試験の結果か
らみて複酸化物の存在を確認できた。As shown in Table 3, the sample of the present invention exhibited an excellent total emissivity as compared with the comparative sample, and the result of the X-ray diffraction test confirmed the presence of the double oxide.
【0028】[0028]
【発明の効果】以上説明したように、Ti、Al、M
g、Zr、Ta、Nbのうちから選ばれた単体金属又は
合金が少なくとも表面部分に形成されてなる基材の表面
にスピネル構造の酸化皮膜を備えた遠赤外線放射体であ
るならば、優れた耐熱性が得られるともに、実用上有効
とされる3〜30μmの波長領域における全放射率にお
いても、従来特殊な合金やセラミックスを用いなくては
達成が困難であった70%以上の安定した放射率が極め
て薄い酸化皮膜のもので得られる。このため加工性、強
度など使用目的に適した種々の材料に用いることができ
る。As described above, Ti, Al, M
An excellent far-infrared radiator having a spinel-structured oxide film on the surface of a base material having a single metal or alloy selected from g, Zr, Ta, and Nb formed on at least a surface portion thereof is excellent. In addition to providing heat resistance, stable emissivity of 70% or more, which was difficult to achieve without using special alloys and ceramics, even in the total emissivity in the wavelength range of 3 to 30 μm, which is practically effective. It can be obtained with a very thin oxide film. Therefore, it can be used for various materials suitable for the purpose of use such as workability and strength.
【0029】次に、前記スピネル構造の複酸化物を有す
る皮膜を粉砕して粉末として得ることで、この粉末を基
板や基材に付着させることで、遠赤外線放射体を得るこ
ともできる。このようにすることで、基材の形状や材質
にとらわれずに自由な形態の基材の所望の部分に必要な
厚さに酸化皮膜を形成できるようになり、得られる遠赤
外線放射体として任意の形状のものが得られる。Next, the film having the spinel-structured double oxide is pulverized to obtain a powder, and the powder is attached to a substrate or a base material to obtain a far-infrared radiator. By doing so, it becomes possible to form an oxide film on a desired portion of a free-form substrate irrespective of the shape and material of the substrate, so that the desired thickness can be obtained. Is obtained.
【0030】前記構造の遠赤外線放射体を製造するに
は、Ti、Al、Mg、Zr、Ta、Nbのうちから選
ばれた単体金属又は合金からなる基材の表面に電気化学
反応あるいは化学反応によりスピネル構造をなす酸化皮
膜を生成させることで製造することができる。この際に
用いる反応液として、Cr、Fe、Co、Zn、Mn、
Ni、Al、Ti、Zr、Mg、Taのうち、少なくと
も1つ以上を有するものを用いることで、皮膜中に確実
に酸化皮膜を生成させることができる。In order to manufacture the far-infrared radiator having the above structure, an electrochemical reaction or a chemical reaction is applied to the surface of a substrate made of a single metal or alloy selected from Ti, Al, Mg, Zr, Ta and Nb. To produce an oxide film having a spinel structure. As a reaction liquid used at this time, Cr, Fe, Co, Zn, Mn,
By using a material having at least one of Ni, Al, Ti, Zr, Mg, and Ta, an oxide film can be surely generated in the film.
【図1】 本発明に係る遠赤外線放射体の第1の例を示
す断面図。FIG. 1 is a cross-sectional view showing a first example of a far-infrared radiator according to the present invention.
【図2】 本発明に係る遠赤外線放射体の第2の例を示
す断面図。FIG. 2 is a sectional view showing a second example of the far-infrared radiator according to the present invention.
【図3】 本発明試料のX線回折チャートを示す図であ
る。FIG. 3 is a view showing an X-ray diffraction chart of a sample of the present invention.
1・・・遠赤外線放射体、2・・・基材、3、4・・・皮膜。 1 ... far-infrared radiator, 2 ... substrate, 3, 4 ... coating.
Claims (4)
うちから選ばれた単体金属又は合金が少なくとも表面部
分に形成されてなる基材の表面に、前記単体金属を含む
スピネル構造を有する酸化皮膜が形成されてなることを
特徴とする遠赤外線放射体。1. A spinel structure including a single metal or an alloy selected from Ti, Al, Mg, Zr, Ta, and Nb is formed on at least a surface of a base material having the single metal or alloy selected from the group consisting of Ti and Al. A far-infrared radiator comprising an oxide film formed thereon.
着されてなることを特徴とする遠赤外線放射体。2. A far-infrared radiator, wherein the film according to claim 1 is adhered to a surface of a substrate.
うちから選ばれた単体金属、又は合金からなる基材の表
面に電気化学反応あるいは化学反応によりスピネル構造
をなす酸化皮膜を形成することを特徴とする遠赤外線放
射体の製造方法。3. An oxide film having a spinel structure is formed on the surface of a substrate made of a single metal or an alloy selected from Ti, Al, Mg, Zr, Ta, and Nb by an electrochemical reaction or a chemical reaction. A method for producing a far-infrared radiator, comprising:
行わせる反応液として、Cr、Fe、Co、Zn、M
n、Ni、Al、Ti、Zr、Mg、Taのうち、少な
くとも1つ以上が含有された水溶性化合物を用いること
を特徴とする請求項4記載の遠赤外線放射体の製造方
法。4. The reaction solution for performing the electrochemical reaction or the chemical reaction includes Cr, Fe, Co, Zn, M
The method for producing a far-infrared radiator according to claim 4, wherein a water-soluble compound containing at least one of n, Ni, Al, Ti, Zr, Mg, and Ta is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31396896A JPH10158096A (en) | 1996-11-25 | 1996-11-25 | Far infrared ray radiator and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31396896A JPH10158096A (en) | 1996-11-25 | 1996-11-25 | Far infrared ray radiator and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10158096A true JPH10158096A (en) | 1998-06-16 |
Family
ID=18047658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31396896A Pending JPH10158096A (en) | 1996-11-25 | 1996-11-25 | Far infrared ray radiator and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10158096A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007042859A (en) * | 2005-08-03 | 2007-02-15 | Denka Himaku Kogyo Kk | Magnesium heat radiating material superior in thermal emissivity and its manufacturing method |
-
1996
- 1996-11-25 JP JP31396896A patent/JPH10158096A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007042859A (en) * | 2005-08-03 | 2007-02-15 | Denka Himaku Kogyo Kk | Magnesium heat radiating material superior in thermal emissivity and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109280949A (en) | A kind of preparation method of light-alloy surface black thermal control coating | |
KR100998029B1 (en) | Methods of coloring magnesium material and the magnesium material colored by the same | |
US4882237A (en) | Aluminum-ceramic complex material | |
CN114318465B (en) | Micro-arc oxidation preparation method for 7-series aluminum alloy black surface | |
JPH06207262A (en) | Far infrared ray radiation member and manufacture thereof | |
US4579606A (en) | Metal sheet that selectively absorbs solar radiation | |
JPH10158096A (en) | Far infrared ray radiator and its production | |
Lee et al. | Effect of anodization treatment on the thickness, hardness, and microstructural characterization of anodic aluminum oxide film on AA 6061 and critical patent analysis | |
US4018628A (en) | Process for coloring aluminium | |
Yilmaz et al. | Effects of pulse duration on structure and surface characteristics of micro-arc oxidation coatings formed on aluminum alloy | |
US20130011688A1 (en) | Corrosion Resistant Metal Coating and Method of Making Same | |
JPS5916994A (en) | Formation of colored protective film on surface of aluminum material | |
JPH02259366A (en) | Far infrared ray radiating titanium material | |
JPS63247374A (en) | Manufacture of colored titanium material | |
JP3194064B2 (en) | Solar heat absorber | |
US7276293B1 (en) | Far-infrared radiator and method for producing method | |
JPS61270398A (en) | Composite plated steel sheet having high corrosion resistance and its manufacture | |
JPH05255890A (en) | Coated material excellent in far infrared ray radiating property | |
CN108166043A (en) | A kind of preparation method of titanium alloy surface radiative thermal protection coating | |
JPS58190651A (en) | Collecting plate for solar heat | |
JP3958182B2 (en) | Aluminum alloy anodized plate with good post-formability | |
WO2022191035A1 (en) | Metal plate having layered double hydroxides on surface and method for manufacturing same | |
KR20120110965A (en) | Methods of coloring magnesium material and the magnesium material colored by the same | |
JPS6012438B2 (en) | Method of forming a colored protective film on the surface of magnesium material | |
JP3081106B2 (en) | Transparent resin-coated steel sheet with excellent gloss and corrosion resistance |