JP2005103505A - Method for manufacturing magnesium metallic material having photocatalytically active surface - Google Patents

Method for manufacturing magnesium metallic material having photocatalytically active surface Download PDF

Info

Publication number
JP2005103505A
JP2005103505A JP2003343953A JP2003343953A JP2005103505A JP 2005103505 A JP2005103505 A JP 2005103505A JP 2003343953 A JP2003343953 A JP 2003343953A JP 2003343953 A JP2003343953 A JP 2003343953A JP 2005103505 A JP2005103505 A JP 2005103505A
Authority
JP
Japan
Prior art keywords
magnesium
film
photocatalyst
spark discharge
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343953A
Other languages
Japanese (ja)
Inventor
Masahiro Akimoto
政弘 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKA HIMAKU KOGYO KK
Original Assignee
DENKA HIMAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKA HIMAKU KOGYO KK filed Critical DENKA HIMAKU KOGYO KK
Priority to JP2003343953A priority Critical patent/JP2005103505A/en
Publication of JP2005103505A publication Critical patent/JP2005103505A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To develop such a material that the photocatalytic effect per unit area of the material is heightened by depositing/fixing a large quantity of a photocatalyst on the surface of a magnesium alloy. <P>SOLUTION: This magnesium metallic material having a photocatalytically active surface is manufactured by pretreating magnesium alloy materials having various shapes mechanically or chemically so that the surface of each of the magnesium alloy materials is changed from a two-dimensional surface to a three-dimensional surface and the surface area is increased, anodizing the surface area-increased magnesium alloy material by non-spark discharge to form a transparent or translucent porous film having many minute pores and metallic luster and filling the minute pores of the film with the photocatalyst. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、浄水、脱臭、殺菌、油汚れ防止、有害ガスの分解等、広範囲な用途に用いられる、光触媒活性表面を有するマグネシウム系金属材料及びその製法に関するものである。   The present invention relates to a magnesium-based metal material having a photocatalytically active surface and a method for producing the same, which are used in a wide range of applications such as water purification, deodorization, sterilization, oil stain prevention, and decomposition of harmful gases.

半導体にそのバンドギャップ以上のエネルギーを有する波長の光を照射すると光励起により価電子帯での正孔生成と伝導体への電子移動によってこれらに接触する有機物等を酸化還元反応で分解してしまういわゆる光触媒については良く知られている。 When a semiconductor is irradiated with light having a wavelength greater than its band gap, the organic matter that contacts these is decomposed by redox reaction due to the generation of holes in the valence band and the transfer of electrons to the conductor by photoexcitation. Photocatalysts are well known.

しかしながら、光触媒を基材表面に固定化することが困難であるため光触媒活性表面を持つ各種材料の開発が遅れている。これは光触媒が励起されたときに生ずる酸化還元能力は大変強力で殆どの有機物を分解するので光触媒を基材表面に固定化するためのバインダーとして有機物を用いることが出来ないためである。また前述の光触媒効果を生じさせるためには紫外光などが触媒体に照射されることと、被処理物質と触媒体との直接接触が必要であることからバインダーは透明で且つ多孔質である事が必要である。このため光触媒の基材への固定化には主にシリケート類などの無機バインダーが用いられてきた。 However, since it is difficult to fix the photocatalyst to the substrate surface, development of various materials having a photocatalytic active surface is delayed. This is because the redox ability generated when the photocatalyst is excited is very strong and decomposes most organic substances, so that the organic substances cannot be used as a binder for fixing the photocatalyst to the substrate surface. In order to produce the above-mentioned photocatalytic effect, the binder must be transparent and porous because it is necessary to irradiate the catalyst body with ultraviolet light or the like and to make direct contact between the material to be treated and the catalyst body. is required. For this reason, inorganic binders such as silicates have been mainly used for immobilizing photocatalysts on substrates.

例えば特許文献1に基材表面への光触媒固定化法が提案されているが、この時用いられているバインダーはシリケート類である。しかしながら、シリケートバインダーは厚膜化するとひび割れが生じるので衝撃を受けると基材から剥離してしまう欠点があり、厚膜化によって光触媒付与量を多くすることが困難である。光触媒はこれと接触した有機物のみを酸化還元分解するのでその付与量が少ない場合は必然的に油汚れや有害ガスの分解能力も小さいために、実用上の点から、適度に荒れている立体的構造に粗面化された基材に光触媒を多量に表面に付着させる方法の開発が望まれていた。
特開平9−1724
For example, Patent Document 1 proposes a method for immobilizing a photocatalyst on a substrate surface, and the binder used at this time is a silicate. However, since the silicate binder is cracked when it is thickened, there is a drawback that it is peeled off from the base material upon impact, and it is difficult to increase the amount of photocatalyst provided by thickening. Since the photocatalyst decomposes only the organic matter in contact with this by oxidation-reduction decomposition, if it is applied in a small amount, the ability to decompose oil stains and harmful gases is inevitably small. Development of a method for adhering a large amount of photocatalyst to the surface of a substrate roughened in structure has been desired.
JP-A-9-1724

又、従来の光触媒の場合、複雑形状については、例えばゼオライトを原料とした時、粉末にして型で固形化するか、粉末の状態で表面に付着させるか又は粉末を閉鎖領域に閉じ込めるかの方法であり、前者では多量の原料を使用した割には触媒効果が小さく、また表面付着では不十分な量しか固定化できなかった。 In the case of conventional photocatalysts, for complex shapes, for example, when zeolite is used as a raw material, the powder is solidified in a mold, adhered to the surface in the form of a powder, or the powder is confined in a closed region In the former, the catalytic effect was small even when a large amount of raw material was used, and only an insufficient amount could be fixed by surface adhesion.

本発明は従来技術では光触媒の基材表面への固定化付着量が少ない欠点を解決するために提案されたものであって、有害物質の分解性能が大きい光触媒体の提供を目的とする。 The present invention has been proposed in order to solve the disadvantage that the photocatalyst is immobilized on the substrate surface in a small amount in the prior art, and an object of the present invention is to provide a photocatalyst having a high ability to decompose harmful substances.

本発明は、マグネシウムまたはマグネシウム合金の表面に平均孔径が50〜1000nmである微細孔を多数有する多孔質ノン火花放電型陽極酸化皮膜を形成し、該多孔質皮膜の微細孔内部及び金属表面に光触媒を担持固定化したことを特徴とする光触媒活性表面を有するマグネシウム金属材料及びその製造法である。 The present invention forms a porous non-spark discharge type anodic oxide film having a large number of fine pores having an average pore diameter of 50 to 1000 nm on the surface of magnesium or a magnesium alloy, and a photocatalyst inside the fine pores of the porous film and on the metal surface Is a magnesium metal material having a photocatalytically active surface, and a method for producing the same.

本発明のマグネシウム金属材料の表面にはノン火花放電型の陽極酸化によって平均孔径が50〜1000nmの微細孔が多数存在する多孔質陽極酸化皮膜が存在する。この皮膜は表面からマグネシウム素地に向かって規則正しい六角柱又は円柱状で、バリヤー層まで達している。 On the surface of the magnesium metal material of the present invention, there is a porous anodic oxide film having many fine pores having an average pore diameter of 50 to 1000 nm by non-spark discharge type anodic oxidation. This film has a regular hexagonal column or columnar shape from the surface toward the magnesium substrate and reaches the barrier layer.

この様な細孔は火花放電を伴わない条件下で陽極酸化皮膜を施すことによって表面に多数形成させることが出来る。この多孔質ノン火花放電型陽極酸化皮膜の厚さは3〜50μmの範囲でかなり自由に設定することが可能で、従って細孔部分に充填する光触媒の量も必要に応じてかなりの自由度をもって変えることができる。 Many such pores can be formed on the surface by applying an anodized film under conditions that do not involve spark discharge. The thickness of the porous non-spark discharge type anodic oxide film can be set freely in the range of 3 to 50 μm. Therefore, the amount of the photocatalyst filled in the pores has a considerable degree of freedom as required. Can be changed.

本発明の金属材料表面に陽極酸化によって形成される細孔は、主に孔、壁、無孔層の3層構造で、皮膜の主成分が水酸化マグネシウム60%以上と酸化マグネシウム0〜40%以下の組成で成り立っている。これら細孔は、表面に開口部を有し、平均孔径が50〜1000nmの大きさを有し、且つ、皮膜全体の80%以上を占めているため、光触媒として10乃至500nm程度の粒径を持つ例えば酸化チタンを使用した場合にこの微細孔内部及び表面に充填又は付着させることは容易である。この様な粒径の酸化チタンとして石原産業(株)などから市販されているSTシリーズの粉体あるいはSTSシリーズの分散体などがある。金属材料表面に形成されている細孔の数は1平方ミリメートルあたり少なくとも100個以上、通常1万個以上存在しているので基材表面全体に均一に光触媒を担持固定化することが出来る。 The pores formed by anodic oxidation on the surface of the metal material of the present invention mainly have a three-layer structure of pores, walls, and non-porous layers. The main components of the film are magnesium hydroxide 60% or more and magnesium oxide 0 to 40%. It consists of the following composition. These pores have openings on the surface, have an average pore diameter of 50 to 1000 nm, and occupy 80% or more of the entire film, and therefore have a particle size of about 10 to 500 nm as a photocatalyst. For example, when titanium oxide is used, it is easy to fill or adhere to the inside and surface of the micropore. Examples of titanium oxide having such a particle size include ST series powders and STS series dispersions commercially available from Ishihara Sangyo Co., Ltd. Since the number of pores formed on the surface of the metal material is at least 100 per square millimeter, usually 10,000 or more, the photocatalyst can be uniformly supported and immobilized on the entire surface of the substrate.

本発明においてマグネシウム金属材料表面に特定の微細孔を有する皮膜を形成するには、該金属材料をアルカリまたはアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩もしくはケイフッ化塩の1種以上を0.2〜7モル/リットル、皮膜形成安定剤(表面硬化性添加剤)を0.01〜5モル/リットルの割合で含む水溶液中で電流密度0.5〜5A/デシ平方メートル、電圧2〜25Vで火花放電を伴わずに陽極酸化処理することによって達成される。 In the present invention, in order to form a film having specific fine pores on the surface of the magnesium metal material, the metal material is alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or fluorosilicate. Current density in an aqueous solution containing 0.2 to 7 mol / liter of one or more of the above and 0.01 to 5 mol / liter of a film-forming stabilizer (surface hardening additive) at a rate of 0.5 to 5 A / deci It is achieved by anodizing at a square meter, voltage 2-25V without spark discharge.

本発明で用いられるアルカリ又はアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩もしくはケイフッ化塩の具体例としては、カ性ソーダ、カ性カリ、水酸化バリウム等の水酸化物、炭酸ソーダ、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、重炭酸ソーダ、重炭酸カリ、重炭酸カルシウム、等の重炭酸塩があげられる。 Specific examples of the alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or silicofluoride used in the present invention include caustic soda, caustic potash, barium hydroxide and the like. Examples thereof include carbonates such as oxide, sodium carbonate, calcium carbonate, and magnesium carbonate, and bicarbonates such as sodium bicarbonate, potassium bicarbonate, and calcium bicarbonate.

電解液には液の寿命の向上を目的として皮膜形成安定剤を添加するのが好ましい。安定剤としては無機化合物、有機化合物が用いられ、具体的にはNaNO、CaNO、MgNO、NaSO、MgSOなどの鉱酸塩、KF、NHFなどのフッ化物、NaSiO、NaSiO、KSiOなどのケイ酸化合物、NaSiF、MgSiF、(NHSiFなどのケイフッ化物、有機化合物としては(CHOH)、(CHCHOH)O、(CHOH)CHOHなどのアルコール基、(COOH)、(CHCHCOOH)、〔CH(OH)COOH〕、C(OH・COOH)、CCOOH、C6(COOH)どのカルボキシル基、C(SOH・COOH)、C(COOH・OH・SOH)などのスルフォン基を有する有機化合物が用いられる。 It is preferable to add a film formation stabilizer to the electrolytic solution for the purpose of improving the life of the solution. As the stabilizer, inorganic compounds and organic compounds are used. Specifically, mineral salts such as NaNO 3 , CaNO 3 , MgNO 3 , Na 2 SO 4 and MgSO 4 , fluorides such as KF and NH 4 F, Na 2 SiO 3 , Na 4 SiO 4 , silicic acid compounds such as K 2 SiO 2 , silicofluorides such as Na 2 SiF 6 , MgSiF 6 , (NH 4 ) 2 SiF 6 , (CH 2 OH) 2 as organic compounds, Alcohol groups such as (CH 2 CH 2 OH) O, (CH 2 OH) 2 CHOH, (COOH) 2 , (CH 2 CH 2 COOH) 2 , [CH (OH) COOH] 2 , C 6 H 4 (OH · COOH), C 6 H 5 COOH, C 6 H 4 (COOH) 2 which carboxyl group, C 6 H 4 (SO 3 H · COOH), C 6 H 3 (COOH · O · SO 3 H) an organic compound having a sulfone group such as is used.

これらの皮膜形成安定剤は単独でも混合して用いても良い。特に無機化合物と有機化合物を組み合わせて使用するときは液管理が容易となり好ましい。この安定剤の添加量は電解液中、0.01〜4モル/リットルの範囲が好ましい。 These film formation stabilizers may be used alone or in combination. In particular, when an inorganic compound and an organic compound are used in combination, liquid management becomes easy, which is preferable. The amount of the stabilizer added is preferably in the range of 0.01 to 4 mol / liter in the electrolytic solution.

この様に調整された電解液中でのマグネシウム合金の陽極酸化処理は、浴温を10〜90℃でpH9以上の弱〜強アルカリ性の範囲で行うのが特に好ましい。 The anodizing treatment of the magnesium alloy in the electrolytic solution thus adjusted is particularly preferably carried out in a weak to strong alkaline range of pH 9 or higher at a bath temperature of 10 to 90 ° C.

陽極酸化処理後の処理として、乾燥がある。乾燥は50〜80℃で20〜60分乾燥する。 There is drying as a treatment after the anodizing treatment. Drying is performed at 50 to 80 ° C. for 20 to 60 minutes.

マグネシウム系の金属材料表面に多孔質ノン火花放電型陽極酸化皮膜を形成し、その細孔中に光触媒微粒子を担持固定化する方法には常圧含浸法、減圧含浸法、加圧含浸法、ゾルゲル法、電気泳動法、浸漬超音波含浸法などがあり、特に減圧加圧を併用する含浸法、浸漬超音波含浸法が好ましい。 Forming a porous non-spark discharge type anodic oxide film on the surface of a magnesium-based metal material and supporting and fixing the photocatalyst fine particles in the pores are the normal pressure impregnation method, the vacuum impregnation method, the pressure impregnation method, the sol-gel method. Method, electrophoresis method, immersion ultrasonic impregnation method and the like, and impregnation method using immersion under reduced pressure and immersion ultrasonic impregnation method are particularly preferable.

具体的な含浸法としては適当な真空容器中に陽極酸化皮膜を形成したマグネシウム合金材料を置き、内部を減圧にしてから前記STSシリーズなどの酸化チタン懸濁液を導入することによって、表面細孔内に酸化チタンを密に充填することが出来る。また懸濁液を導入してから容器を加圧にしてより多くの触媒を充填することもできる。この様な固定化はマグネシウム金属材料の成形後のメッキ、アルマイト処理、塗装などの後工程と同様に従来の一連の製造工程中で行うことが出来るという特徴を有している。 As a specific impregnation method, a magnesium alloy material in which an anodized film is formed is placed in a suitable vacuum vessel, the inside of the STS series or the like is introduced by introducing a titanium oxide suspension such as the STS series after reducing the pressure inside the surface pores. Titanium oxide can be densely filled inside. It is also possible to fill the catalyst by pressurizing the container after introducing the suspension. Such immobilization is characterized in that it can be carried out in a series of conventional manufacturing processes as in the post-process such as plating, alumite treatment, and painting after forming the magnesium metal material.

本発明で使用するマグネシウム金属材料は広範囲に応用可能で、純マグネシウム系、マグネシウム‐アルミニウム系、マグネシウム‐アルミニウム‐亜鉛系、マグネシウム‐アルミニウム‐ケイ素系、マグネシウム‐ジルコニウム‐希土類‐銀系、マグネシウム‐亜鉛‐ジルコニウム系、マグネシウム‐亜鉛系、マグネシウム‐希土類‐ジルコニウム系、マグネシウム‐アルミニウム‐希土類系、マグネシウム‐イットリウム‐希土類系、マグネシウム‐カルシウム‐亜鉛系など陽極酸化皮膜の形成が可能である材料ならば全て可能である。 The magnesium metal material used in the present invention can be widely applied, pure magnesium system, magnesium-aluminum system, magnesium-aluminum-zinc system, magnesium-aluminum-silicon system, magnesium-zirconium-rare earth-silver system, magnesium-zinc -Zirconium, Magnesium-Zinc, Magnesium-Rare Earth-Zirconium, Magnesium-Aluminum-Rare Earth, Magnesium-Yttrium-Rare Earth, Magnesium-Calcium-Zinc, etc. Is possible.

これらの材料は、展伸材、鋳物材、ダイキャスト材、鍛造材などいずれのものも用いられ、加工、成形方法についても展伸材からのプレス、板金、インパクト、バルジ法、鋳造からの砂型、金型、ロストワックス,プラススターモールド、スクイズキャスチング法、ダイキャストからホットチャンバー、コールドチャンバー、半溶融法、鍛造から、熱間、温間法があり、これら各種の成形法で望む形状、例えば板、管、棒、球、又は二次元もしくは三次元の繊維状、あるいはハニカム状構造などにして用いることが出来る。特に本発明の材料を脱臭用途などに用いるときには表面積の大きい繊維状又はハニカム状に加工したものを用いるのが好ましい。 These materials include wrought materials, cast materials, die-cast materials, forged materials, etc., and the processing and molding methods are also presses from wrought materials, sheet metal, impact, bulge method, sand molds from casting. , Mold, lost wax, plus star mold, squeeze casting method, die casting to hot chamber, cold chamber, semi-melting method, forging, hot and warm methods, shapes desired by these various molding methods, for example It can be used as a plate, a tube, a rod, a sphere, or a two-dimensional or three-dimensional fibrous or honeycomb structure. In particular, when the material of the present invention is used for deodorization or the like, it is preferable to use a material processed into a fibrous or honeycomb shape having a large surface area.

これらの成形材料は必要に応じて機械的又は化学的な前処理を施した後に陽極酸化することが好ましい。機械的な前処理法としては乾式もしくは湿式ホーニング法、ベルト、バフ研磨法、スクラッチ法、ヘアーライン法などが用いられる。また化学的な前処理法としてはエッチング、化学梨地、食刻法などが用いられ、これらの前処理を1つ又は2つ以上組み合わせても良い。この様な前処理は金属材料の表面を立体的に変化させるので表面積を増大させる効果を有し、光触媒担持量を増大させる効果を有する。 These molding materials are preferably anodized after mechanical or chemical pretreatment as necessary. As the mechanical pretreatment method, a dry or wet honing method, a belt, a buffing method, a scratch method, a hairline method, or the like is used. Further, as a chemical pretreatment method, etching, chemical finish, etching method or the like is used, and one or two or more of these pretreatments may be combined. Such pretreatment has the effect of increasing the surface area because the surface of the metal material is three-dimensionally changed, and the effect of increasing the amount of photocatalyst supported.

形状が、板、1又は多数本の管又は棒状構造、球状構造、二次元的、又は三次元的繊維状構造、ハニカム構造などを有する表面積の大きい金属材料に前記の機械的又は、化学的前処理と多孔質ノン火花放電型陽極酸化による皮膜の形成工程が加わると、より一層表面積が増加し、これに伴い光触媒固定化量が増加する傾向を示し、基材の単位面積当たりの触媒効率を増大する傾向を有する。 The metal or high-surface-area metal material having a shape such as a plate, one or a plurality of tubes or rods, a spherical structure, a two-dimensional or three-dimensional fibrous structure, a honeycomb structure, etc. When the coating and the film formation process by porous non-spark discharge type anodization are added, the surface area further increases, and the amount of photocatalyst immobilized tends to increase accordingly, and the catalyst efficiency per unit area of the substrate is increased. Has a tendency to increase.

この様にして得られたマグネシウム材料は表面に多量の光触媒が担持固定化されており、各種平面、筐体、枠体、複雑形状部品、1又は多数本の管又は棒状構造、球状構造、二次元的又は三次元的繊維状構造、ハニカム構造等に利用される。この材料表面は紫外線、光触媒の種類によっては可視光の照射で光触媒作用を生じるので、抗菌、黴の発生防止、防汚作用など示し、またアルデヒド、メルカプタンなど有害又は悪臭ガスと接触することによりこれらを分解する効果を有する。 The magnesium material thus obtained has a large amount of photocatalyst supported and fixed on the surface, and various planes, housings, frames, complex shaped parts, one or many pipes or rod-like structures, spherical structures, It is used for dimensional or three-dimensional fibrous structures, honeycomb structures, and the like. Depending on the type of UV or photocatalyst, the surface of this material will produce photocatalysis when irradiated with visible light, so that it exhibits antibacterial properties, prevention of wrinkles, antifouling, etc., and contact with harmful or odorous gases such as aldehyde and mercaptan Has the effect of decomposing.

本発明のマグネシウム系金属材料は前処理を含む多孔質ノン火花放電型陽極酸化処理によって形成された皮膜の微細孔中に光触媒が充填されているので衝撃があっても剥離脱落することが無く、安定している。 The magnesium-based metallic material of the present invention is not peeled off even if there is an impact because the photocatalyst is filled in the micropores of the film formed by the porous non-spark discharge type anodizing treatment including pretreatment, stable.

又、前処理により立体的構造を持たせ、単位面積あたりの担持固定化される光触媒量が従来法に比し格段に多く、このため油などによる汚染の防止効果、抗菌、防かび、有害ガス分解効果に優れており、光触媒作用を利用する小型の装置を作ることが出来る。 In addition, the amount of photocatalyst that is supported and fixed per unit area is much higher than that of the conventional method because it has a three-dimensional structure by pretreatment, and therefore, it is effective in preventing contamination by oil, antibacterial, antifungal, and harmful gases. It is excellent in decomposing effect and can make a small device using photocatalytic action.

以下、本発明の実施の形態を具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.

板厚1mm、70×150mmのマグネシウム合金AZ31B圧延材を用いて、脱脂、酸処理後、水酸化カリウム2±0.05モル/リットル、皮膜成形安定剤としてメタケイ酸ナトリウム0.05±0.005モル/リットルと、ジエチレングリコール0.1±0.05モル/リットルを添加した電解液で液温69±2℃、電流密度2±0.5A/平方デシメートル、電圧4〜8Vで直流波形にて、30分陽極酸化処理を行った。この皮膜の表面をレーザー顕微鏡にて観察すると平均孔径200〜600nmの微細孔が確認でき、断面を光学顕微鏡で観察すると、約10μmの皮膜厚さが確認出来た。処理後、STS‐21酸化チタン分散液(石原産業(株)製、平均粒子径20nm)に15分浸漬後乾燥して表面に酸化チタンを固定化したマグネシウム金属材料を得た。 Using magnesium alloy AZ31B rolled material having a plate thickness of 1 mm and 70 × 150 mm, after degreasing and acid treatment, potassium hydroxide 2 ± 0.05 mol / liter, sodium metasilicate 0.05 ± 0.005 as a film forming stabilizer In a DC waveform with a liquid temperature of 69 ± 2 ° C., a current density of 2 ± 0.5 A / square decimeter, and a voltage of 4 to 8 V with an electrolyte added with 0.1 / 0.05 mol / liter of diethylene glycol. Anodizing was performed for 30 minutes. When the surface of this film was observed with a laser microscope, micropores having an average pore diameter of 200 to 600 nm could be confirmed, and when the cross section was observed with an optical microscope, a film thickness of about 10 μm could be confirmed. After the treatment, it was immersed in an STS-21 titanium oxide dispersion (Ishihara Sangyo Co., Ltd., average particle size 20 nm) for 15 minutes and then dried to obtain a magnesium metal material having titanium oxide immobilized on the surface.

実施例1と同じ圧延材を用い、前処理として機械的処理の乾式ホーニング(鉄粉#100、圧力0.25MPa、作業時間1分)を行った後、同様にして脱脂、酸処理し、同一電解条件で陽極酸化を行い、得られた材料に光触媒を実施例1と同様の方法で担持固定化した。 The same rolled material as in Example 1 was used, and mechanical treatment dry honing (iron powder # 100, pressure 0.25 MPa, working time 1 minute) was performed as a pretreatment, followed by degreasing and acid treatment in the same manner. Anodization was performed under electrolytic conditions, and a photocatalyst was supported and immobilized on the obtained material in the same manner as in Example 1.

前処理として、機械的処理の湿式ホーニング(ガラスビーズ、#100、圧力0.25MPa、作業時間1分)を行い、次に実施例2と同様に光触媒を固定化した。 As pretreatment, wet honing (glass beads, # 100, pressure 0.25 MPa, working time 1 minute) of mechanical treatment was performed, and then the photocatalyst was immobilized in the same manner as in Example 2.

使用材料及び陽極酸化皮膜処理を実施例1と同様にし、光触媒を担持固定化する方法は製品をSUSの真空容器にいれ、4mmHgに減圧し、20分保持し、保持後STS‐21酸化チタン分散液(石原産業(株)製、平均粒子径20nm)を、容器内の製品が完全に浸漬されるまで注入し、15分保持後取出し乾燥した。 The material used and the anodic oxide film treatment were the same as in Example 1, and the photocatalyst was supported and immobilized by placing the product in a SUS vacuum container, reducing the pressure to 4 mmHg, holding for 20 minutes, and holding the STS-21 titanium oxide dispersed The liquid (Ishihara Sangyo Co., Ltd., average particle size 20 nm) was poured in until the product in the container was completely immersed, held for 15 minutes, taken out and dried.

実施例4において、光触媒の担持固定化の際に、容器内の製品が酸化チタン分散液に浸漬された状態で、更に25Hzの超音波で15分処理を施した後取り出し乾燥した。 In Example 4, at the time of supporting and fixing the photocatalyst, the product in the container was immersed in the titanium oxide dispersion, further treated with ultrasonic waves of 25 Hz for 15 minutes, and then taken out and dried.

実施例5において、陽極酸化処理、実施例5の光触媒担持固定化処理後、
0.4MPaにて加圧15分後取り出した。
In Example 5, after the anodizing treatment, the photocatalyst carrying and fixing treatment of Example 5,
It was taken out after 15 minutes under pressure at 0.4 MPa.

比較例として既存の同一試験片を脱脂、酸処理後STS‐21の浴中に15分浸漬後乾燥した。 As a comparative example, the same existing test piece was degreased, acid-treated, immersed in an STS-21 bath for 15 minutes, and then dried.

これらの実施例1〜6と比較例の評価は次の方法で行った。各々の実施例で得た製品を容積2.8Lの閉鎖箱に入れ、初期流量150ml/分でアセトアルデヒドを3分流した。次にブラックライトで0.5mw/平方センチメートルの光照射をした。この段階でのアセトアルデヒドの流量は100ml/分とした。他の実施例についても同様に行った。経過時間毎にアセトアルデヒドの含有量をガスクロマトグラフィーで分析した。結果を図1に示した。従来の光触媒担持固定化法より優れていることが明らかである。 These Examples 1 to 6 and Comparative Example were evaluated by the following method. The product obtained in each example was placed in a closed box having a volume of 2.8 L, and acetaldehyde was allowed to flow for 3 minutes at an initial flow rate of 150 ml / min. Next, light irradiation of 0.5 mw / square centimeter was performed with a black light. The flow rate of acetaldehyde at this stage was 100 ml / min. It carried out similarly about the other Example. The content of acetaldehyde was analyzed by gas chromatography at each elapsed time. The results are shown in FIG. It is clear that the method is superior to the conventional photocatalyst-supported immobilization method.

本発明のマグネシウム材料は抗菌、防黴、防汚材料として、又は有害もしくは悪臭ガス等の分解材、脱臭材などに使用できる。 The magnesium material of the present invention can be used as an antibacterial, antifungal or antifouling material, or as a decomposition or deodorizing material such as harmful or offensive odor gas.

本発明によって得られた製品による光触媒効果について、アセトアルデヒド含有量の減少と経過時間との関係を示す図である。It is a figure which shows the relationship between the reduction | decrease of acetaldehyde content, and elapsed time about the photocatalytic effect by the product obtained by this invention.

符号の説明Explanation of symbols

1:比較例 2:実施例1 3:実施例4 4:実施例5
5:実施例6 6:実施例3 7:実施例2
1: Comparative Example 2: Example 1 3: Example 4 4: Example 5
5: Example 6 6: Example 3 7: Example 2

Claims (13)

マグネシウムまたはマグネシウム合金の表面に、平均孔径が50〜1000nmである微細孔を多数有する多孔質ノン火花放電型陽極酸化皮膜を形成し、該微細孔内部及び皮膜表面に光触媒を担持固定化したことを特徴とする光触媒活性表面を有するマグネシウム金属の製造法。 A porous non-spark discharge type anodic oxide film having a large number of fine pores having an average pore diameter of 50 to 1000 nm was formed on the surface of magnesium or a magnesium alloy, and a photocatalyst was supported and fixed inside the fine pores and on the film surface. A method for producing magnesium metal having a photocatalytically active surface. 光触媒が紫外線励起型または可視光励起型の酸化チタンであることを特徴とする請求項1の製造法。 2. The process according to claim 1, wherein the photocatalyst is an ultraviolet ray excitation type or visible light excitation type titanium oxide. 光触媒が二酸化チタンまたはこれに貴金属、重金属をドープさせたものである請求項1乃至2の製造法 3. The process according to claim 1, wherein the photocatalyst is titanium dioxide or a precious metal or heavy metal doped therein. 多孔質ノン火花放電型陽極酸化皮膜は、火花放電を伴わない陽極酸化法によって形成された、主に孔、壁、無孔層の3層構造で、皮膜の主成分が水酸化マグネシウム60%以上と酸化マグネシウム0〜40%以下の複合皮膜より成り立っていることを特徴とする請求項1乃至3の製造法。 The porous non-spark discharge type anodic oxide film is a three-layer structure mainly composed of pores, walls and non-porous layers formed by an anodic oxidation method without spark discharge. The main component of the film is 60% or more of magnesium hydroxide. 4. The production method according to claim 1, wherein the composite film comprises magnesium oxide in an amount of 0 to 40% or less. 多孔質ノン火花放電型陽極酸化皮膜は透明、褐色乃至暗褐色系で、且つ、金属光沢から半光沢の艶を持ち、皮膜厚さが1〜50μmであることを特徴とする請求項1乃至4の製造法。 5. The porous non-spark discharge type anodic oxide film is transparent, brown to dark brown, has a gloss of metal to semi-gloss, and has a film thickness of 1 to 50 μm. Manufacturing method. 多孔質ノン火花放電型陽極酸化皮膜は、有機染料、無機顔料又は電解着色にて、染色又は着色が可能であることを特徴とする請求項1乃至5の製造法。 6. The method according to claim 1, wherein the porous non-spark discharge type anodic oxide film can be dyed or colored with an organic dye, an inorganic pigment or electrolytic coloring. 多孔質ノン火花放電型陽極酸化皮膜の形成は、アルカリまたはアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩、ケイ酸塩もしくはケイフッ化塩の一種以上と、皮膜形成安定剤としてフッ化物塩、重フッ化物塩、ケイフッ化物塩、鉱酸塩などの無機化合物、又はアルコール基、カルボキシル基、スルフォン基などを含む環状又は鎖状の有機化合物の一種以上を含む電解浴中で火花放電を伴わずに陽極酸化処理を行うことを特徴とする請求項1乃至6の製造法。 The formation of a porous non-spark discharge type anodic oxide film consists of one or more of alkali, alkaline earth metal hydroxide, carbonate, bicarbonate, silicate or silicofluoride, and fluoride as a film-forming stabilizer. Spark discharge in an electrolytic bath containing one or more of inorganic compounds such as salts, bifluoride salts, silicofluoride salts, mineral salts, or cyclic or chain organic compounds containing alcohol groups, carboxyl groups, sulfone groups, etc. 7. The method according to claim 1, wherein the anodizing treatment is performed without any accompanying process. 陽極酸化電解条件が、電流密度0.5〜5A/平方デシメートル、電圧2〜25V,浴温10〜90℃、で行うことを特徴とする請求項7の製造法。 8. The method according to claim 7, wherein the anodizing electrolysis conditions are a current density of 0.5 to 5 A / square decimeter, a voltage of 2 to 25 V, and a bath temperature of 10 to 90 ° C. 陽極酸化処理を行う際の電源波形として、直流波、脈流波、パルス波、PR波、反転波、周波数20Hz〜2KHzの交流波形の一つ又は二つ以上を組み合わせて用いることを特徴とする請求項7又は8の製造法。 As a power supply waveform at the time of anodizing, one or two or more of a DC wave, a pulsating wave, a pulse wave, a PR wave, an inverted wave, and an AC waveform having a frequency of 20 Hz to 2 KHz are used in combination. The manufacturing method of Claim 7 or 8. マグネシウムまたはマグネシウム合金が、陽極酸化皮膜形成の前に乾式もしくは湿式ホーニング法、ベルト、バフ研磨法、スクラッチ、バレル、研掃、ヘヤーライン法などの機械的前処理、またはエッチング、化学梨地、食刻法などの化学的前処理、あるいはこれらの1つ又は2つ以上を組み合わせた前処理を施したものであることを特徴とする請求項1乃至9の製造法。 Magnesium or magnesium alloy is subjected to mechanical pretreatment such as dry or wet honing, belt, buffing, scratching, barreling, cleaning, hairline, etc., or etching, chemical finishing, etching before anodized film formation. 10. The method according to claim 1, wherein chemical pretreatment such as a method or a pretreatment combining one or more of these is performed. マグネシウム及びマグネシウム合金が、陽極酸化皮膜形成が可能な全ての展伸材、鋳物材、ダイキャスト、鍛造材などから選ばれたものであることを特徴とする請求項1乃至10の製造法。 11. The method according to claim 1, wherein the magnesium and the magnesium alloy are selected from all wrought materials, cast materials, die casts, forged materials and the like capable of forming an anodic oxide film. 陽極酸化を施すマグネシウム又はマグネシウム合金の形状が、板、管、棒状、球状、二次元もしくは3次元の繊維状、又はハニカム状構造を有することを特徴とする請求項1乃至11の製造法。 12. The manufacturing method according to claim 1, wherein the shape of magnesium or magnesium alloy to be anodized has a plate, tube, rod shape, spherical shape, two-dimensional or three-dimensional fiber shape, or honeycomb structure. 微細孔内部及び表面に光触媒を担持固定化する方法は、酸化チタン微粒子を浸漬含浸法、浸漬超音波含浸法、真空(減圧―加圧)含浸法、浸漬後真空(減圧―加圧)含浸法、ゾルゲル法、電気泳動法、または浸漬法の1つ又は2つ以上の組み合わせで充填及び付着させることからなる請求項1乃至12の製造法。
The method for supporting and fixing the photocatalyst inside and on the surface of the micropores is the immersion impregnation method, immersion ultrasonic impregnation method, vacuum (decompression-pressurization) impregnation method, and post-immersion vacuum (decompression-pressurization) impregnation method. The method according to claim 1, comprising filling and adhering by one or a combination of two or more of sol-gel method, electrophoresis method, or immersion method.
JP2003343953A 2003-10-02 2003-10-02 Method for manufacturing magnesium metallic material having photocatalytically active surface Pending JP2005103505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343953A JP2005103505A (en) 2003-10-02 2003-10-02 Method for manufacturing magnesium metallic material having photocatalytically active surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343953A JP2005103505A (en) 2003-10-02 2003-10-02 Method for manufacturing magnesium metallic material having photocatalytically active surface

Publications (1)

Publication Number Publication Date
JP2005103505A true JP2005103505A (en) 2005-04-21

Family

ID=34537731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343953A Pending JP2005103505A (en) 2003-10-02 2003-10-02 Method for manufacturing magnesium metallic material having photocatalytically active surface

Country Status (1)

Country Link
JP (1) JP2005103505A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042859A (en) * 2005-08-03 2007-02-15 Denka Himaku Kogyo Kk Magnesium heat radiating material superior in thermal emissivity and its manufacturing method
JP2007216197A (en) * 2006-02-20 2007-08-30 Univ Kinki Photocatalytic film, photocatalytic material and methods for manufacturing them
JP2007325995A (en) * 2006-06-06 2007-12-20 Univ Kinki Photocatalyst film and its manufacturing method
JP2009154048A (en) * 2007-12-25 2009-07-16 Alumite Shokubai Kenkyusho:Kk Catalytic reactor and catalytic reaction apparatus using the same
JP2012034760A (en) * 2010-08-05 2012-02-23 U-Vix Corp Air cleaner

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289913A (en) * 1994-04-26 1995-11-07 Mitsui Mining & Smelting Co Ltd Photocatalyst and production thereof
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JPH10121266A (en) * 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd Metallic material having photocatalytic activity and its production
JPH10174883A (en) * 1996-12-18 1998-06-30 Sumitomo Light Metal Ind Ltd Aluminum material having photocatalytic function and its production
JP2001303296A (en) * 2000-04-25 2001-10-31 Chukin:Kk Metallic material having photocatalytic function and producing method thereof
JP2001329396A (en) * 2000-05-22 2001-11-27 Sankyo Alum Ind Co Ltd Surface treatment method for aluminum and aluminum alloy
JP2002128582A (en) * 2000-10-18 2002-05-09 Mitsui Mining & Smelting Co Ltd Tool for calcinating electronic part
JP2002180272A (en) * 2000-12-13 2002-06-26 Mitsubishi Alum Co Ltd Aluminum material having microporous anodic oxide film, and aluminum formed body and fin material
JP2002220697A (en) * 2001-01-30 2002-08-09 Chiyoda Kiki Hanbai Kk Film forming method on magnesium alloy and electrolytic solution therefor
JP2003144938A (en) * 2001-11-12 2003-05-20 Yaskawa Electric Corp Photocatalyst body and manufacturing method therefor
JP2003193294A (en) * 2001-12-28 2003-07-09 Mitsubishi Electric Corp Metallic member and production method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289913A (en) * 1994-04-26 1995-11-07 Mitsui Mining & Smelting Co Ltd Photocatalyst and production thereof
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JPH10121266A (en) * 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd Metallic material having photocatalytic activity and its production
JPH10174883A (en) * 1996-12-18 1998-06-30 Sumitomo Light Metal Ind Ltd Aluminum material having photocatalytic function and its production
JP2001303296A (en) * 2000-04-25 2001-10-31 Chukin:Kk Metallic material having photocatalytic function and producing method thereof
JP2001329396A (en) * 2000-05-22 2001-11-27 Sankyo Alum Ind Co Ltd Surface treatment method for aluminum and aluminum alloy
JP2002128582A (en) * 2000-10-18 2002-05-09 Mitsui Mining & Smelting Co Ltd Tool for calcinating electronic part
JP2002180272A (en) * 2000-12-13 2002-06-26 Mitsubishi Alum Co Ltd Aluminum material having microporous anodic oxide film, and aluminum formed body and fin material
JP2002220697A (en) * 2001-01-30 2002-08-09 Chiyoda Kiki Hanbai Kk Film forming method on magnesium alloy and electrolytic solution therefor
JP2003144938A (en) * 2001-11-12 2003-05-20 Yaskawa Electric Corp Photocatalyst body and manufacturing method therefor
JP2003193294A (en) * 2001-12-28 2003-07-09 Mitsubishi Electric Corp Metallic member and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042859A (en) * 2005-08-03 2007-02-15 Denka Himaku Kogyo Kk Magnesium heat radiating material superior in thermal emissivity and its manufacturing method
JP2007216197A (en) * 2006-02-20 2007-08-30 Univ Kinki Photocatalytic film, photocatalytic material and methods for manufacturing them
JP2007325995A (en) * 2006-06-06 2007-12-20 Univ Kinki Photocatalyst film and its manufacturing method
JP2009154048A (en) * 2007-12-25 2009-07-16 Alumite Shokubai Kenkyusho:Kk Catalytic reactor and catalytic reaction apparatus using the same
JP2012034760A (en) * 2010-08-05 2012-02-23 U-Vix Corp Air cleaner

Similar Documents

Publication Publication Date Title
CN104005072B (en) Method for sealing aluminum-alloy surface anode oxide film hole by adopting titanium dioxide gel
Baram et al. Enhanced inactivation of E. coli bacteria using immobilized porous TiO2 photoelectrocatalysis
US5556531A (en) Process for the aftertreatment of aluminum materials substrates of such materials and their use for offset printing plates
JP2006291278A (en) Magnesium metallic material having excellent corrosion resistance, and method for producing the same
CN104404287B (en) A kind of process using foamed ceramics auxiliary to produce foamed aluminium
Gulati et al. Understanding the influence of electrolyte aging in electrochemical anodization of titanium
US20140209467A1 (en) Method For Producing White Anodized Aluminum Oxide
WO2017192057A4 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
JP4825002B2 (en) Method for producing magnesium metal material
JP4784722B2 (en) Magnesium metal material having photocatalytic active surface and method for producing the same
JP2005103505A (en) Method for manufacturing magnesium metallic material having photocatalytically active surface
CN111495348A (en) Preparation method of porous photocatalyst filter screen
JP2007314840A (en) Surface treatment method for imparting aluminum alloy superior hydrophilicity
EP0842309A1 (en) Process for dep tsols into microporous coating layers
JP2008127673A (en) Method of manufacturing fine structure and fine structure
JP4445789B2 (en) Apatite coating composition and method for producing apatite coated titanium dioxide
JP4753112B2 (en) Magnesium metal material having antibacterial active surface and method for producing the same
KR100926126B1 (en) Method for preparing integral nanotube photocatalyst, apparatus and method for reducing hexavalent chrominum
WO2004101864A1 (en) Anodic oxidation method and production method for titanium oxide coating and method of supporting catalyst
US20140151235A1 (en) Process for Producing an Adhesion-Promoting Layer on a Surface of a Titanium Material
WO2007132832A1 (en) Method for processing object substance in aqueous solution, and apparatus and photocatalyst material used for the method
JP2001303296A (en) Metallic material having photocatalytic function and producing method thereof
Harito et al. Hierarchical mesoscale assembly of PbO2 on 3D titanium felt/TiO2 nanotubular array electrode for anodic decolourisation of RB-5 dye
El-Said Shehata et al. New Trends in Anodizing and Electrolytic Coloring of Metals
JP2001087654A (en) Visible light-activated catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006