JP4784722B2 - Magnesium metal material having photocatalytic active surface and method for producing the same - Google Patents

Magnesium metal material having photocatalytic active surface and method for producing the same Download PDF

Info

Publication number
JP4784722B2
JP4784722B2 JP2003343952A JP2003343952A JP4784722B2 JP 4784722 B2 JP4784722 B2 JP 4784722B2 JP 2003343952 A JP2003343952 A JP 2003343952A JP 2003343952 A JP2003343952 A JP 2003343952A JP 4784722 B2 JP4784722 B2 JP 4784722B2
Authority
JP
Japan
Prior art keywords
magnesium
film
pore
metal material
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003343952A
Other languages
Japanese (ja)
Other versions
JP2005103504A (en
Inventor
政弘 秋本
Original Assignee
電化皮膜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電化皮膜工業株式会社 filed Critical 電化皮膜工業株式会社
Priority to JP2003343952A priority Critical patent/JP4784722B2/en
Publication of JP2005103504A publication Critical patent/JP2005103504A/en
Application granted granted Critical
Publication of JP4784722B2 publication Critical patent/JP4784722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、浄水、脱臭、殺菌、油汚れ防止、有害ガスの分解等、広範囲な用途に用いられる、光触媒活性表面を有するマグネシウム系金属材料及びその製造法に関するものである。 The present invention relates to a magnesium-based metal material having a photocatalytically active surface and a method for producing the same, which are used in a wide range of applications such as water purification, deodorization, sterilization, oil stain prevention, and decomposition of harmful gases.

半導体にそのバンドギャップ以上のエネルギーを有する波長の光を照射すると光励起により価電子帯での正孔生成と伝導体への電子移動によってこれらに接触する有機物等を酸化還元反応で分解してしまういわゆる光触媒については良く知られている。 When a semiconductor is irradiated with light having a wavelength greater than its band gap, the organic matter that contacts these is decomposed by redox reaction due to the generation of holes in the valence band and the transfer of electrons to the conductor by photoexcitation. Photocatalysts are well known.

しかしながら、光触媒を基材表面に固定化することが困難であるため光触媒活性表面を持つ各種材料の開発が遅れている。これは光触媒が励起されたときに生ずる酸化還元能力は大変強力で殆どの有機物を分解するので光触媒を基材表面に固定化するためのバインダーとして有機物を用いることが出来ないためである。また前述の光触媒効果を生じさせるためには紫外光などが触媒体に照射されることと、被処理物質と触媒体との直接接触が必要であることからバインダーは透明で且つ多孔質である事が必要である。このため光触媒の基材への固定化には主にシリケート類などの無機バインダーが用いられてきた。 However, since it is difficult to fix the photocatalyst to the substrate surface, development of various materials having a photocatalytic active surface is delayed. This is because the redox ability generated when the photocatalyst is excited is very strong and decomposes most organic substances, so that the organic substances cannot be used as a binder for fixing the photocatalyst to the substrate surface. In order to produce the above-mentioned photocatalytic effect, the binder must be transparent and porous because it is necessary to irradiate the catalyst body with ultraviolet light or the like and to make direct contact between the material to be treated and the catalyst body. is required. For this reason, inorganic binders such as silicates have been mainly used for immobilizing photocatalysts on substrates.

例えば特許文献1に基材表面への光触媒固定化法が提案されているが、この時用いられているバインダーはシリケート類である。しかしながら、シリケートバインダーは厚膜化するとひび割れが生じるので衝撃を受けると基材から剥離してしまう欠点があり、厚膜化によって光触媒付与量を多くすることが困難である。光触媒はこれと接触した有機物のみを酸化還元分解するのでその付与量が少ない場合は必然的に油汚れや有害ガスの分解能力も小さいために、実用上の点から表面積の大きい、適度に荒れた立体的構造を持つ粗面化された基材に光触媒を多量に表面に付着させる方法の開発が望まれていた。
特開平9−1724
For example, Patent Document 1 proposes a method for immobilizing a photocatalyst on the surface of a base material. The binder used at this time is silicates. However, since the silicate binder is cracked when it is thickened, there is a drawback that it is peeled off from the base material upon impact, and it is difficult to increase the amount of photocatalyst provided by thickening. Since the photocatalyst decomposes only the organic matter in contact with this by oxidation-reduction decomposition, if it is applied in a small amount, the ability to decompose oil stains and harmful gases is inevitably small. Development of a method for attaching a large amount of photocatalyst to a roughened substrate having a three-dimensional structure on the surface has been desired.
JP-A-9-1724

又、従来の光触媒の場合、複雑形状については、例えばゼオライトを原料とした時、粉末にして型で固形化するか、粉末の状態で表面に付着させるか又は粉末を閉鎖領域に閉じ込めるかの方法であり、前者では多量の原料を使用した割には触媒効果が小さく、また表面付着では不十分な量しか固定化できなかった。 In the case of conventional photocatalysts, for complex shapes, for example, when zeolite is used as a raw material, the powder is solidified in a mold, adhered to the surface in the form of a powder, or the powder is confined in a closed region In the former, the catalytic effect was small even when a large amount of raw material was used, and only an insufficient amount could be fixed by surface adhesion.

本発明は従来技術では光触媒の基材表面への固定化付着量が少ない欠点を解決するために提案されたものであって、有害物質の分解性能が大きい光触媒体の提供を目的とする。 The present invention has been proposed in order to solve the disadvantage that the photocatalyst is immobilized on the substrate surface in a small amount in the prior art, and an object of the present invention is to provide a photocatalyst having a high ability to decompose harmful substances.

本発明は、マグネシウムまたはマグネシウム合金の表面に、平均孔径が50nm〜50μmの微細孔を多数有する多孔質陽極酸化皮膜を形成し、該多孔質陽極酸化皮膜は火花放電を伴う火花放電型陽極酸化法によって形成された、孔、壁、バリヤー層よりなる皮膜であって、孔については表面側の大きい細孔層と、その下により小さい細孔層を有する2層構造を持ち、且つ、孔とマグネシウム素地の間にバリヤー層が存在する、4層構造より成り立っている皮膜であり、該多孔質皮膜の微細孔内部及び皮膜表面に光触媒を担持固定化することを特徴とする光触媒活性表面を有するマグネシウム金属材料製造法である。The present invention forms a porous anodic oxide film having a large number of fine pores having an average pore diameter of 50 nm to 50 μm on the surface of magnesium or a magnesium alloy, and the porous anodic oxide film is a spark discharge type anodic oxidation method accompanied by a spark discharge. Is a film composed of pores, walls, and a barrier layer, and has a two-layer structure with a large pore layer on the surface side and a smaller pore layer below the pore, and the pores and magnesium. Magnesium having a photocatalytically active surface, comprising a four-layer structure in which a barrier layer is present between the substrates, wherein the photocatalyst is supported and fixed inside the micropores and on the surface of the porous film It is a manufacturing method of a metal material.

本発明のマグネシウム金属材料の表面には火花放電を伴う陽極酸化によって平均孔径が50nm〜50μmの微細孔が多数存在する多孔質陽極酸化皮膜が存在する。この様に表面に不規則で不連続な、そして時には非常に大きな細孔を多数有するマグネシウム金属材料は外観、光沢などの点から従来は欠点とされていたものであるが、本発明ではこの欠点を光触媒活性の発現に積極的に利用したものである。 On the surface of the magnesium metal material of the present invention, there is a porous anodic oxide film having a large number of fine pores having an average pore diameter of 50 nm to 50 μm due to anodic oxidation accompanied by spark discharge. Thus, the magnesium metal material having irregular, discontinuous, and sometimes very large pores on the surface has been conventionally regarded as a defect from the viewpoint of appearance, gloss, etc. Is actively used to develop photocatalytic activity.

この様な細孔は火花放電を伴う条件下で陽極酸化を施すことによって表面に多数形成させることが出来る。この多孔質皮膜の厚さは1〜100μmの範囲でかなり自由に設定することが可能で、従って細孔部分に充填する光触媒の量も必要に応じてかなりの自由度をもって変えることができる。皮膜中の微細孔分布を厚さ方向捉えると、平均孔径の大きな細孔が表面より素材に向かって、皮膜厚さ方向に60%以上を占め、残り40以下を、小さな微細孔層とバリヤー層が占め、全体としては表面より大きめの細孔、小さな細孔、バリヤー層、素材という構造となっている。又、ここで言う「平均孔径の大きな細孔」とは、平均孔径が5μm以上の孔径が70%以上占めていること。一方「小さな細孔」とは、50nm〜5μm未満の孔径が70%以上占めていることをいう。 Many such pores can be formed on the surface by anodizing under conditions involving spark discharge. The thickness of the porous film can be set fairly freely in the range of 1 to 100 μm. Therefore, the amount of the photocatalyst filled in the pores can be changed with a considerable degree of freedom as required. When the micropore distribution in the film is captured in the thickness direction, pores with a large average pore diameter occupy 60% or more in the film thickness direction from the surface toward the material, and the remaining 40 or less is composed of a small microporous layer and a barrier layer. As a whole, the structure is composed of pores larger than the surface, small pores, barrier layers, and materials. The term “pores with a large average pore diameter” as used herein means that 70% or more of the pore diameters have an average pore diameter of 5 μm or more. On the other hand, “small pore” means that the pore diameter of 50 nm to less than 5 μm occupies 70% or more.

本発明の金属材料表面に形成される皮膜は、主に2水準の孔、壁、バリヤー層の4層構造で、皮膜の組成が酸化マグネシウムとスピネル又はこれに近い構造より成り立っている。これら細孔は、表面に開口部を有し、平均孔径が50nm〜50μmの大きさを有しているため、光触媒として10乃至500nm程度の粒径を持つ例えば酸化チタンを使用した場合にこの微細孔内部及び表面に充填又は付着させることは容易である。この様な粒径の酸化チタンとして石原産業(株)などから市販されているSTシリーズの粉体あるいはSTSシリーズの分散体などがある。金属材料表面に形成されている細孔の数は1平方ミリメートルあたり少なくとも10個以上、通常100個以上存在しているので基材表面全体に均一に光触媒を担持固定化することが出来る。 The film formed on the surface of the metal material of the present invention mainly has a four-layer structure of two levels of pores, walls, and barrier layers, and the composition of the film is composed of magnesium oxide and spinel or a structure close thereto. Since these pores have openings on the surface and an average pore diameter of 50 nm to 50 μm, this fineness is obtained when, for example, titanium oxide having a particle diameter of about 10 to 500 nm is used as a photocatalyst. It is easy to fill or adhere to the inside and surface of the hole. Examples of titanium oxide having such a particle size include ST series powders and STS series dispersions commercially available from Ishihara Sangyo Co., Ltd. Since the number of pores formed on the surface of the metal material is at least 10 per square millimeter, usually 100 or more, the photocatalyst can be uniformly supported and immobilized on the entire surface of the substrate.

本発明においてマグネシウム金属材料表面に特定の微細孔を有する皮膜を形成するには、該金属材料をアルカリまたはアルカリ土類金属のリン酸塩、ホウ酸塩、水酸化物、ケイ酸塩もしくはケイフッ化塩の1種以上を0.2〜7モル/リットル、皮膜添加剤を0.01〜5モル/リットルの割合で含む水溶液中で電流密度0.5〜5A/デシ平方メート、電圧25V以上で火花放電を生じさせながら陽極酸化処理することによって達成される。 In the present invention, in order to form a film having specific fine pores on the surface of a magnesium metal material, the metal material is made of an alkali or alkaline earth metal phosphate, borate, hydroxide, silicate or fluorosilicate. In an aqueous solution containing one or more salts at a rate of 0.2 to 7 mol / liter and a film additive at a rate of 0.01 to 5 mol / liter, a current density of 0.5 to 5 A / decimeter square and a voltage of 25 V or more. This is achieved by anodizing while producing a spark discharge.

本発明で用いられるアルカリ又はアルカリ土類金属のリン酸塩、ホウ酸塩、ケイ酸塩、もしくは水酸化物で、具体例としては、HPO, NaPO、NaHPO、NaHPO、Na、NaNa、Na、Na10、KPO、KHPO、KHPO、K、K(POのリン酸塩、NaBO,Na、NaBo、KBOのホウ酸塩、NaSiO、NaSiO、KSiO、KSiO7、Si4Oのケイ酸塩及び、NaOH,KOH,BaOHの水酸化物があげられる。 Examples of alkali or alkaline earth metal phosphates, borates, silicates, or hydroxides used in the present invention include H 3 PO 4 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4, Na 4 P 2 O 6, Na 2 H 2 P 2 O 6 Na 4 P 2 O 7, Na 2 H 2 P 2 O 7, Na 5 P 3 O 10, K 3 PO 4, K 2 HPO 4 , KH 2 PO 4 , K 4 P 2 O 7 , phosphate of K 6 (PO 3 ) 6 , NaBO 2 , Na 2 B 4 O 7 , NaBo 3 , KBO 2 K 2 B 4 O 7 Examples thereof include silicates such as acid salts, Na 2 SiO 3 , Na 4 SiO 4 , K 2 SiO 3 , K 2 SiO 7, and K 2 Si 4 O 9 , and hydroxides such as NaOH, KOH, and BaOH.

電解液には液の寿命、皮膜の均一性、安定性、性能向上を目的として皮膜添加剤を加える。添加剤には、フッ化物塩、重フッ化物塩、ケイフッ化物塩、鉱酸塩などの無機化合物、又はアルコール基、カルボキシル基、スルホン基を含む環状又は鎖状の有機化合物が用いられ、具体的にはKF、NHFなどのフッ化物、NHFHF、NaFHF、KFHFなどの重フッ化物、NaSiO、NaSiO、KSiOなどのケイ酸化合物、NaSiF、MgSiF、(NHSiFなどのケイフッ化物、有機化合物としては(CHOH)、(CHCHOH)O、(CHOH)CHOHなどのアルコール類、(COOH)、(CHCHCOOH)、〔CH(OH)COOH〕、C(OHCOOH)、CCOOH、C6(COOH)どのカルボン酸、C(SOH・COOH)、C(COOH・OH・SOH)などのスルホン基を有する有機化合物が用いられる。 A coating additive is added to the electrolytic solution for the purpose of improving the life of the solution, uniformity of the coating, stability, and performance. As the additive, inorganic compounds such as fluoride salts, bifluoride salts, silicofluoride salts, and mineral acid salts, or cyclic or chain organic compounds containing alcohol groups, carboxyl groups, and sulfone groups are used. Includes fluorides such as KF and NH 4 F, dehydrofluorides such as NH 4 FHF, NaFHF and KFHF, silicate compounds such as Na 2 SiO 3 , Na 4 SiO 4 and K 2 SiO 2 , Na 2 SiF 6 , Silicides such as MgSiF 6 and (NH 4 ) 2 SiF 6 , organic compounds such as (CH 2 OH) 2 , (CH 2 CH 2 OH) O, alcohols such as (CH 2 OH) 2 CHOH, (COOH) 2 , (CH 2 CH 2 COOH) 2 , [CH (OH) COOH] 2 , C 6 H 4 (OHCOOH), C 6 H 5 COOH, C 6 H 4 (COOH ) 2 which carboxylic acids, C 6 H 4 (SO 3 H · COOH), an organic compound having a C 6 H 3 (COOH · OH · SO 3 H) sulfone group, such as is used.

これらの皮膜形成安定剤は単独でも混合して用いても良い。特に無機化合物と有機化合物を組み合わせて使用するときは液管理が容易となり好ましい。この安定剤の添加量は電解液中、0.01〜5モル/リットルの範囲が好ましい。 These film formation stabilizers may be used alone or in combination. In particular, when an inorganic compound and an organic compound are used in combination, liquid management becomes easy, which is preferable. The amount of the stabilizer added is preferably in the range of 0.01 to 5 mol / liter in the electrolytic solution.

この様に調整された電解液中でのマグネシウム合金の陽極酸化処理は、浴温を10〜60℃でpH9以上の弱〜強アルカリ性の範囲で行うのが特に好ましい。 It is particularly preferable that the anodic oxidation treatment of the magnesium alloy in the electrolytic solution thus adjusted is performed in a weak to strong alkaline range of pH 9 or higher at a bath temperature of 10 to 60 ° C.

マグネシウム系の金属材料表面に多孔質火花放電型陽極酸化皮膜を形成し、その細孔中に光触媒微粒子を担持固定化する方法には常圧含浸法、減圧含浸法、加圧含浸法、ゾルゲル法、電気泳動法、浸漬超音波含浸法などがあり、特に減圧加圧を併用する含浸法、浸漬超音波含浸法が好ましい。具体的な含浸法としては適当な真空容器中に陽極酸化皮膜を形成したマグネシウム合金材料を置き、内部を減圧にしてから前記STSシリーズなどの酸化チタン懸濁液を導入することによって表面細孔内に酸化チタンを密に充填することが出来る。また懸濁液を導入してから容器を加圧にしてより多くの触媒を充填することもできる。この様な固定化はマグネシウム金属材料の成形後のメッキ、アルマイト処理、塗装などの後工程と同様に従来の一連の製造工程中で行うことが出来るという特徴を有している。 The method of forming a porous spark discharge type anodic oxide film on the surface of magnesium-based metal material and supporting and fixing the photocatalyst fine particles in the pores is the normal pressure impregnation method, the vacuum impregnation method, the pressure impregnation method, the sol-gel method. Electrophoretic method, immersion ultrasonic impregnation method, and the like, and impregnation method using immersion under reduced pressure and immersion ultrasonic impregnation method are particularly preferable. As a specific impregnation method, a magnesium alloy material having an anodized film formed thereon is placed in a suitable vacuum vessel, and the inside of the surface pores is introduced by introducing a titanium oxide suspension such as the STS series after reducing the pressure inside. Titanium oxide can be densely filled. It is also possible to fill the catalyst by pressurizing the container after introducing the suspension. Such immobilization is characterized in that it can be carried out in a series of conventional manufacturing processes as in the post-process such as plating, alumite treatment, and painting after forming the magnesium metal material.

本発明で使用するマグネシウム金属材料は広範囲に応用可能で、純マグネシウム系、マグネシウム‐アルミニウム系、マグネシウム‐アルミニウム‐亜鉛系、マグネシウム‐アルミニウム‐ケイ素系、マグネシウム‐ジルコニウム‐希土類‐銀系、マグネシウム‐亜鉛‐ジルコニウム系、マグネシウム‐亜鉛系、マグネシウム‐希土類‐ジルコニウム系、マグネシウム‐アルミニウム‐希土類系、マグネシウム‐イットリウム‐希土類系、マグネシウム‐カルシウム‐亜鉛系など陽極酸化皮膜の形成が可能である材料ならば全て利用可能である。 The magnesium metal material used in the present invention is widely applicable, pure magnesium system, magnesium-aluminum system, magnesium-aluminum-zinc system, magnesium-aluminum-silicon system, magnesium-zirconium-rare earth-silver system, magnesium-zinc -Zirconium, Magnesium-Zinc, Magnesium-Rare Earth-Zirconium, Magnesium-Aluminum-Rare Earth, Magnesium-Yttrium-Rare Earth, Magnesium-Calcium-Zinc, etc. Is available.

これらの材料は、展伸材、鋳物材、ダイキャスト材、鍛造材などいずれのものも用いられ、加工、成形方法についても展伸材からのプレス、板金、インパクト、バルジ法、鋳造からの砂型、金型、ロストワックス,プラススターモールド、スクイズキャスチング法、ダイキャストからホットチャンバー、コールドチャンバー、半溶融法、鍛造から、熱間、温間法があり、これら各種の成形法で望む形状、例えば板、管、棒、球、又は二次元もしくは三次元の繊維状、あるいはハニカム状構造などにして用いることが出来る。特に本発明の材料を脱臭用途などに用いるときには表面積の大きい繊維状又はハニカム状に加工したものを用いるのが好ましい。 These materials include wrought materials, cast materials, die-cast materials, forged materials, etc., and the processing and molding methods are also presses from wrought materials, sheet metal, impact, bulge method, sand molds from casting. , Mold, lost wax, plus star mold, squeeze casting method, die casting to hot chamber, cold chamber, semi-melting method, forging, hot, warm method, desired shape by these various molding methods, for example It can be used as a plate, a tube, a rod, a sphere, or a two-dimensional or three-dimensional fibrous or honeycomb structure. In particular, when the material of the present invention is used for deodorization or the like, it is preferable to use a material processed into a fibrous or honeycomb shape having a large surface area.

これらの成形材料は必要に応じて機械的又は化学的な前処理を施した後に陽極酸化することが好ましい。機械的な前処理法としては乾式もしくは湿式ホーニング法、ベルト、バフ研磨法、スクラッチ法、ヘアーライン法などが用いられる。また化学的な前処理法としてはエッチング、化学梨地、食刻法などが用いられ、これらの前処理を1つ又は2つ以上組み合わせても良い。この様な前処理は金属材料の表面を立体的に変化させるので表面積を増大させる効果を有する。 These molding materials are preferably anodized after mechanical or chemical pretreatment as necessary. As the mechanical pretreatment method, a dry or wet honing method, a belt, a buffing method, a scratch method, a hairline method, or the like is used. Further, as a chemical pretreatment method, etching, chemical finish, etching method or the like is used, and one or two or more of these pretreatments may be combined. Such pretreatment has the effect of increasing the surface area because the surface of the metal material is three-dimensionally changed.

形状が、板、1又は多数本の管又は棒状構造、球状構造、二次元又は三次元繊維状構造、ハニカム構造などを有する表面積の大きい金属材料に前記の機械的又は、化学的前処理と多孔質火花放電型陽極酸化による皮膜の形成工程が加わると、相乗的に表面積が増加し、これに伴い光触媒固定化量が増加し、基材の単位面積当たりの触媒効率が増大する。 The above-mentioned mechanical or chemical pretreatment and porosity are applied to a metal material having a large surface area, such as a plate, one or many tubes or rod-like structures, spherical structures, two-dimensional or three-dimensional fibrous structures, honeycomb structures, etc. When a film formation process by quality spark discharge type anodic oxidation is added, the surface area increases synergistically, and the amount of photocatalyst immobilized increases accordingly, and the catalyst efficiency per unit area of the substrate increases.

この様にして得られたマグネシウム材料は表面に多量の光触媒が担持固定化されており、各種平面、筐体、枠体、複雑形状部品、1又は多数本の管又は棒状構造、球状構造、二次元又は3次元繊維状構造、ハニカム構造等に利用される。この材料表面は紫外線、光触媒の種類によっては可視光の照射で光触媒作用を生じるので、抗菌、黴の発生防止、防汚作用など示し、またアルデヒド、メルカプタンなど有害又は悪臭ガスと接触することによりこれらを分解する効果を有する。 The magnesium material thus obtained has a large amount of photocatalyst supported and fixed on the surface, and various planes, housings, frames, complex shaped parts, one or many pipes or rod-like structures, spherical structures, It is used for three-dimensional or three-dimensional fibrous structures, honeycomb structures, and the like. Depending on the type of UV or photocatalyst, the surface of this material will produce photocatalysis when irradiated with visible light, so that it exhibits antibacterial properties, prevention of wrinkles, antifouling, etc., and contact with harmful or odorous gases such as aldehydes and mercaptans. Has the effect of decomposing.

本発明のマグネシウム系金属材料は前処理を含む火花放電型陽極酸化処理によって形成された多孔質皮膜の微細孔中に光触媒が充填されているので衝撃があっても剥離脱落することが無く、安定している。更に長期間の使用により無機物の付着などにより触媒表面の活性が劣化した時には、立体的に固定化されているので表面層を清掃又は削ることにより新規の表層を出す事が可能で、初期性能を簡単に回復できる利点を有する。 The magnesium-based metallic material of the present invention is stable because it does not fall off even if there is an impact because the photocatalyst is filled in the fine pores of the porous film formed by spark discharge type anodizing treatment including pretreatment. is doing. Furthermore, when the activity of the catalyst surface deteriorates due to adhesion of inorganic substances due to long-term use, it is fixed in three dimensions, so it is possible to put out a new surface layer by cleaning or scraping the surface layer, and improving the initial performance. Has the advantage of easy recovery.

又、前処理により三次元的構造を持たせ、単位面積あたりの担持固定化される光触媒量が従来法に比し格段に多く、このため油などによる汚染の防止効果、抗菌、防かび、有害ガス分解効果に優れており、光触媒作用を利用する小型の装置を作ることが出来る。 In addition, it has a three-dimensional structure by pre-treatment, and the amount of photocatalyst supported and immobilized per unit area is much larger than that of the conventional method. Therefore, the effect of preventing contamination by oil, antibacterial, antifungal, harmful The gas decomposition effect is excellent, and a small device using photocatalysis can be made.

以下、本発明の実施の形態を具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.

板厚1mm、70×150mmのマグネシウム合金AZ31B圧延材を用いて、脱脂、酸処理後、NaOH;3±0.05モル/リットル、NaHPO;0.3±0.01モル/リットル皮膜成形安定剤としてNaSiO ;0.05±0.005モル/リットルと、酒石酸ナトリウム;0.1±0.05モル/リットル、KF;0.2±0.01モル/リットルを添加した電解液で液温28±2℃、電流密度2±0.5A/平方デシメートル、火花放電開始電圧約50Vで60分火花放電型陽極酸化処理を行った。この皮膜の断面を電子顕微鏡で観察すると、約20μmの皮膜厚さの中、表面側より約16μmまでは、10〜20μmの細孔が、素地側の皮膜厚さ約4μmに、3μm以下の微細孔が確認出来た。処理後、STS‐21酸化チタン分散液(石原産業(株)製、平均粒子径20nm)に15分浸漬後乾燥して表面に酸化チタンを固定化したマグネシウム金属材料を得た。 Using magnesium alloy AZ31B rolled material with a plate thickness of 1 mm and 70 × 150 mm, after degreasing and acid treatment, NaOH: 3 ± 0.05 mol / liter, Na 2 HPO 4 ; 0.3 ± 0.01 mol / liter coating As molding stabilizers, Na 2 SiO 3 ; 0.05 ± 0.005 mol / liter and sodium tartrate; 0.1 ± 0.05 mol / liter, KF; 0.2 ± 0.01 mol / liter were added. Spark discharge type anodic oxidation treatment was performed with the electrolyte at a liquid temperature of 28 ± 2 ° C., a current density of 2 ± 0.5 A / square decimeter, and a spark discharge starting voltage of about 50 V. When the cross section of this film is observed with an electron microscope, pores of 10 to 20 μm have a fine film thickness of about 3 μm or less to a film thickness of about 4 μm on the substrate side up to about 16 μm from the surface side in the film thickness of about 20 μm. A hole was confirmed. After the treatment, it was immersed in an STS-21 titanium oxide dispersion (Ishihara Sangyo Co., Ltd., average particle size 20 nm) for 15 minutes and then dried to obtain a magnesium metal material having titanium oxide immobilized on the surface.

実施例1と同じ圧延材を用い、前処理として機械的処理の乾式ホーニング(鉄粉#100、圧力0.25MPa、作業時間1分)を行った後、同様にして脱脂、酸処理し、同一電解条件で陽極酸化を行い、得られた材料に光触媒を実施例1と同様の方法で担持固定化した。 The same rolled material as in Example 1 was used, and mechanical treatment dry honing (iron powder # 100, pressure 0.25 MPa, working time 1 minute) was performed as a pretreatment, followed by degreasing and acid treatment in the same manner. Anodization was performed under electrolytic conditions, and a photocatalyst was supported and immobilized on the obtained material in the same manner as in Example 1.

前処理として、機械的処理の湿式ホーニング(ガラスビーズ、#100、圧力0.25MPa、作業時間1分)を行い、後は実施例2と同様にして光触媒を固定化した。 As the pretreatment, wet honing (glass beads, # 100, pressure 0.25 MPa, working time 1 minute) of mechanical treatment was performed, and thereafter the photocatalyst was immobilized in the same manner as in Example 2.

使用材料及び陽極酸化皮膜処理を実施例1と同様にし、光触媒を担持固定化する方法は製品をSUSの真空容器にいれ、4mmHgに減圧し、20分保持し、保持後STS‐21酸化チタン分散液(石原産業(株)製、平均粒子径20nm)を、容器内の製品が完全に浸漬されるまで注入し、15分保持後取出し乾燥した。 The material used and the anodic oxide film treatment were the same as in Example 1, and the photocatalyst was supported and immobilized by placing the product in a SUS vacuum container, reducing the pressure to 4 mmHg, holding for 20 minutes, and holding the STS-21 titanium oxide dispersed The liquid (Ishihara Sangyo Co., Ltd., average particle size 20 nm) was poured in until the product in the container was completely immersed, held for 15 minutes, taken out and dried.

(実施例5)実施例4において、光触媒の担持固定化の際に、容器内の製品が酸化チタン分散液に浸漬された状態で、更に25KHzの超音波で15分処理を施した後、取り出し乾燥した。
(Example 5) In Example 4, when the photocatalyst was supported and fixed, the product in the container was immersed in the titanium oxide dispersion, and further subjected to treatment with ultrasonic waves of 25 KHz for 15 minutes. Removed and dried.

実施例5において、陽極酸化処理、実施例5の光触媒担持固定化処理後、0.4MPaにて加圧15分後取り出した。
触媒の担持固定化処理を行なった。
In Example 5, after anodic oxidation treatment and photocatalyst carrying and fixing treatment in Example 5, the sample was taken out after pressurizing at 0.4 MPa for 15 minutes.
The catalyst was immobilized and fixed.

比較例として既存の同一試験片を脱脂、酸処理後STS‐21の浴中に15分浸漬後乾燥した。 As a comparative example, the same existing test piece was degreased, acid-treated, immersed in an STS-21 bath for 15 minutes, and then dried.

これらの実施例1〜6と比較例の評価は次の方法で行った。各々の実施例で得た製品を容積2.8Lの閉鎖箱に入れ、初期流量150ml/分でアセトアルデヒドを3分流した。次にブラックライトで0.5mw/平方センチメートルの光照射をした。この段階でのアセトアルデヒドの流量は100ml/分とした。他の実施例についても同様に行った。経過時間毎にアセトアルデヒドの含有量をガスクロマトグラフィーで分析した。結果を図1に示した。従来の光触媒担持固定化法より優れていることが明らかである。 These Examples 1 to 6 and Comparative Example were evaluated by the following method. The product obtained in each example was placed in a closed box having a volume of 2.8 L, and acetaldehyde was allowed to flow for 3 minutes at an initial flow rate of 150 ml / min. Next, light irradiation of 0.5 mw / square centimeter was performed with a black light. The flow rate of acetaldehyde at this stage was 100 ml / min. It carried out similarly about the other Example. The content of acetaldehyde was analyzed by gas chromatography at each elapsed time. The results are shown in FIG. It is clear that the method is superior to the conventional photocatalyst-supported immobilization method.

本発明のマグネシウム材料は抗菌、防黴、防汚材料として、又は有害もしくは悪臭ガス等の分解材、脱臭材などに使用できる。 The magnesium material of the present invention can be used as an antibacterial, antifungal or antifouling material, or as a decomposition or deodorizing material such as harmful or offensive odor gas.

本発明によって得られた製品による光触媒効果について、アセトアルデヒド含有量の減少と経過時間との関係を示す図である。It is a figure which shows the relationship between the reduction | decrease of acetaldehyde content, and elapsed time about the photocatalytic effect by the product obtained by this invention.

符号の説明Explanation of symbols

1:比較例 2:実施例1 3:実施例3 4:実施例4
5:実施例5 6:実施例2 7:実施例6
1: Comparative Example 2: Example 1 3: Example 3 4: Example 4
5: Example 5 6: Example 2 7: Example 6

Claims (5)

マグネシウムまたはマグネシウム合金の表面に、平均孔径が50nm〜50μmの微細孔を多数有する多孔質陽極酸化皮膜を形成し、該多孔質陽極酸化皮膜は火花放電を伴う火花放電型陽極酸化法によって形成された、孔、壁、バリヤー層よりなる皮膜であって、孔については表面側の大きい細孔層と、その下により小さい細孔層を有する2層構造を持ち、且つ、孔とマグネシウム素地の間にバリヤー層が存在する、4層構造より成り立っている皮膜であり、該微細孔内部及び皮膜表面に光触媒を担持固定化することを特徴とする光触媒活性表面を有するマグネシウム金属材料の製造法。A porous anodic oxide film having a large number of fine pores having an average pore diameter of 50 nm to 50 μm was formed on the surface of magnesium or a magnesium alloy, and the porous anodic oxide film was formed by a spark discharge type anodic oxidation method accompanied by a spark discharge. A film composed of a pore, a wall and a barrier layer. The pore has a two-layer structure having a large pore layer on the surface side and a smaller pore layer below the pore layer, and between the pore and the magnesium substrate. A method for producing a magnesium metal material having a photocatalytically active surface, characterized in that it is a film comprising a four-layer structure in which a barrier layer is present, and a photocatalyst is supported and fixed inside the fine pores and on the film surface. 多孔質火花放電型陽極酸化皮膜は、酸化マグネシウムとのスピネル又はこれに近い構造で、皮膜厚さは1〜100μmであることを特徴とする請求項1記載のマグネシウム金属材料の製造法。2. The method for producing a magnesium metal material according to claim 1, wherein the porous spark discharge type anodic oxide film is a spinel with magnesium oxide or a structure close thereto, and the film thickness is 1 to 100 [mu] m. マグネシウムまたはマグネシウム合金を、アルカリまたはアルカリ土類金属のリン酸塩、ケイ酸塩もしくは水酸化物の1種類以上と、皮膜添加剤として、フッ化物塩、重フッ化物塩、硫酸塩もしくは硝酸塩である無機化合物、又はアルコール基、カルボキシル基もしくはスルホン基を含む環状又は鎖状の有機化合物の一種以上を含む液中で、浴温10〜60℃、電流密度0.5〜20A/デシ平方メートル、電圧25V以上で火花放電を生じさせながら火花放電型陽極酸化処理を施し、孔、壁、バリヤー層よりなる皮膜で、孔については表面側の大きい細孔層と、その下により小さい細孔層を有する2層構造を持ち、且つ、孔とマグネシウム素地の間にバリヤー層が存在する、4層構造より成り立っている、平均孔径が50nm〜50μmの微細孔を多数有する、皮膜厚さ1〜100μmの、多孔質陽極酸化皮膜を形成し、該微細孔内部及び皮膜表面に光触媒を担持固定化することを特徴とする光触媒活性表面を有するマグネシウム金属材料の製造法。Magnesium or magnesium alloy, phosphates of the alkali or alkaline earth metals, and one or more silicates or hydroxides as a film additive is a fluoride salt, heavy fluoride salt, sulfuric acid salt or nitrate In a liquid containing one or more of an inorganic compound or a cyclic or chain organic compound containing an alcohol group, a carboxyl group or a sulfone group, a bath temperature of 10 to 60 ° C., a current density of 0.5 to 20 A / dec square meter, a voltage of 25 V A spark discharge type anodic oxidation treatment is performed while generating a spark discharge as described above, and a film composed of pores, walls, and a barrier layer. The pore has a large pore layer on the surface side and a smaller pore layer below it. It has a layer structure, and is composed of a four-layer structure in which a barrier layer exists between the pores and the magnesium base, and the average pore diameter is 50 nm to 50 μm A magnesium metal material having a photocatalytically active surface, characterized by forming a porous anodic oxide film having a large number of pores and having a film thickness of 1 to 100 μm, and supporting and fixing the photocatalyst inside and on the surface of the micropores Manufacturing method. 陽極酸化時の電源波形は、直流波、脈流波、パルス波、PR波、反転波、又は周波数20Hz〜2KHzの交流波の一つ又は二つ以上を組み合わせて用いることを特徴とする請求項1乃至3のいずれかに記載のマグネシウム金属材料の製造法。The power supply waveform at the time of anodization is a DC wave, a pulsating wave, a pulse wave, a PR wave, an inverted wave, or a combination of one or two or more AC waves having a frequency of 20 Hz to 2 KHz. The manufacturing method of the magnesium metal material in any one of 1-3. 微細孔内部及び皮膜表面に光触媒を担持固定化する方法は、酸化チタン微粒子含有の水又はその他の媒体分散液に浸漬含浸法、浸漬超音波含浸法、減圧含浸法、加圧含浸法、浸漬後減圧含浸法、浸漬後加圧含浸法、ゾルゲル法、電気泳動法、または浸漬法の1つ又は2つ以上の組み合わせで充填及び付着させることからなる請求項1乃至4のいずれかに記載のマグネシウム金属材料の製造法。The method for supporting and fixing the photocatalyst inside the micropores and on the surface of the coating is the immersion impregnation method, immersion ultrasonic impregnation method, vacuum impregnation method, pressure impregnation method, pressure impregnation method, after immersion in water containing titanium oxide fine particles Magnesium according to any one of claims 1 to 4 , comprising filling and adhering by one or a combination of two or more of a reduced pressure impregnation method, a post-immersion pressure impregnation method , a sol-gel method, an electrophoresis method, or an immersion method. Manufacturing method of metal materials.
JP2003343952A 2003-10-02 2003-10-02 Magnesium metal material having photocatalytic active surface and method for producing the same Expired - Fee Related JP4784722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343952A JP4784722B2 (en) 2003-10-02 2003-10-02 Magnesium metal material having photocatalytic active surface and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343952A JP4784722B2 (en) 2003-10-02 2003-10-02 Magnesium metal material having photocatalytic active surface and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005103504A JP2005103504A (en) 2005-04-21
JP4784722B2 true JP4784722B2 (en) 2011-10-05

Family

ID=34537730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343952A Expired - Fee Related JP4784722B2 (en) 2003-10-02 2003-10-02 Magnesium metal material having photocatalytic active surface and method for producing the same

Country Status (1)

Country Link
JP (1) JP4784722B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068018A (en) * 2005-09-01 2007-03-15 Pioneer Electronic Corp Structural component for speaker device and speaker device
JP4756152B2 (en) * 2006-02-20 2011-08-24 学校法人近畿大学 Method for producing photocatalytic material
JP4986240B2 (en) * 2007-12-25 2012-07-25 ニチコン株式会社 Catalytic reactor and catalytic reaction apparatus using the same
KR101031225B1 (en) * 2008-04-18 2011-04-29 한국세라믹기술원 Preparation methods of reactor and stirrer-typed catalysts without filtering process
JP2012108000A (en) * 2010-11-17 2012-06-07 Toshiba Corp Catalyst for recombiner of radioactive gaseous waste treatment facility and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134200A (en) * 1984-07-26 1986-02-18 Matsufumi Takatani Surface treatment of magnesium and its alloy
JP3461227B2 (en) * 1995-06-16 2003-10-27 チタン工業株式会社 Article having a silica film containing titanium dioxide
JP3251475B2 (en) * 1995-09-06 2002-01-28 昭 藤嶋 Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
JPH10174883A (en) * 1996-12-18 1998-06-30 Sumitomo Light Metal Ind Ltd Aluminum material having photocatalytic function and its production
JPH116098A (en) * 1997-06-18 1999-01-12 Nikon Corp Manufacture of titanium oxide film containing metallic element
JPH11100695A (en) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd Production of titanium material having photocatalytic activity
JP2000128582A (en) * 1998-10-28 2000-05-09 Toyota Motor Corp Transparent body having photocatalytic function and its production
JP2001303296A (en) * 2000-04-25 2001-10-31 Chukin:Kk Metallic material having photocatalytic function and producing method thereof
JP2001329396A (en) * 2000-05-22 2001-11-27 Sankyo Alum Ind Co Ltd Surface treatment method for aluminum and aluminum alloy
JP3756759B2 (en) * 2000-12-05 2006-03-15 独立行政法人産業技術総合研究所 Environmental purification material and method for producing the same
JP4087051B2 (en) * 2000-12-13 2008-05-14 三菱アルミニウム株式会社 Aluminum material and fin material for fin material provided with microporous anodic oxide film
JP2003144938A (en) * 2001-11-12 2003-05-20 Yaskawa Electric Corp Photocatalyst body and manufacturing method therefor
JP2003193294A (en) * 2001-12-28 2003-07-09 Mitsubishi Electric Corp Metallic member and production method therefor

Also Published As

Publication number Publication date
JP2005103504A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
CN104005072B (en) Method for sealing aluminum-alloy surface anode oxide film hole by adopting titanium dioxide gel
Baram et al. Enhanced inactivation of E. coli bacteria using immobilized porous TiO2 photoelectrocatalysis
US8017247B2 (en) Self cleaning aluminum alloy substrates
JP2006291278A (en) Magnesium metallic material having excellent corrosion resistance, and method for producing the same
JPH07316882A (en) Method for after-treatment of sheet-like,foil-like or strip-like material,base material consisting of such material and use of its material to offset printing plate
JP4784722B2 (en) Magnesium metal material having photocatalytic active surface and method for producing the same
KR101291062B1 (en) Method of surface treatment for exterior decor of car
JP4825002B2 (en) Method for producing magnesium metal material
JP2005103505A (en) Method for manufacturing magnesium metallic material having photocatalytically active surface
JP2007314840A (en) Surface treatment method for imparting aluminum alloy superior hydrophilicity
JP2008127673A (en) Method of manufacturing fine structure and fine structure
JP2008126151A (en) Catalytic body using anodic aluminum oxide film
JP4753112B2 (en) Magnesium metal material having antibacterial active surface and method for producing the same
WO2004101864A1 (en) Anodic oxidation method and production method for titanium oxide coating and method of supporting catalyst
JP2010202924A (en) Reticulated porous structure and method for producing the same
US20140151235A1 (en) Process for Producing an Adhesion-Promoting Layer on a Surface of a Titanium Material
KR100926126B1 (en) Method for preparing integral nanotube photocatalyst, apparatus and method for reducing hexavalent chrominum
JP2005289778A (en) Composition for apatite coating and method for manufacturing apatite coated titanium dioxide
JP2001303296A (en) Metallic material having photocatalytic function and producing method thereof
RU2736943C1 (en) Coating method for articles from valve metal or its alloy
KR20070039199A (en) Method for treating the surface of aluminium material and aluminium material manufactured by the same
KR100888677B1 (en) Method of manufacuring oxidized layer of oxidized titanium for photo-catalyst and Oxidized layer oxidized titanium for photo-catalyst manufactured by the same
JP2004089912A (en) Method for washing photocatalyst body
JP2011042829A (en) Uneven porous structure and method of manufacturing the same
JP2006116398A (en) Method for producing photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4784722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170722

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees