JP2007039324A - Manufacturing method of alkali-free glass and alkali-free glass plate - Google Patents

Manufacturing method of alkali-free glass and alkali-free glass plate Download PDF

Info

Publication number
JP2007039324A
JP2007039324A JP2006185587A JP2006185587A JP2007039324A JP 2007039324 A JP2007039324 A JP 2007039324A JP 2006185587 A JP2006185587 A JP 2006185587A JP 2006185587 A JP2006185587 A JP 2006185587A JP 2007039324 A JP2007039324 A JP 2007039324A
Authority
JP
Japan
Prior art keywords
glass
sno
alkali
composition
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006185587A
Other languages
Japanese (ja)
Other versions
JP4946216B2 (en
Inventor
Manabu Nishizawa
学 西沢
Junichiro Kase
準一郎 加瀬
Kenta Saito
健太 齊藤
Takashi Maeda
敬 前田
Shuji Matsumoto
修治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006185587A priority Critical patent/JP4946216B2/en
Publication of JP2007039324A publication Critical patent/JP2007039324A/en
Application granted granted Critical
Publication of JP4946216B2 publication Critical patent/JP4946216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of alkali-free glass of a low bubble content suitable for a glass substrate for a flat panel display. <P>SOLUTION: In this manufacturing method of the alkali-free glass, a raw material is prepared by regulating the content of SnO<SB>2</SB>to 0.01-2.0 mass% relative to 100 mass% of the total of the mother composition, which composition being shown below, and after heating and melting the raw material at 1,500-1,650°C, in the state of a melt glass of 1,300-1,500°C, oxygen bubbles generating at the interface of the molten glass and the platinum member are absorbed by oxidation of the SnO to SnO<SB>2</SB>. The composition in mass% of the mother composition is 58.4-66.0% SiO<SB>2</SB>, 15.3-22.0% Al<SB>2</SB>O<SB>3</SB>, 5.0-12.0% B<SB>2</SB>O<SB>3</SB>, 0-6.5% MgO, 0-7.0% CaO, 4-12.5% SrO. and 0-2.0% BaO, wherein (MgO+CaO+SrO+BaO) is 9.0-18.0%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、泡の少ない無アルカリガラスの製造方法、および該方法で製造した泡の少ない、フラットパネルディスプレイ用基板として好適な無アルカリガラス板に関する。   The present invention relates to a method for producing alkali-free glass with less bubbles, and an alkali-free glass plate suitable for a flat panel display substrate with less bubbles produced by the method.

フラットパネルディスプレイ用基板ガラスは、アルカリ金属酸化物を含有するアルカリガラスと、アルカリ金属酸化物を実質的に含有しない無アルカリガラスに大別される。アルカリガラス基板は、プラズマ・ディスプレイ(PDP)、無機エレクトロ・ルミネッセンス・ディスプレイ、フィールド・エミッション・ディスプレイ(FED)などに使用され、無アルカリガラス基板は、液晶ディスプレイ(LCD)、有機エレクトロニクス・ルミネッセンス・ディスプレイ(OLED)などに使用される。   Substrate glass for flat panel displays is broadly classified into alkali glass containing alkali metal oxide and alkali-free glass substantially free of alkali metal oxide. Alkali glass substrates are used for plasma displays (PDP), inorganic electroluminescence displays, field emission displays (FED), etc., and alkali-free glass substrates are liquid crystal displays (LCD), organic electronics luminescence displays. (OLED) etc.

そのうちのLCD用ガラス基板などは、表面に金属ないし金属酸化物の薄膜などが成膜されるため、以下に示す特性が要求される。
(1)実質的にアルカリ金属イオンを含まない無アルカリガラスであること(ガラス基板中のアルカリ金属酸化物が、アルカリ金属イオンとして薄膜中に拡散し、膜特性を劣化させることがあるので、その劣化防止のため)。
(2)高い歪点を有していること(薄膜トランジスタ(TFT)の形成工程で、ガラス基板が高温にさらされることによるガラス基板の変形、収縮を最小限に抑えるため)。
(3)TFT形成に用いる各種薬品に対して充分な化学的耐久性を有すること。特にSiOやSiNのエッチングに使用するバッファードフッ酸(フッ酸+フッ化アンモニウム;BHF)、ITO(スズがドープされたインジウム酸化物)のエッチングに用いる塩酸を含有する薬液、金属電極のエッチングに用いる各種の酸(硝酸、硫酸等)、またはアルカリ性のレジスト剥離液に対して耐久性があること。
(4)ガラス基板の内部および表面に、ディスプレイ表示に影響を及ぼす欠点(泡、脈理、インクルージョン、未溶解物、ピット、キズ等)をもたないこと。
Among them, a glass substrate for LCD or the like is required to have the following characteristics because a thin film of metal or metal oxide is formed on the surface.
(1) It is a non-alkali glass that does not substantially contain alkali metal ions (the alkali metal oxide in the glass substrate diffuses into the thin film as alkali metal ions and may deteriorate the film characteristics. To prevent deterioration).
(2) It has a high strain point (in order to minimize deformation and shrinkage of the glass substrate due to the glass substrate being exposed to high temperature in the thin film transistor (TFT) formation process).
(3) Sufficient chemical durability against various chemicals used for TFT formation. In particular, buffered hydrofluoric acid (hydrofluoric acid + ammonium fluoride; BHF) used for etching SiO X and SiN X , chemical solution containing hydrochloric acid used for etching ITO (indium oxide doped with tin), metal electrode Durability to various acids (nitric acid, sulfuric acid, etc.) used for etching or alkaline resist stripping solution.
(4) There shall be no defects (bubbles, striae, inclusions, undissolved materials, pits, scratches, etc.) affecting the display on the inside and surface of the glass substrate.

近年、フラットパネルディスプレイ用ガラス基板の面積が大きくなるにつれ、仮に同じ欠点密度を有するガラス基板であっても、ガラス基板1枚当たりの欠点数が多くなるため、歩留を大きく落とす問題が顕在化してきた。特に泡欠点が主な欠点として挙げられる。   In recent years, as the area of glass substrates for flat panel displays increases, the number of defects per glass substrate increases even if the glass substrates have the same defect density. I have done it. In particular, the bubble defect is a major defect.

従来より、原料溶解時に発生する泡を低減するための清澄剤としてAs、Sbなどを無アルカリガラスに添加して、無アルカリガラスの泡を低減させる方法が採られてきた。しかし、AsおよびSb、特にAsは溶融ガラスから気泡を取り除くという点で、きわめて優れた清澄剤であるが、環境への負荷が大きいため、その使用の抑制が求められている。 Conventionally, a method has been adopted in which As 2 O 3 , Sb 2 O 3, or the like is added to alkali-free glass as a clarifier for reducing bubbles generated when the raw material is dissolved, thereby reducing the bubbles in the alkali-free glass. . However, As 2 O 3 and Sb 2 O 3 , especially As 2 O 3, are very excellent fining agents in terms of removing bubbles from the molten glass. It has been demanded.

また、原料溶解時に発生する泡を低減するために、スズ酸化物を清澄剤としてガラス原料に添加し、ガラス中のSn2+/全Sn比(=Sn−レドックス)が酸化還元滴定により0.13以上となる条件下でガラス原料を溶解する方法が提案されている(特許文献1)。該方法は、SnOからSnOへの還元反応で生じる酸素ガスが溶融ガラス中の微小な泡とともに溶融ガラス表面に浮上させ脱泡させるものである。
また、ガラス原料にSnOを添加し、該ガラス原料を1350℃以上に加熱し、減圧下で脱泡する方法が提案されている(特許文献2)。該方法は、上記方法同様に、SnOの還元反応で生じる酸素ガスが、溶融ガラス中の微小な泡とともに減圧下で大きな気泡となって溶融ガラス表面に浮上させ脱泡させるものである。
Further, in order to reduce bubbles generated when the raw material is dissolved, tin oxide is added to the glass raw material as a clarifier, and the Sn 2+ / total Sn ratio (= Sn-redox) in the glass is 0.13 by redox titration. A method of melting a glass raw material under the above conditions has been proposed (Patent Document 1). In this method, oxygen gas generated by the reduction reaction from SnO 2 to SnO floats on the surface of the molten glass together with fine bubbles in the molten glass to be defoamed.
Further, a method has been proposed in which SnO 2 is added to a glass raw material, the glass raw material is heated to 1350 ° C. or higher, and degassed under reduced pressure (Patent Document 2). In this method, as in the above method, the oxygen gas generated by the reduction reaction of SnO 2 becomes a large bubble under reduced pressure together with the fine bubbles in the molten glass and floats on the surface of the molten glass to be defoamed.

一方、近年、原料を溶解した後の、脱泡、攪拌、移送(流路管などによる溶融ガラスの搬送など)等の処理工程には、耐熱性に優れた白金が使用されるようになっているが、該白金と溶融ガラスとの界面から新たに酸素泡を生じさせるという問題がある。しかし、従来のガラス原料を溶解する際の泡の発生を抑制する方法では、溶解工程から後の処理工程、すなわち、溶融ガラス温度が、溶解工程におけるガラス温度より低くなる工程においては、SnOからSnOへの還元反応が起きにくくなる。また、白金界面に発生する泡は当初、白金表面に微小な泡として付着しており、従来のSnOからSnOへの還元反応で生じる酸素ガスとともに浮上させ脱泡することは困難である。特に、近年、ディスプレイ用基板ガラスに残存する泡の一層の削減を求められており、この白金界面泡の抑制が新たな重要な課題となっている。
特開2004−75498号公報 特開2000−239023号公報
On the other hand, in recent years, platinum having excellent heat resistance has come to be used in processing steps such as defoaming, stirring, and transporting (such as transporting molten glass through a channel tube) after melting raw materials. However, there is a problem that oxygen bubbles are newly generated from the interface between the platinum and the molten glass. However, in the conventional method for suppressing the generation of bubbles when melting the glass raw material, SnO 2 is used in the processing step after the melting step, that is, in the step where the molten glass temperature is lower than the glass temperature in the melting step. Reduction reaction to SnO hardly occurs. In addition, the bubbles generated at the platinum interface are initially attached as fine bubbles on the platinum surface, and it is difficult to float and defoam together with the oxygen gas generated by the conventional reduction reaction from SnO 2 to SnO. In particular, in recent years, there has been a demand for further reduction of bubbles remaining in the display substrate glass, and suppression of the platinum interface bubbles has become a new important issue.
JP 2004-75498 A JP 2000-239023 A

本発明は、ガラス原料を溶解する際に溶融ガラスに含まれる泡の脱泡を行い、その後の白金部材と接触される条件下で、減圧脱泡、攪拌、または移送を行う処理工程において、溶融ガラスと白金部材(以下、白金ともいう。)との界面で発生する泡の脱泡も行って、泡の発生を効果的に抑制する無アルカリガラスの製造方法の提供、および泡の少ないフラットパネルディスプレイ用ガラス基板に適した無アルカリガラス板の提供を目的とする。   The present invention performs the defoaming of bubbles contained in the molten glass when melting the glass raw material, and then melts in a process step of performing degassing, stirring, or transferring under reduced pressure under the condition of contacting with the platinum member. Provide a method for producing alkali-free glass that effectively suppresses the generation of bubbles by defoaming bubbles generated at the interface between glass and a platinum member (hereinafter also referred to as platinum), and a flat panel with few bubbles An object is to provide a non-alkali glass plate suitable for a glass substrate for display.

本発明者は、種々の実験を行った結果、得られるガラスが所定のSn−レドックスであり、所定のガラス原料を所定温度で溶解し、溶融ガラスに含まれる泡を、溶融ガラス中のSnOのSnOへの還元反応により発生する酸素泡とともに溶融ガラス表面に浮上させ、その後、処理工程において、溶融ガラスが、所定温度の状態で溶融ガラスと白金との界面に発生する酸素泡を、SnOのSnOへの酸化反応により吸収させることを見出し、本発明を完成した。 As a result of various experiments, the present inventor has a predetermined Sn-redox glass, melts a predetermined glass raw material at a predetermined temperature, and converts bubbles contained in the molten glass into SnO 2 in the molten glass. The oxygen bubbles generated on the surface of the molten glass together with oxygen bubbles generated by the reduction reaction of SnO to SnO, and then, in the treatment step, the molten glass generates oxygen bubbles generated at the interface between the molten glass and platinum at a predetermined temperature. The present invention was completed by finding that it is absorbed by an oxidation reaction to SnO 2 .

したがって、本発明は、アルカリ金属酸化物を実質的に含有せず、以下の組成を母組成とするガラス原料を溶解し、溶融されたガラスを、白金部材と接触される条件下で、減圧脱泡、攪拌、または移送を行う処理工程を含む無アルカリガラスの製造方法であって、質量百分率表示で、該母組成の総量100%に対し、SnOを0.01〜2.0%含むように原料を調製し、該原料を1500〜1650℃で加熱溶解した後、溶融ガラスに含まれる泡を溶融ガラス中の該SnOのSnOへの還元反応により発生する酸素泡とともに溶融ガラス表面に浮上させた後、前記処理工程において、該溶融ガラスが1300〜1500℃にある状態で、該溶融ガラスと該白金部材との界面に発生する酸素泡を、該SnOのSnOへの酸化反応により吸収させる無アルカリガラスの製造方法である。
質量百分率表示による組成:
SiO:58.4〜66.0%、Al:15.3〜22.0%、B
:5.0〜12.0%、MgO:0〜6.5%、CaO:0〜7.0%、SrO
:4〜12.5%、BaO:0〜2.0%、
(MgO+CaO+SrO+BaO):9.0〜18.0%
Therefore, the present invention dissolves a glass raw material that is substantially free of alkali metal oxide and has the following composition as a matrix composition, and depressurizes the molten glass under a condition of contacting with a platinum member. A method for producing alkali-free glass including a treatment step of foaming, stirring, or transferring, so that 0.01% to 2.0% of SnO 2 is contained with respect to 100% of the total amount of the mother composition in terms of mass percentage. After the raw material is prepared and the raw material is heated and melted at 1500 to 1650 ° C., bubbles contained in the molten glass float on the surface of the molten glass together with oxygen bubbles generated by the reduction reaction of the SnO 2 in the molten glass to SnO. after, in the process, in a state in which the molten glass is in the 1300 to 1500 ° C., the oxygen bubbles generated at the interface between the molten glass and the platinum member, the oxidation reaction to SnO 2 of the SnO A method for producing an alkali-free glass to be absorbed.
Composition by mass percentage display:
SiO 2: 58.4~66.0%, Al 2 O 3: 15.3~22.0%, B 2 O 3
: 5.0 to 12.0%, MgO: 0 to 6.5%, CaO: 0 to 7.0%, SrO
: 4 to 12.5%, BaO: 0 to 2.0%,
(MgO + CaO + SrO + BaO): 9.0 to 18.0%

本発明の無アルカリガラスの製造方法は、前記減圧脱泡を160〜660torrの減圧下で行うことが好ましい。   In the method for producing an alkali-free glass of the present invention, it is preferable to perform the vacuum degassing under a reduced pressure of 160 to 660 torr.

本発明の無アルカリガラスの製造方法は、前記溶融ガラスの粘度が10dPa・sのときの温度が1600℃以上であることが好ましい。 In the method for producing an alkali-free glass of the present invention, the temperature when the molten glass has a viscosity of 10 2 dPa · s is preferably 1600 ° C. or higher.

また、本発明は、前記のいずれかに記載の方法で製造されたガラス板である。   Moreover, this invention is a glass plate manufactured by the method in any one of the above.

また、本発明は、
酸化物規準の質量百分率表示で、アルカリ金属酸化物を実質的に含有せず、以下の組成を母組成とする無アルカリガラスであって、該母組成の総量100%に対し、SnOを0.15%以上、1%未満含有するフロートガラス板である。
質量百分率表示による組成:
SiO:58.4〜66.0%、Al:15.3〜22.0%、B:5.0〜12.0%、MgO:0〜6.5%、CaO:0〜7.0%、SrO:4〜12.5%、BaO:0〜2.0%、(MgO+CaO+SrO+BaO):9.0〜18.0%
The present invention also provides:
It is a non-alkali glass that contains substantially no alkali metal oxide and has the following composition as a parent composition, expressed as a percentage by mass of the oxide standard, and SnO 2 is 0 with respect to 100% of the total amount of the mother composition. A float glass plate containing 15% or more and less than 1%.
Composition by mass percentage display:
SiO 2: 58.4~66.0%, Al 2 O 3: 15.3~22.0%, B 2 O 3: 5.0~12.0%, MgO: 0~6.5%, CaO : 0 to 7.0%, SrO: 4 to 12.5%, BaO: 0 to 2.0%, (MgO + CaO + SrO + BaO): 9.0 to 18.0%

本発明のガラス板は、50〜350℃における熱膨張係数が25×10−7〜40×10−7/℃であることが好ましい。 The glass plate of the present invention preferably has a thermal expansion coefficient at 50 to 350 ° C. of 25 × 10 −7 to 40 × 10 −7 / ° C.

本発明の無アルカリガラスの製造方法は、ガラス原料を溶解する際の溶融ガラスに含まれる泡の脱泡を行い、さらに、その後の処理工程において、溶融ガラスと白金との界面に発生する酸素泡の脱泡を行うことができる。また、製造された無アルカリガラスは、線膨張係数が小さく、泡が極めて少ないので、液晶ディスプレイパネル用基板、フォトマスク基板等、かかる特性が要求される用途に好適である。   The method for producing an alkali-free glass of the present invention comprises defoaming bubbles contained in molten glass when melting the glass raw material, and oxygen bubbles generated at the interface between the molten glass and platinum in the subsequent processing step. Can be degassed. In addition, since the produced alkali-free glass has a small coefficient of linear expansion and extremely few bubbles, it is suitable for applications requiring such properties, such as substrates for liquid crystal display panels and photomask substrates.

以下、質量百分率基準なる語を省略し、単に数量(%)のみを記載することがある。
本発明は、アルカリ金属酸化物を実質的に含有せず、以下の組成を母組成とするガラス原料を溶解し、溶融されたガラスを、白金部材と接触される条件下で、減圧脱泡、攪拌、または移送を行う処理工程を含む無アルカリガラスの製造方法であって、質量百分率表示で、該母組成の総量100%に対し、SnOを0.01〜2.0%含むように原料を調製し、該原料を1500〜1650℃で加熱溶解した後、溶融ガラスに含まれる泡を溶融ガラス中の該SnOのSnOへの還元反応により発生する酸素泡とともに溶融ガラス表面に浮上させた後、前記処理工程において、該溶融ガラスが1300〜1500℃にある状態で、該溶融ガラスと該白金部材との界面に発生する酸素泡を、該SnOのSnOへの酸化反応により吸収させる無アルカリガラスの製造方法である。
質量百分率表示による組成:
SiO:58.4〜66.0%、Al:15.3〜22.0%、B
:5.0〜12.0%、MgO:0〜6.5%、CaO:0〜7.0%、SrO
:4〜12.5%、BaO:0〜2.0%、
(MgO+CaO+SrO+BaO):9.0〜18.0%
Hereinafter, the term “mass percentage reference” may be omitted, and only the quantity (%) may be described.
The present invention substantially does not contain an alkali metal oxide, melts a glass raw material having the following composition as a base composition, and degassed the molten glass under a condition where the molten glass is brought into contact with a platinum member. A method for producing an alkali-free glass including a processing step of stirring or transferring, wherein the raw material contains 0.01 to 2.0% of SnO 2 with respect to 100% of the total amount of the mother composition in terms of mass percentage. After the raw material was heated and melted at 1500 to 1650 ° C., bubbles contained in the molten glass were floated on the surface of the molten glass together with oxygen bubbles generated by the reduction reaction of the SnO 2 in the molten glass to SnO. after, in the processing step, the molten glass in the presence of the 1300 to 1500 ° C., the oxygen bubbles generated at the interface between the molten glass and the platinum member, it is absorbed by the oxidation reaction of the SnO 2 of the SnO It is a method for producing an alkaline glass.
Composition by mass percentage display:
SiO 2: 58.4~66.0%, Al 2 O 3: 15.3~22.0%, B 2 O 3
: 5.0 to 12.0%, MgO: 0 to 6.5%, CaO: 0 to 7.0%, SrO
: 4 to 12.5%, BaO: 0 to 2.0%,
(MgO + CaO + SrO + BaO): 9.0 to 18.0%

前記ガラスの製造は、前記減圧脱泡において、160〜660torrの減圧下で脱泡を行うことが好ましく、200〜400torrの減圧下で行うことがより好ましい。   In the vacuum degassing, the glass is preferably defoamed under a reduced pressure of 160 to 660 torr, and more preferably 200 to 400 torr.

本発明では、溶融ガラス中でSnOがSnOに容易に還元されるよう、1500〜1650℃、好ましくは1550〜1650℃で原料を溶解する。そのため、粘度が10
dPa・sとなる温度が1600℃以上になるように、ガラスの母組成が、SiOが58.4〜66.0%、Al が15.3〜22.0%、Bが5.0〜12.0%、MgOが0〜6.5%、CaOが0〜7.0%、SrOが4〜12.5%、およびBaOが0〜2.0%を含有し、(MgO+CaO+SrO+BaO)が9.0〜18.0%であるように調製する。
In the present invention, the raw material is melted at 1500 to 1650 ° C., preferably 1550 to 1650 ° C., so that SnO 2 is easily reduced to SnO in the molten glass. Therefore, the viscosity is 10 2
The glass composition is 58.4 to 66.0% for SiO 2 , 15.3 to 22.0% for Al 2 O 3 , and B 2 O so that the temperature at which dPa · s becomes 1600 ° C. or higher. 3 is 5.0 to 12.0%, MgO is 0 to 6.5%, CaO is 0 to 7.0%, SrO is 4 to 12.5%, and BaO is 0 to 2.0%. , (MgO + CaO + SrO + BaO) is 9.0 to 18.0%.

また、本発明の無アルカリガラスは、
酸化物規準の質量百分率表示で、アルカリ金属酸化物を実質的に含有せず、以下の組成を母組成とする無アルカリガラスであって、該母組成の総量100%に対し、SnOを0.15%以上、1%未満含有するフロートガラス板である。
質量百分率表示による組成:
SiO:58.4〜66.0%、Al:15.3〜22.0%、B:5.0〜12.0%、MgO:0〜6.5%、CaO:0〜7.0%、SrO:4〜12.5%、BaO:0〜2.0%、(MgO+CaO+SrO+BaO):9.0〜18.0%
The alkali-free glass of the present invention is
It is a non-alkali glass that contains substantially no alkali metal oxide and has the following composition as a parent composition, expressed as a percentage by mass of the oxide standard, and SnO 2 is 0 with respect to 100% of the total amount of the mother composition. A float glass plate containing 15% or more and less than 1%.
Composition by mass percentage display:
SiO 2: 58.4~66.0%, Al 2 O 3: 15.3~22.0%, B 2 O 3: 5.0~12.0%, MgO: 0~6.5%, CaO : 0 to 7.0%, SrO: 4 to 12.5%, BaO: 0 to 2.0%, (MgO + CaO + SrO + BaO): 9.0 to 18.0%

[SiO
本発明の無アルカリガラスにおいて、SiOはネットワークフォーマであり、必須である。SiOはガラスの密度を小さくする効果が大きいため含有量が多いことが好ましいが、SiOの含有量が多すぎるとガラスの溶解性が低下し、失透温度が上昇するので、66.0%以下である。一方、SiOの含有量が少なすぎると歪点が充分に上げることができないほか、化学的耐久性が悪化し、熱膨張係数が増大するので、58.4%以上である。好ましくは59.0〜65.0%であり、より好ましくは60.0〜64.0%である。
[SiO 2 ]
In the alkali-free glass of the present invention, SiO 2 is a network former and is essential. Since SiO 2 has a large effect of reducing the density of the glass, it is preferable that the content is large. However, if the content of SiO 2 is too large, the solubility of the glass is lowered and the devitrification temperature is increased. % Or less. On the other hand, if the content of SiO 2 is too small, the strain point cannot be sufficiently increased, the chemical durability is deteriorated, and the thermal expansion coefficient is increased, so that it is 58.4% or more. Preferably it is 59.0-65.0%, More preferably, it is 60.0-64.0%.

[Al
本発明の無アルカリガラスにおいて、Alはガラスの分相性を抑制し、熱膨張係数を下げ、歪点を上げる成分である。該作用効果を発揮するためのAlの含有量は15.3%以上である。逆に、Alの含有量が多すぎるとガラスの溶解性が悪くなるので22.0%以下である。好ましくは15.8〜21.0%であり、より好ましくは
16.5%〜20.0%である。
[Al 2 O 3 ]
In the alkali-free glass of the present invention, Al 2 O 3 is a component that suppresses the phase separation of the glass, lowers the thermal expansion coefficient, and increases the strain point. The content of Al 2 O 3 for exhibiting the effect is 15.3% or more. On the other hand, if the content of Al 2 O 3 is too large, the solubility of the glass deteriorates, so it is 22.0% or less. Preferably it is 15.8-21.0%, More preferably, it is 16.5% -20.0%.

[B
本発明の無アルカリガラスにおいて、BはBHFによる白濁発生を防止し、高温での粘性を高くさせずに、熱膨張係数と密度の低下を達成する成分である。Bの含有量が少なすぎると耐BHF性が悪化するので、5.0%以上である。多すぎると耐酸性が悪くなるとともに、歪点が低くなるので、12.0%以下である。好ましくは6.0〜
11.5%であり、より好ましくは7.0〜11.0%である。
[B 2 O 3 ]
In the alkali-free glass of the present invention, B 2 O 3 is a component that prevents the occurrence of white turbidity due to BHF and achieves a reduction in thermal expansion coefficient and density without increasing the viscosity at high temperatures. If the content of B 2 O 3 is too small, the BHF resistance deteriorates, so it is 5.0% or more. If the amount is too large, the acid resistance is deteriorated and the strain point is lowered, so that it is 12.0% or less. Preferably 6.0
It is 11.5%, More preferably, it is 7.0-11.0%.

[アルカリ土類金属酸化物]
本発明の無アルカリガラスにおいて、MgOはアルカリ土類金属酸化物の中では、熱膨張係数を低くするが、歪点を低下させないため、含有させることが好ましい成分である。MgOの含有量が多すぎると、BHFによる白濁やガラスの分相が生じやすくなるので、6.5%以下である。好ましくは1.0〜6.0%であり、より好ましくは2.0〜5.0%である。
[Alkaline earth metal oxides]
In the alkali-free glass of the present invention, MgO is a preferred component in alkaline earth metal oxides because it lowers the thermal expansion coefficient but does not lower the strain point. If the content of MgO is too large, white turbidity due to BHF and phase separation of the glass are likely to occur, so it is 6.5% or less. Preferably it is 1.0-6.0%, More preferably, it is 2.0-5.0%.

本発明の無アルカリガラスにおいて、CaOはガラスの溶解性を向上させる成分である。CaOの含有量が多すぎると、熱膨張係数を大きくし、失透温度を上げてしまうので、7.0%以下である。好ましくは1.0〜6.5%であり、より好ましくは2.0〜6.0%である。
また、CaOの含有量が7.0%超であると、原料が加熱によって溶融しガラス化する約1500℃付近よりも低い約1400℃付近から、SnO2の還元反応が起こる場合があり、ガラス化された時点で溶融ガラス内に多くの酸素泡(初期泡)が含まれる問題が生じる場合がある。
In the alkali-free glass of the present invention, CaO is a component that improves the solubility of the glass. If the content of CaO is too large, the coefficient of thermal expansion is increased and the devitrification temperature is increased, so that it is 7.0% or less. Preferably it is 1.0 to 6.5%, and more preferably 2.0 to 6.0%.
If the CaO content is more than 7.0%, SnO 2 may be reduced from about 1400 ° C., which is lower than about 1500 ° C. where the raw material melts and glassifies by heating. There is a case where there is a problem that many oxygen bubbles (initial bubbles) are contained in the molten glass at the time of conversion.

本発明の無アルカリガラスにおいて、SrOはガラスの分相を制御し、BHFに対する白濁に対し比較的有効な成分である。SrOの含有量は4.0%以上であることが好ましい。SrOの含有量が多すぎると熱膨張係数が増大するので、12.5%以下である。好ましくは4.5〜11.0%であり、より好ましくは5.0〜10.0%である。
また、SrOの含有量が4%未満であると、原料が加熱によって溶融しガラス化する約1500℃付近よりも低い約1400℃付近から、SnO2の還元反応が起こり、ガラス化された時点で溶融ガラス内に多くの酸素泡(初期泡)が含まれる問題が生じる。
In the alkali-free glass of the present invention, SrO controls the phase separation of the glass and is a relatively effective component against white turbidity against BHF. The SrO content is preferably 4.0% or more. If the SrO content is too large, the coefficient of thermal expansion increases, so it is 12.5% or less. Preferably it is 4.5 to 11.0%, more preferably 5.0 to 10.0%.
Further, when the SrO content is less than 4%, SnO 2 reduction reaction takes place from about 1400 ° C., which is lower than about 1500 ° C., where the raw material melts and vitrifies by heating, and when it is vitrified. There arises a problem that many oxygen bubbles (initial bubbles) are contained in the molten glass.

本発明の無アルカリガラスにおいて、BaOはガラスの分相を抑制し、ガラスの溶解性を向上させ、失透温度を抑制する成分である。BaOの含有量が多すぎると、ガラスの密度が大きくなり、熱膨張係数を増大させる傾向が強い。密度をより小さくし、熱膨張係数を小さくするという観点からは、BaOの含有量を2.0%以下とし、不可避的に含有される含有量に止めることが好ましい。より好ましくは1.0%以下である。   In the alkali-free glass of the present invention, BaO is a component that suppresses the phase separation of the glass, improves the solubility of the glass, and suppresses the devitrification temperature. When there is too much content of BaO, the density of glass will become large and the tendency to increase a thermal expansion coefficient will be strong. From the viewpoint of lowering the density and reducing the thermal expansion coefficient, it is preferable that the content of BaO is set to 2.0% or less and the content is inevitably contained. More preferably, it is 1.0% or less.

本発明の無アルカリガラスは、アルカリ土類金属酸化物(RO)の含有量の合量、すなわち(MgO+CaO+SrO+BaO)が少なすぎると、ガラスの溶解を困難にさせるので、9.0%以上である。逆に多すぎるとガラスの密度が大きくなるので、18.0%以下である。好ましくは9.5〜17.0%であり、より好ましくは10.0〜16.0%である。   In the alkali-free glass of the present invention, if the total content of the alkaline earth metal oxide (RO), that is, (MgO + CaO + SrO + BaO) is too small, it is difficult to dissolve the glass. On the other hand, if the amount is too large, the density of the glass increases, so it is 18.0% or less. Preferably it is 9.5 to 17.0%, more preferably 10.0 to 16.0%.

[SnO
本発明において、ガラス原料に添加されたSnOは、1500〜1650℃で加熱し溶解する際に、SnOに還元されて酸素泡を発生し、溶融ガラスに含まれる泡とともに溶融ガラス表面に浮上させた後、前記処理工程において、溶融ガラスが1300〜1500℃の状態にある状態で、溶融ガラスと白金との界面に発生した酸素をSnOが、
SnO+1/2・O→ SnO
なる酸化反応により吸収し、いわゆる白金界面泡の脱泡を行う。
[SnO 2 ]
In the present invention, SnO 2 added to the glass raw material is reduced to SnO when heated and melted at 1500 to 1650 ° C. to generate oxygen bubbles and float on the surface of the molten glass together with the bubbles contained in the molten glass. Then, in the treatment step, in the state where the molten glass is in a state of 1300 to 1500 ° C., the oxygen generated at the interface between the molten glass and platinum is SnO,
SnO + 1/2 · O 2 → SnO 2
It absorbs by the oxidation reaction which becomes and defoams so-called platinum interface bubbles.

前記白金界面泡の脱泡効果は、溶融ガラス中のSn−レドックス[Sn2+/全Sn]が増大するにつれて増大する。そのため、得られるガラスのSn−レドックスは酸化還元滴定により0.3以上、好ましくは0.5以上である。また、Sn−レドックスはSn−メスバウアー分光の測定法により0.1以上である。一方、Sn−レドックスが大きすぎると、白金で構成された設備の腐食・劣化をもたらす恐れがあるため、Sn−レドックスは酸化還元滴定により0.8以下、好ましくは0.7以下である。また、Sn−レドックスはSn−メスバウアー分光の測定法により0.3以下である。 The defoaming effect of the platinum interfacial bubbles increases as the Sn-redox [Sn 2+ / total Sn] in the molten glass increases. Therefore, the Sn-redox of the obtained glass is 0.3 or more, preferably 0.5 or more by oxidation-reduction titration. Moreover, Sn-redox is 0.1 or more by the measuring method of Sn-Mossbauer spectroscopy. On the other hand, if the Sn-redox is too large, there is a risk of causing corrosion / deterioration of the equipment composed of platinum. Moreover, Sn-redox is 0.3 or less by the measuring method of Sn-Mossbauer spectroscopy.

本発明におけるSnOの添加量は無アルカリガラスの組成にもよるが、前記母組成の総量100%に対し0.01%以上であり、好ましくは0.05%以上、より好ましくは0.1%以上である。処理工程における脱泡をより安定して行うことができるという観点から、母組成の総量100%に対し、0.15%以上であるのがさらに好ましく、処理工程における脱泡をより安定して行うことができるという観点に加えて、原料を加熱溶解した際における脱泡をより安定して行うことができるということから、0.2%以上であるのが特に好ましい。一方、SnOの添加量が多すぎても、脱泡効果が飽和し、ガラスの特性に影響を与える恐れがあり、また、フロート法で板ガラスに成形する場合には、SnOがフロート成形域で還元されて、ガラス表面にSnが析出する恐れがあるため、母組成の総量100%に対し2.0%以下であり、好ましくは1.0%未満であり、より好ましくは0.6%以下である。 The amount of SnO 2 added in the present invention depends on the composition of the alkali-free glass, but is 0.01% or more, preferably 0.05% or more, more preferably 0.1% with respect to 100% of the total amount of the matrix composition. % Or more. From the viewpoint that defoaming in the treatment process can be performed more stably, it is more preferably 0.15% or more with respect to the total amount of the mother composition of 100%, and defoaming in the treatment process is performed more stably. In addition to the fact that it is possible to perform the defoaming when the raw material is dissolved by heating, it is particularly preferably 0.2% or more. On the other hand, even if the amount of SnO 2 added is too large, the defoaming effect is saturated and there is a risk of affecting the properties of the glass. In addition, when forming into a sheet glass by the float process, SnO 2 is a float forming region. Is less than 1.0%, preferably less than 1.0%, and more preferably 0.6%. It is as follows.

ガラス表面のSnの析出を安定して抑制することができるという観点から、0.5%以下であるのがさらに好ましい。   From the viewpoint that the precipitation of Sn on the glass surface can be stably suppressed, it is more preferably 0.5% or less.

また、処理工程において減圧脱泡を行う場合、SnO2の含有量は、減圧脱泡の際のガラス欠点を抑制することができるという観点から、母組成の総量100%に対し、0.25%以下であるのが特に好ましい。 In addition, when vacuum degassing is performed in the treatment process, the SnO 2 content is 0.25% relative to the total amount of the mother composition of 100% from the viewpoint that glass defects during vacuum vacuum degassing can be suppressed. It is particularly preferred that

このような理由から、フロート法で板ガラスを成形する場合に、安定したガラス品質を得るためには、SnO2の含有量は、母組成の総量100%に対し、0.15%以上、1%未満であるのが好ましく、0.15〜0.5%であるのがより好ましく、0.2〜0.5%であるのが更に好ましい。
更に、前記処理工程において減圧脱泡を行ない、フロート法で板ガラスを成形する場合に、安定したガラス品質を得るためには、SnO2の含有量は、母組成の総量100%に対し、0.15〜0.25%であるのがより好ましく、0.2〜0.25%であるのが特に好ましい。
本発明のガラス原料に添加される必須成分はSnOであるが、さらにSO、Fe、Cl、Fなどを原料に添加すると、ガラスの脱泡・清澄効果を促進・強化するため有効である。
For these reasons, in order to obtain a stable glass quality when forming plate glass by the float process, the content of SnO 2 is 0.15% or more and 1% with respect to 100% of the total amount of the mother composition. It is preferably less than 0.15%, more preferably 0.15 to 0.5%, and still more preferably 0.2 to 0.5%.
Furthermore, in order to obtain a stable glass quality when vacuum degassing is performed in the treatment step and a plate glass is formed by the float process, the SnO 2 content is set to 0. 0% with respect to the total amount of the mother composition of 100%. It is more preferably 15 to 0.25%, particularly preferably 0.2 to 0.25%.
An essential component added to the glass raw material of the present invention is SnO 2 , but when SO 3 , Fe 2 O 3 , Cl, F or the like is further added to the raw material, the glass defoaming / clarifying effect is promoted / strengthened. It is valid.

[SO
SOはガラス原料を加熱していく際に、分解して多量の泡を発生し、かつ、泡を大きくする成分である。SO3源は無アルカリである限り、どのような塩であってもよいが、通常は、アルカリ土類金属の硫酸塩として添加される。SOによる脱泡効果は、前記母組成の総量100%に対し、SOを0.01%以上添加することにより得られる。好ましい添加量は0.1%以上であり、より好ましい添加量は0.3%以上である。一方、SOの添加量が多すぎると、SOの分解による酸素泡の発生が過剰となるため、5.0%以下、好ましくは2.0%以下、より好ましくは1.0%以下である。
[SO 3 ]
SO 3 is a component that decomposes to generate a large amount of bubbles and increases the bubbles when the glass raw material is heated. The SO 3 source may be any salt as long as it is alkali-free, but is usually added as an alkaline earth metal sulfate. The defoaming effect by SO 3 can be obtained by adding 0.01% or more of SO 3 to 100% of the total amount of the mother composition. A preferable addition amount is 0.1% or more, and a more preferable addition amount is 0.3% or more. On the other hand, if the amount of SO 3 added is too large, the generation of oxygen bubbles due to decomposition of SO 3 becomes excessive, so it is 5.0% or less, preferably 2.0% or less, more preferably 1.0% or less. is there.

[Fe
Feはガラス原料を溶解する際に、
Fe→2FeO+1/2・O
で示される還元反応により酸素泡を発生し、ガラス中の泡とともに溶融ガラス表面に浮上し脱泡する。前記母組成の総量100%に対し、Feを0.01%以上添加することにより、脱泡効果が得られるが、好ましい添加量は0.02%以上である。Feによる脱泡効果の飽和とガラスの着色が顕著になることを考慮して、2.0%以下、好ましくは1.0%以下、より好ましくは0.1%以下である。
[Fe 2 O 3 ]
When Fe 2 O 3 dissolves the glass raw material,
Fe 2 O 3 → 2FeO + 1/2 · O 2
Oxygen bubbles are generated by the reductive reaction shown by the following, and floats and defoams on the surface of the molten glass together with bubbles in the glass. A defoaming effect is obtained by adding 0.01% or more of Fe 2 O 3 to 100% of the total amount of the mother composition, but a preferable addition amount is 0.02% or more. Considering that saturation of the defoaming effect by Fe 2 O 3 and coloring of the glass become remarkable, it is 2.0% or less, preferably 1.0% or less, more preferably 0.1% or less.

[F、Cl]
FやClはガラス原料を溶解する際に、多量の泡を発生し、かつ、泡を大きくする成分であるが、SOやFeと併用することにより、その脱泡効果が飛躍的に増大する。FやClは通常、アルカリ土類金属のフッ化物や塩化物として添加される。それぞれの添加量は、前記母組成の総量100%に対し、0.01%以上、好ましくは0.05%以上、より好ましくは0.1%以上である。一方、FやClによる清澄効果の飽和とガラスの特性に影響を与える恐れがあるため、5.0%以下、好ましくは2.0%以下、より好ましくは1.0%以下である。
[F, Cl]
F and Cl are components that generate a large amount of bubbles and increase the bubbles when the glass raw material is melted. However, when used in combination with SO 3 or Fe 2 O 3 , the defoaming effect is dramatic. To increase. F or Cl is usually added as an alkaline earth metal fluoride or chloride. Each addition amount is 0.01% or more, preferably 0.05% or more, more preferably 0.1% or more, with respect to 100% of the total amount of the mother composition. On the other hand, since there is a possibility of affecting the saturation of the fining effect by F or Cl and the characteristics of the glass, it is 5.0% or less, preferably 2.0% or less, more preferably 1.0% or less.

本発明においては、SOおよび/またはFeならびにClおよび/またはFとして添加することが好ましい。該成分の添加量は、SOおよび/またはFe、ならびに、Clおよび/またはFを、前記母組成の総量100%に対し、合量で0.01%以上であることが好ましく、SOおよび/またはFeを合量で0.01%以上、ならびに、Clおよび/またはFを合量で0.01%以上であることが特に好ましい。 In the present invention, SO 3 and / or Fe 2 O 3 and Cl and / or F are preferably added. The amount of the component added is preferably SO 3 and / or Fe 2 O 3 and Cl and / or F in a total amount of 0.01% or more with respect to 100% of the total amount of the matrix composition, It is particularly preferable that the total amount of SO 3 and / or Fe 2 O 3 is 0.01% or more and the total amount of Cl and / or F is 0.01% or more.

[ガラスの製造方法]
本発明の無アルカリガラスは、例えば次の方法により製造される。前記した組成でガラス原料を調製した。得られたガラス原料を、ガラスの溶解槽に連続的に投入し、1500〜1650℃、好ましくは1550〜1650℃で加熱し溶解して、溶融ガラスに含まれる泡を、溶融ガラス中のSnOのSnOへの還元反応により発生する酸素泡とともに、溶融ガラス表面に浮上させ脱泡させた後、溶融ガラスを白金部材と接触される条件下で、減圧脱泡、攪拌、または移送を行う処理工程において、溶融ガラスが1300〜1500℃にある状態で、溶融ガラスと白金との界面に発生する酸素泡をSnOのSnOへの酸化反応により吸収させ脱泡させる。その後、成形工程において、フロート法等の板ガラス成形方法により所定の板厚に成形し、徐冷後、切断され、所望の大きさのガラス板が製造される。なお、得られるガラスの酸化還元滴定によるSn−レドックスは0.3〜0.8、好ましくは0.5〜0.7となる。また、Sn−メスバウアー分光の測定法によるSn−レドックスは0.1〜0.3となる。
[Glass manufacturing method]
The alkali-free glass of the present invention is produced, for example, by the following method. A glass raw material was prepared with the composition described above. The obtained glass raw material is continuously charged into a glass melting tank and melted by heating at 1500 to 1650 ° C., preferably 1550 to 1650 ° C., and bubbles contained in the molten glass are converted into SnO 2 in the molten glass. The process of performing degassing, stirring, or transferring under reduced pressure conditions under which the molten glass is brought into contact with the platinum member after being floated and defoamed with the oxygen bubbles generated by the reduction reaction of SnO to SnO , Oxygen bubbles generated at the interface between the molten glass and platinum are absorbed and defoamed by an oxidation reaction of SnO to SnO 2 in a state where the molten glass is at 1300 to 1500 ° C. Thereafter, in the forming step, the glass plate is formed into a predetermined plate thickness by a plate glass forming method such as a float method, and after slow cooling, it is cut to produce a glass plate having a desired size. In addition, Sn-redox by oxidation-reduction titration of the obtained glass is 0.3 to 0.8, preferably 0.5 to 0.7. Moreover, Sn-redox by the measuring method of Sn-Mossbauer spectroscopy will be 0.1-0.3.

[圧力]
本発明の無アルカリガラスの製造において、溶融ガラスが置かれた絶対圧が低下すると、溶融ガラスに含まれる泡や白金界面に付着する泡が膨れ、溶融ガラス表面に浮上しやすくなる。そのため、本発明のガラスの製造は、減圧脱泡を実施することが好ましい。特に高粘性のガラス、すなわち、粘度が10dPa・sの時の温度が1600℃以上のガラスに適用するときは減圧脱泡を行うことが好ましい。具体的には、絶対圧が160〜660torr、より好ましくは200〜400torrである。なお、減圧下においても、本発明の溶融ガラスと白金との界面に発生する酸素泡を、SnOのSnOへの酸化反応により吸収させ脱泡される効果を低減させてしまうようなことがないことを、160〜760torrで確認した。
[pressure]
In the production of the alkali-free glass of the present invention, when the absolute pressure at which the molten glass is placed decreases, bubbles contained in the molten glass and bubbles adhering to the platinum interface swell and easily float on the surface of the molten glass. Therefore, it is preferable to carry out vacuum degassing in the production of the glass of the present invention. In particular, when applying to highly viscous glass, that is, glass having a viscosity of 10 2 dPa · s and a temperature of 1600 ° C. or higher, it is preferable to perform degassing under reduced pressure. Specifically, the absolute pressure is 160 to 660 torr, more preferably 200 to 400 torr. Even under reduced pressure, oxygen bubbles generated at the interface between the molten glass of the present invention and platinum are not absorbed by the oxidation reaction of SnO to SnO 2 and the effect of defoaming is not reduced. This was confirmed at 160 to 760 torr.

本発明の無アルカリガラスのβ−OHは0.25〜0.6mm−1で、好ましくは0.3〜0.5mm−1である。β−OHが0.6mm−1超では、前記白金界面に泡が発生しやすくなる。β−OHは無アルカリガラス板の赤外線透過率を測定し、4000cm−1での赤外線透過率(I)と3570cm−1付近の極小赤外線透過率(I)と該ガラスの厚み(d)とから、次式にて求めた値であり、ガラス中の含水量の指標である。
β−OH=(1/d)log(I)/(I)
また、本発明の無アルカリガラスは、50〜350℃における熱膨張係数が、25×10−7〜40×10−7/℃であることが好ましい。
The β-OH of the alkali-free glass of the present invention is 0.25 to 0.6 mm −1 , preferably 0.3 to 0.5 mm −1 . If β-OH exceeds 0.6 mm −1 , bubbles are likely to be generated at the platinum interface. beta-OH measures the infrared transmittance of the non-alkali glass plate, an infrared transmittance at 4000 cm -1 and (I 0) and 3570cm -1 near minimum infrared transmittance (I) and the glass thickness (d) From this, it is a value obtained by the following formula and is an index of the water content in the glass.
β-OH = (1 / d) log (I 0 ) / (I)
The alkali-free glass of the present invention preferably has a thermal expansion coefficient at 50 to 350 ° C. of 25 × 10 −7 to 40 × 10 −7 / ° C.

表1は工業用ガラス原料として調製された成分について、また、表2は得られたガラスについて、SiO、Al、B、MgO、CaO、SrOおよびBaOの母組成の総量100%に対する各成分の含有割合を質量百分率表示したものである。
例1〜4及び例6は本発明の実施例、例5は比較例を示す。
表1に示した組成の原料を白金るつぼに入れ、1500〜1650℃で加熱し溶解した。その後、溶融ガラスをカーボン板上に流し板状にした。つぎに、それぞれの板状ガラス20gを白金るつぼに入れ、大気圧(760torr)で、1420℃で、4時間溶解した後、冷却し、表2に示したガラスを得た。
Table 1 shows the components prepared as industrial glass materials, and Table 2 shows the total amount of SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO and BaO for the obtained glass. The content ratio of each component with respect to 100% is expressed in mass percentage.
Examples 1 to 4 and Example 6 are examples of the present invention, and Example 5 is a comparative example.
The raw materials having the composition shown in Table 1 were placed in a platinum crucible and heated at 1500 to 1650 ° C. to dissolve. Thereafter, the molten glass was poured onto a carbon plate to form a plate shape. Next, 20 g of each plate-like glass was placed in a platinum crucible, melted at 1420 ° C. at atmospheric pressure (760 torr) for 4 hours, and then cooled to obtain the glasses shown in Table 2.

得られたガラス板について、泡体積、Sn−レドックス、および各成分残存量を下記の方法により測定、分析した。それらの結果を、β−OH、熱膨張係数、および粘度が10dPa・sの時の温度とともに、表2に示した。
Sn−レドックスは、酸化還元滴定により溶融ガラス中のSn2+量を測定し、[Sn2+量/全Sn]で算出した値である。
泡体積は、白金るつぼの底に新たに発生・成長した泡の単位面積当たりの発生泡体積(cm/m)を測定した値である。泡体積は、カメラで直接撮影した泡半径から半球と仮定して求めた。該泡体積が小さいことは、SnOのSnOへの酸化反応による白金界面の酸素泡の吸収効果が大きいことを示す。
SnO、SO、Fe、FおよびClのガラス残存量は、蛍光X線分析装置を用いて測定した。
About the obtained glass plate, foam volume, Sn-redox, and each component residual amount were measured and analyzed by the following method. The results are shown in Table 2 together with β-OH, the coefficient of thermal expansion, and the temperature when the viscosity is 10 2 dPa · s.
Sn-redox is a value calculated by [Sn 2+ amount / total Sn] by measuring Sn 2+ amount in molten glass by oxidation-reduction titration.
The bubble volume is a value obtained by measuring the generated bubble volume (cm 3 / m 2 ) per unit area of bubbles newly generated and grown on the bottom of the platinum crucible. The bubble volume was determined by assuming a hemisphere from the bubble radius photographed directly with a camera. The small bubble volume indicates that the effect of absorbing oxygen bubbles at the platinum interface due to the oxidation reaction of SnO to SnO 2 is large.
The glass residual amount of SnO 2 , SO 3 , Fe 2 O 3 , F and Cl was measured using a fluorescent X-ray analyzer.

例1〜4と例5とを対比したとき、ガラス原料のSnO添加量が増大するにつれて脱泡効果が増大することが明らかである。
なお、160〜660torr、特に200〜400torrの減圧下では、脱泡効果がさらに増大する。
また、例1〜4及び例6と例5とを対比したとき、ガラス原料のSnO2の添加量が0.15%以上である場合脱泡効果が増大し、0.25%以上の場合脱泡効果がより顕著なものとなる。
また、表1および表2により、原料におけるSnO2の添加割合と、得られたガラスおけるSnO2の含有割合はほぼ同じであった。
When Examples 1-4 are compared with Example 5, it is clear that the defoaming effect increases as the SnO 2 addition amount of the glass raw material increases.
Note that the defoaming effect is further increased under a reduced pressure of 160 to 660 torr, particularly 200 to 400 torr.
Further, when Examples 1 to 4 and Example 6 and Example 5 are compared, the defoaming effect is increased when the amount of SnO 2 added to the glass raw material is 0.15% or more, and when the amount is 0.25% or more, The foam effect becomes more prominent.
Further, according to Tables 1 and 2 , the addition ratio of SnO 2 in the raw material and the content ratio of SnO 2 in the obtained glass were substantially the same.

Figure 2007039324
Figure 2007039324

Figure 2007039324
Figure 2007039324

次に、溶融ガラスに含まれる泡数の評価について以下に説明する。
表3は工業用ガラス原料として調製された成分について、また、表4は得られたガラスについて、SiO、Al、B、MgO、CaO、SrOおよびBaOの母組成の総量100%に対する各成分の含有割合を質量百分率表示したものである。
例8、10が本発明の実施例、例7、9が比較例を示す。
表3に示す組成の原料(例7〜例10)をそれぞれ別の300ccの白金るつぼに入れ、1500℃の電気炉で30分間静置し溶解した後、表4に示す温度の電気炉に移し替え、表4に示す時間静置した。その後、760℃の電気炉に移し替え、2時間かけて560℃までガラスを徐冷し、さらに約10時間かけて室温までガラスを徐冷した。るつぼ上部中央のガラスをコアドリルで直径38mm、高さ35mmの円柱状ガラスにくり貫き、該円柱状ガラスの中心軸を含む厚さ2〜5mmのガラス板に切り出した。切り出し面両面を光学研磨加工(鏡面研磨仕上げ)した。るつぼのガラス上面から1〜10mmの間に相当する部位について、光学研磨加工面を実体顕微鏡で観察し、ガラス板中の直径50μm以上の泡数を計測し、その値をガラス板の体積で割り、泡数とした。結果を表4に示す。
Next, evaluation of the number of bubbles contained in the molten glass will be described below.
Table 3 shows the components prepared as industrial glass raw materials, and Table 4 shows the total amount of the matrix composition of SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO and BaO for the obtained glass. The content ratio of each component with respect to 100% is expressed in mass percentage.
Examples 8 and 10 are examples of the present invention, and examples 7 and 9 are comparative examples.
The raw materials (Examples 7 to 10) having the compositions shown in Table 3 were placed in separate 300 cc platinum crucibles, allowed to stand for 30 minutes in an electric furnace at 1500 ° C. and dissolved, and then transferred to an electric furnace having the temperature shown in Table 4. The mixture was allowed to stand for the time shown in Table 4. Thereafter, the glass was transferred to an electric furnace at 760 ° C., and the glass was gradually cooled to 560 ° C. over 2 hours, and further cooled to room temperature over about 10 hours. The glass in the upper center of the crucible was cut into a cylindrical glass having a diameter of 38 mm and a height of 35 mm with a core drill, and cut into a glass plate having a thickness of 2 to 5 mm including the central axis of the cylindrical glass. Both sides of the cut surface were optically polished (mirror polished). For the portion corresponding to 1 to 10 mm from the upper surface of the glass of the crucible, the optical polishing surface is observed with a stereomicroscope, the number of bubbles with a diameter of 50 μm or more in the glass plate is measured, and the value is divided by the volume of the glass plate. The number of bubbles. The results are shown in Table 4.

Figure 2007039324
Figure 2007039324

Figure 2007039324
Figure 2007039324

表4に示す結果から明らかなように、例7、例8より、1500℃ではSnO2による泡数の減少の効果が多少見られる程度であるが、一方、例9、例10より、1590℃ではSnO2による泡数の減少の効果が顕著に見られた。
これは、1500℃から1590℃に溶融ガラス温度が上昇する過程で、溶融ガラスに含まれる泡が、SnO2のSnOへの還元反応により発生する酸素泡とともに、溶融ガラス表面に浮上、脱泡され、泡数の減少が顕著となったことを示している。
As is clear from the results shown in Table 4, from Example 7 and Example 8, the effect of reducing the number of bubbles by SnO 2 is somewhat observed at 1500 ° C., whereas from Example 9 and Example 10, it is 1590 ° C. Then, the effect of reducing the number of bubbles by SnO 2 was noticeable.
In the process of increasing the molten glass temperature from 1500 ° C to 1590 ° C, bubbles contained in the molten glass float and defoam on the surface of the molten glass together with oxygen bubbles generated by the reduction reaction of SnO 2 to SnO. This indicates that the reduction in the number of bubbles became significant.

次に、原料を溶解させる際の溶解温度と得られるガラスのSn−レドックスとの関係について以下に説明する。
表5は工業用ガラス原料として調製された成分について、また、表6は得られたガラスについて、SiO、Al、B、MgO、CaO、SrOおよびBaOの母組成の総量100%に対する各成分の含有割合を質量百分率表示したものである。例11は本発明の実施例、例12は比較例を示す。
表5に示した組成の原料を白金るつぼで1500℃の電気炉で30分間静置し溶融ガラスとした後、所定の温度(1500、1550、1590、1630、1710℃)の電気炉に移し替え、30分間静置した。その後、760℃の電気炉に移し替え、2時間かけて560℃までガラスを徐冷し、さらに約10時間かけて室温までガラスを徐冷した。
原料におけるSnOの添加割合と、得られたガラスにおけるSnOの含有割合はほぼ同じであった。
Next, the relationship between the melting temperature when melting the raw material and the Sn-redox of the glass obtained will be described below.
Table 5 shows the components prepared as industrial glass raw materials, and Table 6 shows the total amount of SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO and BaO for the obtained glass. The content ratio of each component with respect to 100% is expressed in mass percentage. Example 11 shows an example of the present invention, and Example 12 shows a comparative example.
The raw materials having the composition shown in Table 5 were allowed to stand in a platinum crucible for 30 minutes in an electric furnace at 1500 ° C to form molten glass, and then transferred to an electric furnace at a predetermined temperature (1500, 1550, 1590, 1630, 1710 ° C). For 30 minutes. Thereafter, the glass was transferred to an electric furnace at 760 ° C., and the glass was gradually cooled to 560 ° C. over 2 hours, and further cooled to room temperature over about 10 hours.
The addition ratio of SnO 2 in the raw material and the content ratio of SnO 2 in the obtained glass were almost the same.

Figure 2007039324
Figure 2007039324

Figure 2007039324
Figure 2007039324

また、これらのガラスについて、Sn−メスバウアー分光の測定方法により、Sn−レドックスの値を測定した。それぞれのガラスについて、所定の溶解温度に対するSn−レドックスの値を示すグラフを図1に示す。   Moreover, about these glass, the value of Sn-redox was measured with the measuring method of Sn-Mossbauer spectroscopy. The graph which shows the value of Sn-redox with respect to predetermined | prescribed melting temperature about each glass is shown in FIG.

ここで、Sn−メスバウアー分光の測定方法について説明する。
119mSnから119Snへのエネルギー遷移に伴って発生するγ線(23.8keV)をプローブにして、透過法(ガラス試料を透過したγ線を計測)により、試料中のSnの2価と4価の存在割合(Sn−レドックス)を測定した。具体的には、以下の通りである。
放射線源のγ線出射口、ガラス試料、Pdフィルター、気体増幅比例計数管(LND社製、型番45431)の受光部を300〜800mm長の直線上に配置した。
放射線源は、10mCiの119mSnを用い、光学系の軸方向に対して放射線源を運動させ、ドップラー効果によるγ線のエネルギー変化を起こさせた。放射線源の速度はトランスデューサー(東陽リサーチ社製)を用いて、光学系の軸方向に−10〜+10mm/秒の速度で振動するように調整した。
ガラス試料は、3〜7mmの厚さのガラス平板を用いた。
Pdフィルターは、気体増幅比例計数管によるγ線の計測精度を向上させるためのものであり、γ線がガラス試料に照射された際にガラス試料から発生する特性X線を除去する厚さ50μmのPd箔である。
気体増幅比例計数管は、受光したγ線を検出するものである。気体増幅比例計数管からのγ線量を示す電気信号を増幅装置(関西電子社製)で増幅して受光信号を検出した。マルチチャンネルアナライザー(Wissel社CMCA550)で上記の速度情報と連動させた。
気体増幅比例計数管からの検出信号を縦軸に、運動している放射線源の速度を横軸に表記することで、スペクトルが得られる(メスバウアー分光学の基礎と応用 45〜64頁 佐藤博敏・片田元己共著 学会出版)。評価可能な信号/雑音比が得られるまでに、積算時間は2日から16日を必要とした。
0mm/秒 付近に出現するピークがSnの4価の存在を示し、2.5mm/秒と4.5mm/秒 付近に出現する2つに分裂したピークが2価の存在を示す。それぞれのピーク面積に補正係数(Journal of Non-Crystaline Solids 337(2004年) 232-240頁 「The effect of alumina on the Sn2+/Sn4+ redox equilibrium and the incorporation of tin in Na2O/Al2O3/SiO2 melts」 Darja Benner,他共著)(Snの4価:0.22、Snの2価:0.49)を乗じたものの割合を計算し、2価のSn割合をSn−レドックス値とした。
Here, a measurement method of Sn-Mossbauer spectroscopy will be described.
119m gamma rays generated due to the energy transition from Sn to 119 Sn a (23.8KeV) in the probe, by a transmission method (measuring the gamma-rays transmitted through the glass sample), with a divalent Sn in the sample 4 The abundance ratio (Sn-redox) was measured. Specifically, it is as follows.
The γ-ray exit of the radiation source, a glass sample, a Pd filter, and a light receiving portion of a gas amplification proportional counter (manufactured by LND, model number 45431) were arranged on a straight line having a length of 300 to 800 mm.
As the radiation source, 119m Sn of 10mCi was used, and the radiation source was moved with respect to the axial direction of the optical system to cause the energy change of γ rays due to the Doppler effect. The speed of the radiation source was adjusted by using a transducer (manufactured by Toyo Research Co., Ltd.) so as to vibrate at a speed of −10 to +10 mm / sec in the axial direction of the optical system.
As a glass sample, a glass flat plate having a thickness of 3 to 7 mm was used.
The Pd filter is for improving the measurement accuracy of γ rays by a gas amplification proportional counter, and has a thickness of 50 μm for removing characteristic X-rays generated from the glass sample when the γ ray is irradiated on the glass sample. Pd foil.
The gas amplification proportional counter detects the received γ-rays. An electric signal indicating the γ dose from the gas amplification proportional counter was amplified by an amplifying device (manufactured by Kansai Electronics Co., Ltd.) to detect a light reception signal. The multi-channel analyzer (Wissel CMCA550) was linked to the above speed information.
The spectrum is obtained by expressing the detection signal from the gas amplification proportional counter on the vertical axis and the velocity of the moving radiation source on the horizontal axis (Mossbauer spectroscopy basics and applications, pages 45-64, Hirotoshi Sato)・ Motomi Katada co-authored by the Society). The integration time required 2 to 16 days before an evaluable signal / noise ratio was obtained.
A peak appearing near 0 mm / sec indicates the presence of tetravalent Sn, and a split peak appearing near 2.5 mm / sec and 4.5 mm / sec indicates the presence of bivalent. Correction factor for each peak area (Journal of Non-Crystaline Solids 337 (2004) pp. 232-240 “The effect of alumina on the Sn2 + / Sn4 + redox equilibrium and the incorporation of tin in Na 2 O / Al 2 O 3 / “SiO 2 melts” by Darja Benner, et al. (Sn tetravalent: 0.22, Sn divalent: 0.49), and the ratio of the divalent Sn was defined as the Sn-redox value. .

図1において、溶融温度が上昇するにつれてガラス中のSn2+が多くなっており、このことは溶融温度の上昇によって溶融ガラス中のSnO2のSnOへの還元反応が活発となっていることを示す。 In FIG. 1, as the melting temperature rises, Sn 2+ in the glass increases, and this indicates that the reduction reaction of SnO 2 in the molten glass to SnO becomes active as the melting temperature rises. Show.

図1に示す例12は、原料が加熱され、約1400℃付近からSnO2のSnOへの還元反応が起こり始め、約1450℃付近(Sn−メスバウアー分光の測定法によるSn−レドックス約10%)から、SnO2のSnOへの還元反応が活性化するため、原料がガラス化する1500℃付近では、還元反応による酸素泡(初期泡)が、既に溶融ガラス内に多く発生することになる。
そして、原料がガラス化する1500℃付近で溶融ガラス内の泡と初期泡とが系内に共存して共存泡となり、このため、該共存泡を溶融ガラスから抜くために溶融ガラスを長時間溶解槽に滞在させなければならず、生産性が低下してしまうという問題を本発明者は見出した。
これに対して、図1に示す例11においては、約1450℃付近からSnO2のSnOへの還元反応が起こり始めるため1450〜1500℃では初期泡が多く発生していない。その後、原料がガラス化する約1500℃付近(Sn−メスバウアー分光の測定法によるSn−レドックス約10%)からSnO2のSnOへの還元反応が活性化するため、溶融ガラス内の泡を効果的に浮上させることができる。更に、表6より、例11は、例12よりも粘度が102dPa・sとなる温度が低いため、例11は泡も浮上しやすい。
したがって、本発明の無アルカリガラスの製造方法及び本発明の無アルカリガラスは、溶融ガラスを溶解槽に存在させる時間が短く、生産性においても優れる。
本発明の無アルカリガラスの製造方法及び本発明の無アルカリガラスは、泡をほとんど含まないため、フラットパネルディスプレイ用ガラス基板に適している。
特に、フロート法で成形される本発明の無アルカリガラスのフロートガラス板は、泡が少なく、ガラス表面のSn析出が無いため、大面積で、更に薄板(例えば、0.3〜1.1mm)のフラットパネルディスプレイ用ガラス基板に適している。
In Example 12 shown in FIG. 1, the raw material was heated, and the reduction reaction of SnO 2 to SnO started to occur from about 1400 ° C., and about 1450 ° C. (Sn-redox about 10% by Sn-Messbauer spectroscopy measurement method). Since the reduction reaction of SnO 2 to SnO is activated, oxygen bubbles (initial bubbles) due to the reduction reaction are already generated in the molten glass at around 1500 ° C. where the raw material is vitrified.
Then, around 1500 ° C. when the raw material is vitrified, bubbles in the molten glass and initial bubbles coexist in the system to form coexisting bubbles. For this reason, the molten glass is melted for a long time in order to remove the coexisting bubbles from the molten glass. The present inventor has found a problem that productivity must be lowered due to staying in the tank.
On the other hand, in Example 11 shown in FIG. 1, since the reduction reaction of SnO 2 to SnO starts to occur from around 1450 ° C., many initial bubbles are not generated at 1450-1500 ° C. Thereafter, the reduction reaction of SnO 2 to SnO from about 1500 ° C. where the raw material vitrifies (Sn-redox about 10% by Sn-Messbauer spectroscopy measurement method) is activated. Can be lifted. Furthermore, from Table 6, since Example 11 has a lower temperature at which the viscosity becomes 10 2 dPa · s than Example 12, Example 11 is likely to cause bubbles to rise.
Therefore, the method for producing alkali-free glass of the present invention and the alkali-free glass of the present invention have a short time for allowing the molten glass to exist in the melting tank, and are excellent in productivity.
Since the alkali-free glass production method of the present invention and the alkali-free glass of the present invention contain almost no bubbles, they are suitable for glass substrates for flat panel displays.
In particular, the non-alkali glass float glass plate of the present invention formed by the float method has a large area and a thin plate (for example, 0.3 to 1.1 mm) because there are few bubbles and there is no Sn precipitation on the glass surface. Suitable for glass substrates for flat panel displays.

図1は、原料を溶解させる際の溶解温度と得られるガラスのSn−レドックス(Sn−メスバウアー分光の測定法による)との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the melting temperature when melting the raw material and the Sn-redox of the glass obtained (according to the measuring method of Sn-Mossbauer spectroscopy).

Claims (6)

アルカリ金属酸化物を実質的に含有せず、以下の組成を母組成とするガラス原料を溶解し、溶融されたガラスを、白金部材と接触される条件下で、減圧脱泡、攪拌、または移送を行う処理工程を含む無アルカリガラスの製造方法であって、質量百分率表示で、該母組成の総量100%に対し、SnOを0.01〜2.0%含むように原料を調製し、該原料を1500〜1650℃で加熱溶解した後、溶融ガラスに含まれる泡を溶融ガラス中の該SnOのSnOへの還元反応により発生する酸素泡とともに溶融ガラス表面に浮上させた後、前記処理工程において、該溶融ガラスが1300〜1500℃にある状態で、該溶融ガラスと該白金部材との界面に発生する酸素泡を、該SnOのSnOへの酸化反応により吸収させる無アルカリガラスの製造方法。
質量百分率表示による組成:
SiO:58.4〜66.0%、Al:15.3〜22.0%、B
:5.0〜12.0%、MgO:0〜6.5%、CaO:0〜7.0%、SrO
:4〜12.5%、BaO:0〜2.0%、
(MgO+CaO+SrO+BaO):9.0〜18.0%。
A glass raw material substantially free of alkali metal oxides and having the following composition as a parent composition is melted, and the molten glass is degassed under vacuum, stirred, or transferred under the condition of contact with a platinum member. A raw material is prepared so as to contain 0.01 to 2.0% of SnO 2 with respect to 100% of the total amount of the mother composition in terms of mass percentage. After the raw material is heated and melted at 1500 to 1650 ° C., the bubbles contained in the molten glass are floated on the surface of the molten glass together with oxygen bubbles generated by the reduction reaction of the SnO 2 in the molten glass to SnO, and then the treatment in step, in a state in which the molten glass is in the 1300 to 1500 ° C., the oxygen bubbles generated at the interface between the molten glass and the platinum member, alkali-free to be absorbed by an oxidation reaction of the SnO 2 of the SnO Method of manufacturing the class.
Composition by mass percentage display:
SiO 2: 58.4~66.0%, Al 2 O 3: 15.3~22.0%, B 2 O 3
: 5.0 to 12.0%, MgO: 0 to 6.5%, CaO: 0 to 7.0%, SrO
: 4 to 12.5%, BaO: 0 to 2.0%,
(MgO + CaO + SrO + BaO): 9.0 to 18.0%.
前記減圧脱泡を160〜660torrの減圧下で行なう請求項1に記載の無アルカリガラスの製造方法。   The method for producing an alkali-free glass according to claim 1, wherein the vacuum degassing is performed under a reduced pressure of 160 to 660 torr. 前記溶融ガラスの粘度が10dPa・sのときの温度が1600℃以上である請求項1または2に記載の無アルカリガラスの製造方法。 The method for producing alkali-free glass according to claim 1 or 2, wherein the temperature when the molten glass has a viscosity of 10 2 dPa · s is 1600 ° C or higher. 請求項1〜3のいずれかに記載の方法で製造されたガラス板。   The glass plate manufactured by the method in any one of Claims 1-3. 酸化物規準の質量百分率表示で、アルカリ金属酸化物を実質的に含有せず、以下の組成を母組成とする無アルカリガラスであって、該母組成の総量100%に対し、SnOを0.15%以上、1%未満含有するフロートガラス板。
質量百分率表示による組成:
SiO:58.4〜66.0%、Al:15.3〜22.0%、B:5.0〜12.0%、MgO:0〜6.5%、CaO:0〜7.0%、SrO:4〜12.5%、BaO:0〜2.0%、(MgO+CaO+SrO+BaO):9.0〜18.0%。
It is a non-alkali glass that contains substantially no alkali metal oxide and has the following composition as a parent composition, expressed as a percentage by mass of the oxide standard, and SnO 2 is 0 with respect to 100% of the total amount of the mother composition. .Float glass plate containing 15% or more and less than 1%.
Composition by mass percentage display:
SiO 2: 58.4~66.0%, Al 2 O 3: 15.3~22.0%, B 2 O 3: 5.0~12.0%, MgO: 0~6.5%, CaO : 0 to 7.0%, SrO: 4 to 12.5%, BaO: 0 to 2.0%, (MgO + CaO + SrO + BaO): 9.0 to 18.0%.
前記ガラス板の50〜350℃における熱膨張係数が25×10−7〜40×10−7/℃である請求項4または5に記載のガラス板。 The glass plate according to claim 4 or 5, wherein a thermal expansion coefficient of the glass plate at 50 to 350 ° C is 25 × 10 -7 to 40 × 10 -7 / ° C.
JP2006185587A 2005-07-06 2006-07-05 Method for producing alkali-free glass Active JP4946216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185587A JP4946216B2 (en) 2005-07-06 2006-07-05 Method for producing alkali-free glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005197528 2005-07-06
JP2005197528 2005-07-06
JP2006185587A JP4946216B2 (en) 2005-07-06 2006-07-05 Method for producing alkali-free glass

Publications (2)

Publication Number Publication Date
JP2007039324A true JP2007039324A (en) 2007-02-15
JP4946216B2 JP4946216B2 (en) 2012-06-06

Family

ID=37797644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185587A Active JP4946216B2 (en) 2005-07-06 2006-07-05 Method for producing alkali-free glass

Country Status (1)

Country Link
JP (1) JP4946216B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260642A (en) * 2007-04-10 2008-10-30 Nh Techno Glass Kk Glass composition, glass plate using the same, and method of manufacturing glass plate
JP2009073674A (en) * 2006-09-04 2009-04-09 Nippon Electric Glass Co Ltd Method for producing glass
WO2009054314A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Company, Limited Method for production of non-alkali glass
JP2009286689A (en) * 2008-05-30 2009-12-10 Corning Inc Boroaluminosilicate glass
JP2010509180A (en) * 2006-11-13 2010-03-25 コーニング インコーポレイテッド Alkali-free glass containing iron and tin as fining agents
WO2011132785A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Vacuum degassing method for molten glass
JP2012082106A (en) * 2010-10-12 2012-04-26 Nippon Electric Glass Co Ltd METHOD FOR PRODUCING Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
JP2012082130A (en) * 2010-10-06 2012-04-26 Corning Inc Alkali-free glass composition having high thermal and chemical stability
WO2012133467A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
WO2012133230A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
JP2012214377A (en) * 2012-06-18 2012-11-08 Avanstrate Inc Glass composition and glass substrate for flat panel display using the same
WO2013054531A1 (en) * 2011-10-11 2013-04-18 AvanStrate株式会社 Method for manufacturing glass plate
WO2013129404A1 (en) * 2012-02-28 2013-09-06 旭硝子株式会社 Granulated bodies and process for producing same
JP2013216561A (en) * 2011-07-01 2013-10-24 Avanstrate Inc Glass substrate for flat panel display and method for producing the same
WO2013161903A1 (en) * 2012-04-27 2013-10-31 旭硝子株式会社 Non-alkali glass and method for producing same
JP2014055100A (en) * 2011-03-31 2014-03-27 Avanstrate Inc Glass plate manufacturing method
US20140376868A1 (en) 2012-01-12 2014-12-25 Schott Ag Highly transmissive glasses with high solarisation resistance, use thereof and method for production thereof
KR101483701B1 (en) 2011-09-02 2015-01-16 주식회사 엘지화학 Alkali-free glass and method for manufacturing the same
JP2016069246A (en) * 2014-09-30 2016-05-09 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JP2017533158A (en) * 2014-08-21 2017-11-09 コーニング インコーポレイテッド Method for preventing blisters in laminated glass articles and laminated glass articles formed thereby
WO2018084100A1 (en) * 2016-11-02 2018-05-11 旭硝子株式会社 Non-alkaline glass and method for producing same
JPWO2018051793A1 (en) * 2016-09-13 2019-06-24 Agc株式会社 Glass substrate for high frequency devices and circuit board for high frequency devices
JP2020152602A (en) * 2019-03-19 2020-09-24 Agc株式会社 Non-alkali glass substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324526A (en) * 1997-05-20 1998-12-08 Asahi Glass Co Ltd Method for refining alkali-free glass
JP2000239023A (en) * 1999-02-18 2000-09-05 Nippon Electric Glass Co Ltd Production of glass
JP2001500098A (en) * 1996-07-19 2001-01-09 コーニング インコーポレイテッド Arsenic-free glass
JP2004504249A (en) * 2000-07-19 2004-02-12 カール−ツァイス−スティフツング Method for producing aluminosilicate glass
JP2004284949A (en) * 2004-05-12 2004-10-14 Asahi Glass Co Ltd Method of clarifying alkali-free glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500098A (en) * 1996-07-19 2001-01-09 コーニング インコーポレイテッド Arsenic-free glass
JPH10324526A (en) * 1997-05-20 1998-12-08 Asahi Glass Co Ltd Method for refining alkali-free glass
JP2000239023A (en) * 1999-02-18 2000-09-05 Nippon Electric Glass Co Ltd Production of glass
JP2004504249A (en) * 2000-07-19 2004-02-12 カール−ツァイス−スティフツング Method for producing aluminosilicate glass
JP2004284949A (en) * 2004-05-12 2004-10-14 Asahi Glass Co Ltd Method of clarifying alkali-free glass

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073674A (en) * 2006-09-04 2009-04-09 Nippon Electric Glass Co Ltd Method for producing glass
JP2010509180A (en) * 2006-11-13 2010-03-25 コーニング インコーポレイテッド Alkali-free glass containing iron and tin as fining agents
JP2015027942A (en) * 2006-11-13 2015-02-12 コーニング インコーポレイテッド Alkali-free glasses containing iron and tin as fining agents
JP2011225447A (en) * 2006-11-13 2011-11-10 Corning Inc Alkali-free glass containing iron and tin as fining agent
JP2008260642A (en) * 2007-04-10 2008-10-30 Nh Techno Glass Kk Glass composition, glass plate using the same, and method of manufacturing glass plate
WO2009054314A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Company, Limited Method for production of non-alkali glass
JP5267464B2 (en) * 2007-10-25 2013-08-21 旭硝子株式会社 Method for producing alkali-free glass
JP2009286689A (en) * 2008-05-30 2009-12-10 Corning Inc Boroaluminosilicate glass
JP2015120637A (en) * 2008-05-30 2015-07-02 コーニング インコーポレイテッド Boroalumino silicate glass
WO2011132785A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Vacuum degassing method for molten glass
CN102858698A (en) * 2010-04-23 2013-01-02 旭硝子株式会社 Vacuum degassing method for molten glass
JP5737285B2 (en) * 2010-04-23 2015-06-17 旭硝子株式会社 Vacuum degassing method for molten glass
JP2017007945A (en) * 2010-10-06 2017-01-12 コーニング インコーポレイテッド Alkali-free glass composition having high thermal and chemical stability
JP2012082130A (en) * 2010-10-06 2012-04-26 Corning Inc Alkali-free glass composition having high thermal and chemical stability
JP2012082106A (en) * 2010-10-12 2012-04-26 Nippon Electric Glass Co Ltd METHOD FOR PRODUCING Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
WO2012133230A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
CN102892719A (en) * 2011-03-31 2013-01-23 安瀚视特控股株式会社 Method for producing glass plate
WO2012133467A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
CN102892719B (en) * 2011-03-31 2015-11-25 安瀚视特控股株式会社 The manufacture method of sheet glass
JP5456895B2 (en) * 2011-03-31 2014-04-02 AvanStrate株式会社 Glass plate manufacturing method
JPWO2012133467A1 (en) * 2011-03-31 2014-07-28 AvanStrate株式会社 Manufacturing method of glass plate
JP2014055100A (en) * 2011-03-31 2014-03-27 Avanstrate Inc Glass plate manufacturing method
JP2016199467A (en) * 2011-07-01 2016-12-01 AvanStrate株式会社 Glass substrate for flat panel display and method for producing the same
US9321671B2 (en) 2011-07-01 2016-04-26 Avanstrate Inc. Glass substrate for flat panel display and manufacturing method thereof
JP2013216561A (en) * 2011-07-01 2013-10-24 Avanstrate Inc Glass substrate for flat panel display and method for producing the same
US8932969B2 (en) 2011-07-01 2015-01-13 Avanstrate Inc. Glass substrate for flat panel display and method for manufacturing same
KR101483701B1 (en) 2011-09-02 2015-01-16 주식회사 엘지화학 Alkali-free glass and method for manufacturing the same
WO2013054531A1 (en) * 2011-10-11 2013-04-18 AvanStrate株式会社 Method for manufacturing glass plate
JP2013212991A (en) * 2011-10-11 2013-10-17 Avanstrate Inc Method for manufacturing glass plate
JP5329725B1 (en) * 2011-10-11 2013-10-30 AvanStrate株式会社 Manufacturing method of glass plate
US11084754B2 (en) 2012-01-12 2021-08-10 Schott Ag Highly transmissive glasses with high solarisation resistance, use thereof and method for production thereof
US20140376868A1 (en) 2012-01-12 2014-12-25 Schott Ag Highly transmissive glasses with high solarisation resistance, use thereof and method for production thereof
JP2015508385A (en) * 2012-01-12 2015-03-19 ショット・アーゲー Highly permeable glasses with high solarization resistance, their use and methods for their production
US10759692B2 (en) 2012-01-12 2020-09-01 Schott Ag Highly transmissive glasses with high solarisation resistance, use thereof and method for production thereof
JPWO2013129404A1 (en) * 2012-02-28 2015-07-30 旭硝子株式会社 Granulated body and method for producing the same
WO2013129404A1 (en) * 2012-02-28 2013-09-06 旭硝子株式会社 Granulated bodies and process for producing same
US9290400B2 (en) 2012-02-28 2016-03-22 Asahi Glass Company, Limited Granules and process for their production
CN104114502A (en) * 2012-02-28 2014-10-22 旭硝子株式会社 Granulated bodies and process for producing same
CN104114502B (en) * 2012-02-28 2016-11-16 旭硝子株式会社 Pelletize body and manufacture method thereof
TWI568689B (en) * 2012-02-28 2017-02-01 Asahi Glass Co Ltd Granulation and manufacturing method thereof
KR102027957B1 (en) 2012-04-27 2019-10-02 에이지씨 가부시키가이샤 Non-alkali glass and method for producing same
WO2013161903A1 (en) * 2012-04-27 2013-10-31 旭硝子株式会社 Non-alkali glass and method for producing same
KR20150013125A (en) * 2012-04-27 2015-02-04 아사히 가라스 가부시키가이샤 Non-alkali glass and method for producing same
JP2012214377A (en) * 2012-06-18 2012-11-08 Avanstrate Inc Glass composition and glass substrate for flat panel display using the same
JP2017533158A (en) * 2014-08-21 2017-11-09 コーニング インコーポレイテッド Method for preventing blisters in laminated glass articles and laminated glass articles formed thereby
JP2016069246A (en) * 2014-09-30 2016-05-09 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JPWO2018051793A1 (en) * 2016-09-13 2019-06-24 Agc株式会社 Glass substrate for high frequency devices and circuit board for high frequency devices
US10974987B2 (en) 2016-09-13 2021-04-13 AGC Inc. Glass substrate for high-frequency device and circuit board for high-frequency device
KR20190077350A (en) * 2016-11-02 2019-07-03 에이지씨 가부시키가이샤 Non-alkali glass and manufacturing method thereof
JPWO2018084100A1 (en) * 2016-11-02 2019-09-19 Agc株式会社 Alkali-free glass and method for producing the same
WO2018084100A1 (en) * 2016-11-02 2018-05-11 旭硝子株式会社 Non-alkaline glass and method for producing same
US10730786B2 (en) 2016-11-02 2020-08-04 AGC Inc. Alkali-free glass and method for producing the same
KR102479156B1 (en) 2016-11-02 2022-12-19 에이지씨 가부시키가이샤 Alkali-free glass and its manufacturing method
JP2020152602A (en) * 2019-03-19 2020-09-24 Agc株式会社 Non-alkali glass substrate
JP7127587B2 (en) 2019-03-19 2022-08-30 Agc株式会社 Alkali-free glass substrate

Also Published As

Publication number Publication date
JP4946216B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4946216B2 (en) Method for producing alkali-free glass
KR100977699B1 (en) Process for production of non-alkaline glass and non-alkaline glass
JP5070828B2 (en) Alkali-free glass and method for producing the same
JP5359271B2 (en) Non-alkali glass substrate, method for producing the same, and liquid crystal display panel
EP1593657B1 (en) Glass for display substrate
JP6168053B2 (en) Alkali-free glass and method for producing alkali-free glass plate using the same
JP2005097090A (en) Alkali-free glass substrate
WO1998003442A1 (en) Arsenic-free glasses
KR20180015611A (en) Glass
TWI598314B (en) E-glass and its manufacturing method
KR20160030067A (en) Glass
JPWO2014175215A1 (en) Non-alkali glass substrate and method for producing the same
EP2860160A1 (en) Alkali-free glass substrate and method for reducing thickness of alkali-free glass substrate
WO2014129424A1 (en) Alkali-free glass and method for producing same
KR20150136582A (en) Method for manufacturing alkali-free glass
WO2019208584A1 (en) Alkali-free glass
JPWO2018084100A1 (en) Alkali-free glass and method for producing the same
JP2016074551A (en) Method for producing non-alkali glass
JP4466371B2 (en) Glass and glass manufacturing method
JP2021169399A (en) Aluminosilicate glass and method for producing the same
WO2018186143A1 (en) Glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4946216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250