JP2007037204A - Charging apparatus for capacitor - Google Patents

Charging apparatus for capacitor Download PDF

Info

Publication number
JP2007037204A
JP2007037204A JP2005212003A JP2005212003A JP2007037204A JP 2007037204 A JP2007037204 A JP 2007037204A JP 2005212003 A JP2005212003 A JP 2005212003A JP 2005212003 A JP2005212003 A JP 2005212003A JP 2007037204 A JP2007037204 A JP 2007037204A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
reactor
charging
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005212003A
Other languages
Japanese (ja)
Other versions
JP4835056B2 (en
Inventor
Masao Azuma
征男 東
Takehisa Koganezawa
竹久 小金澤
Toshihiro Osada
俊宏 長田
Eiji Sasamoto
栄二 笹本
Masayuki Tani
政幸 谷
Naoki Shirai
直樹 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2005212003A priority Critical patent/JP4835056B2/en
Publication of JP2007037204A publication Critical patent/JP2007037204A/en
Application granted granted Critical
Publication of JP4835056B2 publication Critical patent/JP4835056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the drop of accuracy in charge due to the change of the capacitor capacity or the rector value of an LC resonance circuit, and also to charge the capacitor within a specified time even if there is high repetition. <P>SOLUTION: Switches 2 and 7 generate oscillating currents of half cycles in a LC resonance circuit composed of a capacitor 6 and a reactor 5 by ON control, and roughly charge a capacitor to voltage a little higher than the target voltage by OFF control when these oscillating currents reach specified values. A switch 10 discharges capacitor voltage by fine adjustment to the target voltage by the comparison between rough charge voltage and a charge voltage command in ON period. A controller 11 is provided with a capacity C computer 11D which computes the capacitance of the above capacitor, based on the internal temperature of the capacitor, and sets this capacitance as the parameter of the above set current calculation, as a correction control means which corrects one by one the charge error of rough charge voltage caused by the capacity change of the capacitor and the value change of the reactor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電力用コンデンサを直流電源として高電圧・大電流のパルスを発生させるパルス電源において、コンデンサを設定電圧まで高い繰り返しで充電するコンデンサの充電装置に係り、特にコンデンサとリアクトルとのLC共振動作でコンデンサを目標電圧より少し高い電圧まで粗充電し、次いでコンデンサを目標電圧まで放電させる微調整を行うことで設定電圧に高精度充電する充電装置に関する。   The present invention relates to a capacitor charging device that charges a capacitor repeatedly at a high voltage up to a set voltage in a pulse power source that uses a power capacitor as a DC power source to generate high voltage and large current pulses, and in particular, LC resonance between a capacitor and a reactor. The present invention relates to a charging device that performs high-precision charging to a set voltage by performing coarse adjustment to charge a capacitor to a voltage slightly higher than a target voltage and then to discharge the capacitor to the target voltage.

エキシマレーザーやオゾナイザ等の電源として利用されるパルス電源は、例えば、図6に示す構成にされる。充電装置HDCによってコンデンサC0を初期充電しておき、半導体スイッチSWのオンによってコンデンサC0の電圧を可飽和リアクトルSI0を通してパルストランスPTの一次側に印加し、可飽和リアクトルSI0の飽和動作(磁気スイッチ動作)によりパルス圧縮した放電電流をトランスPTに一次電流を供給し、トランスPTの二次側に昇圧したパルス電流を発生させる。このパルス電流でコンデンサC1を充電し、可飽和リアクトルSI1の飽和動作によりパルス圧縮した放電電流で次段のコンデンサC2を充電し、さらに可飽和リアクトルSI2の飽和動作でパルス圧縮し、これらパルス圧縮の繰り返しで最終段のコンデンサCn(ピーキングコンデンサ)が高圧充電され、最終段の可飽和リアクトルSInの飽和動作により負荷となるレーザ発振器等の負荷LHへ超短パルスを発生させる。 A pulse power source used as a power source for an excimer laser, an ozonizer, or the like is configured as shown in FIG. 6, for example. The capacitor C 0 is initially charged by the charging device HDC, and the voltage of the capacitor C 0 is applied to the primary side of the pulse transformer PT through the saturable reactor SI 0 by turning on the semiconductor switch SW, and the saturation operation of the saturable reactor SI 0 The discharge current pulse-compressed by (magnetic switch operation) is supplied to the transformer PT as a primary current, and a boosted pulse current is generated on the secondary side of the transformer PT. The capacitor C 1 is charged with this pulse current, the capacitor C 2 in the next stage is charged with the discharge current pulse-compressed by the saturation operation of the saturable reactor SI 1 , and further pulse-compressed with the saturation operation of the saturable reactor SI 2 , By repeating these pulse compressions, the capacitor C n (peaking capacitor) in the final stage is charged with a high voltage, and an ultrashort pulse is generated in a load LH such as a laser oscillator as a load by the saturation operation of the saturable reactor SI n in the final stage.

上記のパルス発生は、コンデンサC0の繰り返し充電と放電でパルス電流を発生し、このパルス電流を磁気パルス圧縮して負荷に繰り返し(例えば1秒間に4000回)供給する。このためのコンデンサC0の充電装置は、リアクトルとコンデンサのLC共振動作によって、コンデンサを決められた時間内で充電電圧指令値(以下、指令値)の電圧まで充電する(例えば、特許文献1参照)。 In the above pulse generation, a pulse current is generated by repetitive charging and discharging of the capacitor C 0 , this pulse current is magnetically compressed and supplied repeatedly to the load (for example, 4000 times per second). The charging device for the capacitor C 0 for this purpose charges the capacitor to a voltage of a charging voltage command value (hereinafter referred to as a command value) within a predetermined time by the LC resonance operation of the reactor and the capacitor (see, for example, Patent Document 1). ).

図7は従来の充電装置の主回路構成と制御装置の例を示す。半導体スイッチ2,7は、そのオン動作でリアクトル5に直流電源1を印加して短絡電流を流し、そのオフ動作でコンデンサ6とリアクトル5の直列接続回路になるLC共振回路に半周期の振動電流を発生させる。制御装置11は、制御用コンピュータで構成され、ソフトウェアによる演算機能を実装し、コンデンサ6の容量とリアクトル5のリアクトル値および充電電圧指令値から決まる設定電流に振動電流が達したときにスイッチ2,7をオフ制御することでコンデンサ6を目標電圧より少し高い電圧まで粗充電制御する。その後、制御装置11はコンデンサ6の粗充電電圧と充電電圧指令との比較によってスイッチ10をオン制御し、抵抗9を通してコンデンサ電圧を目標電圧まで微調整放電させる。   FIG. 7 shows an example of a main circuit configuration and a control device of a conventional charging device. When the semiconductor switches 2 and 7 are turned on, the DC power source 1 is applied to the reactor 5 to cause a short-circuit current to flow. When the semiconductor switches 2 and 7 are turned off, an oscillation current having a half cycle is applied to the LC resonance circuit that is a series connection circuit of the capacitor 6 and the reactor 5. Is generated. The control device 11 is composed of a control computer and implements a calculation function by software. When the oscillation current reaches the set current determined from the capacitance of the capacitor 6, the reactor value of the reactor 5, and the charging voltage command value, the switch 2 By controlling 7 to be off, the capacitor 6 is roughly charged to a voltage slightly higher than the target voltage. After that, the control device 11 turns on the switch 10 by comparing the coarse charging voltage of the capacitor 6 with the charging voltage command, and finely discharges the capacitor voltage to the target voltage through the resistor 9.

以上の充電動作は、指令値に対し、高速で高精度の充電を得るため、1回の充電期間に急速充電期間と微調整期間を設け、先ず急速充電期間で負荷コンデンサを指令値よリ数%高い電圧まで急速に充電し、次に微調整期間で指令値まで放電する。この理由は、急速充電回路のみでは指令値に対する高精度充電が困難なため、急速充電回路で負荷コンデンサを指令値よりも僅かに高い電圧に充電し、微調整回路の放電によって高精度充電を実現する。   In the above charging operation, in order to obtain high-speed and high-accuracy charging with respect to the command value, a quick charging period and a fine adjustment period are provided in one charging period. The battery is rapidly charged to a higher voltage and then discharged to the command value in a fine adjustment period. The reason for this is that it is difficult to accurately charge the command value using only the quick charge circuit, so the charge capacitor is charged to a voltage slightly higher than the command value using the quick charge circuit, and high-accuracy charging is achieved by discharging the fine adjustment circuit. To do.

急速充電期間の動作を説明する(波形図は図8を参照)。図7において、制御装置11により、スイッチ2とスイッチ7を同時にオンすると回路には波線矢印Aの経路で電流が流れ、リアクトル5に電磁エネルギーとして蓄積する。次に、スイッチ2とスイッチ7を同時にオフすると回路には波線矢印Bの経路で電流が流れ、リアクトル5に蓄えられたエネルギーはコンデンサ6へすべて移行し、コンデンサ6が充電される。リアクトル5のリアクトル値をL、コンデンサ6の容量をC、スイッチ2及びスイッチ7オフ時の波線矢印Aの電流をI、波線矢印Bの電流が流れ終わった時のコンデンサ6の電圧をV(以下、粗充電電圧と呼ぶ)とすると、エネルギー保存の法則より、   The operation during the quick charge period will be described (see FIG. 8 for a waveform diagram). In FIG. 7, when the switch 2 and the switch 7 are simultaneously turned on by the control device 11, a current flows through the circuit along a path indicated by a broken line arrow A and accumulates as electromagnetic energy in the reactor 5. Next, when the switch 2 and the switch 7 are turned off at the same time, a current flows through the circuit along the path indicated by the broken line arrow B, and all the energy stored in the reactor 5 is transferred to the capacitor 6 and the capacitor 6 is charged. The reactor value of the reactor 5 is L, the capacitance of the capacitor 6 is C, the current of the broken line arrow A when the switch 2 and the switch 7 are turned off is I, and the voltage of the capacitor 6 when the current of the broken line arrow B finishes flowing is V (below) , Called the coarse charge voltage), from the law of conservation of energy,

Figure 2007037204
Figure 2007037204

が成り立つ。充電装置は上式を利用し、コンデンサ6を目標電圧(指令値より数%高い電圧)Vまで充電する。つまり、常に電流iを検出すると同時にリアルタイムで以下の演算を行い、この式の成立時にスイッチ2及びスイッチ7をオフする。 Holds. The charging device uses the above equation to charge the capacitor 6 to a target voltage (voltage several percent higher than the command value) V. That is, the current i is always detected and the following calculation is performed in real time, and the switch 2 and the switch 7 are turned off when this equation is established.

Figure 2007037204
Figure 2007037204

微調整期間の動作を説明する。制御装置11は、コンデンサ6の粗充電を終えた直後に、スイッチ10をオンすると、回路には波線矢印Cの経路で電流が流れ、コンデンサ6に充電されたエネルギーは抵抗9で消費される。微調整期間では、指令値とコンデンサ6の電圧を(コンパレータなどで)常に比較し、コンデンサ6の電圧が設定値V*と一致するまでスイッチ10をオンさせる。   The operation during the fine adjustment period will be described. When the control device 11 turns on the switch 10 immediately after finishing the rough charging of the capacitor 6, a current flows through the circuit along the path indicated by the broken line arrow C, and the energy charged in the capacitor 6 is consumed by the resistor 9. In the fine adjustment period, the command value and the voltage of the capacitor 6 are always compared (by a comparator or the like), and the switch 10 is turned on until the voltage of the capacitor 6 matches the set value V *.

制御装置11としては、基本的には、スイッチ2,7および10のオン/オフ制御を行うオン/オフ制御部11Aと、コンデンサ電圧Vcの検出によるスイッチ10のオフタイミングを求める判定部11Bと、式2による電流iの検出によるスイッチ2,7のオフタイミングを求める演算部11Cとを備える。   The control device 11 basically includes an on / off control unit 11A that performs on / off control of the switches 2, 7, and 10, and a determination unit 11B that obtains an off timing of the switch 10 based on detection of the capacitor voltage Vc. And an arithmetic unit 11C that obtains the off timing of the switches 2 and 7 based on the detection of the current i according to Equation 2.

図9は、従来の他の充電装置の主回路構成と制御装置の例を示す。同図が図7と異なる部分は、スイッチ2に代えて、インバータ2Aと昇圧トランス3と整流回路4Aによって昇圧した直流電流をリアクトル5に供給し、ダイオード4に代えて整流回路4Aで環流電流路を形成する。充電制御は、図7の場合と同様に、1回の充電期間に急速充電期間と微調整期間を設け、急速充電期間で負荷コンデンサを指令値よリ数%高い電圧まで急速に充電し、次に微調整期間で指令値まで放電する。   FIG. 9 shows an example of a main circuit configuration and a control device of another conventional charging device. 7 differs from FIG. 7 in that a DC current boosted by an inverter 2A, a step-up transformer 3 and a rectifier circuit 4A is supplied to the reactor 5 instead of the switch 2, and a circulating current path is supplied by the rectifier circuit 4A instead of the diode 4. Form. As in the case of FIG. 7, the charge control provides a quick charge period and a fine adjustment period in one charge period, and rapidly charges the load capacitor to a voltage several percent higher than the command value during the quick charge period. During the fine adjustment period, the battery discharges to the command value.

さらに、図10及び図11は、従来の他の充電装置の主回路構成と制御装置の例を示し、その波形図を図12に示す。図10は図7の構成からスイッチ7を省き、スイッチ2のオンでリアクトル5とコンデンサ6の径路Aで充電し、スイッチ2のオフでダイオード4を通した径路Bでリアクトルのエネルギーをコンデンサ6を充電し、スイッチ10のオンで径路Cで電圧を微調整する。同様に、図11は図9の構成からスイッチ7を省き、径路A,B,Cでコンデンサ6の充放電を行う。
特開2005−117766号公報
10 and 11 show an example of a main circuit configuration and a control device of another conventional charging device, and a waveform diagram thereof is shown in FIG. FIG. 10 omits the switch 7 from the configuration of FIG. 7, the switch 2 is turned on to charge the reactor 5 and the capacitor 6 through the path A, and the switch 2 is turned off and the diode B is passed through the diode 4 to pass the reactor energy. The battery is charged and the voltage is finely adjusted in the path C when the switch 10 is turned on. Similarly, in FIG. 11, the switch 7 is omitted from the configuration of FIG. 9, and the capacitor 6 is charged and discharged along the paths A, B, and C.
JP 2005-117766 A

従来装置において、コンデンサ6は周囲温度の変化や装置の稼働率により、内部温度の変化で静電容量が変化する。また、リアクトル5のリアクトル値も周囲温度の変化や装置の稼働率により変化することがある。   In the conventional device, the capacitance of the capacitor 6 changes due to the change of the internal temperature due to the change of the ambient temperature and the operation rate of the device. Moreover, the reactor value of the reactor 5 may also change with the change of ambient temperature and the operation rate of an apparatus.

前記の式1を変形すると、   By transforming Equation 1 above,

Figure 2007037204
Figure 2007037204

であるから、静電容量がCからC’に変化すると、粗充電電圧は、以下のように変化する。 Therefore, when the capacitance changes from C to C ′, the coarse charge voltage changes as follows.

Figure 2007037204
Figure 2007037204

また、リアクトル値がLからLIに変化すると、粗充電電圧は、以下のように変化する。   Further, when the reactor value changes from L to LI, the coarse charge voltage changes as follows.

Figure 2007037204
Figure 2007037204

このように、温度変化等でコンデンサ6の静電容量が減った場合は式4−1より、同じくリアクトル5のリアクトル値が増えた場合は式4−2より、粗充電電圧が増大し、以下の問題がある。   As described above, when the capacitance of the capacitor 6 decreases due to a temperature change or the like, the coarse charge voltage increases from Equation 4-1, and when the reactor value of the reactor 5 similarly increases from Equation 4-2, the coarse charge voltage increases. There is a problem.

(1)抵抗9の放電電力が増加し、抵抗9の大型化、装置効率の低下に繋がる。   (1) The discharge power of the resistor 9 increases, leading to an increase in the size of the resistor 9 and a decrease in device efficiency.

(2)粗充電電圧が上がり過ぎ、微調整期間内に設定値V*まで放電しきれなくなるケースが生じる(図13参照)。   (2) In some cases, the coarse charge voltage increases excessively, and it is impossible to discharge to the set value V * within the fine adjustment period (see FIG. 13).

(3)上記ケースを防ぐ目的で抵抗9の抵抗値を小さくすると放電電圧のdV/dtが増え、充電精度が悪化する。   (3) If the resistance value of the resistor 9 is reduced for the purpose of preventing the above case, the discharge voltage dV / dt increases and the charging accuracy deteriorates.

本発明の目的は、上記の課題を解決したコンデンサの充電装置を提供することにある。   The objective of this invention is providing the charging device of the capacitor | condenser which solved said subject.

前記の課題を解決する本発明は、コンデンサの容量変化、又はリアクトルのリアクトル値変化により生じる粗充電電圧の充電誤差を逐次補正する補正制御手段を備えたもので、以下の構成を特徴とする。   The present invention that solves the above-described problems includes a correction control means that sequentially corrects a charging error of a coarse charging voltage caused by a change in capacitance of a capacitor or a change in reactor reactor value, and has the following configuration.

(1)コンデンサとリアクトルを直列接続したLC共振回路に直流電源を印加して半周期の振動電流を発生させ、前記コンデンサの容量とリアクトルのリアクトル値および充電電圧指令値から決まる設定電流に前記振動電流が達することで該コンデンサを目標電圧より少し高い電圧まで粗充電する充電回路と、前記コンデンサの粗充電電圧と前記充電電圧指令との比較によって該コンデンサ電圧を目標電圧まで微調整放電させる放電回路とを備えたコンデンサの充電装置であって、
前記コンデンサの容量変化、又はリアクトルのリアクトル値変化により生じる粗充電電圧の充電誤差を逐次補正する補正制御手段を備えたことを特徴とする。
(1) A DC power source is applied to an LC resonance circuit in which a capacitor and a reactor are connected in series to generate a half-cycle oscillating current, and the oscillation is changed to a set current determined from the capacitance of the capacitor, the reactor reactor value, and a charging voltage command value. A charging circuit that roughly charges the capacitor to a voltage slightly higher than the target voltage when the current reaches, and a discharging circuit that finely adjusts the capacitor voltage to the target voltage by comparing the rough charging voltage of the capacitor and the charging voltage command A capacitor charging device comprising:
A correction control means is provided for sequentially correcting a charging error of the rough charging voltage caused by a change in capacitance of the capacitor or a change in reactor reactor value.

(2)前記補正制御手段は、前記コンデンサの内部温度を基に前記コンデンサの静電容量を算出し、この静電容量を前記設定電流演算の変数として設定する容量C算出手段としたことを特徴とする。   (2) The correction control unit is a capacitance C calculation unit that calculates the capacitance of the capacitor based on the internal temperature of the capacitor and sets the capacitance as a variable of the set current calculation. And

(3)前記補正制御手段は、前記粗充電電圧と微調整時間および微調整後の充電電圧の計測結果から前記コンデンサの静電容量を算出し、この静電容量を前記設定電流演算の変数として設定する容量C算出手段としたことを特徴とする。   (3) The correction control means calculates the capacitance of the capacitor from the measurement result of the coarse charge voltage, the fine adjustment time, and the charge voltage after the fine adjustment, and uses the capacitance as a variable for the set current calculation. It is characterized in that it is a capacity C calculating means for setting.

(4)前記補正制御手段は、前記微調整時間から前記粗充電電圧を推定し、この推定値で該粗充電電圧の設定値を調整するための粗充電設定値用ゲインを補正する粗充電電圧推定手段としたことを特徴とする。   (4) The correction control means estimates the coarse charge voltage from the fine adjustment time, and corrects a coarse charge set value gain for adjusting the coarse charge voltage set value using the estimated value. It is characterized by an estimation means.

(5)前記補正制御手段は、前記直流電源の印加時間とそのときの前記振動電流を基に前記リアクトルのリアクトル値を算出し、このリアクトル値を前記設定電流演算の変数として設定するリアクトルL算出手段としたことを特徴とする。   (5) The correction control means calculates a reactor value of the reactor based on the application time of the DC power supply and the oscillating current at that time, and calculates the reactor L as a variable of the set current calculation It is characterized as a means.

(6)前記補正制御手段は、前回の放電動作時間がある時間を超えたときに、次回以降の粗充電電圧の設定値を調整するための粗充電設定値用ゲインをステップ状に変化させるオン時間判定手段としたことを特徴とする。   (6) When the previous discharge operation time exceeds a certain time, the correction control means turns on the coarse charge set value gain for adjusting the coarse charge voltage set value for the next and subsequent steps in steps. It is characterized by the time determination means.

(7)前記充電時間は、前記直流電源の電圧から算出しておくことを特徴とする。   (7) The charging time is calculated from the voltage of the DC power supply.

以上のとおり、本発明によれば、コンデンサの容量変化、又はリアクトルのリアクトル値変化により生じる粗充電電圧の充電誤差を逐次補正する補正制御手段を備えたため、コンデンサ容量やリアクトル値の変動による充電精度の低下をなくし、さらに高い繰り返しにも所定の時間内で充電できる。また、このような効果を奏するための充電制御には、制御装置の演算機能の追加で済み、装置が大型化、コストアップすることはほとんどない。   As described above, according to the present invention, since the correction control means for sequentially correcting the charging error of the coarse charging voltage caused by the change in the capacitance of the capacitor or the change in the reactor value of the reactor is provided, the charging accuracy due to the fluctuation of the capacitor capacity or the reactor value is provided. The battery can be charged within a predetermined time even at higher repetitions. In addition, the charging control for achieving such an effect requires the addition of a calculation function of the control device, and the device is hardly increased in size and cost.

(実施形態1)
図1は本発明の実施形態を示し、主回路構成は図7と同じものである。制御装置11は、図7と同様に、スイッチ2,7および10のオン/オフ制御を行うオン/オフ制御部11Aと、コンデンサ電圧Vcの検出によるスイッチ10のオフタイミングを求める判定部11Bと、式2による電流iの検出によるスイッチ2,7のオフタイミングを求める演算部11Cとを備える。さらに、直流電源1の電圧Vdcの変動を考慮した充電電圧の補正手段も設ける。
(Embodiment 1)
FIG. 1 shows an embodiment of the present invention, and the main circuit configuration is the same as FIG. As in FIG. 7, the control device 11 includes an on / off control unit 11A that performs on / off control of the switches 2, 7, and 10, a determination unit 11B that obtains the off timing of the switch 10 based on detection of the capacitor voltage Vc, And an arithmetic unit 11C that obtains the off timing of the switches 2 and 7 based on the detection of the current i according to Equation 2. Furthermore, a charging voltage correction means is also provided in consideration of fluctuations in the voltage Vdc of the DC power supply 1.

ここで、本実施形態では、コンデンサ6の温度を基にその容量Cを求め、演算部11Cにおけるコンデンサ容量Cとして補正する容量C算出部11Dを設ける。コンデンサ6の温度は、温度検出器12により検出する。この温度検出器12は、例えば、コンデンサ6のタンク内に温度センサを挿入させた構成で実現される。   Here, in the present embodiment, a capacitance C calculation unit 11D that calculates the capacitance C based on the temperature of the capacitor 6 and corrects it as the capacitor capacitance C in the calculation unit 11C is provided. The temperature of the capacitor 6 is detected by the temperature detector 12. The temperature detector 12 is realized, for example, with a configuration in which a temperature sensor is inserted into the tank of the capacitor 6.

コンデンサ6の静電容量はその内部温度を計測することで推定が可能であり、容量C算出部11Dはコンデンサ6の充電開始直前に温度検出器12から温度検出値を取り込み、その検出温度からコンデンサ6の静電容量を算出し、算出したコンデンサ6の静電容量Cを変数として演算部11Cの演算式(式2)へ代入する。   The capacitance of the capacitor 6 can be estimated by measuring its internal temperature, and the capacitance C calculation unit 11D captures the temperature detection value from the temperature detector 12 immediately before the charging of the capacitor 6 starts, and the capacitor is calculated from the detected temperature. 6 is calculated, and the calculated capacitance C of the capacitor 6 is substituted as a variable into the calculation formula (Formula 2) of the calculation unit 11C.

従来は、コンデンサ6の静電容量Cを固定として制御を行っていたため、実際の静電容量との誤差により粗充電電圧Vにも誤差が生じた。本実施形態では、実際の静電容量を算出し、式2へ代入することで正確な粗充電電圧を制御することができ、ひいては従来の課題となる、(1)抵抗9の大型化、装置効率の低下、(2)微調整期間内に設定値V*まで放電しきれなくなる、(3)抵抗9の抵抗値を小さくすると放電電圧のdV/dtが増えて充電精度が悪化するという問題を解消することができる。   Conventionally, since the control is performed with the capacitance C of the capacitor 6 fixed, an error also occurs in the rough charge voltage V due to an error from the actual capacitance. In the present embodiment, an actual electrostatic capacity is calculated and substituted into Equation 2 to accurately control the rough charge voltage, which in turn is a conventional problem. Decreased efficiency, (2) Discharging to the set value V * within the fine adjustment period, (3) Decreasing the resistance value of the resistor 9 increases the discharge voltage dV / dt and deteriorates the charging accuracy. Can be resolved.

(実施形態2)
図2は、本実施形態の構成を示し、図1における容量C算出部11Dに代えて、粗充電電圧とスイッチ10のオン時間および微調整後の充電電圧の計測結果からコンデンサ6の静電容量を算出し、算出したコンデンサ6の静電容量Cを実施形態1と同様に、式2に代入する容量C算出部11Eを設ける。
(Embodiment 2)
FIG. 2 shows the configuration of the present embodiment. Instead of the capacitance C calculation unit 11D in FIG. 1, the capacitance of the capacitor 6 is determined based on the measurement result of the coarse charge voltage, the ON time of the switch 10 and the charge voltage after fine adjustment. As in the first embodiment, a capacitance C calculation unit 11E that substitutes the calculated capacitance C of the capacitor 6 into Equation 2 is provided.

前回充電時のコンデンサ6の静電容量Cは、スイッチ10のオン時間をT、粗充電電圧をV1、微調電圧をV2、抵抗9の値をRとすると、下記式6で求められ、この式の演算を容量C算出部11Eが行う。   The capacitance C of the capacitor 6 at the time of the previous charging is obtained by the following equation 6 where T is the on time of the switch 10, V1 is the coarse charging voltage, V2 is the fine adjustment voltage, and R is the value of the resistor 9. The capacity C calculation unit 11E performs the above calculation.

Figure 2007037204
Figure 2007037204

本実施形態によれば、短い間隔(コンデンサ6の内部温度変化による静電容量の変化が無視できるくらい小さい間隔)で充電動作を行う場合の二発目以降に対し、実施形態1と同様の作用効果がある。ただし、充電動作開始の一回目には粗充電電圧が得られないが、二発目以降では正確な粗充電電圧が得られる。また、電流iの検出器を削除することができる。   According to the present embodiment, the same effect as that of the first embodiment is applied to the second and subsequent operations when the charging operation is performed at a short interval (an interval at which the change in capacitance due to the internal temperature change of the capacitor 6 is negligible). effective. However, the coarse charge voltage cannot be obtained at the first time when the charging operation is started, but an accurate coarse charge voltage can be obtained after the second shot. Also, the detector for current i can be eliminated.

(実施形態3)
図3は本実施形態の制御装置構成を示す。粗充電電圧推定部11Fは、充電電圧を測定することなしに、スイッチ10のオン時間Tから粗充電電圧値を推定し、目標値との誤差を次回の設定値に反映させる。
(Embodiment 3)
FIG. 3 shows the configuration of the control device of this embodiment. The rough charging voltage estimation unit 11F estimates the rough charging voltage value from the ON time T of the switch 10 without measuring the charging voltage, and reflects an error from the target value in the next set value.

前回充電時の粗充電電圧の推定値V1’は、スイッチ10のオン時間をT、充電電圧指令16(指令値)をV*とすると、前記の式6から、以下の演算で求めることができる。   The estimated value V1 ′ of the rough charge voltage at the previous charge can be obtained from the above equation 6 by the following calculation, where T is the ON time of the switch 10 and V * is the charge voltage command 16 (command value). .

Figure 2007037204
Figure 2007037204

また、制御装置11に入力される粗充電電圧の指令値は、充電電圧指令にゲイン調整部11Gでゲインを掛けた値であるから、このゲインGの値を式7で求めたV1’の値を元に下記式のように変化させることで、次回の粗充電電圧を制御することができる。   Moreover, since the command value of the rough charging voltage input to the control device 11 is a value obtained by multiplying the charging voltage command by the gain adjusting unit 11G, the value of V1 ′ obtained from the value of the gain G by Expression 7 is obtained. Next, the next rough charge voltage can be controlled by changing the following equation.

Figure 2007037204
Figure 2007037204

ただし、G0:ゲイン調節前のゲインの固定値で、負荷コンデンサを過充電する割合(1よりも数%大きい値)、g:変数で初期値は例えば1とし、前回充電時の充電電圧指令の値をV*、変数gの値をg1とすると、次回充電時に用いる変数gの値g2を下記の式で求めることができる。   However, G0: a fixed value of the gain before gain adjustment, the rate of overcharging the load capacitor (a value several percent larger than 1), g: a variable with an initial value of, for example, 1, and the charge voltage command of the previous charge If the value is V * and the value of the variable g is g1, the value g2 of the variable g used at the next charging can be obtained by the following equation.

Figure 2007037204
Figure 2007037204

したがって、次回充電時に用いるゲインの値Gは、下記式、   Therefore, the gain value G used at the next charging is expressed by the following equation:

Figure 2007037204
Figure 2007037204

で算出し、これを次回充電時のゲインの値とする。 This is used as the gain value at the next charging.

なお、演算部11Cの前回の入力値V*×G0×g1に対し、実際の粗充電電圧値がV1’、例えば、次回の充電電圧指令の値もV*だった場合、入力値はV*×G02×g1×exp(−T/CR)となるから、粗充電電圧値は、下記式、 In addition, when the actual rough charge voltage value is V1 ′ with respect to the previous input value V * × G0 × g1 of the calculation unit 11C, for example, the value of the next charge voltage command is also V *, the input value is V *. Since × G0 2 × g1 × exp (−T / CR), the rough charge voltage value is expressed by the following formula:

Figure 2007037204
Figure 2007037204

となり、粗充電電圧を目的値に制御することができる(ただし、コンデンサ6の静電容量Cは固定定数としているため誤差は生ずる)。 Thus, the rough charge voltage can be controlled to a target value (however, an error occurs because the capacitance C of the capacitor 6 is a fixed constant).

本実施形態によれば、(式8)で使用しているコンデンサ6の静電容量は固定定数としているため正確ではないが、静電容量の変化量に比較し、粗充電電圧の推定値V1’の誤差は小さいため、実施形態2と同様の作用効果が得られる。また、粗充電電圧値の検出も不要となる。   According to the present embodiment, the capacitance of the capacitor 6 used in (Equation 8) is not accurate because it is a fixed constant. However, the estimated value V1 of the rough charging voltage is compared with the amount of change in the capacitance. Since the error of 'is small, the same effect as in the second embodiment can be obtained. Further, it is not necessary to detect the rough charge voltage value.

(実施形態4)
図4は本実施形態の制御装置構成を示し、リアクトルL算出部11Hを設ける。このリアクトルL算出部11Hは、スイッチ2及びスイッチ7のオン時間とその時の電流値から、リアクトル5の値を算出し、算出したリアクトル5のリアクトル値Lを変数として、演算部11Cのリアクトル値として代入する。
(Embodiment 4)
FIG. 4 shows the configuration of the control device of this embodiment, and a reactor L calculation unit 11H is provided. The reactor L calculation unit 11H calculates the value of the reactor 5 from the ON time of the switch 2 and the switch 7 and the current value at that time, and uses the calculated reactor value L of the reactor 5 as a variable as the reactor value of the calculation unit 11C. substitute.

スイッチ2及びスイッチ7のオン時間をT2、その時のリアクトル5の電流値をI2、直流電圧をEとすると、リアクトル5の値Lは、下記式より求めることができる。   When the on time of the switch 2 and the switch 7 is T2, the current value of the reactor 5 at that time is I2, and the DC voltage is E, the value L of the reactor 5 can be obtained from the following equation.

Figure 2007037204
Figure 2007037204

本実施形態によれば、リアクトル5の値が温度等で変化する場合、算出したリアクトル値Lを(式2)へ代入することで実施形態1と同じ作用効果が得られる。   According to this embodiment, when the value of the reactor 5 changes with temperature etc., the same effect as Embodiment 1 is acquired by substituting the calculated reactor value L to (Formula 2).

(実施形態5)
図5は、本実施形態の制御装置構成を示し、オン時間判定部11Iを設ける。オン時間判定部11Iは、前回充電時のスイッチ10のオン時間がある時間を超えた場合、次回以降に用いるゲイン調整部11Gの粗充電設定値用ゲインGをステップ状に変化させる。
(Embodiment 5)
FIG. 5 shows the configuration of the control device of this embodiment, and an on-time determination unit 11I is provided. When the on-time of the switch 10 at the previous charging exceeds a certain time, the on-time determining unit 11I changes the coarse charge setting value gain G of the gain adjusting unit 11G used after the next time stepwise.

スイッチ10のオン時間Tは前記(式6)のようになるが、Tが微調整期間よりも長くなると、前記のように、粗充電電圧が上がり過ぎ、微調整期間内に設定値V*まで放電しきれなくなる。   The on-time T of the switch 10 is as shown in (Expression 6). However, when T becomes longer than the fine adjustment period, as described above, the coarse charge voltage increases excessively and reaches the set value V * within the fine adjustment period. It becomes impossible to discharge completely.

そこで、本実施形態では、オン時間判定部11Iには微調整期間よりも短い適当な時間T2を設定し、スイッチ10のオン時間TがT2を超えたとき、次回以降に用いるゲイン調整部11Gのゲイン値Gを前記の(式8−3)を用いて、下記式を元に調整する。ただし、前回までのゲイン調整部11Gの値をG0×g1とする。   Therefore, in the present embodiment, an appropriate time T2 shorter than the fine adjustment period is set in the on-time determination unit 11I, and when the on-time T of the switch 10 exceeds T2, the gain adjustment unit 11G used from the next time onward is set. The gain value G is adjusted based on the following equation using (Equation 8-3). However, the value of the gain adjustment unit 11G up to the previous time is set to G0 × g1.

Figure 2007037204
Figure 2007037204

本実施形態によれば、(式10)で求められるゲインGは予め演算可能な定数であり、実施形態2〜4でそれぞれ(式6)、(式8)及び(式9)を解くために必要とする演算回路が不要となる。   According to the present embodiment, the gain G obtained by (Equation 10) is a constant that can be calculated in advance, and in order to solve (Equation 6), (Equation 8), and (Equation 9) in Embodiments 2 to 4, respectively. Necessary arithmetic circuits are not required.

(実施形態6)
急速充電期間の制御方法は波線矢印Aの電流iを検出しながらリアルタイムで(式2)の演算を行うものであるが、充電開始直前に直流電圧VDCを検出すれば、予めスイッチ2及びスイッチ7のオン時間Tを算出することができる。例えば、図1〜図5の実施形態において、直流電圧VDCの値をEとすると、下記式からオン時間Tを求めることができる。
(Embodiment 6)
The control method of the quick charge period is to perform the calculation of (Equation 2) in real time while detecting the current i of the wavy arrow A. If the DC voltage VDC is detected immediately before the start of charging, the switch 2 and the switch 7 on-time T can be calculated. For example, in the embodiment shown in FIGS. 1 to 5, when the value of the DC voltage V DC is E, the ON time T can be obtained from the following equation.

Figure 2007037204
Figure 2007037204

本実施形態では、上記のようなフィードフォワードな制御方式を実施形態1〜5に適用するものである。   In this embodiment, the feedforward control method as described above is applied to the first to fifth embodiments.

(変形例)
以上までの各実施形態1〜6は、図7の主回路構成に適用した場合を示すが、図9〜図11のものに適用して同等の作用効果を得ることができる。
(Modification)
Although each of the first to sixth embodiments described above is applied to the main circuit configuration of FIG. 7, it can be applied to the ones of FIGS. 9 to 11 to obtain equivalent operational effects.

本発明の実施形態1を示す主回路構成と制御装置。The main circuit structure and control apparatus which show Embodiment 1 of this invention. 本発明の実施形態2を示す主回路構成と制御装置。The main circuit structure and control apparatus which show Embodiment 2 of this invention. 本発明の実施形態3を示す主回路構成と制御装置。The main circuit structure and control apparatus which show Embodiment 3 of this invention. 本発明の実施形態4を示す主回路構成と制御装置。The main circuit structure and control apparatus which show Embodiment 4 of this invention. 本発明の実施形態5を示す主回路構成と制御装置。The main circuit structure and control apparatus which show Embodiment 5 of this invention. パルス電源の構成例。Configuration example of a pulse power supply. 従来の充電装置の主回路構成と制御装置(その1)。Main circuit configuration and control device (part 1) of a conventional charging device. 図7の電流・電圧波形。FIG. 7 shows current and voltage waveforms. 従来の充電装置の主回路構成と制御装置(その2)。The main circuit structure and control apparatus (the 2) of the conventional charging device. 従来の充電装置の主回路構成と制御装置(その3)。Main circuit configuration and control device (part 3) of a conventional charging device. 従来の充電装置の主回路構成と制御装置(その4)。The main circuit structure and control apparatus of the conventional charging device (the 4). 図10の電流・電圧波形。The current / voltage waveform of FIG. 粗充電電圧が高くなり微調整期間内に設定値まで放電しきれなくなった場合のコンデンサ電圧波形。Capacitor voltage waveform when the coarse charge voltage becomes high and it becomes impossible to discharge to the set value within the fine adjustment period.

符号の説明Explanation of symbols

1 直流電源
2、7、10 スイッチ
2A インバータ
3 昇圧トランス
4、8 ダイオード
4A 整流回路
5 リアクトル
6 コンデンサ
9 抵抗
11 制御装置
11A オン/オフ制御部
11B 判定部
11C 演算部
11D 容量C算出部
11E 容量C算出部
11F 粗充電電圧推定部
11G ゲイン調整部
11H リアクトルL算出部
11I オン時間判定部
DESCRIPTION OF SYMBOLS 1 DC power supply 2, 7, 10 Switch 2A Inverter 3 Step-up transformer 4, 8 Diode 4A Rectifier circuit 5 Reactor 6 Capacitor 9 Resistance 11 Controller 11A ON / OFF control part 11B Determination part 11C Operation part 11D Capacity C calculation part 11E Capacity C Calculation unit 11F Coarse charge voltage estimation unit 11G Gain adjustment unit 11H Reactor L calculation unit 11I On time determination unit

Claims (7)

コンデンサとリアクトルを直列接続したLC共振回路に直流電源を印加して半周期の振動電流を発生させ、前記コンデンサの容量とリアクトルのリアクトル値および充電電圧指令値から決まる設定電流に前記振動電流が達することで該コンデンサを目標電圧より少し高い電圧まで粗充電する充電回路と、前記コンデンサの粗充電電圧と前記充電電圧指令との比較によって該コンデンサ電圧を目標電圧まで微調整放電させる放電回路とを備えたコンデンサの充電装置であって、
前記コンデンサの容量変化、又はリアクトルのリアクトル値変化により生じる粗充電電圧の充電誤差を逐次補正する補正制御手段を備えたことを特徴とするコンデンサの充電装置。
A DC power supply is applied to an LC resonance circuit in which a capacitor and a reactor are connected in series to generate a half-cycle oscillating current, and the oscillating current reaches a set current determined from the capacitance of the capacitor, the reactor reactor value, and the charging voltage command value. A charging circuit for roughly charging the capacitor to a voltage slightly higher than the target voltage, and a discharging circuit for finely adjusting and discharging the capacitor voltage to the target voltage by comparing the rough charging voltage of the capacitor and the charging voltage command. A capacitor charging device,
A capacitor charging apparatus comprising correction control means for sequentially correcting a charging error of a coarse charging voltage caused by a change in capacitance of the capacitor or a change in reactor reactor value.
前記補正制御手段は、前記コンデンサの内部温度を基に前記コンデンサの静電容量を算出し、この静電容量を前記設定電流演算の変数として設定する容量C算出手段としたことを特徴とする請求項1に記載のコンデンサの充電装置。   The correction control unit is a capacitance C calculation unit that calculates the capacitance of the capacitor based on an internal temperature of the capacitor and sets the capacitance as a variable of the set current calculation. Item 2. The capacitor charging device according to Item 1. 前記補正制御手段は、前記粗充電電圧と微調整時間および微調整後の充電電圧の計測結果から前記コンデンサの静電容量を算出し、この静電容量を前記設定電流演算の変数として設定する容量C算出手段としたことを特徴とする請求項1に記載のコンデンサの充電装置。   The correction control means calculates a capacitance of the capacitor from the measurement result of the rough charge voltage, fine adjustment time, and charge voltage after fine adjustment, and sets the capacitance as a variable for the set current calculation. The capacitor charging apparatus according to claim 1, wherein the capacitor calculating unit is a C calculating unit. 前記補正制御手段は、前記微調整時間から前記粗充電電圧を推定し、この推定値で該粗充電電圧の設定値を調整するための粗充電設定値用ゲインを補正する粗充電電圧推定手段としたことを特徴とする請求項1に記載のコンデンサの充電装置。   The correction control means estimates the coarse charge voltage from the fine adjustment time, and coarse charge voltage estimation means for correcting a coarse charge set value gain for adjusting the coarse charge voltage set value by the estimated value; The capacitor charging device according to claim 1, wherein 前記補正制御手段は、前記直流電源の印加時間とそのときの前記振動電流を基に前記リアクトルのリアクトル値を算出し、このリアクトル値を前記設定電流演算の変数として設定するリアクトルL算出手段としたことを特徴とする請求項1に記載のコンデンサの充電装置。   The correction control means calculates a reactor value of the reactor based on an application time of the DC power supply and the oscillating current at that time, and is a reactor L calculation means for setting the reactor value as a variable for the set current calculation. The capacitor charging device according to claim 1. 前記補正制御手段は、前回の放電動作時間がある時間を超えたときに、次回以降の粗充電電圧の設定値を調整するための粗充電設定値用ゲインをステップ状に変化させるオン時間判定手段としたことを特徴とする請求項1に記載のコンデンサの充電装置。   The correction control means is an on-time determination means for changing the coarse charge setting value gain for adjusting the coarse charge voltage setting value for the next and subsequent times stepwise when the previous discharge operation time exceeds a certain time. The capacitor charging device according to claim 1, wherein 前記充電時間は、前記直流電源の電圧から算出しておくことを特徴とする請求項1〜6のいずれか1項に記載のコンデンサの充電装置。
The said charging time is calculated from the voltage of the said DC power supply, The charging device of the capacitor | condenser of any one of Claims 1-6 characterized by the above-mentioned.
JP2005212003A 2005-07-22 2005-07-22 Capacitor charger Active JP4835056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212003A JP4835056B2 (en) 2005-07-22 2005-07-22 Capacitor charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212003A JP4835056B2 (en) 2005-07-22 2005-07-22 Capacitor charger

Publications (2)

Publication Number Publication Date
JP2007037204A true JP2007037204A (en) 2007-02-08
JP4835056B2 JP4835056B2 (en) 2011-12-14

Family

ID=37795781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212003A Active JP4835056B2 (en) 2005-07-22 2005-07-22 Capacitor charger

Country Status (1)

Country Link
JP (1) JP4835056B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170738A (en) * 2008-01-18 2009-07-30 Gigaphoton Inc Adjusting method for charger of high-voltage power source for pulse laser
JP2018068003A (en) * 2016-10-18 2018-04-26 住友重機械工業株式会社 Power supply for laser, switching converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143875A (en) * 2001-10-30 2003-05-16 Origin Electric Co Ltd Charging method for capacitor and charger therefor
JP2005108910A (en) * 2003-09-29 2005-04-21 Meidensha Corp Pulse power supply
JP2005117766A (en) * 2003-10-07 2005-04-28 Meidensha Corp Charger for capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143875A (en) * 2001-10-30 2003-05-16 Origin Electric Co Ltd Charging method for capacitor and charger therefor
JP2005108910A (en) * 2003-09-29 2005-04-21 Meidensha Corp Pulse power supply
JP2005117766A (en) * 2003-10-07 2005-04-28 Meidensha Corp Charger for capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170738A (en) * 2008-01-18 2009-07-30 Gigaphoton Inc Adjusting method for charger of high-voltage power source for pulse laser
JP2018068003A (en) * 2016-10-18 2018-04-26 住友重機械工業株式会社 Power supply for laser, switching converter

Also Published As

Publication number Publication date
JP4835056B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
TWI530078B (en) Control circuit and method of fly - back power converter
CN111740612B (en) Power converter for switching power supply and operation mode thereof
JP3053149B2 (en) Fuel injection control device for internal combustion engine
JP4155211B2 (en) Switching power supply
JP2007089278A (en) Dc-dc converter
US8885365B2 (en) Switching power supply device and method for control thereof
JPH11289119A (en) Light-emitting timing controller for pulse laser
JP2015045553A (en) Secondary battery charge/discharge device equipped with switching power supply
JP4835056B2 (en) Capacitor charger
TWI548185B (en) Power control method and related apparatus capable of providing compensation to inductance variation
JP4161551B2 (en) High voltage power supply
JP2002218743A (en) Charger for capacitor
JP3806025B2 (en) Gas laser device
JP5794006B2 (en) Capacitor charger
JP6504429B2 (en) Switching power supply
JP4984801B2 (en) Capacitor charger
US20120032659A1 (en) Power supply device
JP5023642B2 (en) Pulse current detection method and pulse current power supply device
US20230009994A1 (en) Integrated circuit and power supply circuit
JP2008154330A (en) Charger for power capacitor
JP4415633B2 (en) Capacitor charger
JP4911177B2 (en) Ignition device for internal combustion engine
JP2009142134A (en) Capacitor-charging device
JP2001143890A (en) Control circuit for discharge lamp lighting device
JP2002198597A (en) Capacitor charging method and charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150