JP2009142134A - Capacitor-charging device - Google Patents

Capacitor-charging device Download PDF

Info

Publication number
JP2009142134A
JP2009142134A JP2007319043A JP2007319043A JP2009142134A JP 2009142134 A JP2009142134 A JP 2009142134A JP 2007319043 A JP2007319043 A JP 2007319043A JP 2007319043 A JP2007319043 A JP 2007319043A JP 2009142134 A JP2009142134 A JP 2009142134A
Authority
JP
Japan
Prior art keywords
charging
capacitor
circuit
fine adjustment
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007319043A
Other languages
Japanese (ja)
Inventor
Masao Azuma
征男 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007319043A priority Critical patent/JP2009142134A/en
Publication of JP2009142134A publication Critical patent/JP2009142134A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the accuracy of a charging voltage of a capacitor by making sure the operation of finely adjusted charging time even when charging is repeated at high frequency. <P>SOLUTION: This charging device charges a power capacitor 8 rapidly in a rapid charging circuit (1-6) up to a value close to a charging voltage command value and afterward charges the capacitor in a finely adjusted charging circuit (10-15) with a constant current up to the charging voltage command value. In this device, a control circuit 9 obtains and controls a finely adjusted charging time ΔT of the finely adjusted charging circuit from a charging voltage detection value V of the capacitor charged rapidly by the rapid charging circuit, the charging voltage command value V<SP>*</SP>, capacitance C of the capacitor, and a constant current value I'. A digital control circuit obtains the current capacitance of the capacitor when operating the finely adjusted charging time and adjusts the finely adjusted charging time again according to the change of the capacitance of the capacitor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力用コンデンサを直流電源として高電圧・大電流のパルスを発生させるパルス電源において、コンデンサを設定電圧まで高い精度で繰り返し充電するコンデンサ充電装置に係り、特に充電電圧の微調整制御に関する。   The present invention relates to a capacitor charging device that repeatedly charges a capacitor to a set voltage with high accuracy in a pulse power source that uses a power capacitor as a DC power source to generate a pulse of high voltage and large current, and particularly relates to fine adjustment control of a charging voltage. .

この種のパルス電源の用途としては、エキシマレーザーやオソナイザなどがあり、充電電圧の設定値に対する充電精度が特に高精度を要求される(例えば0.1%以下の精度)。充電装置は、決められた時間内で負荷コンデンサを充電電圧指令値によって与えられる電圧に充電する。この動作は例えば1秒間に4000回繰り返される。   Applications of this type of pulse power source include an excimer laser and an ozonizer, and the charging accuracy with respect to the set value of the charging voltage is required to be particularly high (for example, accuracy of 0.1% or less). The charging device charges the load capacitor to a voltage given by the charging voltage command value within a predetermined time. This operation is repeated 4000 times per second, for example.

図3は従来のコンデンサ充電装置の回路例であり、充電電圧指令値に対し、高速で高精度な充電精度を得るため、1回の充電時間に急速充電時間と微調整期間を設け、先ず急速充電時間で負荷コンデンサを指令値より数%低い電圧(目標電圧)まで急速に充電し、次に微調整期間で電圧指令値まで追加充電する。この追加充電は、急速充電回路のみでは指令値に対する高精度充電が困難なため、急速充電回路で負荷コンデンサを目標値よりも僅かに低く充電し、微調整回路の追加充電によって高精度充電を実現している(例えば、特許文献1参照)。この回路構成と動作を以下に説明する(波形は図4参照)。   FIG. 3 shows a circuit example of a conventional capacitor charging device. In order to obtain a high-speed and high-precision charging accuracy with respect to a charging voltage command value, a quick charging time and a fine adjustment period are provided in one charging time. The load capacitor is rapidly charged to a voltage (target voltage) several percent lower than the command value during the charging time, and then further charged to the voltage command value during the fine adjustment period. In this additional charging, it is difficult to perform high-accuracy charging with respect to the command value only with the quick charging circuit, so the load capacitor is charged slightly lower than the target value with the quick charging circuit, and high-accuracy charging is realized by adding the fine adjustment circuit. (For example, refer to Patent Document 1). The circuit configuration and operation will be described below (see FIG. 4 for waveforms).

<急速充電時間の動作>
図3において、急速充電回路は、直流電源1を電源とし、半導体スイッチ2、リアクトル3、半導体スイッチ7およびフライホイールダイオード4,6によって直流チョッパ型に構成され、その出力電流で負荷コンデンサ8を急速充電する。
<Operation of quick charge time>
In FIG. 3, the rapid charging circuit is configured as a DC chopper type using a DC power source 1 as a power source, and includes a semiconductor switch 2, a reactor 3, a semiconductor switch 7 and flywheel diodes 4 and 6, and the load capacitor 8 is rapidly supplied with the output current. Charge.

デジタル演算を行う電圧制御回路9は、まず、スイッチ2とスイッチ7を同時にオン制御し、回路には矢印Aの経路で電流を流し、リアクトル3にエネルギーを蓄積する。次に、スイッチ2とスイッチ7を同時にオフ制御し、回路には矢印Bの経路で電流を流し、リアクトル3に蓄えられたエネルギーをコンデンサ8へすべて移行させ、コンデンサ8を充電する。このときの充電電圧は、充電電圧指令に係数(1未満)を乗じた値を制御回路9の電圧指令値とし、この電圧指令値を基にした制御回路9による演算結果としてスイッチ2,7のオフタイミングを求める。   The voltage control circuit 9 that performs digital calculation first turns on the switch 2 and the switch 7 at the same time, passes a current through the circuit along the path indicated by the arrow A, and stores energy in the reactor 3. Next, the switch 2 and the switch 7 are simultaneously controlled to be turned off, and a current is passed through the circuit along the path indicated by the arrow B, so that all the energy stored in the reactor 3 is transferred to the capacitor 8 and the capacitor 8 is charged. The charging voltage at this time is obtained by multiplying the charging voltage command by a coefficient (less than 1) as the voltage command value of the control circuit 9, and the calculation result of the control circuit 9 based on this voltage command value is the result of the switches 2 and 7 Find the off timing.

この演算は、リアクトル3のリアクトル値をL、コンデンサ8のコンデンサ容量をC、スイッチ2及びスイッチ7をオフした時の電流(矢印A)をI、矢印Bの電流が流れ終わった時のコンデンサ8の電圧をV(以下、粗充電電圧と呼ぶ)とすると、エネルギー保存の法則より、   In this calculation, the reactor value of the reactor 3 is L, the capacitor capacity of the capacitor 8 is C, the current (arrow A) when the switch 2 and the switch 7 are turned off is I, and the capacitor 8 when the current of the arrow B finishes flowing. If V is V (hereinafter referred to as coarse charge voltage), the law of conservation of energy

Figure 2009142134
Figure 2009142134

が成り立つ。急速充電では上式を基に、コンデンサ8を目標電圧(指令値より数%低い電圧)Vまで充電する。つまり、常にリアクトル3の電流iを検出し、以下の式、 Holds. In the quick charge, the capacitor 8 is charged to a target voltage (voltage lower than the command value by several percent) V based on the above equation. That is, the current i of the reactor 3 is always detected, and the following equation:

Figure 2009142134
Figure 2009142134

が成立した時にスイッチ2及びスイッチ7をオフする。 When the above is established, the switch 2 and the switch 7 are turned off.

<微調整期間の動作>
図3において、微調整充電回路は、直流電源1を電源とするインバータ10で交流電圧を得、これをパルストランス11で昇圧し、整流回路12と直流リアクトル13と半導体スイッチ14とダイオード15からなる定電流回路によって、コンデンサ8の微調整充電電流を出力する。定電流制御回路16は、常時はスイッチ14をオンしておき、インバータ10の運転によって、整流回路12とリアクトル13およびスイッチ14の経路で定電流指令によって設定された(一定の直流)電流を流しておく。次に、スイッチ14をオフ制御し、コンデンサ8に充電電流を流し続け、コンデンサ8を微調整充電する。
<Operation during the fine adjustment period>
In FIG. 3, the fine adjustment charging circuit obtains an AC voltage by an inverter 10 using a DC power source 1 as a power source, boosts this by a pulse transformer 11, and includes a rectifier circuit 12, a DC reactor 13, a semiconductor switch 14, and a diode 15. The fine adjustment charging current of the capacitor 8 is output by the constant current circuit. The constant current control circuit 16 always keeps the switch 14 turned on, and the operation of the inverter 10 causes a current (a constant direct current) set by a constant current command to flow through the path of the rectifier circuit 12, the reactor 13, and the switch 14. Keep it. Next, the switch 14 is controlled to be turned off, and the charging current continues to flow through the capacitor 8 to finely charge the capacitor 8.

この微調整期間制御は、充電電圧指令値(デジタル値)をD/Aコンバータ17で変換したアナログ電圧とコンデンサ8の電圧をコンパレータ18で常に比較しておき、コンデンサ8の電圧が充電電圧指令値と一致するまでスイッチ14をオフする。   In this fine adjustment period control, the analog voltage obtained by converting the charging voltage command value (digital value) by the D / A converter 17 and the voltage of the capacitor 8 are always compared by the comparator 18, and the voltage of the capacitor 8 is set to the charging voltage command value. The switch 14 is turned off until it matches.

なお、他の充電回路例として、急速充電回路をLC振動電流として供給するものがある(例えば、特許文献2参照)。このLC共振型の急速充電回路は、インバータ構成のパルス発生回路に正負逆極性のパルスを交互に発生させ、この各パルス発生毎にリアクトルを通してコンデンサに半周期の振動電流を流し、1発のパルス発生毎にコンデンサを目標電圧まで充電する。
特開2005−086970号公報 特開2005−108910号公報
As another example of the charging circuit, there is one that supplies a quick charging circuit as an LC oscillation current (see, for example, Patent Document 2). In this LC resonance type quick charging circuit, pulses of positive and negative polarity are alternately generated in a pulse generating circuit of an inverter configuration, and a half-cycle oscillating current is supplied to a capacitor through a reactor for each pulse generation. The capacitor is charged to the target voltage for each occurrence.
Japanese Patent Laying-Open No. 2005-086970 JP 2005-108910 A

従来装置において、微調整期間では、コンデンサ8の検出電圧Vcと、充電電圧指令(デジタル値)をアナログ変換したD/Aコンバータ17の出力を比較回路(コンパレータ)18で比較し、
・電圧Vc<D/Aコンバータ17出力のとき、スイッチ14をオフ
・電圧Vc>=D/Aコンバータ17出力のとき、スイッチ14オン
とする制御をしている。
In the conventional device, in the fine adjustment period, the detection voltage Vc of the capacitor 8 and the output of the D / A converter 17 obtained by analog conversion of the charge voltage command (digital value) are compared by a comparison circuit (comparator) 18;
When the voltage Vc <D / A converter 17 output, the switch 14 is turned off. When the voltage Vc> = the D / A converter 17 output, the switch 14 is turned on.

ここで、D/Aコンバータはデータ入力から出力安定に至るまでのセトリングタイムなる期間を有する。充電電圧指令は充電開始前に確定し、そのデータがD/Aコンパータ17に入力されるが、D/Aコンバータ17の出力は微調整期間前には安定していなければならない。しかし、充電繰り返し数増加などで充電電圧指令の確定から微調整期間までの間隔が短くなると、セトリングタイムの影響でD/Aコンバータ17の出力が微調整期間前までに安定しなくなってしまい、コンデンサの充電電圧精度が低下するという問題がある。   Here, the D / A converter has a settling time period from data input to output stabilization. The charge voltage command is determined before the start of charging, and the data is input to the D / A converter 17, but the output of the D / A converter 17 must be stable before the fine adjustment period. However, if the interval from the determination of the charging voltage command to the fine adjustment period becomes short due to an increase in the number of charge repetitions, the output of the D / A converter 17 becomes unstable before the fine adjustment period due to the effect of the settling time, and the capacitor There is a problem that the accuracy of the charging voltage is reduced.

本発明の目的は、高い頻度で充電を繰り返す場合にも微調整充電時間の演算を確実にして、コンデンサの充電電圧精度を高めたコンデンサ充電装置を提供することにある。   An object of the present invention is to provide a capacitor charging device that ensures calculation of a fine adjustment charging time even when charging is repeated at a high frequency, and that increases the charging voltage accuracy of the capacitor.

本発明は、前記の課題を解決するため、微調整充電時間をデジタル演算で求め、この時間で微調整充電用スイッチを制御し、さらに微調整充電時間の演算に際して現在のコンデンサ容量を求め、このコンデンサの容量変化に応じて微調整充電時間を再調整するようにしたもので、以下の構成を特徴とする。   In order to solve the above problems, the present invention obtains the fine adjustment charging time by digital calculation, controls the fine adjustment charging switch at this time, and further obtains the current capacitor capacity when calculating the fine adjustment charging time. The fine adjustment charging time is readjusted according to the capacitance change of the capacitor, and has the following configuration.

(1)電力用コンデンサを充電電圧指令値に近い値まで急速充電する急速充電回路と、前記急速充電後に前記コンデンサを定電流で充電してその充電電圧を前記充電電圧指令値まで充電する微調整充電回路とを備えたコンデンサ充電装置において、
前記急速充電回路によって急速充電されたコンデンサの充電電圧検出値Vと、前記充電電圧指令値V*と、コンデンサの容量Cと、前記定電流値I’とから、次式、
(1) A quick charging circuit that rapidly charges a power capacitor to a value close to a charging voltage command value, and a fine adjustment that charges the capacitor with a constant current after the rapid charging and charges the charging voltage to the charging voltage command value In a capacitor charging device comprising a charging circuit,
From the charging voltage detection value V of the capacitor rapidly charged by the quick charging circuit, the charging voltage command value V * , the capacitance C of the capacitor, and the constant current value I ′,

Figure 2009142134
Figure 2009142134

のデジタル演算で前記微調整充電回路の微調整充電時間ΔTを求め、この時間ΔTだけ前記微調整充電回路の充電時間を制御するデジタル制御回路を備えたことを特徴とする。 And a digital control circuit for obtaining a fine adjustment charging time ΔT of the fine adjustment charging circuit by the digital calculation and controlling the charging time of the fine adjustment charging circuit by this time ΔT.

(2)前記デジタル制御回路は、前記微調整充電時間ΔTよりも短い時間ΔTcだけ前記微調整充電回路の充電動作を制御し、この制御後のコンデンサの充電電圧V’と、前記急速充電回路によって急速充電されたコンデンサの充電電圧検出値Vと、前記定電流値I’とから、次式、   (2) The digital control circuit controls the charging operation of the fine adjustment charging circuit for a time ΔTc shorter than the fine adjustment charging time ΔT, and the capacitor charging voltage V ′ after this control and the quick charging circuit From the charging voltage detection value V of the rapidly charged capacitor and the constant current value I ′,

Figure 2009142134
Figure 2009142134

のデジタル演算でコンデンサの容量C’を求め、コンデンサの容量C’と、前記充電電圧指令値V*とから、次式、 The capacitance C ′ of the capacitor is obtained by digital calculation of the following, and from the capacitance C ′ of the capacitor and the charge voltage command value V * , the following equation:

Figure 2009142134
Figure 2009142134

のデジタル演算で微調整充電時間ΔT’を求め、時間(ΔT’−ΔTc)だけ微調整充電制御を行うことを特徴とする。 This is characterized in that fine adjustment charging time ΔT ′ is obtained by digital calculation of and fine adjustment charging control is performed only for time (ΔT′−ΔTc).

以上のとおり、本発明によれば、微調整充電時間をデジタル演算で求め、この時間で微調整充電用スイッチを制御するため、従来のD/Aコンバータ17の出力が微調整期間前までに安定しなくなってしまう問題を解決でき、またD/Aコンバータ17及び比較回路(コンパレータ)18を削除して、高い繰り返しの充電にも高い充電精度を確保できる。   As described above, according to the present invention, since the fine adjustment charging time is obtained by digital calculation and the fine adjustment charging switch is controlled by this time, the output of the conventional D / A converter 17 is stabilized before the fine adjustment period. In addition, the D / A converter 17 and the comparison circuit (comparator) 18 can be eliminated, and high charging accuracy can be secured even for high repeated charging.

また、本発明は、微調整充電時間の演算に際して現在のコンデンサ容量を求め、このコンデンサの容量変化に応じて微調整充電時間を再調整するようにしたため、コンデンサ容量が温度等の影響で変化した場合でも充電電圧指令値に対し高精度に充電することができる。   Further, the present invention obtains the current capacitor capacity when calculating the fine adjustment charging time, and readjusts the fine adjustment charging time according to the change in the capacitance of the capacitor, so that the capacitor capacity changes due to the influence of temperature or the like. Even in this case, it is possible to charge with high accuracy with respect to the charge voltage command value.

(実施形態1)
図1は、本発明の実施形態を示す回路図であり、図3と異なる部分はD/Aコンバータ17及び比較回路(コンパレータ)18を取り除き、スイッチ14のオフ時間(微調整期間)を制御回路9によるデジタル演算で求める。
(Embodiment 1)
FIG. 1 is a circuit diagram showing an embodiment of the present invention. The difference from FIG. 3 is that the D / A converter 17 and the comparison circuit (comparator) 18 are removed, and the OFF time (fine adjustment period) of the switch 14 is controlled. 9 is obtained by digital calculation according to 9.

制御回路9による微調整期間の演算は、A/Dコンバータ17で検出された粗充電電圧(急速充電電圧)をV、充電電圧指令の値をV*、コンデンサ8のコンデンサ容量をC、微調整期間にコンデンサ8を微調整充電する定電流値をI’とすると、コンデンサ電圧VがV*になるまでに必要なスイッチ14のオフ時間ΔTは、 The calculation of the fine adjustment period by the control circuit 9 is made by adjusting the coarse charge voltage (rapid charge voltage) detected by the A / D converter 17 to V, the charge voltage command value V * , and the capacitor capacity of the capacitor 8 to C. If the constant current value for finely adjusting and charging the capacitor 8 during the period is I ′, the OFF time ΔT of the switch 14 required until the capacitor voltage V becomes V * is

Figure 2009142134
Figure 2009142134

より、 Than,

Figure 2009142134
Figure 2009142134

で求めることができ、スイッチ14をΔT時間だけオフすることで充電電圧指令値に一致するコンデンサ充電電圧を得る。 The capacitor charging voltage that matches the charging voltage command value is obtained by turning off the switch 14 for ΔT time.

したがって、本実施形態によれば、D/Aコンバータ17の出力が微調整期間前までに安定しなくなってしまい、微調整充電時間の演算が不安定になるという問題を解決できる。また、D/Aコンバータ17及び比較回路(コンパレータ)18を削除して、ハードウェア構成の簡単化になる。   Therefore, according to the present embodiment, the problem that the output of the D / A converter 17 becomes unstable before the fine adjustment period and the calculation of the fine adjustment charging time becomes unstable can be solved. Further, the D / A converter 17 and the comparison circuit (comparator) 18 are eliminated, thereby simplifying the hardware configuration.

(実施形態2)
前記の実施形態1では、微調整期間(ΔT)は、前記の式(4)を制御回路9により演算して求める。しかし、コンデンサ8のコンデンサ容量は温度等の影響で変化することがある。例えば、コンデンサ8のコンデンサ容量がCからC’に変化すると、充電電圧は、
(Embodiment 2)
In the first embodiment, the fine adjustment period (ΔT) is obtained by calculating the equation (4) using the control circuit 9. However, the capacitor capacity of the capacitor 8 may change due to the influence of temperature or the like. For example, when the capacitor capacity of the capacitor 8 changes from C to C ′, the charging voltage is

Figure 2009142134
Figure 2009142134

となるから、充電電圧指令値V*に対し、 Therefore, for the charge voltage command value V * ,

Figure 2009142134
Figure 2009142134

の誤差を生じる問題がある。 There is a problem that causes an error.

本実施形態は、コンデンサ容量が変化した場合の充電電圧補償を行い、充電電圧精度を確保する。本実施形態は、図1の構成において、制御回路9は微調整期間の制御で、スイッチ14を前記の(4)式で求める時間ΔTより短い時間ΔTcだけオフし、このときにA/Dコンバータ17で測定された充電電圧をV’とすると、コンデンサ6のコンデンサ容量C’は、   In the present embodiment, charging voltage compensation is performed when the capacitance of the capacitor changes, and charging voltage accuracy is ensured. In the present embodiment, in the configuration of FIG. 1, the control circuit 9 controls the fine adjustment period to turn off the switch 14 for a time ΔTc shorter than the time ΔT obtained by the above equation (4). At this time, the A / D converter When the charging voltage measured in 17 is V ′, the capacitor capacity C ′ of the capacitor 6 is

Figure 2009142134
Figure 2009142134

より、 Than,

Figure 2009142134
Figure 2009142134

で求める。この後、制御回路9は、コンデンサ容量C’を式(4)に代入した、 Ask for. Thereafter, the control circuit 9 substitutes the capacitor capacitance C ′ into the equation (4).

Figure 2009142134
Figure 2009142134

でΔT’を求め、この(ΔT’−ΔTc)だけスイッチ14を再びオフ制御する。このときの波形図を図2に示す。 ΔT ′ is obtained, and the switch 14 is turned off again by this (ΔT′−ΔTc). A waveform diagram at this time is shown in FIG.

したがって、本実施形態によれば、実施形態1の作用効果に加えて、コンデンサ8のコンデンサ容量が温度等の影響で変化した場合でも充電電圧指令値に対し高精度に充電することができる。   Therefore, according to the present embodiment, in addition to the function and effect of the first embodiment, even when the capacitor capacity of the capacitor 8 changes due to the influence of temperature or the like, the charge voltage command value can be charged with high accuracy.

本発明の実施形態1を示すコンデンサ充電装置の回路図。1 is a circuit diagram of a capacitor charging device showing Embodiment 1 of the present invention. 実施形態2における電圧・電流波形図。FIG. 6 is a voltage / current waveform diagram according to the second embodiment. 従来のコンデンサ充電装置の回路例。The example of a circuit of the conventional capacitor | condenser charging device. 従来の電圧・電流波形図。The conventional voltage / current waveform diagram.

符号の説明Explanation of symbols

1 直流電源
2、7 半導体スイッチ
8 コンデンサ
9 電圧制御回路
14 半導体スイッチ
16 定電流制御回路
17 A/Dコンバータ
DESCRIPTION OF SYMBOLS 1 DC power supply 2, 7 Semiconductor switch 8 Capacitor 9 Voltage control circuit 14 Semiconductor switch 16 Constant current control circuit 17 A / D converter

Claims (2)

電力用コンデンサを充電電圧指令値に近い値まで急速充電する急速充電回路と、前記急速充電後に前記コンデンサを定電流で充電してその充電電圧を前記充電電圧指令値まで充電する微調整充電回路とを備えたコンデンサ充電装置において、
前記急速充電回路によって急速充電されたコンデンサの充電電圧検出値Vと、前記充電電圧指令値V*と、コンデンサの容量Cと、前記定電流値I’とから、次式、
Figure 2009142134
のデジタル演算で前記微調整充電回路の微調整充電時間ΔTを求め、この時間ΔTだけ前記微調整充電回路の充電時間を制御するデジタル制御回路を備えたことを特徴とするコンデンサ充電装置。
A quick charging circuit that rapidly charges the power capacitor to a value close to a charging voltage command value; and a fine adjustment charging circuit that charges the capacitor with a constant current after the rapid charging and charges the charging voltage to the charging voltage command value. In the capacitor charging device with
From the charging voltage detection value V of the capacitor rapidly charged by the quick charging circuit, the charging voltage command value V * , the capacitance C of the capacitor, and the constant current value I ′,
Figure 2009142134
A capacitor charging apparatus comprising: a digital control circuit that obtains a fine adjustment charging time ΔT of the fine adjustment charging circuit by the digital calculation and controls the charging time of the fine adjustment charging circuit by this time ΔT.
前記デジタル制御回路は、前記微調整充電時間ΔTよりも短い時間ΔTcだけ前記微調整充電回路の充電動作を制御し、この制御後のコンデンサの充電電圧V’と、前記急速充電回路によって急速充電されたコンデンサの充電電圧検出値Vと、前記定電流値I’とから、次式、
Figure 2009142134
のデジタル演算でコンデンサの容量C’を求め、コンデンサの容量C’と、前記充電電圧指令値V*とから、次式、
Figure 2009142134
のデジタル演算で微調整充電時間ΔT’を求め、時間(ΔT’−ΔTc)だけ微調整充電制御を行うことを特徴とする請求項1に記載のコンデンサ充電装置。
The digital control circuit controls the charging operation of the fine adjustment charging circuit for a time ΔTc shorter than the fine adjustment charging time ΔT, and is quickly charged by the capacitor charging voltage V ′ after the control and the quick charging circuit. From the charging voltage detection value V of the capacitor and the constant current value I ′,
Figure 2009142134
The capacitance C ′ of the capacitor is obtained by digital calculation of the following, and from the capacitance C ′ of the capacitor and the charge voltage command value V * , the following equation:
Figure 2009142134
2. The capacitor charging device according to claim 1, wherein the fine adjustment charging time ΔT ′ is obtained by digital calculation of and the fine adjustment charging control is performed only for a time (ΔT′−ΔTc).
JP2007319043A 2007-12-11 2007-12-11 Capacitor-charging device Pending JP2009142134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319043A JP2009142134A (en) 2007-12-11 2007-12-11 Capacitor-charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319043A JP2009142134A (en) 2007-12-11 2007-12-11 Capacitor-charging device

Publications (1)

Publication Number Publication Date
JP2009142134A true JP2009142134A (en) 2009-06-25

Family

ID=40872177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319043A Pending JP2009142134A (en) 2007-12-11 2007-12-11 Capacitor-charging device

Country Status (1)

Country Link
JP (1) JP2009142134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027061A (en) * 2011-07-15 2013-02-04 Meidensha Corp Charger for capacitor
CN115765076A (en) * 2022-11-04 2023-03-07 珠海英集芯半导体有限公司 System and method for simulating battery charging stop through software

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027061A (en) * 2011-07-15 2013-02-04 Meidensha Corp Charger for capacitor
CN115765076A (en) * 2022-11-04 2023-03-07 珠海英集芯半导体有限公司 System and method for simulating battery charging stop through software
CN115765076B (en) * 2022-11-04 2023-09-01 珠海英集芯半导体有限公司 System and method for simulating battery charging stop by software

Similar Documents

Publication Publication Date Title
US8130516B2 (en) Switching power supply control semiconductor integrated circuit sampling an auxiliary wiring voltage near a point at which a secondary rectifier diode current becomes zero
JP6561612B2 (en) Switching power supply control device
JP2010252314A (en) Oscillator circuit, cyclic signal generating method, and switching power supply
JP2007235188A (en) Triangular wave oscillation circuit
JP2007089278A (en) Dc-dc converter
JP4341698B2 (en) Switching power supply, control circuit thereof, and control method
US7317362B2 (en) Oscillator circuit and oscillation control method
JP2015045553A (en) Secondary battery charge/discharge device equipped with switching power supply
KR102615048B1 (en) Laser processing apparatus and power supply apparatus thereof
AU2010323631A1 (en) Device for applying high voltage using pulse voltage, and method of applying high voltage
TW201711362A (en) Sample-and-hold circuit for generating a variable sample signal of a power converter and method thereof
JP2009142134A (en) Capacitor-charging device
WO2020158859A1 (en) Resonant converter, and control circuit and control method for same
US10284087B2 (en) Step-up/step-down DC-DC converter
TW201607229A (en) Oscillator applied to a control circuit of a power converter and control method thereof
JP2005198370A (en) Average current detecting circuit
JP5794006B2 (en) Capacitor charger
JP2016111845A (en) Switching power supply
JP4984801B2 (en) Capacitor charger
JP4835056B2 (en) Capacitor charger
JP5386750B2 (en) Power conversion circuit control device
JP2005198462A (en) Power supply unit using piezoelectric transformer
JP4415633B2 (en) Capacitor charger
JP7339859B2 (en) switching control circuit
JP2018137839A (en) Power factor improvement circuit