JP2007031498A - Insulating polymeric material composition - Google Patents

Insulating polymeric material composition Download PDF

Info

Publication number
JP2007031498A
JP2007031498A JP2005213613A JP2005213613A JP2007031498A JP 2007031498 A JP2007031498 A JP 2007031498A JP 2005213613 A JP2005213613 A JP 2005213613A JP 2005213613 A JP2005213613 A JP 2005213613A JP 2007031498 A JP2007031498 A JP 2007031498A
Authority
JP
Japan
Prior art keywords
resin
polymer material
material composition
linseed oil
epoxidized linseed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213613A
Other languages
Japanese (ja)
Other versions
JP4961691B2 (en
Inventor
Yasuyuki Kurata
保幸 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2005213613A priority Critical patent/JP4961691B2/en
Publication of JP2007031498A publication Critical patent/JP2007031498A/en
Application granted granted Critical
Publication of JP4961691B2 publication Critical patent/JP4961691B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating polymeric material composition which is excellent in insulating performance and mechanical strength and does not cause environmental damage after disposal. <P>SOLUTION: The insulating polymeric material composition is obtained by kneading a non-petroleum-derived raw material to which a resin having a polyphenol and an imidazole are added as a hardener and a hardening accelerator, respectively, and subjecting the obtained kneaded product to three-dimensional crosslinking by a heat-treatment. The non-petroleum-derived raw material is a resin comprising epoxidized vegetable oil, wherein the epoxidized vegetable oil is epoxidized linseed oil. Preferably, the resin having the polyphenol is added in an amount corresponding to 0.7-1.5 of the stoichiometry reacting with the epoxidized linseed oil. Preferably, 0.2-20 pts.wt. imidazoles is added against 100 pts.wt. resin comprising the epoxidized linseed oil. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁性高分子材料組成物、特に、高電圧且つ高温になる電力系統の絶縁性高分子材料組成物に適応する技術に関する。   The present invention relates to an insulating polymer material composition, and more particularly to a technique applicable to an insulating polymer material composition of a power system that becomes high voltage and high temperature.

例えば筐体内に遮断器や断路器等の開閉機器を備えた電圧機器(高電圧機器等)の絶縁構成(例えば、絶縁性を要する部位)に適用(例えば、屋外に直接暴露して適用)される材料として、石油等の化石燃料由来の熱硬化性樹脂(石油を出発物質とした樹脂;エポキシ樹脂等)を主成分とした高分子材料を硬化して成る組成物、例えば高分子材料を注型して成る組成物により構成された製品(モールド注型品;以下、高分子製品と称する)が、従来から広く知られている。   For example, it is applied to insulation configurations (for example, parts that require insulation) of voltage equipment (high voltage equipment, etc.) equipped with switchgear such as circuit breakers and disconnectors in the housing (for example, directly exposed to the outdoors) For example, a composition obtained by curing a polymer material mainly composed of a thermosetting resin derived from fossil fuel such as petroleum (resin using petroleum as a starting material; epoxy resin, etc.), such as a polymer material, is used. 2. Description of the Related Art Products (mold cast products; hereinafter referred to as polymer products) constituted by a molded composition have been widely known.

また、近年の社会の高度化・集中化に伴い、高電圧機器等の大容量化,小型化や高い信頼性(例えば、機械的物性(絶縁破壊電界特性等),電気的物性)等が強く要求されると共に、前記の高分子製品に対しても種々の特性の向上が要求されてきた。   In addition, with the sophistication and concentration of society in recent years, the capacity, size and high reliability of high-voltage devices, etc. (for example, mechanical properties (dielectric breakdown field properties, etc.), electrical properties) are strong. In addition to the demand, improvements in various properties have been demanded for the polymer products.

一般的には、高分子材料の主成分として例えばガラス転移温度(以下、Tgと称する)100℃以上の耐熱性エポキシ樹脂や比較的に機械的物性(強度等)の高いビスフェノールA型のエポキシ樹脂を用いた高分子製品が知られているが、前記の高分子製品を処分(例えば、寿命,故障等の理由で処分)する場合を考慮して、生分解性を有する高分子材料から成る高分子製品の開発が試みられている(例えば、特許文献1)。   In general, as a main component of a polymer material, for example, a heat-resistant epoxy resin having a glass transition temperature (hereinafter referred to as Tg) of 100 ° C. or higher, or a bisphenol A type epoxy resin having relatively high mechanical properties (strength, etc.) In consideration of the case where the above-mentioned polymer product is disposed (for example, due to the reason of life or failure), a high polymer material having biodegradability is known. Development of molecular products has been attempted (for example, Patent Document 1).

なお、種々の技術分野において、植物等のバイオマス由来の高分子材料を硬化して成る組成物を適用(例えば印刷配線ボードに適用)する試みが行われ(例えば、特許文献2)、例えば室温雰囲気下で使用した場合には十分な機械的物性が得られることが知られているが、その組成物はアルデヒド類を硬化剤として用いたものであり、高温雰囲気下では機械的物性が低くなるため高電圧機器には適用されていなかった。
特開2002−358829 特開2002−53699
In various technical fields, attempts have been made to apply a composition formed by curing a polymer material derived from biomass such as a plant (for example, applied to a printed wiring board) (for example, Patent Document 2), for example, a room temperature atmosphere. It is known that sufficient mechanical properties can be obtained when used under the following conditions. However, the composition uses aldehydes as a curing agent, and the mechanical properties become low in a high-temperature atmosphere. It was not applied to high voltage equipment.
JP 2002-358829 A JP 2002-53699 A

前記のように、高分子材料の主成分としてガラス転移温度(以下、Tgと称する)100℃以上の耐熱性エポキシ樹脂等を用いて成る高分子製品は、硬く脆弱であり、温度変化が激しい環境下で使用した場合にはクラックが発生し易い恐れがある。このため、例えば高分子材料の主成分として固形エポキシ樹脂(例えば、金属導体を用いた耐クラック性試験の結果が−30℃以下のもの)を用いたり、該高分子材料に多量の充填材を添加して耐クラック性等を向上させる試みが行われているが、その高分子材料の粘度が著しく高くなってしまい、例えば注型作業等において十分なポットライフ(工業的な作業に必要な最低限の時間)を確保できず、作業性が悪化する恐れがある。   As described above, a polymer product using a heat-resistant epoxy resin having a glass transition temperature (hereinafter referred to as Tg) of 100 ° C. or more as a main component of the polymer material is hard and fragile, and has a severe temperature change. If used underneath, there is a risk of cracking. For this reason, for example, a solid epoxy resin (for example, a result of a crack resistance test using a metal conductor of −30 ° C. or lower) is used as the main component of the polymer material, or a large amount of filler is added to the polymer material. Attempts have been made to improve the crack resistance and the like by adding it, but the viscosity of the polymer material becomes extremely high. For example, the pot life (minimum required for industrial work) Time), and workability may be deteriorated.

また、前記のビスフェノールA型のエポキシ樹脂は、機械的物性が高い特性を有することから工業製品として広く使用されているが、そのビスフェノールA自体は環境ホルモンとして有害性を有するものとみなされ、環境性の観点から懸念され始めている。高分子製品のように硬化された組成物中であれば、その組成物中からビスフェノールAが漏出することは殆どなく有害性はないとの報告もあるが、極めて微量(例えば、ppmレベル、またはそれ以下の量)であっても有害性を有する物質であることから、たとえ前記のように組成物中であっても該組成物中に未反応のビスフェノールA(低分子量成分)が存在する場合には、そのビスフェノールAが気中に漏洩してしまう可能性があり、懸念されている。   The bisphenol A type epoxy resin is widely used as an industrial product because of its high mechanical properties. However, the bisphenol A itself is considered to be harmful as an environmental hormone, It is beginning to be a concern from the point of view of sex. In a cured composition such as a polymer product, there is a report that bisphenol A rarely leaks out from the composition and is not harmful, but a very small amount (for example, ppm level, or Even if it is in the composition as described above, unreacted bisphenol A (low molecular weight component) is present in the composition. There is a concern that the bisphenol A may leak into the air.

例えば、高分子製品の製造施設において、ビスフェノールA型エポキシ樹脂と種々の添加剤等とを合成する工程や、その合成工程後の高分子材料を注型する工程等の限定された環境下では、高濃度のビスフェノールA雰囲気下になる恐れがある。たとえ前記製造設備の各工程において完全無人化(高分子製品の製造ラインの無人化)を図っても、それら各工程において換気設備(使用環境における空気を浄化するための設備)を要することとなるため(すなわち、従来では想定しなかった換気設備を要するため)、その製品コストの増加を招く恐れがある。   For example, in a polymer product manufacturing facility, in a limited environment such as a step of synthesizing a bisphenol A type epoxy resin and various additives, a step of casting a polymer material after the synthesis step, etc. There is a risk of a high concentration bisphenol A atmosphere. Even if each process of the production equipment is completely unmanned (the production line for polymer products is unmanned), ventilation equipment (equipment for purifying air in the use environment) is required in each process. For this reason (that is, a ventilation facility that was not assumed in the past is required), the product cost may increase.

前記の高分子製品を処分(例えば、寿命,故障等の理由で処分)する場合については、種々の処理方法を適用することが可能であるが、それぞれ以下に示す問題点がある。   In the case of disposing of the above-mentioned polymer product (for example, disposing for reasons such as lifetime or failure), various treatment methods can be applied, but each has the following problems.

石油等の化石燃料由来の物質(例えば、エポキシ樹脂等)を主成分とする高分子材料から成る高分子製品の場合、焼却処理する方法を適用すると種々の有害物質や二酸化炭素を大量に排出し、環境汚染,地球温暖化等の問題を引き起こす恐れがある点で懸念されていた。一方、前記の高分子製品を単に埋立て処理する方法を適用することもできるが、その埋立て処理に係る最終処分場は年々減少している傾向である。この最終処分場の残余年数に関して、旧・厚生省では平成20年頃と試算している。また、旧・経済企画庁では、前記の旧・厚生省の試算に基づいて、平成20年頃に廃棄物処理費用が高騰し、経済成長率が押し下げられると予測している。これらのことから、廃棄されたときの対処がしやすい原料の使用促進は緊急の課題である。   In the case of polymer products made of polymer materials that are mainly composed of substances derived from fossil fuels such as petroleum (for example, epoxy resins), a large amount of various harmful substances and carbon dioxide are emitted when the incineration method is applied. There was a concern that it could cause problems such as environmental pollution and global warming. On the other hand, a method of simply landfilling the polymer product can be applied, but the final disposal sites related to the landfill process tend to decrease year by year. The remaining years of this final disposal site are estimated around 2008 by the former Ministry of Health. In addition, the former Economic Planning Agency predicts that the cost of waste disposal will rise around 2008, and the economic growth rate will be pushed down, based on the previous calculations by the former Ministry of Health and Welfare. For these reasons, it is an urgent task to promote the use of raw materials that are easy to deal with when discarded.

本発発明は、かかる事情に鑑みなされたもので、その目的は絶縁性能及び機械強度に優れる共に廃棄されても地球環境に悪影響を及ぼさない絶縁性高分子材料組成物の提供にある。   The present invention has been made in view of such circumstances, and an object thereof is to provide an insulating polymer material composition that is excellent in insulating performance and mechanical strength and does not adversely affect the global environment even when discarded.

そこで、請求項1記載の絶縁性高分子材料組成物は、非石油由来の原料に硬化剤としてポリフェノールを有する樹脂を添加すると共に硬化促進剤としてイミダゾール類を添加して混練して得た混練物を熱処理により三次元架橋してなることを特徴とする。   Therefore, the insulating polymer material composition according to claim 1 is a kneaded product obtained by kneading a non-petroleum-derived raw material with a resin having polyphenol as a curing agent and an imidazole as a curing accelerator. It is characterized by being three-dimensionally crosslinked by heat treatment.

請求項2記載の絶縁性高分子材料組成物は、請求項1記載の絶縁性高分子材料組成物において、前記非石油由来の原料がエポキシ化植物油からなる樹脂であることを特徴とする。   The insulating polymer material composition according to claim 2 is the insulating polymer material composition according to claim 1, wherein the non-petroleum-derived raw material is a resin made of epoxidized vegetable oil.

請求項3記載の絶縁性高分子材料組成物は、請求項2記載の絶縁性高分子材料組成物において、前記エポキシ化植物油からなる樹脂はエポキシ化亜麻仁油からなる樹脂であることを特徴とする。   The insulating polymer material composition according to claim 3 is the insulating polymer material composition according to claim 2, wherein the resin comprising the epoxidized vegetable oil is a resin comprising epoxidized linseed oil. .

請求項4記載の絶縁性高分子材料組成物は、請求項3記載の絶縁性高分子材料組成物において、前記エポキシ化亜麻仁油からなる樹脂に添加されるポリフェノールを有する樹脂は前記エポキシ化亜麻仁油と反応する化学量論比に対し0.7〜1.5となるように添加される共に、前記イミダゾール類は前記エポキシ化亜麻仁油からなる樹脂100重量部に対して0.2〜20重量部添加されることを特徴とする。   The insulating polymer material composition according to claim 4 is the insulating polymer material composition according to claim 3, wherein the resin having polyphenol added to the resin comprising the epoxidized linseed oil is the epoxidized linseed oil. The imidazoles are added in an amount of 0.7 to 1.5 with respect to the stoichiometric ratio of the epoxidized linseed oil. It is characterized by being added.

請求項記載5の絶縁性高分子材料組成物は、請求項4記載の絶縁性高分子材料組成物において、その体積抵抗率が1.0×1015Ω・cm以上であることを特徴とする。 The insulating polymer material composition according to claim 5 is the insulating polymer material composition according to claim 4, wherein the volume resistivity is 1.0 × 10 15 Ω · cm or more. .

請求項6記載の絶縁性高分子材料組成物は、請求項5記載の絶縁性高分子材料組成物において、そのガラス転移温度が85℃以上であることを特徴とする。   The insulating polymer material composition according to claim 6 is characterized in that in the insulating polymer material composition according to claim 5, the glass transition temperature is 85 ° C. or higher.

請求項1〜6記載の絶縁性高分子材料組成物によれば、非石油原料であるエポキシ化亜麻仁油を主成分とした混練物を熱処理により三次元架橋したことにより、絶縁性能に優れると共に機械強度、特に高温側での機械強度特性に秀でた絶縁性高分子材料組成物を提供できることが確認されている。また、硬化剤としてポリフェノールを有する樹脂、硬化促進剤としてイミダゾール類を用いているので、非石油原料を用いた硬化物として絶縁体としての工業材料適応が実現する。さらには絶縁材料の特性として体積抵抗率が向上することが確認されている。また、主成分であるエポキシ化亜麻仁油は、化石燃料由来でない非石油原料、すなわちバイオマス由来であるので、生分解性である共にカーボンニュートラルである。   According to the insulating polymer material composition according to any one of claims 1 to 6, the kneaded material mainly composed of epoxidized linseed oil, which is a non-petroleum raw material, is three-dimensionally crosslinked by heat treatment, so that the insulation performance is excellent and the machine It has been confirmed that an insulating polymer material composition excellent in strength, in particular, mechanical strength characteristics on the high temperature side, can be provided. Moreover, since the resin which has polyphenol as a hardening | curing agent and imidazole are used as a hardening accelerator, the industrial material adaptation as an insulator as a hardened | cured material using a non-petroleum raw material is implement | achieved. Furthermore, it has been confirmed that the volume resistivity is improved as a characteristic of the insulating material. Moreover, since the epoxidized linseed oil as the main component is derived from a non-petroleum raw material that is not derived from fossil fuel, that is, from biomass, it is both biodegradable and carbon neutral.

したがって、請求項1〜6記載の絶縁性高分子材料組成物によれば、絶縁性能及び機械強度に優れる共に廃棄されても地球環境に悪影響を及ぼさない絶縁性高分子材料組成物を提供できる。   Therefore, according to the insulating polymer material composition according to claims 1 to 6, it is possible to provide an insulating polymer material composition that is excellent in insulation performance and mechanical strength and does not adversely affect the global environment even when discarded.

工業材料として要求される特性をほぼ満たすことができるエポキシ樹脂原料は石油に代表される化石燃料由来である。一方、バイオマス由来の原料であって三次元架橋するものは、エポキシ樹脂原料の代替となるばかりでなく、環境ホルモンの問題も解消され、焼却処分されてもカーボンニュートラルであるので、新たに二酸化炭素を発生させるものとはみなされない。   Epoxy resin raw materials that can substantially satisfy the characteristics required as industrial materials are derived from fossil fuels represented by petroleum. On the other hand, raw materials derived from biomass that are three-dimensionally cross-linked not only replace epoxy resin raw materials, but also eliminate environmental hormone problems and are carbon neutral even if incinerated. Is not considered to generate.

本発明に係る絶縁性高分子材料組成物はバイオマス由来のエポキシ樹脂としてエポキシ化植物油からなる樹脂に着目している。すなわち、本発明に係る絶縁性高分子材料組成物は、非石油由来の原料であるエポキシ化植物油からなる樹脂に硬化剤としてポリフェノールを有する樹脂を添加すると共に硬化促進剤としてイミダゾール類を添加して混練して得た混練物を熱処理により三次元架橋してなる硬化物である。   The insulating polymer material composition according to the present invention focuses on a resin made of epoxidized vegetable oil as a biomass-derived epoxy resin. That is, the insulating polymer material composition according to the present invention is obtained by adding a resin having polyphenol as a curing agent to a resin made of epoxidized vegetable oil which is a non-petroleum-derived raw material and adding an imidazole as a curing accelerator. It is a cured product obtained by three-dimensionally crosslinking a kneaded product obtained by kneading.

前記エポキシ化植物油としては、エポキシ化亜麻仁油が例示される。エポキシ化亜麻仁油はエポキシ化大豆油と同じく、塩化ビニル樹脂における安定剤として広く使用されてきたが、一般的な工業用エポキシ樹脂と比べ反応性に乏しいため硬化に時間を要し、またガラス転移温度特性や機械的物性が低いことから、絶縁材料として検討されることはなかった。   Examples of the epoxidized vegetable oil include epoxidized linseed oil. Epoxidized linseed oil, like epoxidized soybean oil, has been widely used as a stabilizer in vinyl chloride resin, but it takes less time to cure because it is less reactive than general industrial epoxy resin, and glass transition. Because of its low temperature characteristics and mechanical properties, it has not been studied as an insulating material.

本発明に係る絶縁性高分子材料組成物は、前述のようなバイオマス由来であるエポキシ樹脂を主成分としても、石油等の化石燃料由来である従来の工業エポキシ樹脂からなる絶縁性高分子材料組成物と比べて、絶縁性に優れ且つ高温での機械強度にも優れた絶縁性高分子材料を提供できることが見出されている。また、前記エポキシ樹脂はバイオマス由来であので、生態系にとってはカーボンニュートラルであり、本発明に係る絶縁性高分子材料組成物が廃棄されても地球環境に対して悪影響を及ぼさない。   The insulating polymer material composition according to the present invention is composed of a conventional industrial epoxy resin derived from a fossil fuel such as petroleum, even if the epoxy resin derived from biomass as described above is a main component. It has been found that it is possible to provide an insulating polymer material that is superior in insulation and superior in mechanical strength at high temperatures. In addition, since the epoxy resin is derived from biomass, it is carbon neutral for the ecosystem, and even if the insulating polymer material composition according to the present invention is discarded, it does not adversely affect the global environment.

前記絶縁性高分子材料組成物において、非石油由来のエポキシ樹脂を構成するエポキシ化植物油としては例えばエポキシ化亜麻仁油が挙げられ、より具体的にはダイセル化学製のエポキシ化亜麻仁油(ダイマックL−500)が例示される。   In the insulating polymer material composition, the epoxidized vegetable oil constituting the non-petroleum-derived epoxy resin includes, for example, epoxidized linseed oil, and more specifically, epoxidized linseed oil (Daimac L-) manufactured by Daicel Chemical Industries, Ltd. 500).

前記硬化剤であるポリフェノールを有する樹脂としては住友ベークライト株式会社製のフェノールホルムアルデヒド型ノボラック(PR−HF−3)が例示される。前記ポリフェノールを有する樹脂の添加量としてはエポキシ化亜麻仁油のオキシラン濃度に基づいてエポキシ当量を計算して化学量論量比に対して0.5〜2.0の範囲で設定するとよい。より好ましくは0.9〜1.5の範囲で設定するとよい。   Examples of the resin having polyphenol as the curing agent include phenol formaldehyde type novolak (PR-HF-3) manufactured by Sumitomo Bakelite Co., Ltd. The addition amount of the polyphenol-containing resin is preferably set in the range of 0.5 to 2.0 with respect to the stoichiometric ratio by calculating the epoxy equivalent based on the oxirane concentration of the epoxidized linseed oil. More preferably, it may be set in the range of 0.9 to 1.5.

前記硬化促進剤であるイミダゾール類としては四国化成工業株式会社製の2−エチル−4−メチルイミダゾール(2E4MZ)が例示される。前記イミダゾールの添加量としては前記エポキシ樹脂100重量部(phr)に対して0.2〜20重量部(phr)で設定するとよい。より好ましくは0.4〜20重量部の範囲で設定するとよい。   Examples of the imidazoles that are the curing accelerator include 2-ethyl-4-methylimidazole (2E4MZ) manufactured by Shikoku Kasei Kogyo Co., Ltd. The addition amount of the imidazole may be set to 0.2 to 20 parts by weight (phr) with respect to 100 parts by weight (phr) of the epoxy resin. More preferably, it may be set in the range of 0.4 to 20 parts by weight.

以上の絶縁性高分子材料組成物によれば、体積抵抗率が1.0×1015Ω・cmであると共にガラス転移温度が85℃以上である絶縁性高分子材料組成物を提供できる。 According to the above insulating polymer material composition, an insulating polymer material composition having a volume resistivity of 1.0 × 10 15 Ω · cm and a glass transition temperature of 85 ° C. or more can be provided.

また、前記絶縁性高分子材料組成物の原料グレードは選択例の一つであって、本発明の絶縁性高分子材料組成物に係る原料、硬化剤及び硬化促進剤は前記メーカーグレードに限定されるものではない。そもそもエポキシ化亜麻仁油にフェノール樹脂、イミダゾール類を添加して高温にも耐えうる絶縁、構造材料を検討した例は過去にも見られず、本質的に芳香環と水酸基を有する物質との反応によって得られるものであり、広い意味ではエポキシ化亜麻仁油を含むエポキシ化植物油とポリフェノールとの反応である。   The raw material grade of the insulating polymer material composition is one of selection examples, and the raw material, curing agent and curing accelerator according to the insulating polymer material composition of the present invention are limited to the manufacturer grade. It is not something. In the first place, there have been no examples of investigations on insulation and structural materials that can withstand high temperatures by adding phenolic resins and imidazoles to epoxidized linseed oil. In a broad sense, it is a reaction of an epoxidized vegetable oil containing epoxidized linseed oil and a polyphenol.

また、硬化温度条件の検討は単に目的に合う物性に近づけるためのコントロールであり、温度、時間条件で硬化したものが全く異なる物性を示すものではなく、本発明報告と異なる硬化、温度時間の組み合わせも本発明に係る技術範囲内に属する。さらに、作業性、生産性を改善すべく、反応性を高め、安全にするために添加剤として反応促進剤、抑制剤等も、得られる硬化物の物性に大きな違いがない以上は発明に係る技術範囲に属する。   In addition, the examination of the curing temperature condition is simply a control to bring it closer to the physical properties suitable for the purpose, and what is cured under the temperature and time conditions does not show completely different physical properties, but a combination of curing and temperature time different from the report of the present invention. Are also within the technical scope of the present invention. Furthermore, in order to improve workability and productivity, the reaction accelerators, inhibitors, etc. as additives for enhancing the safety and safety are related to the invention as long as there is no significant difference in the physical properties of the obtained cured product. It belongs to the technical scope.

以下に本発明に係る絶縁性高分子材料組成物の実施例について説明する。   Examples of the insulating polymer material composition according to the present invention will be described below.

表1〜表3はエポキシ樹脂にエポキシ化亜麻仁油を採用した絶縁性高分子材料組成物の体積抵抗率とガラス点移転温度と曲げ強度を開示している。また、表4は従来技術に基づく比較例に係る絶縁性高分子材料組成物の体積抵抗率とガラス点移転温度と曲げ強度を開示している。   Tables 1 to 3 disclose volume resistivity, glass point transition temperature, and bending strength of an insulating polymer material composition employing epoxidized linseed oil as an epoxy resin. Table 4 discloses the volume resistivity, glass point transition temperature, and bending strength of the insulating polymer material composition according to the comparative example based on the prior art.

表1〜表3に示された試料は、エポキシ化亜麻仁油からなる樹脂に硬化剤としてポリフェノールを有する樹脂を所定量添加すると共に、硬化促進剤としてイミダゾールを添加して所定量混練した後、この混練物を所定の硬化条件で熱処理して硬化させて得られた絶縁性高分子材料組成物である。組成物の有効性を示すという観点から硬化剤や硬化促進剤の添加量に関わりなく、各試料の硬化条件は150℃、24時間とした。尚、表1〜表3に記載されたphrは重量部を意味する。   The samples shown in Tables 1 to 3 were prepared by adding a predetermined amount of a resin having polyphenol as a curing agent to a resin composed of epoxidized linseed oil, adding imidazole as a curing accelerator, and kneading the predetermined amount. An insulating polymer material composition obtained by curing a kneaded product by heat treatment under predetermined curing conditions. From the standpoint of showing the effectiveness of the composition, the curing conditions for each sample were 150 ° C. and 24 hours, regardless of the amount of curing agent or curing accelerator added. In addition, phr described in Tables 1 to 3 means parts by weight.

前記エポキシ化亜植物油にはダイセル化学工業株式会社製のエポキシ化亜麻仁油(ダイマックL−500)が採用された。前記硬化剤としてのポリフェノールを有する樹脂(以下、フェノール樹脂)は住友ベークライト株式会社製のフェノールホルムアルデヒド型ノボラック(PR−HF−3)が採用された。硬化の起点(硬化促進剤)としての前記イミダゾールには四国化成工業株式会社製の2−エチル−4−メチルイミダゾール(2E4MZ)が採用された。   Epoxidized linseed oil (Daimac L-500) manufactured by Daicel Chemical Industries, Ltd. was employed as the epoxidized linseed oil. A phenol formaldehyde type novolak (PR-HF-3) manufactured by Sumitomo Bakelite Co., Ltd. was employed as the resin having polyphenol as the curing agent (hereinafter referred to as phenol resin). 2-ethyl-4-methylimidazole (2E4MZ) manufactured by Shikoku Kasei Kogyo Co., Ltd. was employed as the imidazole as a curing starting point (curing accelerator).

前記絶縁性高分子材料組成物を評価する指標として、耐熱性を示すガラス転移温度(Tg)、体積抵抗率(JIS−K6911に準拠)、室温及び80℃における曲げ強度(JIS−K7203に準拠)を測定した。   As indices for evaluating the insulating polymer material composition, glass transition temperature (Tg) showing heat resistance, volume resistivity (based on JIS-K6911), bending strength at room temperature and 80 ° C. (based on JIS-K7203) Was measured.

表1に示された試料A1〜A8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し0.2重量部の範囲で添加された組成物である。   Samples A1 to A8 shown in Table 1 were added such that the phenol resin was 0.5 to 2.0 with respect to the stoichiometric ratio with which the phenol resin reacted with epoxidized linseed oil, and the imidazole was epoxidized linseed oil. It is a composition added in the range of 0.2 parts by weight with respect to 100 parts by weight.

試料B1〜B8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し0.4重量部の範囲で添加された組成物である。   Samples B1 to B8 were added so that the stoichiometric ratio of the phenolic resin reacting with the epoxidized linseed oil was 0.5 to 2.0, and the imidazole was 0 with respect to 100 parts by weight of the epoxidized linseed oil. A composition added in the range of 4 parts by weight.

試料C1〜C8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し0.8重量部の範囲で添加された組成物である。   Samples C1 to C8 were added so that the stoichiometric ratio of the phenol resin reacting with epoxidized linseed oil was 0.5 to 2.0, and the imidazole was 0 with respect to 100 parts by weight of epoxidized linseed oil. It is a composition added in the range of 8 parts by weight.

試料D1〜D8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し1.5重量部の範囲で添加された組成物である。   Samples D1 to D8 were added such that the phenolic resin was 0.5 to 2.0 with respect to the stoichiometric ratio with which the phenol resin reacted with epoxidized linseed oil, and the imidazole was 1 to 100 parts by weight of epoxidized linseed oil. It is a composition added in the range of 5 parts by weight.

表2に示された試料E1〜E8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し3.0重量部の範囲で添加された組成物である。   Samples E1 to E8 shown in Table 2 were added such that the phenol resin was 0.5 to 2.0 with respect to the stoichiometric ratio with which the phenol resin reacted with epoxidized linseed oil, and the imidazole was epoxidized linseed oil. It is a composition added in the range of 3.0 parts by weight with respect to 100 parts by weight.

試料F1〜F8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し5.0重量部の範囲で添加された組成物である。   Samples F1 to F8 were added so that the stoichiometric ratio of the phenolic resin reacting with the epoxidized linseed oil was 0.5 to 2.0, and the imidazole was 5 to 100 parts by weight of the epoxidized linseed oil. It is a composition added in the range of 0.0 part by weight.

試料G1〜G8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し8.0重量部の範囲で添加された組成物である。   Samples G1 to G8 were added so that the phenol resin would have a stoichiometric ratio of 0.5 to 2.0 with respect to the stoichiometric ratio with which the epoxidized linseed oil reacts, and the imidazole was 8 to 100 parts by weight of epoxidized linseed oil. It is a composition added in the range of 0.0 part by weight.

試料H1〜H8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し10.0重量部の範囲で添加された組成物である。   Samples H1 to H8 were added so that the phenol resin would have a stoichiometric ratio of 0.5 to 2.0 with respect to the stoichiometric ratio at which the phenol resin reacts with epoxidized linseed oil, and the imidazole was 10 to 100 parts by weight of epoxidized linseed oil. It is a composition added in the range of 0.0 part by weight.

表3に示された試料I1〜I8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し15.0重量部の範囲で添加された組成物である。   Samples I1 to I8 shown in Table 3 were added such that the phenol resin was 0.5 to 2.0 with respect to the stoichiometric ratio with which the phenol resin reacted with epoxidized linseed oil, and the imidazole was epoxidized linseed oil. It is a composition added in the range of 15.0 parts by weight with respect to 100 parts by weight.

試料J1〜J8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し20.0重量部の範囲で添加された組成物である。   Samples J1 to J8 were added so that the phenol resin would have a stoichiometric ratio of 0.5 to 2.0 with respect to the stoichiometric ratio with which the epoxidized linseed oil reacts, and the imidazole was 20 to 100 parts by weight of epoxidized linseed oil. It is a composition added in the range of 0.0 part by weight.

試料K1〜K8は前記フェノール樹脂がエポキシ化亜麻仁油と反応する化学量論比に対し0.5〜2.0となるように添加されると共に前記イミダゾールがエポキシ化亜麻仁油100重量部に対し30.0重量部の範囲で添加された組成物である。   Samples K1 to K8 were added such that the phenol resin was 0.5 to 2.0 with respect to the stoichiometric ratio of the phenol resin reacting with the epoxidized linseed oil, and the imidazole was 30 with respect to 100 parts by weight of the epoxidized linseed oil. It is a composition added in the range of 0.0 part by weight.

表4に示された試料Lは、ビスフェノールA型エポキシ樹脂(バンティコ社製のCT200A)に対して、硬化剤として酸無水物(無水フタル酸,日立化成社製のHN2200)を前記エポキシ樹脂100重量部に対して60重量部添加すると共に、硬化促進剤として三級アミン(DMP−30,明電ケミカル社製のL−86)を前記エポキシ樹脂100重量部に対して3重量部添加して混練した後、この混練物に関して温度150℃及び24時間の硬化条件で熱処理して得られた絶縁性高分子材料組成物である。   Sample L shown in Table 4 was obtained by adding 100 wt.% Of epoxy resin to bisphenol A type epoxy resin (CT200A manufactured by Bantico) with acid anhydride (phthalic anhydride, HN2200 manufactured by Hitachi Chemical Co., Ltd.) as a curing agent. 60 parts by weight with respect to parts, and tertiary amine (DMP-30, L-86 manufactured by Meiden Chemical Co., Ltd.) as a curing accelerator is added with 3 parts by weight with respect to 100 parts by weight of the epoxy resin. Then, the kneaded product is an insulating polymer material composition obtained by heat treatment under the curing conditions of a temperature of 150 ° C. and 24 hours.

表1〜表3及び表4に示されたガラス転移温度(Tg)と曲げ強度の測定結果から明らかなように、試料A4,B3〜B5,C2〜C6,D2〜D7,E2〜E7,F2〜F7,G2〜G7,H2〜H7,I2〜I7,J3〜J6の体積抵抗率、ガラス点移転温度及び曲げ強度の値は試料Lの値(体積抵抗率(5.8×1014Ω・cm)、ガラス点移転温度(85℃)及び曲げ強度(121MPa(室温),22MPa(80℃)))以上となることが確認された。 Samples A4, B3 to B5, C2 to C6, D2 to D7, E2 to E7, F2 as apparent from the measurement results of glass transition temperature (Tg) and bending strength shown in Tables 1 to 3 and Table 4. ~ F7, G2 to G7, H2 to H7, I2 to I7, J3 to J6 volume resistivity, glass point transfer temperature and bending strength are the values of sample L (volume resistivity (5.8 × 10 14 Ω · cm), glass point transition temperature (85 ° C.), and bending strength (121 MPa (room temperature), 22 MPa (80 ° C.))) or higher.

したがって、試料A4,B3〜B5,C2〜C6,D2〜D7,E2〜E7,F2〜F7,G2〜G7,H2〜H7,I2〜I7,J3〜J6のように、バイオマス由来のエポキシ樹脂に対してフェノール樹脂を所定量添加、特に前記エポキシ樹脂と反応する化学量論比に対し0.7〜1.5となるように添加すると共に、イミダゾール類を所定量添加、特に前記エポキシ樹脂100重量部に対して0.2〜20重量部添加することにより、絶縁性能及び機械強度特に高温のもとでの強度性に優れる絶縁性高分子材料組成物が提供されることが確認された。   Therefore, the samples A4, B3-B5, C2-C6, D2-D7, E2-E7, F2-F7, G2-G7, H2-H7, I2-I7, J3-J6 are used in biomass-derived epoxy resins. On the other hand, a predetermined amount of phenol resin is added, particularly 0.7 to 1.5 with respect to the stoichiometric ratio to react with the epoxy resin, and a predetermined amount of imidazole is added, particularly 100 weight of the epoxy resin. It was confirmed that by adding 0.2 to 20 parts by weight to the part, an insulating polymer material composition having excellent insulation performance and mechanical strength, particularly strength at high temperatures, is provided.

本発明の絶縁性高分子材料組成物について実施例に基づき詳細に説明したが、本発明はその技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。例えば、バイオマス由来のエポキシ樹脂に硬化剤及び硬化促進剤としてフェノール樹脂及びイミダゾール類が添加された混練物における混練条件や熱処理条件は、前記エポキシ樹脂、フェノール樹脂及びイミダゾール類の種類や添加量に応じて適宜設定されるものであり、本実施例で示した内容に限定されるものではない。また、前記エポキシ樹脂、フェノール樹脂、イミダゾール類の他に、種々の添加剤を適宜用いた場合においても、本実施例に示したものと同様の作用効果が得られることは明らかである。   Although the insulating polymer material composition of the present invention has been described in detail based on examples, it is obvious to those skilled in the art that the present invention can be variously modified and modified within the scope of its technical idea. Of course, such variations and modifications fall within the scope of the appended claims. For example, kneading conditions and heat treatment conditions in a kneaded material in which a phenol resin and imidazoles are added as curing agents and curing accelerators to a biomass-derived epoxy resin depend on the types and addition amounts of the epoxy resin, phenol resin and imidazoles. However, the present invention is not limited to the contents shown in this embodiment. In addition to the epoxy resin, phenol resin, and imidazoles, it is apparent that the same effects as those shown in this example can be obtained when various additives are appropriately used.

Figure 2007031498
Figure 2007031498

Figure 2007031498
Figure 2007031498

Figure 2007031498
Figure 2007031498

Figure 2007031498
Figure 2007031498

Claims (6)

非石油由来の原料に硬化剤としてポリフェノールを有する樹脂を添加すると共に硬化促進剤としてイミダゾール類を添加して混練して得た混練物を熱処理により三次元架橋してなることを特徴とする絶縁性高分子材料組成物。   Insulating property characterized in that a kneaded product obtained by kneading a non-petroleum-derived raw material with a resin having polyphenol as a curing agent and adding imidazoles as a curing accelerator is three-dimensionally crosslinked by heat treatment Polymer material composition. 前記非石油由来の原料がエポキシ化植物油からなる樹脂であることを特徴とする請求項1記載の絶縁性高分子材料組成物。   The insulating polymer material composition according to claim 1, wherein the non-petroleum-derived raw material is a resin made of epoxidized vegetable oil. 前記エポキシ化植物油からなる樹脂はエポキシ化亜麻仁油からなる樹脂であることを特徴とする請求項2記載の絶縁性高分子材料組成物。   The insulating polymer material composition according to claim 2, wherein the resin comprising the epoxidized vegetable oil is a resin comprising epoxidized linseed oil. 請求項3記載の絶縁性高分子材料組成物において、前記エポキシ化亜麻仁油からなる樹脂に添加されるポリフェノールを有する樹脂は前記エポキシ化亜麻仁油と反応する化学量論比に対し0.7〜1.5となるように添加される共に、前記イミダゾール類は前記エポキシ化亜麻仁油からなる樹脂100重量部に対して0.2〜20重量部添加されることを特徴とする絶縁性高分子材料組成物。   4. The insulating polymer material composition according to claim 3, wherein the resin having polyphenol added to the resin comprising the epoxidized linseed oil is 0.7 to 1 with respect to the stoichiometric ratio that reacts with the epoxidized linseed oil. Insulating polymer material composition, wherein 0.2 to 20 parts by weight of imidazoles are added to 100 parts by weight of resin comprising epoxidized linseed oil object. 請求項4記載の絶縁性高分子材料組成物において、その体積抵抗率が1.0×1015Ω・cm以上であることを特徴とする絶縁性高分子材料組成物。 5. The insulating polymer material composition according to claim 4, wherein the volume resistivity is 1.0 × 10 15 Ω · cm or more. 請求項5記載の絶縁性高分子材料組成物において、そのガラス転移温度が85℃以上であることを特徴とする絶縁性高分子材料組成物。
6. The insulating polymer material composition according to claim 5, wherein the glass transition temperature is 85 ° C. or higher.
JP2005213613A 2005-07-25 2005-07-25 Insulated polymer material cured product Expired - Fee Related JP4961691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213613A JP4961691B2 (en) 2005-07-25 2005-07-25 Insulated polymer material cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213613A JP4961691B2 (en) 2005-07-25 2005-07-25 Insulated polymer material cured product

Publications (2)

Publication Number Publication Date
JP2007031498A true JP2007031498A (en) 2007-02-08
JP4961691B2 JP4961691B2 (en) 2012-06-27

Family

ID=37791132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213613A Expired - Fee Related JP4961691B2 (en) 2005-07-25 2005-07-25 Insulated polymer material cured product

Country Status (1)

Country Link
JP (1) JP4961691B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035337A (en) * 2005-07-25 2007-02-08 Meidensha Corp Insulating polymer material composition and insulator
WO2008016120A1 (en) * 2006-08-02 2008-02-07 Meidensha Corporation Insulating polymer material composition
WO2008016121A1 (en) * 2006-08-02 2008-02-07 Meidensha Corporation Insulating polymer material composition
WO2008016119A1 (en) * 2006-08-02 2008-02-07 Meidensha Corporation Insulating polymer material composition
WO2008065866A1 (en) * 2006-12-01 2008-06-05 Meidensha Corporation Insulating polymeric-material composition
WO2008096579A1 (en) * 2007-02-09 2008-08-14 Meidensha Corporation Insulating polymer material composition
WO2010026960A1 (en) * 2008-09-02 2010-03-11 株式会社明電舎 Insulating polymer material composition
WO2021152953A1 (en) * 2020-01-31 2021-08-05 サカタインクス株式会社 Polyester resin, ink composition for offset printing, printed work, and production method for printed work
JP2022146849A (en) * 2021-03-22 2022-10-05 サカタインクス株式会社 Polyester resin, active energy ray-curable ink composition containing the same, and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122598A (en) * 1973-03-30 1974-11-22
JPS5454199A (en) * 1977-10-07 1979-04-28 Hitachi Ltd Epoxy resin composition
JPH0532762A (en) * 1991-07-30 1993-02-09 Tomoegawa Paper Co Ltd Epoxy resin composition and production thereof
JPH0532761A (en) * 1991-07-25 1993-02-09 Tomoegawa Paper Co Ltd Epoxy resin composition and production thereof
JPH11255863A (en) * 1998-03-06 1999-09-21 Asahi Denka Kogyo Kk Curable composition
JP2007035337A (en) * 2005-07-25 2007-02-08 Meidensha Corp Insulating polymer material composition and insulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122598A (en) * 1973-03-30 1974-11-22
JPS5454199A (en) * 1977-10-07 1979-04-28 Hitachi Ltd Epoxy resin composition
JPH0532761A (en) * 1991-07-25 1993-02-09 Tomoegawa Paper Co Ltd Epoxy resin composition and production thereof
JPH0532762A (en) * 1991-07-30 1993-02-09 Tomoegawa Paper Co Ltd Epoxy resin composition and production thereof
JPH11255863A (en) * 1998-03-06 1999-09-21 Asahi Denka Kogyo Kk Curable composition
JP2007035337A (en) * 2005-07-25 2007-02-08 Meidensha Corp Insulating polymer material composition and insulator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035337A (en) * 2005-07-25 2007-02-08 Meidensha Corp Insulating polymer material composition and insulator
WO2008016120A1 (en) * 2006-08-02 2008-02-07 Meidensha Corporation Insulating polymer material composition
WO2008016121A1 (en) * 2006-08-02 2008-02-07 Meidensha Corporation Insulating polymer material composition
WO2008016119A1 (en) * 2006-08-02 2008-02-07 Meidensha Corporation Insulating polymer material composition
JP2008037921A (en) * 2006-08-02 2008-02-21 Meidensha Corp Insulating polymeric material composition
WO2008065866A1 (en) * 2006-12-01 2008-06-05 Meidensha Corporation Insulating polymeric-material composition
US8461281B2 (en) 2007-02-09 2013-06-11 Meidensha Corporation Insulating polymer material composition
WO2008096579A1 (en) * 2007-02-09 2008-08-14 Meidensha Corporation Insulating polymer material composition
JP2008195759A (en) * 2007-02-09 2008-08-28 Meidensha Corp Insulating polymer material composition
WO2010026960A1 (en) * 2008-09-02 2010-03-11 株式会社明電舎 Insulating polymer material composition
US20110152414A1 (en) * 2008-09-02 2011-06-23 Meidensha Corporation Insulating polymer material composition
JP2010061879A (en) * 2008-09-02 2010-03-18 Meidensha Corp Insulating polymeric material composition
WO2021152953A1 (en) * 2020-01-31 2021-08-05 サカタインクス株式会社 Polyester resin, ink composition for offset printing, printed work, and production method for printed work
EP4023720A4 (en) * 2020-01-31 2023-09-13 Sakata INX Corporation Polyester resin, ink composition for offset printing, printed work, and production method for printed work
JP7404086B2 (en) 2020-01-31 2023-12-25 サカタインクス株式会社 Polyester resin, offset printing ink composition, printed matter, and method for producing printed matter
JP2022146849A (en) * 2021-03-22 2022-10-05 サカタインクス株式会社 Polyester resin, active energy ray-curable ink composition containing the same, and method for producing the same

Also Published As

Publication number Publication date
JP4961691B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4961691B2 (en) Insulated polymer material cured product
JP4961692B2 (en) insulator
JP5315606B2 (en) Insulating polymer material composition
JP2008037921A (en) Insulating polymeric material composition
JP2011184645A (en) Insulating polymeric material composition
JP2006066237A (en) Insulating polymeric material composition
JP5303840B2 (en) Insulating polymer material composition
JP5532562B2 (en) Insulating polymer material composition
JP4862543B2 (en) Insulating polymer material composition
JP5359008B2 (en) Method for producing insulating polymer material composition
JP4862544B2 (en) Insulating polymer material composition
JP5499863B2 (en) Insulating polymer material composition and method for producing the same
JP5110689B2 (en) Insulating composition for high voltage equipment
JP5322222B2 (en) Insulating polymer material composition
JP2008257978A (en) Insulating composition for high voltage equipment
JP2008037922A (en) Insulative high polymer material composition
JP5299919B2 (en) Insulating polymer material composition and method for producing the same
JP2008257977A (en) Insulating composition for voltage equipment
JP2010209232A (en) Insulating polymer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4961691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees