JP2011111543A - Insulating polymer material composition and method for producing the same - Google Patents

Insulating polymer material composition and method for producing the same Download PDF

Info

Publication number
JP2011111543A
JP2011111543A JP2009269783A JP2009269783A JP2011111543A JP 2011111543 A JP2011111543 A JP 2011111543A JP 2009269783 A JP2009269783 A JP 2009269783A JP 2009269783 A JP2009269783 A JP 2009269783A JP 2011111543 A JP2011111543 A JP 2011111543A
Authority
JP
Japan
Prior art keywords
gallate
material composition
polymer material
insulating polymer
phenol resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009269783A
Other languages
Japanese (ja)
Other versions
JP5299919B2 (en
Inventor
Tadayuki Wada
忠幸 和田
Akihiro Kurozumi
明大 黒住
Yasuyuki Kurata
保幸 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Chubu Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Chubu Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Chubu Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009269783A priority Critical patent/JP5299919B2/en
Publication of JP2011111543A publication Critical patent/JP2011111543A/en
Application granted granted Critical
Publication of JP5299919B2 publication Critical patent/JP5299919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an insulating polymer material composition comprising a nonpetroleum-derived raw material with excellent insulation performance needed for insulated structure in voltage equipment. <P>SOLUTION: A phenol resin is obtained by performing condensation reaction of one or more gallic acid derivatives. By mixing the phenol resin with an epoxidized vegetable oil and performing heat treatment of the resultant mixture, three-dimensional crosslinking of the phenol resin with the epoxidized vegetable oil occurs to obtain the insulating polymer material composition. Epoxidized linseed oil is included as the epoxidized vegetable oil, and propyl gallate, pyrogallol, etc., are included as the gallic acid derivative. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、絶縁性高分子材料組成物に関するものであって、特に高電圧かつ高温になる電力系統の絶縁に適応するものに関する。従来の絶縁材料において、不飽和ポリエステル、エポキシ樹脂などの熱硬化性樹脂の代替となる絶縁性高分子材料組成物に関するものである。   The present invention relates to an insulating polymer material composition, and more particularly to an insulating polymer material composition that is suitable for insulation of a power system having a high voltage and a high temperature. The present invention relates to an insulating polymer material composition that substitutes for a thermosetting resin such as unsaturated polyester or epoxy resin in a conventional insulating material.

高電圧機器の絶縁材料及び構造材料として、石油を出発物質とした石油由来のエポキシ樹脂等の熱硬化性樹脂をマトリックスとした高分子複合硬化物、いわゆるモールド注型品が広く用いられている。また、近年の社会の高度化、集中化に伴い機器の大容量・小型・高信頼性化が強く求められており、モールド注型品はますます重要となってきている。   As an insulating material and a structural material for high-voltage devices, a polymer composite cured product using a thermosetting resin such as an epoxy resin derived from petroleum starting from petroleum as a matrix, a so-called mold casting product is widely used. In addition, with the recent sophistication and concentration of society, there is a strong demand for large capacity, small size, and high reliability of equipment, and mold casting products are becoming increasingly important.

しかし、これらのモールド注型品に使用されている熱硬化樹脂は石油由来の原料を使用しており、石油資源の枯渇といった地球規模の問題から、将来的に再生可能資源を使用することが求められている。   However, the thermosetting resins used in these mold casting products use petroleum-derived raw materials, and due to global problems such as the depletion of petroleum resources, it is required to use renewable resources in the future. It has been.

そこで、エポキシ樹脂の原料に植物由来の原料を用いることに関する技術として、天然原料であり、3次元架橋するものが検討されてきた。例えば、エポキシ樹脂の原料としてエポキシ化植物油を使用する技術や、エポキシ樹脂の硬化剤に植物由来フェノール類(リグニン)を使用する技術(例えば、特許文献1)が提案されている。   Therefore, as a technique related to the use of plant-derived raw materials as raw materials for epoxy resins, natural raw materials that are three-dimensionally cross-linked have been studied. For example, a technique using epoxidized vegetable oil as a raw material for an epoxy resin and a technique using plant-derived phenols (lignin) as a curing agent for the epoxy resin (for example, Patent Document 1) have been proposed.

特開2008−138061号公報JP 2008-138061 A

しかしながら、エポキシ樹脂にエポキシ化植物油(例えば、エポキシ化亜麻仁油)を用いた場合でも、該エポキシ樹脂と反応する硬化剤に、アミン系、酸無水物系、フェノール系、イミダソール系等の石油原料を出発物質とするものが用いられていた。   However, even when epoxidized vegetable oil (for example, epoxidized linseed oil) is used as the epoxy resin, amine-based, acid anhydride-based, phenol-based, imidazole-based or other petroleum raw materials are used as the curing agent that reacts with the epoxy resin. The starting material was used.

したがって、エポキシ化植物油を用いた場合でも、エポキシ化植物油の硬化剤として石油由来の硬化剤を使用しており、エポキシ樹脂全体に占める植物原料の割合が低いため、今後長期的に既存の熱硬化性樹脂の完全代替品となることはできない。   Therefore, even when epoxidized vegetable oil is used, a petroleum-derived curing agent is used as a curing agent for epoxidized vegetable oil, and the proportion of plant raw materials in the entire epoxy resin is low. It cannot be a complete replacement for functional resins.

また、エポキシ化亜麻仁油はエポキシ化大豆油と同じく、塩ビの安定剤として広く使われているが、一般的な工業用エポキシ樹脂と比べ反応性に乏しいため硬化に時間がかかり、Tgが低いうえに機械強度も小さいことから絶縁・構造材として検討はされなかった。   Epoxidized linseed oil, like epoxidized soybean oil, is widely used as a stabilizer for vinyl chloride. However, it is less reactive than general industrial epoxy resins, so it takes time to cure and Tg is low. However, it was not considered as an insulating / structural material because of its low mechanical strength.

一方、特許文献1のように、硬化剤にリグニンを使用した場合、硬化剤として機能するフェノール性水酸基濃度が低いため、硬化物の架橋点密度が低くなり、工業材料として要求される機械的強度及び耐熱性を得ることができなかった。   On the other hand, when lignin is used as a curing agent as in Patent Document 1, the density of the phenolic hydroxyl group that functions as a curing agent is low, so that the density of cross-linking points of the cured product is low, and mechanical strength required as an industrial material. And heat resistance could not be obtained.

よって、工業材料として要求される特性をほぼ満たすことができるエポキシ樹脂の原料は石油由来の原料が用いられてきた。   Therefore, petroleum-derived raw materials have been used as raw materials for epoxy resins that can substantially satisfy the characteristics required as industrial materials.

上記課題を解決する本発明の絶縁性高分子材料組成物は、1種類以上のエポキシ化植物油に硬化剤として1種類以上の没食子酸誘導体を縮合させたフェノール樹脂が混合された後、加熱処理され硬化して得られたことを特徴としている。   The insulating polymer material composition of the present invention that solves the above problems is heat-treated after mixing one or more epoxidized vegetable oils with a phenol resin condensed with one or more gallic acid derivatives as a curing agent. It is characterized by being obtained by curing.

また、この絶縁性高分子材料組成物において、前記没食子酸誘導体が、ピロガロール、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸ブチル、没食子酸ペンチル、没食子酸イソペンチル、没食子酸オクチル、没食子酸デシル、没食子酸ドデシル、没食子酸トリデシル、没食子酸テトラデシル、没食子酸ペンタデシル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシルのいずれかであることを特徴としている。   Further, in this insulating polymer material composition, the gallic acid derivative is pyrogallol, methyl gallate, ethyl gallate, propyl gallate, isopropyl gallate, butyl gallate, pentyl gallate, isopentyl gallate, gallic acid It is characterized by being one of octyl, decyl gallate, dodecyl gallate, tridecyl gallate, tetradecyl gallate, pentadecyl gallate, hexadecyl gallate, heptadecyl gallate, and octadecyl gallate.

そして、前記エポキシ化植物油としては、エポキシ化亜麻仁油が挙げられる。   And as said epoxidized vegetable oil, epoxidized linseed oil is mentioned.

また、上記課題を解決する本発明の絶縁性高分子材料組成物製造方法は、1種類以上の没食子酸誘導体を縮合させてフェノール樹脂化するフェノール樹脂化工程と、前記フェノール樹脂化工程で得られたフェノール樹脂を1種類以上のエポキシ化植物油と混合する混合工程と、前記混合工程で得られた混合物を加熱処理して絶縁性高分子材料組成物を得る硬化工程とを有することを特徴としている。   Moreover, the insulating polymer material composition manufacturing method of the present invention that solves the above-described problems is obtained by a phenol resinification step in which one or more gallic acid derivatives are condensed to form a phenol resin, and the phenol resin conversion step. A mixing step of mixing the obtained phenolic resin with one or more kinds of epoxidized vegetable oil, and a curing step of heat-treating the mixture obtained in the mixing step to obtain an insulating polymer material composition .

以上の発明によれば、非石油由来の原料からなり、絶縁性能に優れた絶縁性高分子材料組成物を得ることができる。   According to the above invention, it is possible to obtain an insulating polymer material composition that is made of a non-petroleum-derived raw material and has excellent insulating performance.

本発明は、石油由来のエポキシ樹脂原料の代替品として植物由来の原料を用いた絶縁性高分子材料組成物、及び該絶縁性高分子材料組成物の製造方法に関するものである。   The present invention relates to an insulating polymer material composition using a plant-derived raw material as an alternative to a petroleum-derived epoxy resin raw material, and a method for producing the insulating polymer material composition.

本発明に係る絶縁性高分子材料組成物は、エポキシ化植物油に硬化剤として植物由来ポリフェノールをフェノール樹脂化したもの添加して硬化させたものである。   The insulating polymer material composition according to the present invention is obtained by adding a phenolic resin derived from plant-derived polyphenol as a curing agent to epoxidized vegetable oil and curing it.

前記エポキシ化植物油としては、エポキシ化できるものであればよく、エポキシ化亜麻仁油、エポキシ化大豆油等が例示される。   The epoxidized vegetable oil is not particularly limited as long as it can be epoxidized, and examples thereof include epoxidized linseed oil and epoxidized soybean oil.

そして、該エポキシ化植物油の硬化剤として、天然原料を出発物質とする植物由来ポリフェノール類をフェノール樹脂化したものを用いた。   And the hardener of this epoxidized vegetable oil used what made the phenol resin the plant origin polyphenols which used a natural raw material as a starting material.

植物由来ポリフェノール類とは、分子内に複数のフェノール性ヒドロキシ基(ベンゼン環、ナフタレン環などの芳香環に結合したヒドロキシ基)をもつ植物成分の総称であり、植物が光合成を行うときに合成される物質である。具体的には、没食子酸、タンニン、フラボノール、イソフラボン、カテキン、ケルセチン、アントシアニン等が挙げられる。また、これらを原料とし、種々の化学製品・グレードが作られている。   Plant-derived polyphenols are generic names for plant components that have multiple phenolic hydroxy groups (hydroxy groups bonded to aromatic rings such as benzene and naphthalene rings) in the molecule, and are synthesized when plants perform photosynthesis. It is a substance. Specific examples include gallic acid, tannin, flavonol, isoflavone, catechin, quercetin, anthocyanin and the like. In addition, various chemical products and grades are made using these as raw materials.

植物由来ポリフェノール類を硬化剤に使用してエポキシ化植物油を硬化させた場合、得られる硬化物のTgはエポキシ化植物油のエポキシ基濃度に依存する。したがって、硬化物のTgを上げるためには硬化物中の架橋点を増やす必要がある。そこで、硬化物同士を架橋させることにより架橋点密度を向上させ、硬化物の機械的強度及びガラス転移温度の向上を実現した。   When the epoxidized vegetable oil is cured using plant-derived polyphenols as a curing agent, the Tg of the resulting cured product depends on the epoxy group concentration of the epoxidized vegetable oil. Therefore, in order to raise Tg of hardened | cured material, it is necessary to increase the crosslinking point in hardened | cured material. Therefore, by cross-linking the cured products, the density of cross-linking points was improved, and the mechanical strength and glass transition temperature of the cured products were improved.

本発明に係るフェノール樹脂には、植物由来ポリフェノールとアセトン等のケトン類とを縮合させたものを含む。例えば、植物由来ポリフェノールのフェノール樹脂化手法としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等の脂肪族ケトン、メチルシクロヘキシルケトン等の脂環式ケトン、アセトフェノン等の芳香族ケトン等と植物由来ポリフェノールを有機溶媒及び酸触媒の存在下に縮合反応させる手法が挙げられる。   The phenol resin according to the present invention includes a product obtained by condensing a plant-derived polyphenol and a ketone such as acetone. For example, plant-derived polyphenols can be converted into phenolic resins by using aliphatic ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, alicyclic ketones such as methyl cyclohexyl ketone, aromatic ketones such as acetophenone, and plant-derived polyphenols as organic solvents. And a method of performing a condensation reaction in the presence of an acid catalyst.

本発明では、植物由来ポリフェノールの一例として、没食子酸誘導体に着目した。没食子酸誘導体としては、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸ブチル、没食子酸ペンチル、没食子酸イソペンチル、没食子酸オクチル、没食子酸デシル、没食子酸ドデシル、没食子酸トリデシル、没食子酸テトラデシル、没食子酸ペンタデシル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシル、ピロガロール等が挙げられる。これら没食子酸誘導体のなかでも、低分子で融点が低い没食子酸プロピル、没食子酸イソプロピルまたはピロガロールが好ましい。   In the present invention, attention is focused on gallic acid derivatives as an example of plant-derived polyphenols. As gallic acid derivatives, methyl gallate, ethyl gallate, propyl gallate, isopropyl gallate, butyl gallate, pentyl gallate, isopentyl gallate, octyl gallate, decyl gallate, dodecyl gallate, tridecyl gallate, Examples include tetradecyl gallate, pentadecyl gallate, hexadecyl gallate, heptadecyl gallate, octadecyl gallate, and pyrogallol. Among these gallic acid derivatives, propyl gallate, isopropyl gallate or pyrogallol having a low molecular weight and a low melting point are preferable.

エポキシ化植物油と植物由来フェノール樹脂の配合比は特に限定されない。また、硬化促進剤や充填剤の添加量についても特に限定せず、最終的に得られる硬化物の物性を鑑みて添加量を決定することが好ましい。硬化促進剤には、イミダゾール系、三級アミン、芳香族アミンなどが使用できる。充填剤には、シリカやアルミナを使用することができるが、充填剤と樹脂の界面を調整するため、シランカップリング剤を添加してもよい。   The mixing ratio of the epoxidized vegetable oil and the plant-derived phenol resin is not particularly limited. Moreover, it does not specifically limit about the addition amount of a hardening accelerator or a filler, It is preferable to determine addition amount in view of the physical property of the hardened | cured material finally obtained. As the curing accelerator, imidazole, tertiary amine, aromatic amine and the like can be used. Silica or alumina can be used as the filler, but a silane coupling agent may be added to adjust the interface between the filler and the resin.

本発明の実施形態に係る絶縁性高分子材料組成物の製造方法は、植物由来ポリフェノールをフェノール樹脂化する工程(フェノール樹脂化工程)と、エポキシ化植物油と前記フェノール樹脂化工程で得られた植物由来フェノール樹脂を混合した後(混合工程)、混合工程で得られた混合物に添加剤を添加した後、加熱処理することにより前記エポキシ化植物油と前記植物由来フェノール樹脂とを架橋させる工程(硬化工程)からなることを特徴とするものである。   The method for producing an insulating polymer material composition according to an embodiment of the present invention includes a step of converting a plant-derived polyphenol into a phenol resin (a phenol resin conversion step), an epoxidized vegetable oil, and a plant obtained by the phenol resin conversion step. After mixing the derived phenol resin (mixing step), after adding an additive to the mixture obtained in the mixing step, the step of crosslinking the epoxidized vegetable oil and the plant derived phenol resin by heat treatment (curing step) ).

植物由来ポリフェノールをフェノール樹脂化する工程(フェノール樹脂化工程)では、植物由来ポリフェノールを縮合反応させる。植物由来ポリフェノールの縮合反応は、植物由来ポリフェノール、酸触媒及び有機溶媒の混合物中に、脂肪族ケトンまたは、脂環式ケトン、芳香族ケトン等のいずれかを連続的に供給することにより行われる。ケトン類の供給方法としては、間欠的に行ってもよいが、連続的に行うとよい。   In the step of converting plant-derived polyphenol into a phenol resin (phenol resin conversion step), the plant-derived polyphenol is subjected to a condensation reaction. The condensation reaction of plant-derived polyphenol is carried out by continuously supplying either an aliphatic ketone, an alicyclic ketone, an aromatic ketone or the like into a mixture of a plant-derived polyphenol, an acid catalyst and an organic solvent. The method for supplying ketones may be intermittent, but may be continuously performed.

脂肪族ケトンの例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、脂環式ケトンの例としては、メチルシクロヘキシルケトン、芳香族ケトンの例として、アセトフェノンが挙げられる。   Examples of aliphatic ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, alicyclic ketones, methyl cyclohexyl ketone, and aromatic ketones such as acetophenone.

この縮合反応の反応温度は、20〜100℃で行えばよく、35〜65℃で行うとより効率よく縮合反応を行うことができる。また、反応時間は、1〜72時間、好ましくは3〜30時間であるとよい。縮合反応が十分でないと(反応温度が低い場合または反応時間が短い場合)、得られる硬化物の架橋点密度が少なくTgの向上が十分でない場合がある。また、過度に縮合反応を行うと(反応温度が高い場合または反応時間が長い場合)、フェノール樹脂とエポキシ化植物油が均一に混ざらないので得られる硬化物の物性が低下する場合や、粘度が増加することにより金型注型が困難になる場合がある。   The reaction temperature of this condensation reaction should just be 20-100 degreeC, and if it carries out at 35-65 degreeC, a condensation reaction can be performed more efficiently. The reaction time is 1 to 72 hours, preferably 3 to 30 hours. If the condensation reaction is not sufficient (when the reaction temperature is low or the reaction time is short), the resulting cured product has a low cross-linking point density and may not be sufficiently improved in Tg. In addition, excessive condensation (when the reaction temperature is high or the reaction time is long), the phenol resin and epoxidized vegetable oil do not mix uniformly, resulting in a decrease in the physical properties of the resulting cured product or an increase in viscosity. Doing so may make mold casting difficult.

縮合反応終了後は、反応混合物をアルカリで中和するとよい。中和反応は、縮合反応終了後、直ちに中和するのが特に好ましい。中和反応に用いるアルカリとしては、例えば、アンモニア、炭酸アンモニウム、酢酸アンモニウム等のアンモニウム塩、燐酸カリウム、燐酸ナトリウム等のアルカリ金属塩等が挙げられる。これらのアルカリは、水溶液として使用するとよい。アルカリの使用量は、反応に用いた酸触媒1モルに対して1〜10モルであればよく、1.2〜7モルであればさらに効率よく中和を行うことができる。中和温度は、5〜70℃、好ましくは20〜65℃である。   After completion of the condensation reaction, the reaction mixture may be neutralized with an alkali. The neutralization reaction is particularly preferably neutralized immediately after completion of the condensation reaction. Examples of the alkali used for the neutralization reaction include ammonium salts such as ammonia, ammonium carbonate, and ammonium acetate, and alkali metal salts such as potassium phosphate and sodium phosphate. These alkalis may be used as an aqueous solution. The alkali may be used in an amount of 1 to 10 moles per mole of the acid catalyst used in the reaction, and can be neutralized more efficiently if it is 1.2 to 7 moles. The neutralization temperature is 5 to 70 ° C, preferably 20 to 65 ° C.

中和後の反応混合物は、反応溶媒として酢酸エステル類を使用した場合にはそのまま水洗される。一方、反応溶媒としてアルコール類を使用した場合には、酢酸エチルやトルエン等の抽出溶媒を添加した後、水洗される。水洗後の有機層は、例えば、そのままキノンジアジドスルホン酸ハライドと反応させて感光剤とすることもできるが、有機層中の有機溶媒及び抽出溶媒を蒸留等の手段により除去してもよい。有機溶媒及び抽出溶媒の除去は、溶媒除去後の残分中、溶媒量が20重量%以下、好ましくは5重量%以下となるように行えばよい。   The neutralized reaction mixture is washed with water as it is when an acetate is used as a reaction solvent. On the other hand, when alcohol is used as a reaction solvent, an extraction solvent such as ethyl acetate or toluene is added, followed by washing with water. For example, the organic layer after washing with water can be reacted with quinonediazide sulfonic acid halide as it is to form a photosensitizer, but the organic solvent and the extraction solvent in the organic layer may be removed by means such as distillation. The organic solvent and the extraction solvent may be removed so that the amount of the solvent in the residue after removal of the solvent is 20% by weight or less, preferably 5% by weight or less.

溶媒除去後の残分は、例えば、そのままキノンジアジドスルホン酸ハライドと反応させて感光剤とすることもできるが、水等を用いた再結晶により多価フェノール化合物を単離するとよい。再結晶に用いる水の量は、溶媒除去後の残分と水との混合物中、15〜80重量%、好ましくは20〜70重量%である。再結晶時の多価フェノール化合物は、好ましくは約6〜約40重量%、より好ましくは約8〜約35重量%となるようにすればよい。再結晶時の温度は、5〜70℃、好ましくは20〜60℃である。また再結晶時には、必要により種晶を添加してもよい。再結晶により析出した結晶は、濾過、水洗、乾燥等の慣用手段を用いて取り出される。   The residue after removal of the solvent can be reacted with, for example, quinonediazidesulfonic acid halide as it is to make a photosensitizer, but the polyhydric phenol compound may be isolated by recrystallization using water or the like. The amount of water used for recrystallization is 15 to 80% by weight, preferably 20 to 70% by weight, in the mixture of the residue after removal of the solvent and water. The polyphenol compound at the time of recrystallization is preferably about 6 to about 40% by weight, more preferably about 8 to about 35% by weight. The temperature at the time of recrystallization is 5 to 70 ° C, preferably 20 to 60 ° C. Further, at the time of recrystallization, seed crystals may be added as necessary. Crystals precipitated by recrystallization are taken out by conventional means such as filtration, washing with water, and drying.

フェノール樹脂化工程で未反応の植物由来ポリフェノールも硬化剤として機能する。また、フェノール樹脂化にはこれら植物由来ポリフェノールを2種以上組み合わせて樹脂化して硬化剤として機能させてもよい。このとき、植物由来ポリフェノールの配合比は特に限定されないが、最終的に得られる硬化物の物性を鑑みて配合比を決定すればよい。   Unreacted plant-derived polyphenol in the phenol resin conversion step also functions as a curing agent. In addition, in the phenol resin formation, two or more kinds of these plant-derived polyphenols may be combined to form a resin and function as a curing agent. At this time, the blending ratio of the plant-derived polyphenol is not particularly limited, but the blending ratio may be determined in view of the physical properties of the finally obtained cured product.

次に、エポキシ化植物油と硬化剤である植物由来ポリフェノール樹脂を混合させる(混合工程)。なお、混合工程において、エポキシ化植物油と植物由来ポリフェノール樹脂の混合温度は、特に限定するものではなく、常温で混合すればよい。   Next, the epoxidized vegetable oil and the plant-derived polyphenol resin which is a curing agent are mixed (mixing step). In the mixing step, the mixing temperature of the epoxidized vegetable oil and the plant-derived polyphenol resin is not particularly limited, and may be mixed at room temperature.

この時、得られた混合物を予熱し相溶させる(相溶工程)と、得られる絶縁性高分子材料組成物が均一となる。本発明でいう相溶とは、主剤と硬化剤の混合物がクリアな外観を有するものを意味する。相溶させると、エポキシ化植物油と植物由来ポリフェノール樹脂との一部が架橋構造を形成した液状の相溶物(すなわち、液状エポキシ樹脂組成物)が得られる。この液状エポキシ樹脂組成物の架橋の範囲は、1〜80%、好ましくは1〜50%、より好ましくは1〜20%である。液状エポキシ樹脂組成物の架橋の範囲は、該液状エポキシ樹脂組成物の加熱温度、及び加熱時間により制御することができる。   At this time, when the obtained mixture is preheated and compatible (compatibility process), the resulting insulating polymer material composition becomes uniform. The term "compatible" as used in the present invention means that the mixture of the main agent and the curing agent has a clear appearance. When compatible, a liquid compatible material (that is, a liquid epoxy resin composition) in which a part of the epoxidized vegetable oil and the plant-derived polyphenol resin forms a crosslinked structure is obtained. The range of crosslinking of the liquid epoxy resin composition is 1 to 80%, preferably 1 to 50%, more preferably 1 to 20%. The range of crosslinking of the liquid epoxy resin composition can be controlled by the heating temperature and the heating time of the liquid epoxy resin composition.

相溶工程では、植物由来のポリフェノール樹脂の融点以上で予熱することが好ましく、温度条件によって相溶時間を調整する必要がある。また、攪拌することによって相溶時間を短縮することができる。しかし、相溶時間が長すぎると前記液状エポキシ樹脂が硬化してしまうので、前記液状エポキシ樹脂に添加する硬化剤等の種類ごとに最適相溶条件(予熱時間、予熱温度)を決定することが好ましい。   In the compatibility step, preheating is preferably performed at a temperature equal to or higher than the melting point of the plant-derived polyphenol resin, and it is necessary to adjust the compatibility time depending on the temperature condition. Further, the mixing time can be shortened by stirring. However, if the compatibility time is too long, the liquid epoxy resin will be cured, so that it is possible to determine the optimal compatibility conditions (preheating time, preheating temperature) for each type of curing agent added to the liquid epoxy resin. preferable.

最後に、加熱処理することで植物油由来エポキシ樹脂と植物由来ポリフェノール樹脂とが完全に架橋され絶縁硬化物(絶縁性高分子材料組成物)が得られる(硬化工程)。   Finally, the vegetable oil-derived epoxy resin and the plant-derived polyphenol resin are completely cross-linked by heat treatment to obtain an insulating cured product (insulating polymer material composition) (curing step).

以下、具体的に実施例を挙げて実施形態1に係る絶縁性高分子材料組成物について説明する。なお、本発明に係る絶縁性高分子材料組成物及びその製造方法は、下記実施例に限定されるものではない。   Hereinafter, the insulating polymer material composition according to Embodiment 1 will be described with specific examples. The insulating polymer material composition and the production method thereof according to the present invention are not limited to the following examples.

(実施例1)
実施例1では、主剤としてエポキシ化亜麻仁油を用い、エポキシ化亜麻仁油の硬化剤としてピロガロール樹脂を用いた。
Example 1
In Example 1, epoxidized linseed oil was used as a main agent, and pyrogallol resin was used as a curing agent for epoxidized linseed oil.

上記フェノール樹脂化工程で説明した手法でピロガロールを縮合させて、ピロガロール樹脂を得た。ピロガロール樹脂とエポキシ化亜麻仁油と反応させる場合、エポキシ当量と水酸基当量から配合量を求めるが、エポキシ化亜麻仁油におけるエポキシ基は分子鎖中にあり、反応性に乏しいため最適な配合量は必ずしも化学量論的には決まらない。   A pyrogallol resin was obtained by condensing pyrogallol by the method described in the phenol resin conversion step. When reacting with pyrogallol resin and epoxidized linseed oil, the blending amount is determined from the epoxy equivalent and hydroxyl equivalent. However, the epoxy group in epoxidized linseed oil is in the molecular chain, and because of its poor reactivity, the optimum blending amount is not necessarily chemical. It is not determined quantitatively.

そこで、エポキシ化亜麻仁油に対し、ピロガロール樹脂を10、25、50、100wt%とし、硬化促進剤を3phr加え、150℃で10時間の加熱処理を行った。硬化促進剤としては、2−エチル−4−メチル−イミダゾール(四国化成工業(株)、品名キュアゾール 2E4MZ)、三級アミン(明電ケミカル(株) L−86)、芳香族アミン(明電ケミカル(株)K−61B)を用いた。   Then, pyrogallol resin was made into 10, 25, 50, 100 wt% with respect to epoxidized linseed oil, 3 phr of hardening accelerators were added, and the heat processing were performed at 150 degreeC for 10 hours. Examples of the curing accelerator include 2-ethyl-4-methyl-imidazole (Shikoku Kasei Kogyo Co., Ltd., product name Curesol 2E4MZ), tertiary amine (Meiden Chemical Co., Ltd. L-86), aromatic amine (Meiden Chemical Co., Ltd.). K-61B) was used.

硬化物の評価方法は、耐熱性の指標となるTg、体積抵抗率で行った。Tgは加熱処理によって得られた硬化物を4mmφ×15mmの円柱状に切り出し、TMA法によって線膨張率の変曲点から求めた。体積抵抗率はJISK6911に準拠し、1000Vの直流電圧印加で求めた。   The evaluation method of hardened | cured material was performed by Tg and volume resistivity used as a heat resistant parameter | index. Tg was determined from the inflection point of the linear expansion coefficient by the TMA method by cutting the cured product obtained by the heat treatment into a 4 mmφ × 15 mm cylindrical shape. The volume resistivity was determined by applying a DC voltage of 1000 V in accordance with JISK6911.

エポキシ化亜麻仁油に対し、ピロガロール樹脂を混合し、液状相溶物を得た。ピロガロール樹脂の混合量はエポキシ化亜麻仁油に対して10、25、50、100wt%とし、硬化促進剤を3phr添加して、150℃−16時間の加熱処理を行い絶縁性高分子材料組成物を得た。表1に得られた絶縁性材料組成物のTgの測定結果、表2に得られた絶縁性材料組成物の体積抵抗率の測定結果を示す。   Pyrogallol resin was mixed with epoxidized linseed oil to obtain a liquid compatible material. The mixing amount of pyrogallol resin is 10, 25, 50, 100 wt% with respect to epoxidized linseed oil, 3 phr of a curing accelerator is added, and heat treatment is performed at 150 ° C. for 16 hours to form an insulating polymer material composition. Obtained. Table 1 shows the measurement results of Tg of the obtained insulating material composition, and Table 2 shows the measurement results of the volume resistivity of the obtained insulating material composition.

Figure 2011111543
Figure 2011111543

Figure 2011111543
Figure 2011111543

表1、2に示すように、本発明に係る絶縁性高分子材料組成物は、非化石原料であるエポキシ化植物油と植物由来ポリフェノール樹脂の硬化物であって、Tgが室温以上であり絶縁性能に優れた硬化物であることが分かる。   As shown in Tables 1 and 2, the insulating polymer material composition according to the present invention is a cured product of non-fossil raw material epoxidized vegetable oil and plant-derived polyphenol resin, and has a Tg of room temperature or higher and an insulating performance. It can be seen that the cured product is excellent.

以上、実施例を挙げて説明したように、本発明の絶縁性高分子材料組成物の製造方法によれば、非石油原料であるエポキシ化植物油と植物由来ポリフェノールを原料としてTgが室温以上であり、絶縁性能に優れた硬化物(絶縁性高分子材料組成物)を得ることができる。そして、原料が非石油原料であるため、焼却処分しても新たな二酸化炭素の発生とは見なされないカーボンニュートラルな絶縁性高分子材料組成物を得ることができる。   As described above, as described with reference to the examples, according to the method for producing an insulating polymer material composition of the present invention, Tg is room temperature or higher using epoxidized vegetable oil and plant-derived polyphenol as non-petroleum raw materials. Further, a cured product (insulating polymer material composition) excellent in insulating performance can be obtained. Since the raw material is a non-petroleum raw material, it is possible to obtain a carbon neutral insulating polymer material composition that is not considered to generate new carbon dioxide even when incinerated.

すなわち、本発明に係る絶縁性高分子材料組成物の製造方法によれば、エポキシ化植物油を植物由来ポリフェノールをフェノール樹脂化した硬化剤により硬化させることで、絶縁性に優れ、かつ高温での機械特性が工業用エポキシ樹脂よりも大きく、従来の工業用エポキシ樹脂以上の物性を有する絶縁性高分子材料組成物を得ることができる。   That is, according to the method for producing an insulating polymer material composition according to the present invention, the epoxidized vegetable oil is cured with a curing agent obtained by converting a plant-derived polyphenol into a phenol resin, thereby having excellent insulation and a machine at a high temperature. It is possible to obtain an insulating polymer material composition having characteristics larger than those of industrial epoxy resins and having physical properties higher than those of conventional industrial epoxy resins.

したがって、この絶縁性高分子材料組成物は、電力機器用絶縁材料等に適用することができる。例えば、絶縁スペーサーや支持碍子、絶縁フレーム、絶縁シート、固体絶縁開閉装置(ミニクラッド)やガス絶縁機器に使われるモールド機器、変圧器などのモールド樹脂等のエポキシモールド製品全般に使用可能である。   Therefore, this insulating polymer material composition can be applied to insulating materials for electric power equipment. For example, it can be used for epoxy mold products such as insulating spacers, supporting insulators, insulating frames, insulating sheets, solid insulating switchgear (mini-cladding), molding equipment used in gas insulating equipment, and molding resins such as transformers.

Claims (4)

1種類以上のエポキシ化植物油に硬化剤として1種類以上の没食子酸誘導体を縮合させたフェノール樹脂が混合された後、加熱処理され硬化して得られた
ことを特徴とする絶縁性高分子材料組成物。
Insulating polymer material composition obtained by mixing one or more epoxidized vegetable oils with a phenol resin obtained by condensing one or more gallic acid derivatives as a curing agent, followed by heat treatment and curing object.
前記没食子酸誘導体は、ピロガロール、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸イソプロピル、没食子酸ブチル、没食子酸ペンチル、没食子酸イソペンチル、没食子酸オクチル、没食子酸デシル、没食子酸ドデシル、没食子酸トリデシル、没食子酸テトラデシル、没食子酸ペンタデシル、没食子酸ヘキサデシル、没食子酸ヘプタデシル、没食子酸オクタデシルのいずれかである
ことを特徴とする請求項1に記載の絶縁性高分子材料組成物。
The gallic acid derivative is pyrogallol, methyl gallate, ethyl gallate, propyl gallate, isopropyl gallate, butyl gallate, pentyl gallate, isopentyl gallate, octyl gallate, decyl gallate, dodecyl gallate, gallic acid 2. The insulating polymer material composition according to claim 1, which is any one of tridecyl, tetradecyl gallate, pentadecyl gallate, hexadecyl gallate, heptadecyl gallate, and octadecyl gallate.
前記エポキシ化植物油は、エポキシ化亜麻仁油である
ことを特徴とする請求項1または請求項2に記載の絶縁性高分子材料組成物。
The insulating polymer material composition according to claim 1, wherein the epoxidized vegetable oil is epoxidized linseed oil.
1種類以上の没食子酸誘導体を縮合させてフェノール樹脂化するフェノール樹脂化工程と、
前記フェノール樹脂化工程で得られたフェノール樹脂を1種類以上のエポキシ化植物油と混合する混合工程と、
前記混合工程で得られた混合物を加熱処理して絶縁性高分子材料組成物を得る硬化工程とを有する
ことを特徴とする絶縁性高分子材料組成物製造方法。
A phenol resinification step of condensing one or more gallic acid derivatives into a phenol resin;
A mixing step of mixing the phenol resin obtained in the phenol resin conversion step with one or more epoxidized vegetable oils;
And a curing step for obtaining an insulating polymer material composition by heat-treating the mixture obtained in the mixing step.
JP2009269783A 2009-11-27 2009-11-27 Insulating polymer material composition and method for producing the same Expired - Fee Related JP5299919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009269783A JP5299919B2 (en) 2009-11-27 2009-11-27 Insulating polymer material composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269783A JP5299919B2 (en) 2009-11-27 2009-11-27 Insulating polymer material composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011111543A true JP2011111543A (en) 2011-06-09
JP5299919B2 JP5299919B2 (en) 2013-09-25

Family

ID=44234129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269783A Expired - Fee Related JP5299919B2 (en) 2009-11-27 2009-11-27 Insulating polymer material composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5299919B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297313A (en) * 1986-06-18 1987-12-24 Hitachi Ltd Thermosetting resin composition and semiconductor device obtained by using said composition
JPH0314528A (en) * 1989-03-16 1991-01-23 Imperial Chem Ind Plc <Ici> Hydroxy compound
JPH04174502A (en) * 1990-07-24 1992-06-22 Kanegafuchi Chem Ind Co Ltd Rare earth bonded magnet and its manufacture
JPH07115011A (en) * 1993-10-18 1995-05-02 Sumitomo Metal Mining Co Ltd Resin bonded type magnet composition and resin bonded type magnet
JP2003183495A (en) * 2001-12-18 2003-07-03 Nippon Shokubai Co Ltd Resin composition containing fluorine compound
JP2010209231A (en) * 2009-03-11 2010-09-24 Chubu Electric Power Co Inc Insulating polymer composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297313A (en) * 1986-06-18 1987-12-24 Hitachi Ltd Thermosetting resin composition and semiconductor device obtained by using said composition
JPH0314528A (en) * 1989-03-16 1991-01-23 Imperial Chem Ind Plc <Ici> Hydroxy compound
JPH04174502A (en) * 1990-07-24 1992-06-22 Kanegafuchi Chem Ind Co Ltd Rare earth bonded magnet and its manufacture
JPH07115011A (en) * 1993-10-18 1995-05-02 Sumitomo Metal Mining Co Ltd Resin bonded type magnet composition and resin bonded type magnet
JP2003183495A (en) * 2001-12-18 2003-07-03 Nippon Shokubai Co Ltd Resin composition containing fluorine compound
JP2010209231A (en) * 2009-03-11 2010-09-24 Chubu Electric Power Co Inc Insulating polymer composition

Also Published As

Publication number Publication date
JP5299919B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
Yu et al. Vanillin-based degradable epoxy vitrimers: Reprocessability and mechanical properties study
KR102393692B1 (en) Thermosetting resin composition
US20090281273A1 (en) Insulating polymeric-material composition
Ratna Recent advances and applications of thermoset resins
KR20160140586A (en) Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof
JP5585982B2 (en) Insulating polymer material composition
JP2016504476A (en) 2,2 &#39;, 6,6&#39;-tetramethyl-4,4&#39;-methylenebis (cyclohexylamine) as a curing agent for epoxy resins
CN105837796A (en) Preparation of thermosetting polymer high in biological base content
JP2014196416A (en) Epoxidized lignin, method for producing the same, resin composition therefrom and molding material therefrom
JP5920069B2 (en) Lignin resin composition and lignin resin molding material
JP6217064B2 (en) Resin composition and resin molded body
JP2006066237A (en) Insulating polymeric material composition
JP5299919B2 (en) Insulating polymer material composition and method for producing the same
JP6645440B2 (en) Lignin resin composition, cured product and molded product
JP5499863B2 (en) Insulating polymer material composition and method for producing the same
EP3861045A1 (en) Process for the production of epoxy resins
JP5275888B2 (en) Plant-derived composition, method for producing the same, and molded product
JP6927891B2 (en) Epoxy resin system with stable high glass transition temperature for producing composite materials
JP6837354B2 (en) Manufacturing method of allyl group-containing resin, resin varnish and laminated board
WO2013157424A1 (en) Lignin-derived epoxy resin composition and use thereof
JP2017001963A (en) Epoxy furan compound, manufacturing method therefor, curable composition containing epoxy furan compound and cured article thereof
DE1942653B2 (en) Process for the production of adducts containing epoxy groups from polyglycidyl compounds and acidic polyesters of alpha-cycloaliphatic dicarboxylic acids and their application
KR100219298B1 (en) Process for producing highly reactive low-viscosity modified phenolic resins
JP2015048361A (en) Lignin resin composition, resin molded article, prepreg, and molding material
JP5322222B2 (en) Insulating polymer material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5299919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees