JP2007027556A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2007027556A
JP2007027556A JP2005210067A JP2005210067A JP2007027556A JP 2007027556 A JP2007027556 A JP 2007027556A JP 2005210067 A JP2005210067 A JP 2005210067A JP 2005210067 A JP2005210067 A JP 2005210067A JP 2007027556 A JP2007027556 A JP 2007027556A
Authority
JP
Japan
Prior art keywords
gate
oxide film
semiconductor device
region
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005210067A
Other languages
Japanese (ja)
Other versions
JP5002920B2 (en
Inventor
Ryosuke Matsumoto
良輔 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2005210067A priority Critical patent/JP5002920B2/en
Publication of JP2007027556A publication Critical patent/JP2007027556A/en
Application granted granted Critical
Publication of JP5002920B2 publication Critical patent/JP5002920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device provided with a MOS gate structure capable of excellently and stably controlling the threshold value of gate voltage, even if breakdown voltage of the gate voltage is highly increased by forming a thick gate oxide film. <P>SOLUTION: The method for manufacturing the semiconductor device having the MOS structure where the gate insulating film with thickness of 100 nm or thicker is formed by LPCVD process on the surface of a region containing boron as a dopant element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、縦型パワーMOSFET,IGBT,スイッチング電源用IC、自動車パワー系駆動用IC、フラットパネルディスプレー駆動用ICなど、高耐圧・大電流を制御する集積回路に適する低オン抵抗のパワーMOSFETとそれを制御するCMOS回路を構成するMOSFETとを集積した半導体装置およびその製造方法に関し、特に、パワーMOSFETは半導体基板表面に形成されたトレンチ内にゲート電極を設けたトレンチ型ラテラルパワーMOSFET(TLPM)であり、トレンチ構造のパワーMOSFETとCMOS回路を構成するプレーナ構造のMOSFETであって、厚膜ゲート絶縁膜を有するMOS構造を有する半導体装置の製造方法に関する。   The present invention relates to a power MOSFET having a low on-resistance suitable for an integrated circuit for controlling a high withstand voltage and a large current, such as a vertical power MOSFET, IGBT, switching power supply IC, automobile power system driving IC, flat panel display driving IC, etc. More particularly, the power MOSFET is a trench type lateral power MOSFET (TLPM) in which a gate electrode is provided in a trench formed on the surface of a semiconductor substrate. The present invention relates to a method for manufacturing a semiconductor device having a trench structure power MOSFET and a planar structure MOSFET that constitutes a CMOS circuit and having a MOS structure having a thick gate insulating film.

携帯機器の急速な普及、通信技術の高度化などに伴い、パワーMOSFETを内蔵したパワーICの重要性は高まっている。従来のパワーMOSFET単体と制御駆動回路との組み合わせに対し、横型パワーMOSFETを制御回路に集積することにより、小型化、低消費電力化、高信頼性化、低コスト化などが期待されているため、CMOSプロセスをベースにした高性能横型MOSFETの開発が精力的に進められている。
このような半導体装置の一つとして、高耐圧ゲート電圧とするための厚膜ゲート絶縁膜と低ゲート電圧しきい値とするための薄いゲート絶縁膜とをそれぞれ熱酸化により形成したMOSFETを同一半導体基板上に形成したものが知られている(特許文献1)。
図13は、そのようなCMOSを構成するプレーナ横型MOSFETとトレンチ横型パワーMOSFETを集積した従来の半導体装置の要部断面図であり、以下この半導体装置を前記図13に沿って説明する。以下の説明ではトレンチ横型パワーMOSFETとを単にトレンチMOSFETと呼び、プレーナ横型MOSFETを単にプレーナMOSFETと呼ぶこととする。なお、CMOS部はnチャネルのプレーナMOSFETとpチャネルのプレーナMOSFETで構成される。
With the rapid spread of portable devices and the advancement of communication technology, the importance of power ICs incorporating power MOSFETs is increasing. Compared to the conventional combination of a power MOSFET and a control drive circuit, the integration of a lateral power MOSFET in the control circuit is expected to reduce the size, power consumption, reliability, and cost. Development of a high-performance lateral MOSFET based on a CMOS process has been vigorously advanced.
As one of such semiconductor devices, a MOSFET in which a thick gate insulating film for achieving a high breakdown voltage gate voltage and a thin gate insulating film for achieving a low gate voltage threshold are formed by thermal oxidation, respectively, is the same semiconductor. What was formed on the board | substrate is known (patent document 1).
FIG. 13 is a cross-sectional view of a main part of a conventional semiconductor device in which a planar lateral MOSFET and a trench lateral power MOSFET constituting such a CMOS are integrated. The semiconductor device will be described with reference to FIG. In the following description, the trench lateral power MOSFET is simply referred to as a trench MOSFET, and the planar lateral MOSFET is simply referred to as a planar MOSFET. The CMOS portion is composed of an n-channel planar MOSFET and a p-channel planar MOSFET.

p半導体基板101に、CMOSを構成するプレーナMOSFETとトレンチMOSFETを形成するpウェル領域102、104とnウェル領域103、105をそれぞれ形成し、プレーナMOSFETを形成するpウェル領域104上とnウェル領域105上に17μm程度の薄いゲート酸化膜125、126を介してポリシリコンなどでゲート電極120、121を形成し、このゲート電極120、121の側壁にスペーサ122を形成してLDD構造(Lightly Doped Drain構造)のnソース領域またはnドレイン領域になるnソース/ドレイン領域129とpソース領域またはpドレイン領域になるpソース/ドレイン領域130をそれぞれ形成する。
トレンチMOSFETを形成するpウェル領域102とnウェル領域103に、トレンチ107、108をそれぞれ形成し、トレンチ107、108内にnドレイン領域110とpドレイン領域111をそれぞれ形成し、トレンチ107、108の側壁に62nm程度の厚いゲート酸化膜123、124を介して低抵抗ポリシリコンなどからなるゲート電極118、119を形成し、トレンチ107、108の外側表面にトレンチ107と接するnソース領域127、pソース領域128を形成し、ゲート電極118、119の内側を層間絶縁膜131の酸化膜で充填し、この酸化膜に開孔してnドレイン領域110、pドレイン領域111とに接続するようにタングステンなどのプラグ導体132、133を充填し、プラグ導体132、133上にドレイン電極134、135を、ソース領域127、128上にソース電極136、137をアルミニウムなどで形成し、さらにプレーナMOSFETのnソース/ドレイン領域129上およびpソース/ドレイン領域130上にそれぞれソース/ドレイン電極138、139をアルミニウムなどで形成する。
A p-type semiconductor substrate 101 is formed with p-well regions 102 and 104 and n-well regions 103 and 105 for forming a planar MOSFET and a trench MOSFET constituting the CMOS, respectively, and on the p-well region 104 and an n-well region for forming the planar MOSFET. Gate electrodes 120 and 121 are formed of polysilicon or the like through thin gate oxide films 125 and 126 of about 17 μm on 105, and spacers 122 are formed on the side walls of the gate electrodes 120 and 121 to form an LDD structure (Lightly Doped Drain). An n source / drain region 129 that becomes an n source region or an n drain region and a p source / drain region 130 that becomes a p source region or a p drain region are formed.
Trenches 107 and 108 are respectively formed in the p well region 102 and the n well region 103 forming the trench MOSFET, and an n drain region 110 and a p drain region 111 are formed in the trenches 107 and 108, respectively. Gate electrodes 118 and 119 made of low-resistance polysilicon or the like are formed on the sidewalls through thick gate oxide films 123 and 124 having a thickness of about 62 nm, and n source regions 127 and p sources that are in contact with the trenches 107 on the outer surfaces of the trenches 107 and 108. A region 128 is formed, and the insides of the gate electrodes 118 and 119 are filled with the oxide film of the interlayer insulating film 131. Tungsten or the like is formed so as to open the oxide film and connect to the n drain region 110 and the p drain region 111. Plug conductors 132 and 133 are filled, and the plug conductors 132 and 1 3, drain electrodes 134 and 135 are formed on the source regions 127 and 128, and source electrodes 136 and 137 are formed on the source regions 127 and 128 with aluminum or the like, and further on the n source / drain region 129 and the p source / drain region 130 of the planar MOSFET Source / drain electrodes 138 and 139 are formed of aluminum or the like.

プレーナMOSFETの薄いゲート酸化膜125、126を17nm程度とすることで0.8V±0.1V程度の低ゲートしきい値電圧とすることができ、トレンチMOSFETの厚いゲート酸化膜123、124を62nm程度とすることで所定のゲートしきい値電圧と60V以上の高いゲート耐圧を得ることができる。
一方、さらに厚い100nmの熱酸化膜をゲート酸化膜とする場合、ホウ素(ボロン)が酸化膜中に吸い出されて偏析するために、ゲート酸化膜に沿う領域、すなわちチャネル領域でホウ素の濃度が下がる現象が存在する記載が見られる(特許文献2−0014欄)。
また、リンイオンのドーズ量3×1013cm−2によるウェルの形成とそのチャネルの形成とその不純物濃度を低く抑えるため、ドーズ量1.5×1013cm−2ボロンイオンを注入する記載がある(特許文献3−0050欄)。またさらに、LPCVD法により、2.5〜6.0μmのシリコン酸化膜からなるゲート絶縁膜を形成するという記載もある(特許文献3−0051欄)。
特開2004−253470号公報 特開平2004−119616号公報 特開平11−111980号公報
By setting the thin gate oxide films 125 and 126 of the planar MOSFET to about 17 nm, a low gate threshold voltage of about 0.8 V ± 0.1 V can be obtained, and the thick gate oxide films 123 and 124 of the trench MOSFET can be set to 62 nm. By setting the degree, a predetermined gate threshold voltage and a high gate breakdown voltage of 60 V or higher can be obtained.
On the other hand, when a thicker 100 nm thermal oxide film is used as the gate oxide film, boron (boron) is absorbed into the oxide film and segregates, so that the concentration of boron in the region along the gate oxide film, that is, in the channel region is low. There is a description that there is a phenomenon of decreasing (Patent Document 2-0014 column).
In addition, there is a description of implanting a dose amount of 1.5 × 10 13 cm −2 boron ions in order to suppress the formation of a well with a dose amount of 3 × 10 13 cm −2 of phosphorus ions, the formation of the channel, and the impurity concentration thereof. (Patent Document 3-0050 column). Furthermore, there is a description that a gate insulating film made of a silicon oxide film of 2.5 to 6.0 μm is formed by LPCVD (Patent Document 3-0051 column).
JP 2004-253470 A Japanese Patent Laid-Open No. 2004-119616 Japanese Patent Laid-Open No. 11-11980

しかしながら、前記特許文献1に記載されている、高ゲート電圧しきい値とするための厚膜ゲート絶縁膜と低ゲート電圧しきい値とするための薄いゲート絶縁膜とをそれぞれ有するMOSFETを同一半導体基板上に形成した半導体装置は、ゲート酸化膜を厚膜にすると、製造条件をいろいろ変えてもそのゲート電圧しきい値(Vth)を目的の値にすることが容易ではなかった。
その理由を説明する。熱酸化により形成された厚膜ゲート酸化膜の場合、そのゲート電圧しきい値(Vth)をコントロールするには、ゲート電圧が高くなりすぎないように、たとえば、Pチャネル型MOSFETではNウェルのリンの不純物濃度を低くコントロールする必要がある。しかし、リンの不純物濃度が5.0×1012cm−3程度のように低濃度のNウェルの場合は、ゲート電圧しきい値(Vth)を低く抑えられるが、ゲート酸化膜(熱酸化膜)により、チャネル長が短くなるショートチャネルの問題が生じる。リンの不純物濃度が2.0×1013cm−3程度の高濃度ではショートチャネルは生じないが、ゲート電圧しきい値(Vth)が大きくなりすぎる。そこで、従来でも、前記Vthを抑えショートチャネルも起こさないようにするために、Nウェルの表面にBFのイオン注入を行って表面のみを実質的な低不純物濃度Nウェル層とするチャネル層形成法を行っていた。その場合でも、ゲート電圧しきい値(Vth)をある程度大きくしようとゲート酸化膜(熱酸化膜)を厚くしても、前記特許文献2の記載にも見られるように、注入したボロンの吸出し効果が大きくなり、思うようなVthのコントロール効果が得られなかった。
However, the MOSFETs described in Patent Document 1 each having a thick gate insulating film for setting a high gate voltage threshold and a thin gate insulating film for setting a low gate voltage threshold are the same semiconductor. In the semiconductor device formed on the substrate, when the gate oxide film is made thick, it is not easy to set the gate voltage threshold value (Vth) to the target value even if the manufacturing conditions are changed.
The reason will be explained. In the case of a thick gate oxide film formed by thermal oxidation, in order to control the gate voltage threshold (Vth), for example, in a P-channel MOSFET, an N-well phosphorous layer is used so that the gate voltage does not become too high. It is necessary to control the impurity concentration of the low. However, in the case of an N well having a low concentration such as an impurity concentration of phosphorus of about 5.0 × 10 12 cm −3 , the gate voltage threshold (Vth) can be kept low, but a gate oxide film (thermal oxide film) ) Causes a short channel problem that shortens the channel length. When the impurity concentration of phosphorus is as high as about 2.0 × 10 13 cm −3 , a short channel does not occur, but the gate voltage threshold (Vth) becomes too large. Therefore, conventionally, in order to suppress the Vth and prevent the occurrence of a short channel, ion implantation of BF 2 is performed on the surface of the N well so that only the surface becomes a substantially low impurity concentration N well layer. I was doing the law. Even in such a case, even if the gate oxide film (thermal oxide film) is made thicker to increase the gate voltage threshold (Vth) to some extent, as shown in the description of Patent Document 2, the sucked-out effect of implanted boron As a result, the desired Vth control effect could not be obtained.

後者のNウェルの表面へのBFを用いたボロンのイオン注入の場合についてさらに説明すると、Nウェルの表面へのボロンのドーズ量が少量である場合は、ボロンイオンがシリコン基板から熱酸化膜中へ多量に偏析するため、しきい値を適正に制御することが難しくなる。また、ボロンのドーズ量が多量である場合は、熱酸化膜の熱履歴によりボロンイオンが深く入りすぎるため、チャネルリークがおきてパンチスルーを招きやすい。だからといって、前記熱履歴を避けて熱酸化膜形成後にボロン(BF)のイオン注入を行うと、熱酸化膜にイオン注入による欠陥が形成されゲート酸化膜の特性を著しく劣化させるので、その方法は採用し難いなどの問題がある。
本発明は、以上述べた問題点に鑑みてなされたものであり、本発明の目的とするところは、前記の問題点を解決して、厚膜ゲート酸化膜を形成することによりゲート電圧の高耐圧化を図っても、良好に安定してゲート電圧のしきい値をコントロールできるMOSゲート構造を備える半導体装置の製造方法を提供することにある。
The case of boron ion implantation using BF 2 to the surface of the latter N well will be further described. When the dose of boron to the surface of the N well is small, boron ions are transferred from the silicon substrate to the thermal oxide film. Due to segregation in large amounts, it becomes difficult to control the threshold appropriately. Further, when the boron dose is large, boron ions are too deep due to the thermal history of the thermal oxide film, so that channel leaks easily occur and punch through is likely to occur. However, if boron (BF 2 ) ion implantation is performed after the thermal oxide film is formed while avoiding the thermal history, defects due to ion implantation are formed in the thermal oxide film and the characteristics of the gate oxide film are remarkably deteriorated. There are problems such as difficulty in hiring.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to solve the above problems and form a thick gate oxide film to increase the gate voltage. An object of the present invention is to provide a method of manufacturing a semiconductor device having a MOS gate structure that can control the threshold value of the gate voltage stably and stably even when the breakdown voltage is reduced.

特許請求の範囲の請求項1記載の本発明によれば、前記目的は、MOSゲート構造を有する半導体装置の製造方法において、不純物元素としてボロンを含有する領域の表面に、100nm以上の厚さのゲート絶縁膜をLPCVD法により形成する半導体装置の製造方法とすることにより、達成される。
特許請求の範囲の請求項2記載の本発明によれば、半導体基板の表面層に形成されるn型半導体領域の表面をボロンのイオン注入により高抵抗化する工程と、高抵抗化された前記n型半導体領域表面に厚さ100nm以上のゲート絶縁膜をLPCVD法で形成する工程とを含む半導体装置の製造方法とすることによっても、前記目的は達成される。
特許請求の範囲の請求項3記載の本発明によれば、ボロンイオンのドーズ量が1.0×1012cm−2以上である請求項2記載の半導体装置の製造方法とすることが好ましい。
According to the first aspect of the present invention, the object of the present invention is to provide a method for manufacturing a semiconductor device having a MOS gate structure having a thickness of 100 nm or more on the surface of a region containing boron as an impurity element. This is achieved by adopting a semiconductor device manufacturing method in which the gate insulating film is formed by LPCVD.
According to the second aspect of the present invention, the step of increasing the resistance of the surface of the n-type semiconductor region formed in the surface layer of the semiconductor substrate by boron ion implantation, and the step of increasing the resistance The object can also be achieved by a method for manufacturing a semiconductor device including a step of forming a gate insulating film having a thickness of 100 nm or more on the surface of an n-type semiconductor region by LPCVD.
According to the present invention as set forth in claim 3, it is preferable that the method for manufacturing a semiconductor device according to claim 2, wherein a dose amount of boron ions is 1.0 × 10 12 cm −2 or more.

特許請求の範囲の請求項4記載の本発明によれば、前記LPCVD絶縁膜がHTO酸化膜である請求項1乃至3のいずれか一項に記載の半導体装置の製造方法とすることが望ましい。
特許請求の範囲の請求項5記載の本発明によれば、前記LPCVD絶縁膜の形成後、800℃乃至900℃の温度範囲の熱酸化工程により、厚さの範囲が10nm乃至20nmの熱酸化膜が形成される請求項1乃至4のいずれか一項に記載の半導体装置の製造方法とすることが好適である。
特許請求の範囲の請求項6記載の本発明によれば、半導体基板にトレンチを形成する工程と、該トレンチ内にMOSゲート構造を形成する工程を備える求項1乃至5のいずれか一項に記載の半導体装置の製造方法とすることがより好ましい。
According to the fourth aspect of the present invention, it is preferable that the LPCVD insulating film is an HTO oxide film, and the method for manufacturing a semiconductor device according to any one of the first to third aspects is employed.
According to the present invention of claim 5, a thermal oxide film having a thickness range of 10 nm to 20 nm is formed by a thermal oxidation process at a temperature range of 800 ° C. to 900 ° C. after the formation of the LPCVD insulating film. It is preferable that the semiconductor device manufacturing method according to any one of claims 1 to 4 is formed.
According to the present invention of claim 6, according to any one of claims 1 to 5, comprising a step of forming a trench in a semiconductor substrate and a step of forming a MOS gate structure in the trench. More preferably, the manufacturing method of the semiconductor device described is used.

本発明によれば、厚膜ゲート酸化膜を形成することによりゲート電圧の高耐圧化を図る場合でも、良好に安定してゲート電圧のしきい値をコントロールできるMOSゲート構造を備える半導体装置の製造方法を提供することができる。   According to the present invention, a semiconductor device having a MOS gate structure capable of controlling the gate voltage threshold value stably and stably even when the gate voltage is increased by forming a thick gate oxide film is manufactured. A method can be provided.

図1は、この発明の実施例1の半導体装置の要部断面図である。この図は、CMOS部を構成するプレーナ横型MOSFETとトレンチ横型パワーMOSFETを集積したデバイスの断面模式図を示す。以下の説明ではトレンチ横型パワーMOSFETを単にトレンチMOSFETと呼び、プレーナ横型MOSFETを単にプレーナMOSFETと呼ぶこととする。なお、CMOS部はnチャネルのプレーナMOSFETとpチャネルのプレーナMOSFETで構成される。
p半導体基板1に、CMOS用プレーナMOSFETとトレンチMOSFETとをそれぞれ構成するためのpウェル領域2、4とnウェル領域3、5をそれぞれ備え、これらの領域のうち、pウェル領域4上とnウェル領域5上に、減圧CVD法による17μm程度の薄いゲート酸化膜25、26を介してポリシリコンなどでゲート電極20、21と、このゲート電極20、21の側壁にスペーサ22を形成してLDD構造(Lightly Doped Drain構造)のnソース領域およびnドレイン領域になるnソース/ドレイン領域29とpソース領域およびpドレイン領域になるpソース/ドレイン領域30とをそれぞれ備える。
1 is a cross-sectional view of a principal part of a semiconductor device according to Embodiment 1 of the present invention. This figure shows a schematic cross-sectional view of a device in which a planar lateral MOSFET and a trench lateral power MOSFET constituting a CMOS portion are integrated. In the following description, the trench lateral power MOSFET is simply referred to as a trench MOSFET, and the planar lateral MOSFET is simply referred to as a planar MOSFET. The CMOS portion is composed of an n-channel planar MOSFET and a p-channel planar MOSFET.
A p semiconductor substrate 1 is provided with p well regions 2 and 4 and n well regions 3 and 5 for constituting a CMOS planar MOSFET and a trench MOSFET, respectively. On the well region 5, gate electrodes 20 and 21 are formed of polysilicon or the like through thin gate oxide films 25 and 26 of about 17 μm by low pressure CVD, and spacers 22 are formed on the side walls of the gate electrodes 20 and 21 to form LDD. An n source / drain region 29 to be an n source region and an n drain region of a structure (Lightly Doped Drain structure) and a p source / drain region 30 to be a p source region and a p drain region are provided.

トレンチMOSFETを形成するpウェル領域2とnウェル領域3に、トレンチ7、8をそれぞれ有し、トレンチ7、8内にはnドレイン領域10(およびnソース領域)とpドレイン領域11(およびpソース領域)をそれぞれ備える。トレンチ7の側壁には減圧CVD法による100μm以上の厚いゲート酸化膜23、24を介してポリシリコンなどでゲート電極18、19を有している。トレンチ7、8の外側表面にトレンチ7と接するnソース領域27(およびnドレイン領域)、pソース領域28(およびpドレイン領域)を有する。前記ゲート電極18、19の内側に充填されている層間絶縁膜31は開孔されてポリシリコンまたはタングステンなどでプラグ導体32、33が充填され、さらにアルミニウムなどからなるドレイン電極34、35、ソース電極36、37ソース/ドレイン電極38、39が形成されている。   The p well region 2 and the n well region 3 forming the trench MOSFET have trenches 7 and 8, respectively. The trenches 7 and 8 have an n drain region 10 (and n source region) and a p drain region 11 (and p). Source regions). On the side wall of the trench 7, gate electrodes 18 and 19 made of polysilicon or the like are provided via thick gate oxide films 23 and 24 of 100 μm or more by low pressure CVD. The n source region 27 (and n drain region) and the p source region 28 (and p drain region) in contact with the trench 7 are provided on the outer surfaces of the trenches 7 and 8. The interlayer insulating film 31 filled inside the gate electrodes 18 and 19 is opened and filled with plug conductors 32 and 33 with polysilicon or tungsten, and further drain electrodes 34 and 35 made of aluminum or the like, and a source electrode. 36, 37 source / drain electrodes 38, 39 are formed.

本発明にかかる半導体装置によれば、プレーナMOSFETの薄いゲート酸化膜25、26を17nm程度とすることで0.8V±0.1V程度の低ゲートしきい値電圧とすることができ、トレンチMOSFETに厚いゲート酸化膜23、24を100nm程度としても、所定のゲートしきい値電圧のコントロールと60V以上の高いゲート耐圧を得ることができる。本発明によれば、厚いゲート酸化膜を減圧CVD法により形成するので、酸化膜によるボロンの吸出し効果による不純物濃度の変動が無くなり、100nm乃至300nmの範囲とすることが容易にできるだけでなく、ゲート電圧のしきい値のコントロールも容易になる。また、ゲート耐圧も100V程度まで高くすることができる。
図2〜図10を用いて、前述の本発明の実施例にかかる半導体装置の製造方法を説明する。この製造方法は図1の半導体装置であって、CMOS部(プレーナMOSFETでnチャネルMOSFETとpチャネルMOSFETを含む)とトレンチMOSFETが同一半導体基板に形成される半導体装置の製造方法である。
According to the semiconductor device of the present invention, by setting the thin gate oxide films 25 and 26 of the planar MOSFET to about 17 nm, a low gate threshold voltage of about 0.8V ± 0.1V can be obtained. Even if the thick gate oxide films 23 and 24 are set to about 100 nm, a predetermined gate threshold voltage control and a high gate breakdown voltage of 60 V or more can be obtained. According to the present invention, since the thick gate oxide film is formed by the low pressure CVD method, the impurity concentration does not fluctuate due to the boron absorption effect by the oxide film, and the range of 100 nm to 300 nm can be easily set. Control of the voltage threshold is also facilitated. Also, the gate breakdown voltage can be increased to about 100V.
A method of manufacturing a semiconductor device according to the above-described embodiment of the present invention will be described with reference to FIGS. This manufacturing method is the manufacturing method of the semiconductor device of FIG. 1 in which a CMOS portion (including a n-channel MOSFET and a p-channel MOSFET as a planar MOSFET) and a trench MOSFET are formed on the same semiconductor substrate.

まず、p半導体基板1の表面層に選択的にpウェル領域2、4、nウェル領域3、5を形成する。p半導体基板1の不純物濃度を適正に選定した場合はpウェル領域2、4は必ずしも形成する必要はない(図2)。
つぎに、トレンチMOSFETを形成する部分に、例えば400nmの酸化膜6(熱酸化膜、または、堆積酸化膜)をマスクにトレンチ7、8を形成し、この酸化膜6をマスクとしてトレンチ7、8を形成する(図3)。
つぎに、トレンチの底部7a、8a底面に、選択的にnおよびpドレイン領域(nまたはpソース領域)を形成し、素子分離するためのLOCOS9(選択酸化膜)を形成する。この際、必要に応じて、図示しないフィールドイオン注入や、CMOS部にパンチスルー防止用イオン注入を行う場合もある(図4)。
First, p well regions 2 and 4 and n well regions 3 and 5 are selectively formed on the surface layer of the p semiconductor substrate 1. When the impurity concentration of the p semiconductor substrate 1 is appropriately selected, the p well regions 2 and 4 are not necessarily formed (FIG. 2).
Next, trenches 7 and 8 are formed in a portion where the trench MOSFET is to be formed using, for example, a 400 nm oxide film 6 (thermal oxide film or deposited oxide film) as a mask, and trenches 7 and 8 are formed using this oxide film 6 as a mask. (FIG. 3).
Next, n and p drain regions (n or p source regions) are selectively formed on the bottom surfaces of the bottoms 7a and 8a of the trench, and a LOCOS 9 (selective oxide film) for element isolation is formed. At this time, field ion implantation (not shown) or punch-through prevention ion implantation may be performed in the CMOS portion as necessary (FIG. 4).

つぎに、犠牲酸化膜12を形成し、符号13によって示すイオン注入などによりチャネル領域14を形成する。このチャネル領域14の形成はゲート電圧しきい値を調整するためである(図5)。この際、ゲート電圧しきい値をコントロール可能かどうかについて、前もって、実験によりドーズ量を次に説明するように3種類変えて調べた。
(実験結果)
前記実験内容および結果について説明する。図10に示すような実験パターンで、厚膜ゲート絶縁膜として、それぞれ100nmの熱酸化膜とHTO(High Temperature Oxide)酸化膜を有する実験用MOSゲート構造を形成し、ゲート電圧―ゲート電流の関係を測定し、ゲート電圧しきい値をチャネル領域の作成条件によって制御可能であるかを確認した。熱酸化膜の場合の結果を図11、HTO酸化膜の場合の結果を図12にそれぞれ示す。
Next, a sacrificial oxide film 12 is formed, and a channel region 14 is formed by ion implantation indicated by reference numeral 13. The channel region 14 is formed in order to adjust the gate voltage threshold (FIG. 5). At this time, whether or not the gate voltage threshold value can be controlled was examined in advance by changing the dose amount by three types as described below.
(Experimental result)
The contents and results of the experiment will be described. In the experimental pattern as shown in FIG. 10, an experimental MOS gate structure having a thermal oxide film of 100 nm and an HTO (High Temperature Oxide) oxide film is formed as a thick gate insulating film, and the relationship between gate voltage and gate current is formed. Was measured, and it was confirmed whether the gate voltage threshold could be controlled by the channel region creation conditions. FIG. 11 shows the result in the case of the thermal oxide film, and FIG. 12 shows the result in the case of the HTO oxide film.

前記実験用MOSゲート構造は、p半導体基板50に形成されるドーズ量6×1012cm−2のNウェル51と、このNウェル51の表面に3.5μm長のチャネル領域となる領域を挟むように形成されるp型オフセット領域52と、Nウェル領域へのBFを用いたボロンイオン注入により形成したチャネル領域53と、このチャネル領域53を覆うゲート絶縁膜54とから構成される。p型オフセット領域52はドーズ量3.0×1015cm−2の高濃度で浅い拡散領域の52−1とドーズ量1.2×1013cm−2の低濃度で深い拡散領域の52−2を含む。チャネル領域の形成条件は、ドーズ量で、1.0×1012cm−2、1.2×1012cm−2、1.4×1012cm−2の3種類で行った。
図11に示すゲート電圧電流波形(縦軸は電流Id(A)を、横軸は電圧Vg(V)を表す)から、熱酸化膜で厚膜ゲート酸化膜を形成すると、ボロンイオンの偏析が起きるため、前記3種類のいずれのドーズ量でも、電圧電流波形はほとんど変わらないことから、チャネル領域のドーズ量を変えてもしきい値を効果的に制御できないことがわかる。一方、厚膜ゲート酸化膜としてHTO酸化膜を用いた図12に示す電圧電流波形からは、ドーズ量によって波形がシフトし、効果的にしきい値制御ができることがわかる。この結果、Nウェルへのボロンのイオン注入によってチャネル層の不純物濃度を実質的に低下させ、高抵抗にできるので、当初のNウェルの不純物濃度を高くできるので、チャネル長を短くすることが可能になり、パターンの高密度化が可能になり、電流容量の増大に寄与することができる。図11、12で、1.E−01Aとあるは1.0×10−1アンペア、を表し、1.0E12または1.00E+12とあるは1.0×1012cm−2を表す。その他の同様の記載も前述と同じ。要するに、本発明にかかる厚膜ゲート酸化膜は特に100nm以上とすると、熱酸化膜で100nm以上のゲート酸化膜とした場合、ボロンの偏析によりゲート電圧しきい値の制御が困難であったのを、本発明によれば、ボロンの偏析がないので、ゲートしきい値の制御が可能になるというものである。従って、膜厚100nm未満では、次第に前述の効果は減少していく。前述の図11、12ではNウェル領域にpチャネル領域を形成する場合について説明したが、Pウェル領域にnチャネルを形成する場合も、LPCVD(Low Pressure Chemical Vapor Deposition)法による厚膜ゲート酸化膜を形成すれば、酸化膜によるボロン偏析によるゲート電圧しきい値の変動を心配する必要が無いので、Pウェル領域の不純物濃度を制御するだけで、問題なくゲート電圧のしきい値制御ができる。
In the experimental MOS gate structure, an N well 51 having a dose amount of 6 × 10 12 cm −2 formed in the p semiconductor substrate 50 and a region to be a 3.5 μm long channel region are sandwiched between the surfaces of the N well 51. The p-type offset region 52 thus formed, a channel region 53 formed by boron ion implantation using BF 2 into the N well region, and a gate insulating film 54 covering the channel region 53 are configured. The p-type offset region 52 is a high concentration and shallow diffusion region 52-1 with a dose amount of 3.0 × 10 15 cm −2 and a low concentration and deep diffusion region 52− with a dose amount of 1.2 × 10 13 cm −2. 2 is included. The channel region was formed at three doses of 1.0 × 10 12 cm −2 , 1.2 × 10 12 cm −2 and 1.4 × 10 12 cm −2 in terms of dose.
From the gate voltage current waveform shown in FIG. 11 (the vertical axis represents the current Id (A) and the horizontal axis represents the voltage Vg (V)), when a thick gate oxide film is formed with a thermal oxide film, segregation of boron ions occurs. As a result, the voltage / current waveform hardly changes at any of the three types of doses, and it can be seen that the threshold cannot be effectively controlled even if the dose of the channel region is changed. On the other hand, from the voltage / current waveform shown in FIG. 12 using the HTO oxide film as the thick gate oxide film, it can be seen that the threshold value can be effectively controlled by the waveform shifting depending on the dose. As a result, the impurity concentration of the channel layer can be substantially reduced by boron ion implantation into the N well, and the resistance can be increased, so that the impurity concentration of the initial N well can be increased, so that the channel length can be shortened. Thus, the density of the pattern can be increased and the current capacity can be increased. 11 and 12, 1. E-01A represents 1.0 × 10 −1 ampere, and 1.0E12 or 1.00E + 12 represents 1.0 × 10 12 cm −2 . Other similar descriptions are the same as described above. In short, if the thick gate oxide film according to the present invention is 100 nm or more, it is difficult to control the gate voltage threshold due to the segregation of boron when the thermal oxide film is a gate oxide film of 100 nm or more. According to the present invention, since there is no segregation of boron, the gate threshold value can be controlled. Therefore, when the film thickness is less than 100 nm, the above-described effect gradually decreases. 11 and 12, the case where the p-channel region is formed in the N-well region has been described. However, even when the n-channel is formed in the P-well region, a thick gate oxide film formed by LPCVD (Low Pressure Chemical Vapor Deposition) is used. Since there is no need to worry about fluctuations in the gate voltage threshold due to boron segregation due to the oxide film, it is possible to control the threshold of the gate voltage without problems only by controlling the impurity concentration in the P well region.

前記図5の説明の続きに戻る。トレンチMOSゲート構造の形成のためにトレンチ7、8側壁にイオン注入する場合はイオン注入13の打ち込み角度を例えば45°にして打ち込むことにより、本発明によれば、適宜、目的のトレンチMOSFETのしきい値になるようにイオン注入のドーズ量を1.0×1012cm−2に調節して行うことができる(図5)。
つぎに、犠牲酸化膜12を除去した後、第一の酸化膜15をLPCVD(減圧CVD)法により100nm堆積させ、トレンチMOSFETのトレンチ7、8部を例えばフォトレジスト16でマスクして、CMOS形成領域上とトレンチ7、8の外側領域上の第一の酸化膜15を弗酸緩衝溶液によりエッチングして除去する。このエッチングでは、異方性エッチングと異なり、CMOS形成領域の表面およびトレンチMOSFETのソース形成領域表面を荒らしたりダメージを与えたりすることはない。前記減圧CVD酸化膜は好ましくはHTO膜とする(図6)。
Returning to the continuation of the description of FIG. When ions are implanted into the sidewalls of the trenches 7 and 8 in order to form the trench MOS gate structure, the implantation angle of the ion implantation 13 is implanted at, for example, 45 °. The dose of ion implantation can be adjusted to 1.0 × 10 12 cm −2 so as to be a threshold value (FIG. 5).
Next, after removing the sacrificial oxide film 12, a first oxide film 15 is deposited to a thickness of 100 nm by LPCVD (low pressure CVD), and the trenches 7 and 8 of the trench MOSFET are masked with, for example, a photoresist 16 to form a CMOS. The first oxide film 15 on the region and on the outer region of the trenches 7 and 8 is removed by etching with a hydrofluoric acid buffer solution. In this etching, unlike the anisotropic etching, the surface of the CMOS formation region and the surface of the source formation region of the trench MOSFET are not roughened or damaged. The low-pressure CVD oxide film is preferably an HTO film (FIG. 6).

つぎに、第二の酸化膜17を800℃から900℃の温度範囲で例えば17nm形成する。第二の酸化膜17は減圧CVD法による堆積酸化膜でも、熱酸化膜でもよい。熱酸化膜の場合は、第一の酸化膜15のシリコン基板界面にも形成されるが、第二の酸化膜が熱酸化膜の場合の膜厚が10nm〜20nmの範囲ならば、ボロンイオンの偏析を最小限に抑えることができるだけでなく、シリコン酸化膜界面の安定化およびCVD酸化膜中の欠陥の回復もされる等の利点があるため、ゲート絶縁膜としては好ましい。第二の酸化膜を減圧CVD酸化膜で形成する場合は熱酸化膜の形成を省略することもできる。
この結果、CMOS部領域上には第二の酸化膜17のみの薄い酸化膜、トレンチMOSFET形成領域には第一と第二の酸化膜15、17を積層した厚い酸化膜が形成される。ただし、厚い酸化膜の膜厚は前記第一絶縁膜15の厚さを100nmとしてもに積層形成される第二の絶縁膜17(厚さ17nm)が熱酸化膜の場合は成長速度が遅くなるので、積層して積算どおりには膜厚は増加しない(図7)。ここでは、第一の酸化膜の厚さを100nmとしたが、このトレンチMOSFETにおいては、必要により300nm程度にまで膜厚を増加させることができる。
Next, the second oxide film 17 is formed in a temperature range of 800 ° C. to 900 ° C., for example, 17 nm. The second oxide film 17 may be a deposited oxide film by a low pressure CVD method or a thermal oxide film. In the case of a thermal oxide film, it is also formed at the silicon substrate interface of the first oxide film 15. However, if the thickness of the second oxide film is a thermal oxide film in the range of 10 nm to 20 nm, boron ions Not only can segregation be minimized, but also there are advantages such as stabilization of the interface of the silicon oxide film and recovery of defects in the CVD oxide film, so that it is preferable as a gate insulating film. When the second oxide film is formed of a low pressure CVD oxide film, the formation of the thermal oxide film can be omitted.
As a result, a thin oxide film of only the second oxide film 17 is formed on the CMOS region, and a thick oxide film in which the first and second oxide films 15 and 17 are stacked is formed in the trench MOSFET formation region. However, when the thickness of the first insulating film 15 is set to 100 nm, the growth rate is slow when the second insulating film 17 (thickness 17 nm) formed by lamination is a thermal oxide film. Therefore, the film thickness does not increase as the layers are stacked (FIG. 7). Here, the thickness of the first oxide film is 100 nm. However, in this trench MOSFET, the film thickness can be increased to about 300 nm if necessary.

つぎに、ゲート電極18、19、20、21を形成するためのポリシリコンを全面に形成する。CMOS部のゲート電極形成領域のポリシリコンをフォトレジストなどでマスクしてポリシリコンを異方性エッチングによりエッチバックすると、トレンチMOSFET部のトレンチ側壁部のゲート電極18、19はエッチングの異方性のために残るので、CMOS部のゲート電極20、21と共に同時に形成される。このとき、より確実な電極形成のためにCMOS部のゲート電極20、21とトレンチMOSFET部のゲート電極18、19を、それぞれ専用のフォトマスクを用いて、別々に形成してもよい(図8)。
つぎに、CMOS部にゲート電極20、21をマスクとして、不純物濃度が低い領域を形成し、その後、例えばCVD法で150nmの酸化膜を堆積させ、通常のCMOSプロセスにしたがって、RIE(Reactive Ion Etching)によりこの酸化膜をエッチングしてCMOS部のゲート電極側面にスペーサ22を形成する。このスペーサを形成するときに、露出している第二の酸化膜17も除去される。このスペーサ22とゲート電極20、21をマスクに不純物濃度の高い領域を拡散すると、CMOS部にLDD(Lightly Doped Drain)構造と言われるnおよびpソース/ドレイン領域29、30が形成され、同時にトレンチMOSFET部のnおよびpソース領域27、28(nまたはpドレイン領域)も形成される(図9)。
Next, polysilicon for forming the gate electrodes 18, 19, 20, 21 is formed on the entire surface. When the polysilicon in the gate electrode formation region of the CMOS portion is masked with a photoresist or the like and the polysilicon is etched back by anisotropic etching, the gate electrodes 18 and 19 on the trench sidewalls of the trench MOSFET portion are etched anisotropically. Therefore, it is formed simultaneously with the gate electrodes 20 and 21 of the CMOS portion. At this time, the gate electrodes 20 and 21 of the CMOS portion and the gate electrodes 18 and 19 of the trench MOSFET portion may be separately formed using a dedicated photomask for more reliable electrode formation (FIG. 8). ).
Next, a region having a low impurity concentration is formed in the CMOS portion using the gate electrodes 20 and 21 as a mask, and then an oxide film of 150 nm is deposited by, for example, a CVD method, and RIE (Reactive Ion Etching) is performed according to a normal CMOS process. This oxide film is etched to form a spacer 22 on the side surface of the gate electrode of the CMOS portion. When the spacer is formed, the exposed second oxide film 17 is also removed. When a region having a high impurity concentration is diffused using the spacer 22 and the gate electrodes 20 and 21 as masks, n and p source / drain regions 29 and 30 called LDD (Lightly Doped Drain) structures are formed in the CMOS portion, and trenches are simultaneously formed. N and p source regions 27 and 28 (n or p drain regions) of the MOSFET part are also formed (FIG. 9).

つぎに、図1に示す層間絶縁膜31となる酸化膜を、CVD(Chemical Vapor Deposition)法などで形成し、その後、層間絶縁膜31をエッチバックしてトレンチ7、8に開孔部を設ける。つぎに、前記開孔部にnドレイン領域10、pドレイン領域11とそれぞれ接続されるプラグ導体32、33をCVD法などによりポリシリコンで埋め込む。ここで、ポリシリコンの下に図示しないバリアメタル(TiN/Ti)を堆積させてもよい。つぎに、トレンチMOSFETのnソース領域27およびpソース領域28にコンタクトした前記プラグ導体上にソース電極36、37を、nドレイン領域10およびpドレイン領域11にコンタクトした前記導体プラグ上にドレイン電極34、35を、およびポリシリコンゲート電極に接続されるゲート電極パッドをそれぞれアルミニウムなどで形成する。   Next, an oxide film to be the interlayer insulating film 31 shown in FIG. 1 is formed by a CVD (Chemical Vapor Deposition) method or the like, and then the interlayer insulating film 31 is etched back to provide openings in the trenches 7 and 8. . Next, plug conductors 32 and 33 respectively connected to the n drain region 10 and the p drain region 11 are embedded in the opening with polysilicon by a CVD method or the like. Here, a barrier metal (TiN / Ti) (not shown) may be deposited under the polysilicon. Next, source electrodes 36 and 37 are formed on the plug conductor in contact with the n source region 27 and the p source region 28 of the trench MOSFET, and a drain electrode 34 is formed on the conductor plug in contact with the n drain region 10 and the p drain region 11. , 35, and gate electrode pads connected to the polysilicon gate electrode, respectively, are formed of aluminum or the like.

このように、異なる膜厚のゲート酸化膜を持つツインゲート構造とする場合でも、CMOS部を構成するプレーナMOSFETのゲートしきい値電圧の低電圧化とトレンチMOSFETのゲート耐圧コントロールとゲート電圧の高耐圧化を図ることができる。
以上の実施例の説明では、トレンチゲート構造を有するMOSFETについて説明したが、本発明はトレンチ構造の有無には直接的には係わらないので、非トレンチの通常のMOSFETにも適用きる。また、ツインゲートタイプでなくてもよく、MOS構造を有していれば、適用可能であるので、たとえば、縦型MOSFETやIGBT(Insulated Gate Bipolar Trasistor)などの厚膜ゲート酸化膜にも適用できる。
As described above, even in the case of a twin gate structure having gate oxide films having different thicknesses, the gate threshold voltage of the planar MOSFET constituting the CMOS portion is lowered, the gate breakdown voltage control of the trench MOSFET and the gate voltage are increased. The breakdown voltage can be increased.
In the above description of the embodiment, a MOSFET having a trench gate structure has been described. However, the present invention is not directly related to the presence or absence of a trench structure, and therefore can be applied to a normal MOSFET having no trench. Further, it may not be a twin gate type, and can be applied if it has a MOS structure. For example, it can be applied to a thick gate oxide film such as a vertical MOSFET or an IGBT (Insulated Gate Bipolar Transistor). .

本発明の半導体装置にかかる半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate concerning the semiconductor device of this invention. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その1)である。It is principal part sectional drawing (the 1) which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その2)である。It is principal part sectional drawing (the 2) of the semiconductor substrate which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その3)である。It is principal part sectional drawing (the 3) which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その4)である。It is principal part sectional drawing (the 4) which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その5)である。It is principal part sectional drawing (the 5) of the semiconductor substrate which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その6)である。It is principal part sectional drawing (the 6) of the semiconductor substrate which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その7)である。It is principal part sectional drawing (the 7) which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 本発明の半導体装置の製造方法を製造工程順に示す半導体基板の要部断面図(その8)である。It is principal part sectional drawing (the 8) which shows the manufacturing method of the semiconductor device of this invention in order of a manufacturing process. 実験用MOSゲート構造の断面図である。It is sectional drawing of a MOS gate structure for experiment. 従来のMOSゲート構造のゲート電圧電流波形とチャネル領域形成用ボロンドーズ量との関係図である。FIG. 10 is a relationship diagram between a gate voltage current waveform of a conventional MOS gate structure and a boron region amount for forming a channel region. 本発明にかかるMOSゲート構造のゲート電圧電流波形とチャネル領域形成用ボロンのドーズ量との関係図である。It is a relationship figure of the gate voltage current waveform of the MOS gate structure concerning this invention, and the dose of the boron for channel region formation. 従来の半導体装置にかかる半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate concerning the conventional semiconductor device.

符号の説明Explanation of symbols

1… シリコン基板、
2、4… Pウェル
3、5… Nウェル
7,8… トレンチ
10、11… ドレイン領域
13… イオン注入
14… チャネル層
15… 第一酸化膜(厚膜酸化膜)
18、19 ゲート電極
17−1、17−2 バリアメタル
18−1、18−2 埋め込みプラグ
19−1、19−2 金属電極配線。
1 ... Silicon substrate,
2, 4 ... P well 3, 5 ... N well 7, 8 ... Trench 10, 11 ... Drain region 13 ... Ion implantation 14 ... Channel layer 15 ... First oxide film (thick film oxide film)
18, 19 Gate electrode 17-1, 17-2 Barrier metal 18-1, 18-2 Embedded plug 19-1, 19-2 Metal electrode wiring.

Claims (6)

MOSゲート構造を有する半導体装置の製造方法において、不純物元素としてボロンを含有する領域の表面に、100nm以上の厚さのゲート絶縁膜をLPCVD法により形成することを特徴とする半導体装置の製造方法。 A manufacturing method of a semiconductor device having a MOS gate structure, wherein a gate insulating film having a thickness of 100 nm or more is formed by LPCVD on a surface of a region containing boron as an impurity element. 半導体基板の表面層に形成されるn型半導体領域の表面をボロンのイオン注入により高抵抗化する工程と、高抵抗化された前記n型半導体領域表面に厚さ100nm以上のゲート絶縁膜をLPCVD法で形成する工程とを含むことを特徴とする半導体装置の製造方法。 A step of increasing the resistance of the surface of the n-type semiconductor region formed on the surface layer of the semiconductor substrate by boron ion implantation, and a gate insulating film having a thickness of 100 nm or more on the surface of the increased resistance of the n-type semiconductor region is LPCVD. And a method of manufacturing the semiconductor device. ボロンイオンのドーズ量が1.0×1012cm−2以上であることを特徴とする請求項2記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 2, wherein a dose amount of boron ions is 1.0 × 10 12 cm −2 or more. 前記LPCVD絶縁膜がHTO酸化膜であることを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置の製造方法。 4. The method for manufacturing a semiconductor device according to claim 1, wherein the LPCVD insulating film is an HTO oxide film. 前記LPCVD絶縁膜の形成後、800℃乃至900℃の温度範囲の熱酸化工程により、厚さの範囲が10nm乃至20nmの熱酸化膜が形成されることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。 5. The thermal oxide film having a thickness range of 10 nm to 20 nm is formed by a thermal oxidation process in a temperature range of 800 ° C. to 900 ° C. after the LPCVD insulating film is formed. A method for manufacturing a semiconductor device according to claim 1. 半導体基板にトレンチを形成する工程と、該トレンチ内にMOSゲート構造を形成する工程を備えることを特徴とする請求項1乃至5のいずれか一項に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a trench in the semiconductor substrate and a step of forming a MOS gate structure in the trench.
JP2005210067A 2005-07-20 2005-07-20 Manufacturing method of semiconductor device Expired - Fee Related JP5002920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210067A JP5002920B2 (en) 2005-07-20 2005-07-20 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210067A JP5002920B2 (en) 2005-07-20 2005-07-20 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2007027556A true JP2007027556A (en) 2007-02-01
JP5002920B2 JP5002920B2 (en) 2012-08-15

Family

ID=37787895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210067A Expired - Fee Related JP5002920B2 (en) 2005-07-20 2005-07-20 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5002920B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835254B2 (en) 2011-06-30 2014-09-16 Fuji Electric Co., Ltd. Semiconductor device manufacturing method
CN114335152A (en) * 2022-03-02 2022-04-12 江苏游隼微电子有限公司 Silicon carbide power semiconductor device and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310611A (en) * 1993-04-21 1994-11-04 Fuji Electric Co Ltd Manufacture of semiconductor device
JPH07249770A (en) * 1994-03-10 1995-09-26 Toshiba Corp Semiconductor device and its fabrication
JPH1022397A (en) * 1996-07-05 1998-01-23 Ricoh Co Ltd Manufacture of semiconductor device
JP2001085686A (en) * 1999-09-13 2001-03-30 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2001284580A (en) * 2000-03-29 2001-10-12 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2001351895A (en) * 2000-06-09 2001-12-21 Denso Corp Method of manufacturing semiconductor device
JP2002353446A (en) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd Trench-type semiconductor device and method of manufacturing the same
JP2004253470A (en) * 2003-02-18 2004-09-09 Fuji Electric Device Technology Co Ltd Semiconductor device and its fabricating process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310611A (en) * 1993-04-21 1994-11-04 Fuji Electric Co Ltd Manufacture of semiconductor device
JPH07249770A (en) * 1994-03-10 1995-09-26 Toshiba Corp Semiconductor device and its fabrication
JPH1022397A (en) * 1996-07-05 1998-01-23 Ricoh Co Ltd Manufacture of semiconductor device
JP2001085686A (en) * 1999-09-13 2001-03-30 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2001284580A (en) * 2000-03-29 2001-10-12 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2001351895A (en) * 2000-06-09 2001-12-21 Denso Corp Method of manufacturing semiconductor device
JP2002353446A (en) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd Trench-type semiconductor device and method of manufacturing the same
JP2004253470A (en) * 2003-02-18 2004-09-09 Fuji Electric Device Technology Co Ltd Semiconductor device and its fabricating process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835254B2 (en) 2011-06-30 2014-09-16 Fuji Electric Co., Ltd. Semiconductor device manufacturing method
CN114335152A (en) * 2022-03-02 2022-04-12 江苏游隼微电子有限公司 Silicon carbide power semiconductor device and preparation method thereof

Also Published As

Publication number Publication date
JP5002920B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US8822291B2 (en) High voltage device
US9570545B2 (en) High voltage trench transistor
US9184283B2 (en) High voltage device
US7919811B2 (en) Semiconductor device and method for manufacturing same
JP5191893B2 (en) Semiconductor device and formation method
US7514749B2 (en) Semiconductor device and a method of manufacturing the same
KR102068395B1 (en) Semiconductor Device Structure having Low Rdson and Manufacturing Method thereof
JP2006049543A (en) Semiconductor device and manufacturing method therefor
JP2004241755A (en) Semiconductor device
US7804107B1 (en) Thyristor semiconductor device and method of manufacture
KR101531882B1 (en) Semiconductor device and method for manufacturing the same
US20030082861A1 (en) Method for fabricating a MOSFET
JP2005033098A (en) Semiconductor device and its manufacturing method
JP2012109425A (en) Semiconductor device and method of manufacturing the same
JP2006173538A (en) Semiconductor device
JP2006216863A (en) Semiconductor device and its manufacturing method
JP2007227747A (en) Semiconductor device, and manufacturing method thereof
JP2007287798A (en) Semiconductor device, and its fabrication process
US8912066B2 (en) Lateral double-diffused high voltage device
KR100847827B1 (en) Method for fabricating high voltage transistor
JP4822982B2 (en) Manufacturing method of semiconductor device
JP5002920B2 (en) Manufacturing method of semiconductor device
US20130292765A1 (en) Semiconductor device having a drain-gate isolation portion
JP2005116592A (en) Field effect transistor
US8466019B2 (en) Semiconductor device and bipolar-CMOS-DMOS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5002920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees