JP2007021315A - 中空マイクロカプセルの製造方法 - Google Patents

中空マイクロカプセルの製造方法 Download PDF

Info

Publication number
JP2007021315A
JP2007021315A JP2005204895A JP2005204895A JP2007021315A JP 2007021315 A JP2007021315 A JP 2007021315A JP 2005204895 A JP2005204895 A JP 2005204895A JP 2005204895 A JP2005204895 A JP 2005204895A JP 2007021315 A JP2007021315 A JP 2007021315A
Authority
JP
Japan
Prior art keywords
liquid
hollow
size
polymerization reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204895A
Other languages
English (en)
Inventor
Fumio Takemura
文男 竹村
Hisanori Makuta
寿典 幕田
Takafumi Daiguuji
啓文 大宮司
Takayuki Ooyabu
貴之 大籔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, University of Tokyo NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005204895A priority Critical patent/JP2007021315A/ja
Publication of JP2007021315A publication Critical patent/JP2007021315A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

【課題】 大きさのほぼ均一な微細粒径の中空のマイクロカプセルを、短時間に大量に安価に製造する方法を提供する。
【解決手段】 液体中に分散させた微細気泡の気液界面で重合反応をさせ、気泡のサイズとほぼ同じサイズである100nm〜100μmの大きさを持つ中空のマイクロカプセルを製造する方法。
【選択図】なし

Description

本発明は、微細な粒子径を有する中空のマイクロカプセルを製造する方法に関し、このマイクロカプセルは医療用あるいは化学工業用として利用されるものである。
マイクロカプセルの製造方法には大きく分けて界面重合法、コアセルベーション法、界面沈殿法などがあり(例えば、非特許文献1参照)、原理的には微粒化した芯物質を適当な媒質中に分散し、次いで微粒子の膜で被覆する方法である。
界面重合法は界面における重合反応をマイクロカプセル化に利用するもので、多くの場合に縮重合反応が利用される。例えば、油溶性モノマーとしては酸クロライド、セバコイルクロライド、テレフタル酸クロライド、水溶性モノマーとしてポリアミン、ポリフェノールを用い、壁物質としてポリアミドやポリエーテルを用いて重合反応を起こし被膜することができる。コアセルベーション法は相分離とそれに基づく界面化学的な変化を利用している。例としては、ゼラチン−アラビアゴムの組み合わせによるマイクロカプセルが有名である。界面沈殿法は温度やpH等の条件の違いによる溶解度の差を利用して、液中に分散させた芯物質の表面に壁物質を付着させてカプセル化する方法である。
いずれの方法もこれまで液体あるいは固体を芯物質として利用しており、気体を芯物質としてマイクロカプセル化、すなわち中空のカプセルを界面重合法、コアセルベーション法、界面沈殿法などで生成した例はないようである。
これまでの中空マイクロカプセルの製造方法は、液体を内包するマイクロカプセルを生成し、その内部の液体を抽出して中空にする方法(例えば、特許文献1、2参照)、あるいは同様のマイクロカプセルを熱膨張させてマイクロカプセルを生成する技術(例えば、特許文献3)である。また、ポーラス材料作成のための中空化技術等がある。
しかし、直接微細気泡の気液界面で重合反応をさせて微細な中空のマイクロカプセルを製造する技術は見当たらない。
監修 近藤保「最新マイクロカプセル化技術」(昭和62年12月21日、総合技術センター発行)p.3〜p.36 特表平9−508067号公報 特開2002−105104号公報 特公平3−79060号公報
しかし、液体を内包するマイクロカプセルを生成し、その内部の液体を外部に排出して中空にする方法では、液体の抽出のプロセスが複雑で、かつ排出方法によっては中空カプセルが球状を保てない場合もある。
また、抽出等に時間がかかることから大量にマイクロカプセルを生産することは難しく、コストも高くなる。さらに液体を芯物質とする場合には、微粒化が難しく大きさの均一性を整えることが困難であり、そのために長い時間を要することから生産効率が極めて低い。一方、熱膨張を利用する方法では気体を急激に膨張させるという原理上、10μm以下のカプセルを作ることは難しく大きさもそろえることは困難である。
したがって本発明の目的は、上記のような問題点に鑑み、大きさのほぼ均一な微細粒径のマイクロカプセルを、短時間に大量に安価に製造する方法を提供することである。
本発明者らは、鋭意検討した結果、液体中に芯物質となる微細気泡を生成させ、直接その微細気泡の気液界面で重合反応をさせることにより、本発明の目的を達成し得ることを見出した。
すなわち、本発明は、
(1)液体中に分散させた微細気泡の気液界面で重合反応をさせ、気泡のサイズとほぼ同じサイズである100nm〜100μmの大きさを持つ中空のマイクロカプセルを製造する方法、
(2)前記液体中に分散させた微細気泡は、ガスを0.20MPa(2気圧)以上で液体中に溶解させ、その後減圧し発泡させることで液体中に生成させることを特徴とする(1)に記載の中空のマイクロカプセルの製造方法、
(3)前記液体中に分散させた微細気泡は、気泡サイズによる浮力の違いから生じる上昇速度の違いに基づいて、気泡のサイズの選別を行うものであることを特徴とする(1)または(2)に記載の中空のマイクロカプセルの製造方法、および、
(4)前記気液界面での重合反応は、別途作成したプレポリマーをさらに重合反応させるものであることを特徴とする(1)〜(3)のいずれか1項に記載の中空のマイクロカプセルの製造方法、
を提供するものである。
なお、上記の「気泡のサイズとほぼ同じサイズ」には、「気泡のサイズと同一のサイズも含む」ものである。
本発明の効果は以下のとおりである。(1)液体中に分散させた微細気泡の気液界面で重合反応させることで、内部に分散させた気泡とほぼ同じ大きさの中空のマイクロカプセルを製造することができ、その大きさの予測が容易である。(2)液体中にガスを加圧溶解させ、発泡させることで液体中に瞬時に大量の芯物質となる気泡を生成でき、中空のマイクロカプセルが安価にかつ短時間で製造することができる。(3)浮力の違いから生じる気泡の上昇速度の違いに基づき、気泡サイズの選別が容易にでき、分散性の少ない(粒径の均一な)中空のマイクロカプセル群を選択的に製造することができる。(4)さらに本方法では溶解させた気泡を発泡させて芯物質を生成することから、乳化のプロセスが必要で無く、中空のマイクロカプセル生成時間の大幅な短縮が図れる。
本発明の中空のマイクロカプセルの製造方法は、微細気泡を分散させた液体中で行う方法である。この液体は、微細な気泡を保持することができるものであれば、どのようなものでもよいが、適度の粘性を有するものがよく、動粘度が5mm/s以上であるものが好ましい。
本発明で使用する液体としては、5℃程度から100℃程度の範囲で液状を示すものであり、本発明で行う重合反応条件の範囲で実質的に不活性なものであれば特に制限されるものではない。例えば、ポリビニルアルコール水溶液、メチルセルロース水溶液、ゼラチン水溶液等など液体を芯物質としてマイクロカプセルを生成する場合によく用いられる分散溶液を利用できる。ただし、前述したようにそれぞれの溶質の濃度を調整し、動粘度が5mm/s以上となる溶液が好ましい。
特に好ましいものとして、ポリビニルアルコール(PVA)水溶液を挙げることができ、その濃度は3.0〜8.0(質量)%が好ましい範囲である。
この液体には、溶液と反応しない非イオン系またはアルカリ系の界面活性剤等を添加することができる。これらによって、微細気泡の分散性や保持をさらに良好にすることができる。
本発明の気液界面での重合反応は、ラジカル重合、イオン重合、H重合、縮合的重合やポリ付加、ポリ縮合、付加縮合等通常の重合反応を利用することができるが、特にポリ縮合、付加縮合が生起するものが好ましい。利用できる成分は、特に限定するものでないが、例えば、有機アミン−酸アマイド−水溶性エポキシ化合物、尿素−ホルムアルデヒドプレポリマー、尿素−ホルムアルデヒド−ポリアクリル酸、アミノプラスト樹脂プレポリマー−界面活性剤、メラミン−ホルムアルデヒドプレポリマー、複素環状アミン−アルデヒド、ジイソシアン酸エステル−2価アルコール等を挙げることができる。
本発明では、調製した液体中に微細気泡を分散保持した液体を使用する方法である。気泡となるガスはどのようなものでもよいが、後記する液体中での重合反応時に不活性なものであればどのようなものでもよいが、窒素ガス、ヘリウムガス、水素ガス等を利用できるが、取り扱いやコストの面から空気が最適である。
気泡の生成は、公知の手段例えば、散気装置あるいは超音波を利用した方法(例えば、特開2005−74369号公報)等で気泡を発生させ液中に保持することもできるが、生成気泡径が不均一であったり微細気泡の生成には特殊な装置を必要とする。ただ、若干の非効率を許容しても10μm以下の気泡を生成する場合には超音波を利用した方法は好都合である。
さらに、本発明では調製した液体を圧力容器内に封入後、気体を導入し0.20MPa(2気圧)以上、好ましくは0.30MPa(3気圧)以上に保持するが、高くても2.03MPa(20気圧)程度である。気体を液中に溶解した後、急速に常圧まで減圧し、発泡現象を利用して大量の微細気泡を生成する。その間に液温は、重合反応を行う温度に保持するのが好ましい。
本発明では、粘性のある液体中に大量の微細気泡を生成することができるが、微細気泡のサイズは、液体の粘度、散気装置等のノズルサイズ、加圧の度合い、減圧の速度、界面活性剤の有無などの条件により、100nm〜100μm、好ましくは500nm〜50μm、さらに好ましくは500nm〜30μmの範囲内で所定のサイズ範囲に設定することができる。得られた微細気泡含有の液体は、重合反応を行う反応容器に移す。
また、生成した微細気泡は、その気泡サイズによって液体中で受ける浮力が相違するから、液体中を上昇する速度が違い、その上昇速度は(2Rg)/9ν)[ただし、Rは気泡径(mm)、gは重力加速度(mm/s)、νは動粘度(mm/s)]で表せる。例えば、動粘度10mm/sの液体中で,10μm、30μm、50μmの気泡径を持つ気泡群を液体容器の底面から同時に放出すると、それぞれの気泡の速度は0.02mm/s、0.2mm/s、0.5mm/sとなるから,1000秒後には,それぞれの気泡群は底面から20mm、200mm、500mmの位置に分散してまとまって存在している。したがって,気泡サイズのほぼ一定したものを液体中の一定領域に保持することができるので、所望領域の液体を重合反応器に移し、そこで重合反応を行えばマイクロカプセルの分散性の少ないほぼ均一なサイズのものを製造することができる。
本発明においては、気液界面での重合反応は、モノマーを直接微細気泡含有の液体中に添加し、最終のポリマーまで重合させることもできる。しかし、モノマーからの重合反応は、別反応器内でプレポリマーを作成しておき、分散した微細気泡を有する液体中にそのプレポリマーを移し、必要であれば重合開始剤等を加え、さらに重合反応を継続する方法が好ましい。プレポリマーを作成した後の気液界面での重合反応は、使用するプレポリマーによってその条件を適宜設定できるが、概ね50℃〜80℃、10分〜30分ゆっくり撹拌するのが好ましい。
その後、反応停止剤を添加して、例えばメラミンホルムアルデヒドポリマーの場合には炭酸ナトリウム水溶液でpHを上げて、反応を停止させ、室温で放置すると、ポリマー微粒子を含有するエマルションを得ることができる。
プレポリマーを別途作成し、液体中の微細気泡の気液界面でさらに重合反応を行う方法は、重合時間と微細気泡の消滅の関係の点から特に好ましいものである。
得られたポリマー微粒子を含有するエマルションからの中空マイクロカプセルの分離は、その比重差を利用すればよい。エマルションを約1時間静置すると、中実のポリマー微粒子は反応容器の底に沈み、中空のマイクロカプセルはエマルジョン中に浮遊し続ける。浮遊する部分を取り出し、フィルター等で液体分を除去し乾燥すれば、中空のマイクロカプセルを取り出すことができる。
得られたマイクロカプセルの一部を走査型電子顕微鏡(SEM)用の試料台に載置し、SEM画像を得た。このマイクロカプセルとプレポリマー微粒子(後記する比較例1)画像の表面光沢を比べるとその違いは明らかであり、本発明方法によるマイクロカプセルはその表面上できれいに重合反応をしていることがわかった。さらに、本発明方法で得られるマイクロカプセルには電子顕微鏡の撮影上不可避である電子ビームの照射による熱変形が認められることから、内部は中空であることは明らかである。また、電子顕微鏡撮影時の真空下においてカプセル内外の圧力差で破裂したカプセルの画像も認められ、この場合の膜厚は200nm程度であることからも50μm程度の中空カプセルであることがわかる。
電子顕微鏡による観察から本発明で得られるカプセルの直径は、使用した液体中の微細気泡とほぼ同様であり、100nm〜100μm程度であった。
本発明の方法で得られた中空カプセルは、さまざまな用途に応用できる可能性を有するものである。化学工業用としては表面に触媒粒子等を吸着させることにより、沈降しない触媒として利用することができる。また、カプセル表面は弾性体であることから、その音響性を利用して、細い流路内の流れを超音波等で可視化することが可能である。さらに、光の屈折率や透過率が中実の粒子と異なるため、光学材料あるいは化粧品等の分野にも応用することが可能である。
以下、本発明を比較例とともに実施例に基づき詳細に説明するが、本発明はこれに限定されるものではない。
実施例1
(1)4.8%ポリビニルアルコール(PVA)水溶液100gに界面活性剤であるアニリン0.4gを溶解させ、分散溶液を調製した。
(2)この水溶液を0.3リットルの圧力容器内に封入し、空気を導入して0.30MPa(3気圧)まで加圧して空気を水溶液中に溶解させた。この際、水溶液の温度はヒータで加温して65℃に保持した。
(3)一方、37%ホルムアルデヒド水溶液10g、メラミン3.3g、蒸留水13.3gを混合し、これに10%炭酸ナトリウム水溶液をピペットで5滴加えてpH9に調節し、65℃に維持して15分間ゆっくり撹拌して、メラミンホルムアルデヒドのプレポリマーをあらかじめ作成しておいた。
(4)前記のPVA水溶液を封入した圧力容器を大気圧まで急速に減圧し、溶液内に微細気泡を生成させた。その後、その溶液を0.3リットルのビーカに静かに移した。
(5)前記プレポリマーにグリシンを0.3g加え、1分間程度撹拌した後に、気泡を含んだPVA水溶液中に撹拌しながらビュレットで滴下し、65℃で10分間軽く撹拌した。
(6)撹拌を停止し、約40分経過後白濁が始まったら10%NaCO水溶液を70滴添加して、pHを10程度に上げて重合反応を停止させた。その後は撹拌を行なわず、室温で1時間放置しメラミンホルムアルデヒド微粒子を含有するエマルションを得た。
沈降部分を除去したエマルションから、濾別分離により得られたマイクロカプセルを走査型電子顕微鏡(SEM)で観察した。
図1、図2は本発明の方法で作成した中空のマイクロカプセルの走査型電子顕微鏡(SEM)画像である。図1(a)、(b)および図2(a)、(b)は上記実施例1により得られたマイクロカプセルのそれぞれ採取した試料が異なるもの画像であり、カプセルが球状体で示されている。これらの画像から解かるように、実施例1で得られたマイクロカプセルは、粒径が約1μm〜50μmであり、その表面がつるつるした球状体であるものがほとんどであった。図1(a)、(b)、図2(a)に認められるように、球体に変形が見られるが、変形の領域が小さく電子ビームの照射によって熱変形をしたと考えられることから、球体膜の中は中空であることが明らかであり、中空のカプセルが生成されている証拠である。さらに図2(b)では明らかにカプセルの膜が破れた状態が観察され、電子顕微鏡の撮影下では真空にする必要があり、カプセル内外の圧力差により破裂したと考えることができ、これも中空のカプセルが生成されている証拠となる。
後記する比較例で得られたマイクロ球体では、変形あるいは破裂といった現象は認められなかったので、比較例のものとは、明らかに違うものが生成しているのである。
比較例1
PVA水溶液を圧力容器に入れないで、また空気の溶解を行わず、PVA溶液内に気泡の生成を行わない以外は実施例1と同様な工程で、プレポリマーをPVA水溶液に撹拌しながら滴下し、白濁が始まりpHを上げるまで撹拌を続けカプセルの生成を行った。
その後実施例1と同様に処理して、得られたもののSEM画像を3図に示す。
得られたものは1〜2μmの球体状であるが、中空のものではなく表面形状はごつごつしていてゴルフボールのようである。
比較例2
PVA水溶液を圧力容器に入れないで、また空気の溶解を行わず、PVA溶液内に気泡の生成を行わない以外は実施例1と同様な工程で、プレポリマーをPVA水溶液に撹拌しながら滴下し、その後撹拌をほとんどしないでカプセルの生成を行った。
その後実施例1と同様に処理して、得られたもののSEM画像を検討した。
得られたものは1〜2μmの球体状であるが、その表面形状は比較例1のもの以上に凹凸が大きかった。これは重合反応時にあまり撹拌を行わなかったためと考えられるが、詳しい理由は不明である。
本発明による実施例1で得られた中空マイクロカプセルの電子顕微鏡画像である。 本発明による実施例1で得られた他の中空マイクロカプセルの電子顕微鏡画像である。 本発明以外の比較例1で得られたマイクロ球体の電子顕微鏡画像である。

Claims (4)

  1. 液体中に分散させた微細気泡の気液界面で重合反応をさせ、気泡のサイズとほぼ同じサイズである100nm〜100μmの大きさを持つ中空のマイクロカプセルを製造する方法。
  2. 前記液体中に分散させた微細気泡は、ガスを0.20MPa(2気圧)以上で液体中に溶解させ、その後減圧し発泡させることで液体中に生成させることを特徴とする請求項1に記載の中空のマイクロカプセルの製造方法。
  3. 前記液体中に分散させた微細気泡は、気泡サイズによる浮力の違いから生じる上昇速度の違いに基づいて、気泡のサイズの選別を行うものであることを特徴とする請求項1または2に記載の中空のマイクロカプセルの製造方法。
  4. 前記気液界面での重合反応は、別途作成したプレポリマーをさらに重合反応させるものであることを特徴とする請求項1〜3のいずれか1項に記載の中空のマイクロカプセルの製造方法。
JP2005204895A 2005-07-13 2005-07-13 中空マイクロカプセルの製造方法 Pending JP2007021315A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204895A JP2007021315A (ja) 2005-07-13 2005-07-13 中空マイクロカプセルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204895A JP2007021315A (ja) 2005-07-13 2005-07-13 中空マイクロカプセルの製造方法

Publications (1)

Publication Number Publication Date
JP2007021315A true JP2007021315A (ja) 2007-02-01

Family

ID=37782768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204895A Pending JP2007021315A (ja) 2005-07-13 2005-07-13 中空マイクロカプセルの製造方法

Country Status (1)

Country Link
JP (1) JP2007021315A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184201A (ja) * 2009-02-12 2010-08-26 Tohoku Univ 中空微粒子の製造方法
JP2011245452A (ja) * 2010-05-28 2011-12-08 Hisanori Makuta 気泡から作る中空粒子およびその製造方法
CN105153386A (zh) * 2015-10-19 2015-12-16 南京工程学院 一种空心三聚氰胺甲醛树脂微球的制备方法及其应用
JP2016131933A (ja) * 2015-01-20 2016-07-25 コニカミノルタ株式会社 中空粒子の製造方法
JP2018193500A (ja) * 2017-05-19 2018-12-06 株式会社日本触媒 生分解性樹脂粒子
CN110013805A (zh) * 2019-04-28 2019-07-16 哈尔滨工程大学 一种制备氨基树脂空心微胶囊的方法
JP2019210256A (ja) * 2018-06-07 2019-12-12 株式会社日本触媒 生分解性樹脂粒子を含む化粧料用組成物
CN112808187A (zh) * 2021-01-19 2021-05-18 浙江省林业科学研究院 一种生产气泡胶囊菌剂的自动化设备及方法
CN114177850A (zh) * 2021-04-14 2022-03-15 青岛尼希米生物科技有限公司 一种空气微胶囊及其制备方法、保暖纤维素纤维及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934299B1 (ja) * 1969-06-12 1974-09-13
JPH05228359A (ja) * 1991-12-27 1993-09-07 Reika Kogyo Kk 中空粒子の製造装置及び製造方法
JPH07204495A (ja) * 1984-08-09 1995-08-08 Leonard B Torobin 中空多孔性微小球体の製造方法
JPH08176017A (ja) * 1994-08-04 1996-07-09 Touin Gakuen 超音波用造影剤及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934299B1 (ja) * 1969-06-12 1974-09-13
JPH07204495A (ja) * 1984-08-09 1995-08-08 Leonard B Torobin 中空多孔性微小球体の製造方法
JPH05228359A (ja) * 1991-12-27 1993-09-07 Reika Kogyo Kk 中空粒子の製造装置及び製造方法
JPH08176017A (ja) * 1994-08-04 1996-07-09 Touin Gakuen 超音波用造影剤及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184201A (ja) * 2009-02-12 2010-08-26 Tohoku Univ 中空微粒子の製造方法
JP2011245452A (ja) * 2010-05-28 2011-12-08 Hisanori Makuta 気泡から作る中空粒子およびその製造方法
JP2016131933A (ja) * 2015-01-20 2016-07-25 コニカミノルタ株式会社 中空粒子の製造方法
US10066074B2 (en) 2015-01-20 2018-09-04 Konica Minolta, Inc. Method of producing hollow particulate material
CN105153386A (zh) * 2015-10-19 2015-12-16 南京工程学院 一种空心三聚氰胺甲醛树脂微球的制备方法及其应用
JP7014528B2 (ja) 2017-05-19 2022-02-01 株式会社日本触媒 生分解性樹脂粒子
JP2018193500A (ja) * 2017-05-19 2018-12-06 株式会社日本触媒 生分解性樹脂粒子
JP2019210256A (ja) * 2018-06-07 2019-12-12 株式会社日本触媒 生分解性樹脂粒子を含む化粧料用組成物
CN110013805A (zh) * 2019-04-28 2019-07-16 哈尔滨工程大学 一种制备氨基树脂空心微胶囊的方法
CN110013805B (zh) * 2019-04-28 2022-10-14 哈尔滨工程大学 一种制备氨基树脂空心微胶囊的方法
CN112808187A (zh) * 2021-01-19 2021-05-18 浙江省林业科学研究院 一种生产气泡胶囊菌剂的自动化设备及方法
CN112808187B (zh) * 2021-01-19 2023-05-30 浙江省林业科学研究院 一种生产气泡胶囊菌剂的自动化设备及方法
CN114177850A (zh) * 2021-04-14 2022-03-15 青岛尼希米生物科技有限公司 一种空气微胶囊及其制备方法、保暖纤维素纤维及其制备方法和应用
CN114177850B (zh) * 2021-04-14 2024-04-26 云起(青岛)材料科技有限公司 一种空气微胶囊及其制备方法、保暖纤维素纤维及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP2007021315A (ja) 中空マイクロカプセルの製造方法
Kukizaki Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure
Tumarkin et al. Microfluidic generation of microgels from synthetic and natural polymers
Feoktistova et al. Controlling the vaterite CaCO3 crystal pores. Design of tailor-made polymer based microcapsules by hard templating
JP4967101B2 (ja) 中空マイクロカプセルの製造方法
Paunov Novel method for determining the three-phase contact angle of colloid particles adsorbed at air− water and oil− water interfaces
Parhizkar et al. The effect of surfactant type and concentration on the size and stability of microbubbles produced in a capillary embedded T-junction device
Darbandi et al. Hollow silica nanospheres: in situ, semi-in situ, and two-step synthesis
CN101362069B (zh) 一种中空多孔微胶囊及其制备方法
Zhu et al. Hydrogel micromotors with catalyst-containing liquid core and shell
US9822293B2 (en) Sugar alcohol microcapsule, slurry, and resin molded article
Shilpi et al. Colloidosomes: an emerging vesicular system in drug delivery
Kolasinski Bubbles: A review of their relationship to the formation of thin films and porous materials
US20110108523A1 (en) Method for Fabrication of Microparticles with Colloidal Particle-Anchored Surface Structures
Horikoshi et al. On the stability of surfactant-free water-in-oil emulsions and synthesis of hollow SiO2 nanospheres
Chen et al. Janus membrane emulsification for facile preparation of hollow microspheres
Steinacher et al. Monodisperse selectively permeable hydrogel capsules made from single emulsion drops
Wang et al. Stable encapsulated air nanobubbles in water
Vladisavljević Integrated membrane processes for the preparation of emulsions, particles and bubbles
JP2007196223A (ja) 中空マイクロカプセルの製造方法
Charcosset et al. Membrane emulsification and microchannel emulsification processes
Jiang et al. High‐Throughput Fabrication of Size‐Controlled Pickering Emulsions, Colloidosomes, and Air‐Coated Particles via Clog‐Free Jetting of Suspensions
Sakurai et al. Hollow polylactic acid microcapsules fabricated by gas/oil/water and bubble template methods
Kim et al. Microfluidic fabrication of microparticles with structural complexity using photocurable emulsion droplets
KR20170005977A (ko) 기공이 형성된 미세 캡슐의 제조 방법 및 이에 의한 반투과성 미세캡슐

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080703

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011