JP2007019891A - Magnetic antenna - Google Patents

Magnetic antenna Download PDF

Info

Publication number
JP2007019891A
JP2007019891A JP2005199451A JP2005199451A JP2007019891A JP 2007019891 A JP2007019891 A JP 2007019891A JP 2005199451 A JP2005199451 A JP 2005199451A JP 2005199451 A JP2005199451 A JP 2005199451A JP 2007019891 A JP2007019891 A JP 2007019891A
Authority
JP
Japan
Prior art keywords
magnetic
layer
insulating layer
magnetic antenna
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005199451A
Other languages
Japanese (ja)
Other versions
JP4821965B2 (en
Inventor
Tetsuya Kimura
木村哲也
Yoshio Sato
佐藤由郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005199451A priority Critical patent/JP4821965B2/en
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to CN201310002009.1A priority patent/CN103094667B/en
Priority to CN200680023105.2A priority patent/CN101208830B/en
Priority to KR1020077030092A priority patent/KR101274354B1/en
Priority to EP06767954.8A priority patent/EP1901394B1/en
Priority to PCT/JP2006/313495 priority patent/WO2007007639A1/en
Publication of JP2007019891A publication Critical patent/JP2007019891A/en
Priority to US12/003,951 priority patent/US8072387B2/en
Priority to US13/285,041 priority patent/US8159405B2/en
Application granted granted Critical
Publication of JP4821965B2 publication Critical patent/JP4821965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnetic antenna which operates stably even if attached to a metallic surface, and has high mass productivity. <P>SOLUTION: The magnetic antenna can be obtained whose magnitude of a resonant frequency change is small even if attached to the metallic surface by forming, via an insulating layer, a structure formed with a conductive layer in a magnetic layer for forming a coil, and operative quality is stable and homogenous by not contacting directly with the metallic surface when attached thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、通信を目的に磁界成分を利用した磁性体アンテナに関するものであり、アンテナを添付する対象物が金属であっても、感度よく信号を送受信することができる磁性体アンテナである。   The present invention relates to a magnetic antenna using a magnetic field component for the purpose of communication, and is a magnetic antenna that can transmit and receive signals with high sensitivity even if an object to which the antenna is attached is a metal.

磁性体を使用し電磁波を送受信するアンテナ(以下磁性体アンテナと称する)は、磁性体に導線を巻き線してコイルを作り、外部から飛来する磁界成分を磁性体に貫通させコイルに誘導させて電圧(または電流)に変換するアンテナで、小型ラジオやTVには広く利用されてきた。また、近年普及してきたRFIDタグと呼ばれる非接触型の物体識別装置に利用されている。   An antenna that transmits and receives electromagnetic waves using a magnetic material (hereinafter referred to as a magnetic material antenna) is a coil formed by winding a conductive wire around a magnetic material, and a magnetic field component flying from the outside is caused to penetrate the magnetic material and be induced in the coil. An antenna that converts voltage (or current) and has been widely used for small radios and TVs. Further, it is used in a non-contact type object identification device called an RFID tag that has been widely used in recent years.

周波数がより高くなると、磁性体を使用せず、RFIDタグにおいては、識別対象物と平面が平行になるループコイルがアンテナとして使用され、さらに周波数(UHF帯やマイクロ波帯)が高くなると、RFIDタグを含めて磁界成分を検出するよりも、電界成分を検出する電界アンテナ(ダイポールアンテナや誘電体アンテナ)が広く使用されている。 When the frequency is higher, a magnetic substance is not used, and in the RFID tag, a loop coil whose plane is parallel to the object to be identified is used as an antenna, and when the frequency (UHF band or microwave band) is further increased, the RFID tag Electric field antennas (dipole antennas and dielectric antennas) that detect electric field components are widely used rather than detecting magnetic field components including tags.

この様なループアンテナや電界アンテナは、金属物が接近すると、金属物にイメージ(ミラー効果)ができて、アンテナと逆位相になるために、アンテナの感度が失われると言う問題が生じる。 Such a loop antenna or electric field antenna has a problem that when a metal object approaches, an image (mirror effect) is formed on the metal object and has an opposite phase to the antenna, so that the sensitivity of the antenna is lost.

この欠点を回避するため、角型あるいは長方形状のコイルを、コイル面を金属面に垂直になるように直接金属対象物に貼付するアンテナが開発されている(特許文献1)。 In order to avoid this drawback, an antenna has been developed in which a rectangular or rectangular coil is directly attached to a metal object so that the coil surface is perpendicular to the metal surface (Patent Document 1).

特開2003−317052号公報JP 2003-317052 A

しかし、この種の磁性体アンテナは、巻線したコイルが金属物に接触する場合、巻線と金属板の接触面が不安定になり、その結果バラツキが発生する欠点がある。   However, this type of magnetic antenna has a drawback that when the wound coil comes into contact with a metal object, the contact surface between the winding and the metal plate becomes unstable, resulting in variations.

またRFIDタグに使用する場合、金属プレートに貼り付けて一々周波数調整する必要がある。さらに巻線するアンテナは量産性に欠けると言う問題があった。また、磁性体アンテナが金属物に近づくと、磁性体アンテナの特性が変化し、共振周波数が変化すると言う問題も発生する。   Moreover, when using for an RFID tag, it is necessary to affix on a metal plate and to adjust a frequency one by one. Furthermore, there is a problem that the wound antenna lacks mass productivity. Further, when the magnetic antenna approaches a metal object, the characteristics of the magnetic antenna change and the resonance frequency changes.

そこで、本発明は、磁性体アンテナの巻線したコイルが金属物に接触した場合に、巻線と金属板の接触が不安定になることによって、アンテナとしての特性がばらつくのを防止することを課題とする。同時に、磁性体アンテナが金属物に近づくと、特性が変化して共振周波数が変化するのを防ぐことを課題とする。   Therefore, the present invention prevents the characteristics of the antenna from varying when the coil wound around the magnetic antenna comes into contact with a metal object and the contact between the winding and the metal plate becomes unstable. Let it be an issue. At the same time, when the magnetic antenna approaches a metal object, it is an object to prevent the characteristic from changing and the resonance frequency from changing.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

これらの問題を解決するために、本発明は磁性層に巻線したコイルに絶縁層を介して導電層を積層した構造の量産性の高い磁性体アンテナを提供するものである。 In order to solve these problems, the present invention provides a magnetic antenna having a high mass-productivity structure in which a conductive layer is laminated via an insulating layer on a coil wound around a magnetic layer.

本発明の磁性体アンテナは、図1のように磁性粉末をバインダーで混合してシート状にした単層あるいは複数の層を積層した磁性層5にスルーホール1を開け、そのスルーホール1に電極材料を流し込み、且つスルーホール1と直角になる両面に電極材料で電極層2を形成し、これをスルーホール1と接続して磁性層5が角型あるいは長方形のコイルを作り、コイル4を形成する磁性層の両端が磁性回路上開放となる構成で、図2のように電極層を印刷したコイル4の上下面を絶縁層6で挟み込み、一方あるいは両方の絶縁層上面に導電層7を設け、スルーホール1とコイル開放端面3で切断し一体焼成するLTCC技術を用いた量産性の高い磁性体アンテナであることを特徴とするものである。 As shown in FIG. 1, the magnetic antenna according to the present invention has a through-hole 1 formed in a magnetic layer 5 in which a magnetic powder is mixed with a binder to form a sheet or a plurality of layers, and an electrode is formed in the through-hole 1. The electrode layer 2 is formed of electrode material on both sides perpendicular to the through hole 1 by pouring the material, and this is connected to the through hole 1 so that the magnetic layer 5 forms a rectangular or rectangular coil to form the coil 4 As shown in FIG. 2, the upper and lower surfaces of the coil 4 on which the electrode layer is printed are sandwiched between the insulating layers 6 and the conductive layer 7 is provided on the upper surface of one or both of the insulating layers. The magnetic antenna is characterized in that it is a mass-produced magnetic antenna using the LTCC technique in which the through-hole 1 and the coil open end face 3 are cut and integrally fired.

また、本発明の磁性体アンテナは、図3のように電極層を印刷したコイル4の上下面の絶縁層6にスルーホール1を設け、このスルーホール1に電極材料を流し込み、コイル4両端と接続し、その表面に電極材料でコイルリード端子9とICチップ接続端子8を印刷して一体焼成した事を特徴とするものである。 Further, in the magnetic antenna of the present invention, as shown in FIG. 3, through holes 1 are provided in the insulating layers 6 on the upper and lower surfaces of the coil 4 on which the electrode layers are printed, and an electrode material is poured into the through holes 1 to The coil lead terminal 9 and the IC chip connection terminal 8 are printed on the surface of the coil lead electrode 9 and the IC chip connection terminal 8 by an electrode material, and are integrally fired.

また、本発明の磁性体アンテナは、図4のように導電層7を持つ絶縁層6の下面に磁性層5を設け一体焼成した事を特徴とするものである。これによって、磁性体アンテナに金属物が近づいても磁性体アンテナの特性変化がより小さくなり、共振周波数の変化をより小さくすることができる。 The magnetic antenna according to the present invention is characterized in that the magnetic layer 5 is provided on the lower surface of the insulating layer 6 having the conductive layer 7 as shown in FIG. As a result, even when a metal object approaches the magnetic antenna, the change in characteristics of the magnetic antenna becomes smaller, and the change in resonance frequency can be made smaller.

また、本発明の磁性体アンテナは、図5のように絶縁層6上面に導電層7とその下面に磁性層5を設け、さらにその下面に絶縁層6を設け一体焼成した事を特徴とするものである。これによって、磁性体アンテナの層間に生じる応力をバランスさせ、反りを低減するものである。 In addition, the magnetic antenna of the present invention is characterized in that, as shown in FIG. 5, the conductive layer 7 is provided on the upper surface of the insulating layer 6 and the magnetic layer 5 is provided on the lower surface thereof, and the insulating layer 6 is provided on the lower surface thereof. Is. This balances the stress generated between the layers of the magnetic antenna and reduces the warpage.

また、本発明の磁性体アンテナは、図6のようにコイル4の上下面を挟み込んだ絶縁層6の一方あるいは両方の外側面にコンデンサー電極11を配置し、コンデンサー電極11を配置した外側面にさらに絶縁層6を設け、該絶縁層6の外側面に電極を印刷して該絶縁層を挟みこむようにコンデンサーを形成し、ICチップ接続端子8とコイルリード端子に並列もしくは直列に接続した事を特徴とするものである。 Further, in the magnetic antenna of the present invention, the capacitor electrode 11 is disposed on one or both outer surfaces of the insulating layer 6 sandwiching the upper and lower surfaces of the coil 4 as shown in FIG. 6, and the capacitor electrode 11 is disposed on the outer surface. Further, an insulating layer 6 is provided, an electrode is printed on the outer surface of the insulating layer 6, a capacitor is formed so as to sandwich the insulating layer, and the IC chip connection terminal 8 and the coil lead terminal are connected in parallel or in series. It is a feature.

また、本発明の磁性体アンテナは、絶縁層の上面に平行電極、もしくはくし型電極を印刷してコンデンサーを形成し、コイルリード端子と並列もしくは直列に接続した事を特徴とするものである。コンデンサーは絶縁層6を挟み込む平行平板構造でも、櫛形もしくは平行電極の平面構造でもよい。また、平行平板構造では図6のように一方のコンデンサー電極がICチップ接続端子8を兼ねてもよい。 The magnetic antenna according to the present invention is characterized in that a parallel electrode or a comb electrode is printed on the upper surface of the insulating layer to form a capacitor and connected in parallel or in series with the coil lead terminal. The capacitor may be a parallel plate structure sandwiching the insulating layer 6 or may be a comb-shaped or parallel electrode planar structure. In the parallel plate structure, one capacitor electrode may also serve as the IC chip connection terminal 8 as shown in FIG.

また、本発明の磁性体アンテナは、磁性層5にNi−Zn系フェライト磁性体を用い一体焼成したことを特徴とするものである。使用するフェライト粉末は、Fe 45〜49.5モル%、NiO 9.0〜45.0モル%、ZnO 0.5〜35.0モル%、CuO 4.5〜15.0モル%であるような組成が好ましく、使用する周波数帯で透磁率が高く、磁性損失が低くなるようなフェライト組成を選択すると良い。透磁率が低すぎると、LTCC技術で形成するのに必要なコイルの巻き数が大きくなりすぎ、製造が困難になる。透磁率が高すぎると損失が増えるのでアンテナに適さなくなる。例えばRFIDタグ用途では13.56MHzでの透磁率が70〜120、民生FM放送受信用途では100MHzでの透磁率が10〜30になるようなフェライト組成を選択すると良い。フェライトの焼結温度は800〜1000℃であり、好ましくは850〜920℃である。 The magnetic antenna of the present invention is characterized in that the magnetic layer 5 is integrally fired using a Ni—Zn ferrite magnetic material. The ferrite powder used is Fe 2 O 3 45-49.5 mol%, NiO 9.0-45.0 mol%, ZnO 0.5-35.0 mol%, CuO 4.5-15.0 mol% The ferrite composition is preferably selected so that the magnetic permeability is high and the magnetic loss is low in the frequency band to be used. If the magnetic permeability is too low, the number of coil turns necessary to form with the LTCC technique becomes too large, making manufacture difficult. If the magnetic permeability is too high, the loss increases, making it unsuitable for an antenna. For example, a ferrite composition may be selected such that the permeability at 13.56 MHz is 70 to 120 for RFID tags and 10 to 30 at 100 MHz for consumer FM broadcast reception. The sintering temperature of ferrite is 800 to 1000 ° C, preferably 850 to 920 ° C.

また、本発明の磁性体アンテナは、絶縁層6にZn系フェライトを用い一体焼成したことを特徴とするものである。使用するフェライト粉末には、焼結体の体積固有抵抗が10 Ωcm以上になるようなZn系フェライト組成を選択するとよい。Fe 45〜49.5モル%、ZnO 17.0〜22.0モル%、CuO 4.5〜15.0モル%である組成が好ましい。 The magnetic antenna of the present invention is characterized in that the insulating layer 6 is integrally fired using Zn-based ferrite. For the ferrite powder to be used, a Zn-based ferrite composition is preferably selected such that the volume resistivity of the sintered body is 10 8 Ωcm or more. Fe 2 O 3 from 45 to 49.5 mol%, ZnO 17.0 to 22.0 mol%, the composition is CuO 4.5-15.0 mol% are preferred.

また、本発明の磁性体アンテナは、絶縁層6にガラス系セラミックを用い一体焼成したことを特徴とするものである。ガラス系セラミックには、ホウケイ酸系ガラス、亜鉛系ガラス、鉛系ガラス等を用いることができる。 The magnetic antenna of the present invention is characterized in that the insulating layer 6 is integrally fired using glass-based ceramic. Borosilicate glass, zinc glass, lead glass, or the like can be used as the glass ceramic.

また、本発明の磁性体アンテナは、図3のように絶縁層6上面にICチップが接続できる端子構造を有し、ICチップ接続端子8と並列もしくは直列に接続し一体焼成したことを特徴とするものである。 Further, the magnetic antenna of the present invention has a terminal structure in which an IC chip can be connected to the upper surface of the insulating layer 6 as shown in FIG. 3, and is connected to the IC chip connection terminal 8 in parallel or in series and fired integrally. To do.

また、本発明の磁性体アンテナは、絶縁層上面に可変コンデンサーを設ける端子をコイルリード端子と並列もしくは直列に接続した事を特徴とするものである。 The magnetic antenna according to the present invention is characterized in that a terminal provided with a variable capacitor on the upper surface of an insulating layer is connected in parallel or in series with a coil lead terminal.

また、本発明の磁性体アンテナの電極材料にはAgペーストが適しており、その他のAg系合金ペースト等、金属系導電性ペーストを使用することができる。   Moreover, Ag paste is suitable for the electrode material of the magnetic antenna of the present invention, and metal conductive paste such as other Ag alloy paste can be used.

本発明の磁性体アンテナによれば、導電層がLTCC(Low
Temperature Co−fired Ceramics、低温共焼成セラミックス)技術によって形成されるため、積層された各層の密着性が良く、巻線と付加された金属層が安定して結合できる。また一つのシートから複数個の素子が安定して製作できる事で、各素子のバラツキが押さえられ、素子単独で周波数調整ができるので、使用環境下で調整する必要がない。また、磁性体アンテナが金属物に接近しても金属層が付加されているため、特性が変動すると言う欠点が解消できる。
According to the magnetic antenna of the present invention, the conductive layer is LTCC (Low
Since it is formed by the technology (Temperature Co-fired Ceramics, low-temperature co-fired ceramics), the adhesion of the laminated layers is good, and the winding and the added metal layer can be stably bonded. In addition, since a plurality of elements can be stably manufactured from a single sheet, variations in each element can be suppressed, and the frequency can be adjusted independently by the element, so there is no need to adjust under the use environment. Moreover, since the metal layer is added even if the magnetic antenna approaches the metal object, the disadvantage that the characteristics fluctuate can be solved.

本発明の金属を考慮した磁性体アンテナは金属面貼付前後の共振周波数の変化が1MHz以下と少なく、13.56MHzのRFID用途では金属面に貼り付けても通信距離が3cm以上取れる。また、グリーンシートの積層構造を中心から面に対して平行方向に対称のようにすることにより、焼成後の反りを焼成物の長辺1cm当たり0.5mm以下に抑制することが可能で実用的なアンテナを製造可能である。   The magnetic antenna considering the metal of the present invention has a small change in the resonance frequency before and after the metal surface is pasted to 1 MHz or less, and in the RFID application of 13.56 MHz, a communication distance of 3 cm or more can be obtained even when pasted on the metal surface. Moreover, by making the laminated structure of the green sheets symmetrical in the direction parallel to the surface from the center, it is possible to suppress warping after firing to 0.5 mm or less per 1 cm long side of the fired product. A simple antenna can be manufactured.

以下に添付図面を参照しながら、発明の実施の形態に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments of the invention with reference to the accompanying drawings.

[実施例1]
磁性層5用として、900℃焼結後に13.56MHzでの透磁率が100になるNi−Zn−Cuフェライト仮焼粉(Fe 48.5モル%、NiO 25モル%、ZnO 16モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に150mm角で、焼結時の厚みが0.1mmになるようにシート成型した。また絶縁層6用として同様に、Zn−Cuフェライト仮焼粉(Fe 48.5モル%、ZnO 41モル%、CuO 10.5モル%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に磁性層と同様のサイズと厚みでシート成型した。次に図1に示すように、磁性層5用グリーンシートにスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して5枚積層し、コイル4を形成した。次に図2のように絶縁層6用グリーンシートをコイルの上下面に積層し、一方の面にはAgペーストで導電層7を印刷した絶縁層6用グリーンシートを積層した。以上のグリーンシートをまとめて加圧接着させ、スルーホールとコイル開放端面3で切断し、900℃で2時間、一体焼成して、横18mm×縦4mmのサイズのコイル巻き数32ターンの磁性体アンテナサンプル1を作成した。以上がLTCC技術を用いた磁性体アンテナのプロセスである。(図1及び図2ではコイル巻き数は図の簡略化のため、7ターンで表示している。また、磁性層の積層枚数は図の簡略化のため3層で表している。以下の他の図についても同様である。)
[Example 1]
For magnetic layer 5, Ni—Zn—Cu ferrite calcined powder having a permeability of 100 at 13.56 MHz after sintering at 900 ° C. (Fe 2 O 3 48.5 mol%, NiO 25 mol%, ZnO 16 mol) %, CuO 10.5 mol%) 100 parts by weight, butyral resin 8 parts by weight, plasticizer 5 parts by weight, and solvent 80 parts by weight were mixed in a ball mill to produce a slurry. The resulting slurry was formed into a sheet by a doctor blade on a PET film so as to have a 150 mm square and a thickness of 0.1 mm upon sintering. Also similarly as insulating layer 6, Zn-Cu ferrite calcined powder (Fe 2 O 3 48.5 mol%, ZnO 41 mol%, CuO 10.5 mol%), 8 parts by weight of a butyral resin, a plasticizer A slurry was prepared by mixing 5 parts by weight of the agent and 80 parts by weight of the solvent with a ball mill. The resulting slurry was formed into a sheet with the same size and thickness as the magnetic layer on a PET film with a doctor blade. Next, as shown in FIG. 1, a through-hole 1 is formed in the green sheet for the magnetic layer 5 and filled with Ag paste, and the Ag paste is printed on both sides perpendicular to the through-hole 1 to laminate five sheets. Then, the coil 4 was formed. Next, as shown in FIG. 2, the green sheet for the insulating layer 6 was laminated on the upper and lower surfaces of the coil, and the green sheet for the insulating layer 6 on which the conductive layer 7 was printed with Ag paste was laminated on one surface. The above green sheets are pressure-bonded together, cut at the through hole and the coil open end face 3, and integrally fired at 900 ° C. for 2 hours to obtain a magnetic material having a coil winding number of 32 turns of 18 mm wide × 4 mm long. Antenna sample 1 was prepared. The above is the process of the magnetic antenna using the LTCC technology. (In FIGS. 1 and 2, the number of coil turns is indicated by 7 turns for the sake of simplification, and the number of magnetic layers is indicated by 3 layers for simplification of the figure. The same applies to the figure in FIG.)

該磁性体アンテナのコイル両端にRFIDタグ用ICを接続してさらにICと並列にコンデンサーを接続して共振周波数を13.1MHzに調整してRFIDタグを作成し、金属板に貼り付けて出力10mWのリーダ/ライタで通信する距離を測定した。また、磁性体アンテナの反りを測定した。各測定方法を以下にまとめる。 An RFID tag IC is connected to both ends of the coil of the magnetic antenna, a capacitor is connected in parallel with the IC, and the resonance frequency is adjusted to 13.1 MHz to create an RFID tag, which is attached to a metal plate and output 10 mW The distance to communicate with the reader / writer was measured. Moreover, the curvature of the magnetic antenna was measured. Each measurement method is summarized below.

[共振周波数の測定と調整方法]
共振周波数は、ヒューレットパッカード社製インピーダンスアナライザー4291Aに1ターンコイルを接続し、これとRFIDタグを結合させ、測定されるインピーダンスのピーク周波数をもって共振周波数とした。またその調整は、該磁性体アンテナの端面に露出するコイル電極の位置を選択することでインダクタンスを調整して行った。ICと並列に接続するコンデンサの容量を変更することで共振周波数が調節できる。
[Measurement and adjustment of resonance frequency]
The resonance frequency was determined by connecting a one-turn coil to an impedance analyzer 4291A manufactured by Hewlett-Packard Co., and combining it with an RFID tag, and using the peak frequency of the impedance measured as the resonance frequency. The adjustment was performed by adjusting the inductance by selecting the position of the coil electrode exposed on the end face of the magnetic antenna. The resonance frequency can be adjusted by changing the capacitance of the capacitor connected in parallel with the IC.

[通信距離の測定方法]
通信距離は、出力10mWのリーダ/ライタ(株式会社エフイーシー製、製品名URWI-201)のアンテナを水平に固定し、その上方に金属板に貼り付けたRFIDタグを水平に位置させて、13.56MHzで通信が可能な限り高い位置の時のアンテナとRFIDタグの垂直方向の距離を通信距離とした。
[Measurement method of communication distance]
As for the communication distance, an antenna of a 10 mW output reader / writer (manufactured by FC Corporation, product name URWI-201) is horizontally fixed, and an RFID tag affixed to a metal plate is positioned horizontally above the antenna. The distance in the vertical direction between the antenna and the RFID tag at the highest possible position for communication at 56 MHz was defined as the communication distance.

[反りの測定方法]
平板状測定子を持つダイヤルゲージ(ミツトヨダイヤルゲージID−C112)をスタンド(ミツトヨスタンドBSG−20)に取り付け、ダイヤルゲージを定盤上で0点調整し、該磁性体アンテナを定盤と平板状測定子の間に挟むことによりダイヤルゲージで最高点を測定し、その高さからノギス(ミツトヨノギスCD−C)で測定した磁性体アンテナの厚みを引くことにより、反りの値を算出する。
[Measurement of warpage]
Attach a dial gauge (Mitutoyo Dial Gauge ID-C112) with a flat gauge to the stand (Mitutoyo Stand BSG-20), adjust the dial gauge to 0 on the surface plate, and place the magnetic antenna on the surface plate and plate The highest point is measured with a dial gauge by being sandwiched between the measuring elements, and the value of the warp is calculated by subtracting the thickness of the magnetic antenna measured with a caliper (Mitotogigi CD-C) from the height.

その結果、磁性体アンテナの反りは0.6mmで実用範囲だった。磁性体アンテナを用いた該RFIDタグは金属板貼り付け前後の共振周波数変動が+1MHzと小さく、かつ金属面に貼り付けた状態で3cmの通信距離が得られた。 As a result, the curvature of the magnetic antenna was 0.6 mm, which was within the practical range. The RFID tag using the magnetic antenna had a small fluctuation of the resonance frequency before and after the metal plate was attached to +1 MHz, and a communication distance of 3 cm was obtained when the RFID tag was attached to the metal surface.

[実施例2]
実施例1で説明した磁性層5用グリーンシートと、Zn−Cuフェライトに替えてガラスセラミックを用いた絶縁層6用グリーンシートを用いる。図3に示すように、磁性層5用グリーンシートにスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して5枚積層し、コイル4を形成した。次にコイル4の一方の面にAgペーストで導電層7を印刷し構成した絶縁層6用グリーンシートを積層した。もう一方の面にはコイルの両端に接続するようスルーホールを開けその中にAgペーストを充填して、かつスルーホール1と直角になる表層にコイルリード端子9とICを接続するICチップ接続端子8となる形状をAgペーストで印刷し積層した。以上のグリーンシートをまとめて加圧接着させ、スルーホール1とコイル開放端面3で切断し、900℃で2時間、一体焼成して横18mm×縦4mmのサイズのコイル巻き数32ターンの磁性体アンテナサンプル2を作成した。磁性体アンテナの反りは1.0mmで実用範囲だった。
[Example 2]
The green sheet for the magnetic layer 5 described in Example 1 and the green sheet for the insulating layer 6 using glass ceramic instead of Zn—Cu ferrite are used. As shown in FIG. 3, a through hole 1 is opened in the green sheet for the magnetic layer 5, and the Ag paste is filled therein, and the Ag paste is printed on both sides perpendicular to the through hole 1, and five sheets are laminated. A coil 4 was formed. Next, a green sheet for the insulating layer 6 formed by printing the conductive layer 7 with Ag paste on one surface of the coil 4 was laminated. On the other side, a through hole is formed so as to connect to both ends of the coil, and an Ag paste is filled therein, and an IC chip connection terminal for connecting the coil lead terminal 9 and the IC to the surface layer perpendicular to the through hole 1 The shape to be 8 was printed with Ag paste and laminated. The above green sheets are pressure-bonded together, cut at the through-hole 1 and the coil open end face 3, and integrally fired at 900 ° C. for 2 hours to obtain a magnetic body having a coil winding number of 32 turns of 18 mm wide × 4 mm long. Antenna sample 2 was created. The warp of the magnetic antenna was 1.0 mm and was in a practical range.

該磁性体アンテナのコイル両端にRFIDタグ用ICを接続してさらにICと並列にコンデンサーを接続して共振周波数を13.1MHzに調整してRFIDタグを作成し、金属板に貼り付けて出力10mWのリーダ/ライタで通信する距離と共振周波数を測定した。 An RFID tag IC is connected to both ends of the coil of the magnetic antenna, a capacitor is connected in parallel with the IC, and the resonance frequency is adjusted to 13.1 MHz to create an RFID tag, which is attached to a metal plate and output 10 mW The distance and resonance frequency with which the reader / writer communicates were measured.

その結果該RFIDタグは金属板貼付時に3.1cmの通信距離だった。金属板貼付時の共振周波数は14.1MHzで、共振周波数の変動は+1MHzだった。 As a result, the RFID tag had a communication distance of 3.1 cm when the metal plate was attached. The resonance frequency when the metal plate was attached was 14.1 MHz, and the fluctuation of the resonance frequency was +1 MHz.

[実施例3]
実施例1で説明した磁性層5用グリーンシートと絶縁層6用グリーンシートを用いる。図4に示すように、磁性層5用グリーンシートにスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して5枚積層し、コイル4を形成した。次にコイル4の下面に絶縁層6グリーンシートとAgペーストで導電層7を印刷し構成した絶縁層6用グリーンシートを積層し、かつその下面に磁性層5用グリーンシートを積層した。上面にはコイルの両端に接続するようスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる表層にコイルリード端子9とICを接続するICチップ接続端子8となる形状をAgペーストで印刷し積層した。以上のグリーンシートをまとめて加圧接着させ、スルーホール1とコイル開放端面3で切断し、一体焼成して横18mm×縦4mmのサイズのコイル巻き数32ターンの磁性体アンテナサンプル3を作成した。磁性体アンテナの反りは0.8mmで実用範囲だった。該磁性体アンテナのICチップ接続端子8にRFIDタグ用ICを接続してさらにICと並列にコンデンサーを接続して共振周波数を13.1MHzに調整してRFIDタグを作成し、金属板に貼り付けて出力10mWのリーダ/ライタで通信する距離を測定した。
[Example 3]
The green sheet for magnetic layer 5 and the green sheet for insulating layer 6 described in Example 1 are used. As shown in FIG. 4, the through hole 1 is opened in the green sheet for the magnetic layer 5, the Ag paste is filled therein, and the Ag paste is printed on both sides perpendicular to the through hole 1 to laminate five sheets, A coil 4 was formed. Next, the insulating layer 6 green sheet and the insulating layer 6 green sheet formed by printing the conductive layer 7 with Ag paste were laminated on the lower surface of the coil 4, and the magnetic layer 5 green sheet was laminated on the lower surface thereof. On the upper surface, through-holes 1 are formed so as to be connected to both ends of the coil, Ag paste is filled therein, and coil lead terminals 9 and IC chip connection terminals 8 for connecting the IC to the surface layer perpendicular to the through-holes 1 are provided. The resulting shape was printed with Ag paste and laminated. The above green sheets were pressure-bonded together, cut at the through hole 1 and the coil open end face 3, and integrally fired to produce a magnetic antenna sample 3 having a coil winding number of 32 turns with a size of 18 mm wide × 4 mm long. . The warp of the magnetic antenna was 0.8 mm, which was a practical range. An RFID tag IC is connected to the IC chip connection terminal 8 of the magnetic antenna, a capacitor is connected in parallel with the IC, the resonance frequency is adjusted to 13.1 MHz, and an RFID tag is created and attached to a metal plate. Then, the communication distance was measured with a reader / writer with an output of 10 mW.

その結果該RFIDタグは金属板貼り付け前後の共振周波数変動が+0.5MHzとより小さく、かつ金属板貼付時に3.3cmの通信距離が得られた。 As a result, the RFID tag had a smaller fluctuation of the resonance frequency before and after the metal plate was affixed to +0.5 MHz, and a communication distance of 3.3 cm was obtained when the metal plate was affixed.

[実施例4]
実施例1で説明した磁性層5用グリーンシートと絶縁層6用グリーンシートを用いる。図5に示すように、磁性層5用グリーンシートにスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して5枚積層し、コイル4を形成した。次にコイル4の下面に絶縁層6グリーンシートとAgペーストで導電層7を印刷し構成した絶縁層6用グリーンシートを積層し、更にその下面に磁性層5用グリーンシートを積層し、更にその下面に絶縁層6用グリーンシートを積層した。上面にはコイル4の一端に接続するようスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる表層にコイルリード端子9とICを接続するICチップ接続端子8の一方となる形状をAgペーストで絶縁層6用グリーンシートに印刷した。更にコイル4のもう一端及び中間の数箇所に接続するようスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる表層にコイルリード端子9を引き出し、コイルリード端子9の端面に向かい合うような形でコイルリード端子9とICを接続するICチップ接続端子8の一方となる形状をAgペーストで絶縁層6用グリーンシートに印刷し積層した。以上のグリーンシートをまとめて加圧接着させ、スルーホール1とコイル開放端面で切断し、900℃で2時間、一体焼成して横18mm×縦4mmのサイズのコイル巻き数32ターンの磁性体アンテナサンプル4を作成した。磁性体アンテナの反りは0.1mmと極めて小さかった。
[Example 4]
The green sheet for magnetic layer 5 and the green sheet for insulating layer 6 described in Example 1 are used. As shown in FIG. 5, a through hole 1 is opened in the green sheet for the magnetic layer 5, and an Ag paste is filled therein, and the Ag paste is printed on both sides perpendicular to the through hole 1, and five sheets are laminated. A coil 4 was formed. Next, the insulating layer 6 green sheet and the insulating layer 6 green sheet formed by printing the conductive layer 7 with Ag paste are laminated on the lower surface of the coil 4, and the magnetic layer 5 green sheet is further laminated on the lower surface thereof. A green sheet for the insulating layer 6 was laminated on the lower surface. An through-hole 1 is formed on the upper surface so as to be connected to one end of the coil 4, and an Ag paste is filled therein, and an IC chip connection terminal 8 for connecting the coil lead terminal 9 and the IC to the surface layer perpendicular to the through-hole 1. The shape which becomes one of these was printed on the green sheet for insulating layers 6 with Ag paste. Further, the through hole 1 is opened so as to be connected to the other end of the coil 4 and some intermediate points, and the Ag paste is filled therein, and the coil lead terminal 9 is drawn out to the surface layer perpendicular to the through hole 1, and the coil lead terminal The shape which becomes one of the IC chip connection terminal 8 which connects the coil lead terminal 9 and IC in the shape which faces the end surface of 9 was printed on the green sheet for insulating layers 6 with Ag paste, and was laminated. The above green sheets are pressure-bonded together, cut at the through-hole 1 and the open end face of the coil, and integrally fired at 900 ° C. for 2 hours. Sample 4 was created. The warp of the magnetic antenna was as small as 0.1 mm.

上記磁性体アンテナのICチップ接続端子8にRFIDタグ用ICを接続してさらに表層に向かい合わせになったコイルリード端子9の任意の端面同士を導電性塗料などで短絡させ、インダクタンスを調節して共振周波数を13.1MHzに調整してRFIDタグを作成し、金属板に貼り付けて出力10mWのリーダ/ライタで通信する距離を測定した。 An RFID tag IC is connected to the IC chip connection terminal 8 of the magnetic antenna, and the end faces of the coil lead terminals 9 facing the surface layer are short-circuited with a conductive paint to adjust the inductance. An RFID tag was prepared by adjusting the resonance frequency to 13.1 MHz, and the RFID tag was attached to a metal plate, and the communication distance with a reader / writer with an output of 10 mW was measured.

その結果該RFIDタグは金属板貼付時に3.4cmの通信距離を示した。金属板貼り付け前後の共振周波数の変化は+0.5MHzと小さかった。 As a result, the RFID tag showed a communication distance of 3.4 cm when the metal plate was attached. The change in resonance frequency before and after the metal plate was attached was as small as +0.5 MHz.

[実施例5]
実施例1で説明した磁性層5用グリーンシートと絶縁層6用グリーンシートを用いる。図6に示すように、磁性層5用グリーンシートにスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して5枚積層し、コイル4を形成した。次にコイル4の下面に絶縁層6グリーンシートとAgペーストで導電層7を印刷し構成した絶縁層6用グリーンシートを積層し、更にその下面に磁性層5用グリーンシートを積層し、更にその下面に絶縁層用グリーンシートを積層した。コイル4の上面の絶縁層6用グリーンシートにはコイル4の両端に接続するようにスルーホール1を開け、その中にAgペーストを充填して、かつスルーホール1と直角になる面にAgペーストでコンデンサー電極11となる形状を印刷し、さらにその上に積層する絶縁層6用グリーンシート上のICチップ接続端子8との間でコンデンサーを形成するようにした。以上のグリーンシートをまとめて加圧接着させ、スルーホール1とコイル開放端面で切断し、900℃で2時間、一体焼成して横18mm×縦4mmのサイズのコイル巻き数32ターンの磁性体アンテナサンプル5を作成した。磁性体アンテナの反りは0.1mmと極めて小さかった。
[Example 5]
The green sheet for magnetic layer 5 and the green sheet for insulating layer 6 described in Example 1 are used. As shown in FIG. 6, a through hole 1 is formed in the green sheet for the magnetic layer 5, and an Ag paste is filled therein, and the Ag paste is printed on both sides perpendicular to the through hole 1 to laminate five sheets, A coil 4 was formed. Next, the insulating layer 6 green sheet and the insulating layer 6 green sheet formed by printing the conductive layer 7 with Ag paste are laminated on the lower surface of the coil 4, and the magnetic layer 5 green sheet is further laminated on the lower surface thereof. A green sheet for an insulating layer was laminated on the lower surface. The through-hole 1 is formed in the green sheet for the insulating layer 6 on the upper surface of the coil 4 so as to be connected to both ends of the coil 4, the Ag paste is filled therein, and the Ag paste is formed on the surface perpendicular to the through-hole 1. Then, the capacitor electrode 11 was printed, and a capacitor was formed between the IC chip connection terminal 8 on the green sheet for the insulating layer 6 laminated thereon. The above green sheets are pressure-bonded together, cut at the through-hole 1 and the open end face of the coil, and integrally fired at 900 ° C. for 2 hours. Sample 5 was created. The warp of the magnetic antenna was as small as 0.1 mm.

上記磁性体アンテナのICチップ接続端子8にRFIDタグ用ICを接続し、さらにICチップ接続端子8の一部を削り落として静電容量を調整して共振周波数を13.1MHzに調整してRFIDタグを作成し、金属板に貼り付けて出力10mWのリーダ/ライタで通信する距離を測定した。 An RFID tag IC is connected to the IC chip connection terminal 8 of the magnetic antenna, and a part of the IC chip connection terminal 8 is scraped off to adjust the capacitance to adjust the resonance frequency to 13.1 MHz. A tag was created and affixed to a metal plate, and the distance to communicate with a reader / writer with an output of 10 mW was measured.

その結果該RFIDタグは金属板貼付時に3.3cmの通信距離を示した。金属板貼り付け前後の共振周波数の変化は+0.5MHzと小さかった。 As a result, the RFID tag showed a communication distance of 3.3 cm when the metal plate was attached. The change in resonance frequency before and after the metal plate was attached was as small as +0.5 MHz.

[実施例6]
磁性層5用として、900℃焼結後に100MHzでの透磁率が20になるNi−Zn−Cuフェライト仮焼粉(Fe 48.5モル%、NiO 39モル%、ZnO 2モル%、CuO 10.5モル%)100重量部、ブチラール樹脂7重量部、可塑剤3重量部、溶剤100重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上にシート成型した。また絶縁層6用として同様に、Zn−Cuフェライト仮焼粉(Fe 48.5モル%、ZnO 40モル%、CuO 11.5モル%)100重量部、ブチラール樹脂7重量部、可塑剤3重量部、溶剤100重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上にシート成型した。次に図7に示すように、磁性層5用グリーンシートにスルーホール1を開けその中にAgペーストを充填して、かつスルーホール1と直角になる両面にAgペーストを印刷して5枚積層し、コイル4を形成した。次に絶縁層6用グリーンシートをコイル4の上下面に積層し、下面側にはさらにAgペーストで導電層7を印刷した絶縁層6を積層した。以上のグリーンシートをまとめて加圧接着させ、スルーホール1とコイル開放端面3で切断し、900℃で2時間一体焼成して横18mm×縦4mmのサイズのコイル巻き数50ターンの磁性体アンテナサンプル6を作成した。磁性体アンテナの反りは0.6mmと小さかった。
[Example 6]
For magnetic layer 5, Ni-Zn-Cu ferrite calcined powder having a magnetic permeability of 20 at 100 MHz after sintering at 900 ° C. (Fe 2 O 3 48.5 mol%, NiO 39 mol%, ZnO 2 mol%, A slurry was prepared by mixing 100 parts by weight of CuO (10.5 mol%), 7 parts by weight of butyral resin, 3 parts by weight of a plasticizer, and 100 parts by weight of a solvent with a ball mill. The resulting slurry was formed into a sheet on a PET film with a doctor blade. Also similarly as insulating layer 6, Zn-Cu ferrite calcined powder (Fe 2 O 3 48.5 mol%, ZnO 40 mol%, CuO 11.5 mol%) 100 parts by weight of a butyral resin 7 parts by weight, plasticizer 3 parts by weight of the agent and 100 parts by weight of the solvent were mixed with a ball mill to produce a slurry. The resulting slurry was formed into a sheet on a PET film with a doctor blade. Next, as shown in FIG. 7, a through-hole 1 is formed in the green sheet for the magnetic layer 5 and filled with Ag paste, and the Ag paste is printed on both sides perpendicular to the through-hole 1 to laminate five sheets. Then, the coil 4 was formed. Next, a green sheet for the insulating layer 6 was laminated on the upper and lower surfaces of the coil 4, and an insulating layer 6 on which the conductive layer 7 was printed with Ag paste was further laminated on the lower surface side. The above green sheets are pressure-bonded together, cut at the through-hole 1 and the coil open end face 3, and integrally fired at 900 ° C. for 2 hours, and a magnetic antenna having a coil winding number of 50 turns having a size of 18 mm wide × 4 mm long. Sample 6 was created. The warp of the magnetic antenna was as small as 0.6 mm.

該磁性体アンテナのコイル両端にFMラジオ10を接続してさらにコイル4と並列にコンデンサーを接続して共振周波数を82MHzに調整してFM放送受信用アンテナを作成し、携帯電話等の金属筐体の外側にアンテナを設置することを想定して、金属板に貼り付けてFM放送(82MHz)の受信を試みたところ、良好な受信状態が得られた。 An FM radio 10 is connected to both ends of the coil of the magnetic antenna, a capacitor is connected in parallel with the coil 4, and the resonance frequency is adjusted to 82 MHz to create an FM broadcast receiving antenna. Assuming that an antenna is installed outside the antenna, it was affixed to a metal plate and tried to receive FM broadcast (82 MHz), and a good reception state was obtained.

[比較例1]
実施例1で説明した磁性体アンテナサンプル1と同じプロセスに対して、図8のように導電層7を構成しない磁性体アンテナサンプル7を作成した。磁性体アンテナの反りは0.1mmであった。
[Comparative Example 1]
For the same process as the magnetic antenna sample 1 described in Example 1, a magnetic antenna sample 7 not forming the conductive layer 7 as shown in FIG. The warp of the magnetic antenna was 0.1 mm.

該磁性体アンテナのコイル両端にRFIDタグ用ICを接続してさらにICと並列にコンデンサーを接続して共振周波数を13.1MHzに調整してRFIDタグを作成し、金属板に貼り付けて出力10mWのリーダ/ライタで通信する距離を測定した。
その結果該RFIDタグは金属板貼り付け前後の共振周波数の変化が大きく、+1.5MHzであり、金属板貼付時には1.4cmの通信距離しか得られなかった。
An RFID tag IC is connected to both ends of the coil of the magnetic antenna, a capacitor is connected in parallel with the IC, and the resonance frequency is adjusted to 13.1 MHz to create an RFID tag, which is attached to a metal plate and output 10 mW The distance to communicate with the reader / writer was measured.
As a result, the RFID tag had a large change in the resonance frequency before and after the metal plate was attached, and was +1.5 MHz. When the metal plate was attached, only a communication distance of 1.4 cm was obtained.

[比較例2]
また比較対照として、フィルム状の樹脂表面に渦巻き状に配線したアンテナコイルの両端にICを接続した一般的な市販のICカード型タグ(テキサスインスツルメンツ社製、製品名Tag−itTMHF)に、金属板に貼り付けて出力10mWのリーダ/ライタで通信する距離を測定した。
その結果、金属板貼付時の通信距離は0.1cmで、金属板貼付後の共振周波数は観測されなかった。
[Comparative Example 2]
For comparison, a general commercially available IC card type tag (product name: Tag-it TM HF manufactured by Texas Instruments Co., Ltd.) in which an IC is connected to both ends of an antenna coil that is spirally wired on a film-like resin surface, The distance of communication with a reader / writer with an output of 10 mW was measured after being attached to a metal plate.
As a result, the communication distance when the metal plate was stuck was 0.1 cm, and the resonance frequency after the metal plate was stuck was not observed.

本発明の磁性体アンテナのコイル部分の積層構成図である。It is a lamination | stacking block diagram of the coil part of the magnetic body antenna of this invention. 本発明の実施例1における積層磁性体アンテナの斜視図である。It is a perspective view of the laminated magnetic body antenna in Example 1 of this invention. 本発明の実施例2における積層磁性体アンテナの斜視図である。It is a perspective view of the laminated magnetic antenna in Example 2 of this invention. 本発明の実施例3における積層磁性体アンテナの斜視図である。It is a perspective view of the laminated magnetic antenna in Example 3 of this invention. 本発明の実施例4における積層磁性体アンテナの斜視図である。It is a perspective view of the laminated magnetic antenna in Example 4 of this invention. 本発明の実施例5における積層磁性体アンテナの斜視図である。It is a perspective view of the laminated magnetic antenna in Example 5 of this invention. 本発明の実施例6における積層磁性体アンテナの斜視図である。It is a perspective view of the laminated magnetic antenna in Example 6 of this invention. 比較例1における導電層を構成しない積層磁性体アンテナの斜視図である。It is a perspective view of the laminated magnetic antenna which does not comprise the conductive layer in Comparative Example 1.

符号の説明Explanation of symbols

1 スルーホール
2 電極層
3 コイル開放端面
4 コイル
5 磁性層
6 絶縁層
7 導電層
8 ICチップ接続端子
9 コイルリード端子
10 FMラジオ
11 コンデンサー電極
DESCRIPTION OF SYMBOLS 1 Through hole 2 Electrode layer 3 Coil open end surface 4 Coil 5 Magnetic layer 6 Insulating layer 7 Conductive layer 8 IC chip connection terminal 9 Coil lead terminal 10 FM radio 11 Capacitor electrode

Claims (15)

磁界成分を送受信するための磁性体アンテナであって、磁性層に、該磁性層を中心とし電極材料がコイル状となるように形成され、コイル状の電極材料を形成した一方あるいは両方の外側面に絶縁層を形成し、一方あるいは両方の絶縁層の外側面に導電層を設けることを特徴とする磁性体アンテナ。 A magnetic antenna for transmitting and receiving magnetic field components, wherein one or both outer surfaces of the magnetic layer are formed such that the electrode material is coiled around the magnetic layer, and the coiled electrode material is formed. An insulating layer is formed on the magnetic antenna, and a conductive layer is provided on the outer surface of one or both insulating layers. 磁界成分を送受信するための磁性体アンテナであって、磁性粉末とバインダー樹脂との混合物をシート状に成形した単層の磁性層又は複数の層を積層した磁性層に、該磁性層を中心とし電極材料を電気回路としてコイル状となるように形成し、コイル状の電極材料を形成した両方の外側面に絶縁層を形成し、一方あるいは両方の絶縁層の外側面に導電層を形成し、所望の大きさに切断した後、一体焼成することを特徴とする磁性体アンテナ。 A magnetic antenna for transmitting and receiving magnetic field components, wherein a single layer magnetic layer formed by mixing a mixture of magnetic powder and binder resin into a sheet or a magnetic layer in which a plurality of layers are laminated, with the magnetic layer as the center The electrode material is formed in a coil shape as an electric circuit, the insulating layer is formed on both outer surfaces on which the coiled electrode material is formed, the conductive layer is formed on the outer surface of one or both of the insulating layers, A magnetic antenna, which is integrally fired after being cut to a desired size. 磁界成分を送受信するための磁性体アンテナであって、磁性粉末をバインダーで混合してシート状にした単層あるいは複数の層を積層した磁性層にスルーホールを開け、そのスルーホールに電極材料を流し込み、且つスルーホールと直角になる両面に電極材料で電極層を形成し、これをスルーホールと接続して磁性層が角型あるいは長方形のコイルを作り、コイルを形成する磁性層の両端が磁性回路上開放となる構成で、電極層を印刷したコイルの上下面を絶縁層で挟み込み、一方あるいは両方の絶縁層外側面に導電層を配置し、スルーホールとコイル開放端面で切断し一体焼成するLTCC技術を用いた事を特徴とする磁性体アンテナ。 A magnetic antenna for transmitting and receiving magnetic field components. A through hole is formed in a magnetic layer in which magnetic powder is mixed with a binder to form a single layer or a plurality of layers, and an electrode material is formed in the through hole. An electrode layer is formed of electrode material on both sides that are poured and perpendicular to the through hole, and this is connected to the through hole to form a rectangular or rectangular coil, and both ends of the magnetic layer forming the coil are magnetic. In the configuration that is open on the circuit, the upper and lower surfaces of the coil printed with the electrode layer are sandwiched between insulating layers, a conductive layer is disposed on the outer surface of one or both insulating layers, cut at the through hole and the open end surface of the coil, and integrally fired. Magnetic antenna characterized by using LTCC technology. 請求項3記載の磁性体アンテナにおいて、電極層を印刷したコイルの上下面いずれか一方あるいは両方の絶縁層にスルーホールを設け、このスルーホールに電極材料を流し込みコイル両端と接続し、その表面に電極材料でコイルリード端子とICチップ接続端子を印刷した事を特徴とする磁性体アンテナ。 4. The magnetic antenna according to claim 3, wherein a through hole is provided in one or both of the upper and lower surfaces of the coil on which the electrode layer is printed, an electrode material is poured into the through hole, and both ends of the coil are connected to the surface. A magnetic antenna characterized in that a coil lead terminal and an IC chip connection terminal are printed with an electrode material. 請求項3から4のいずれか1項に記載の磁性体アンテナにおいて、絶縁層外側面に形成した導電層のさらに外側面に絶縁層あるいは磁性層を設けた事を特徴とする磁性体アンテナ。 5. The magnetic antenna according to claim 3, wherein an insulating layer or a magnetic layer is further provided on the outer surface of the conductive layer formed on the outer surface of the insulating layer. 6. 請求項3から5のいずれか1項に記載の磁性体アンテナにおいて、絶縁層外側面に形成した導電層のさらに外側面に絶縁層を設け、さらにその外側面に磁性層を設けた事を特徴とする磁性体アンテナ。 6. The magnetic antenna according to claim 3, wherein an insulating layer is further provided on the outer surface of the conductive layer formed on the outer surface of the insulating layer, and a magnetic layer is further provided on the outer surface. A magnetic antenna. 請求項3から5のいずれか1項に記載の磁性体アンテナにおいて、絶縁層外側面に形成した導電層のさらに外側面に磁性層を設け、さらにその外側面に絶縁層を設けた事を特徴とする磁性体アンテナ。 6. The magnetic antenna according to claim 3, wherein a magnetic layer is further provided on the outer surface of the conductive layer formed on the outer surface of the insulating layer, and an insulating layer is further provided on the outer surface. A magnetic antenna. 請求項3から6のいずれか1項に記載の磁性体アンテナにおいて、絶縁層外側面に形成した導電層のさらに外側面に絶縁層を設け、さらにその外側面に磁性層を設け、さらにその外側面に絶縁層を設けた事を特徴とする磁性体アンテナ。 7. The magnetic antenna according to claim 3, wherein an insulating layer is further provided on the outer surface of the conductive layer formed on the outer surface of the insulating layer, and a magnetic layer is further provided on the outer surface. A magnetic antenna characterized in that an insulating layer is provided on a side surface. 請求項3から8のいずれか1項に記載の磁性体アンテナにおいて、コイルの上下面を挟み込んだ絶縁層の一方あるいは両方の外側面にコンデンサー電極を配置し、コンデンサー電極を配置した外側面にさらに絶縁層を設け、該絶縁層の外側面に電極を印刷して該絶縁層を挟みこむようにコンデンサーを形成し、ICチップ接続端子と並列もしくは直列に接続した事を特徴とする磁性体アンテナ。 The magnetic antenna according to any one of claims 3 to 8, wherein a capacitor electrode is disposed on one or both outer surfaces of the insulating layer sandwiching the upper and lower surfaces of the coil, and further on the outer surface on which the capacitor electrode is disposed. A magnetic antenna comprising an insulating layer, an electrode printed on an outer surface of the insulating layer, a capacitor formed so as to sandwich the insulating layer, and connected in parallel or in series with an IC chip connection terminal. 請求項3から9のいずれか1項に記載の磁性体アンテナにおいて、絶縁層の面に平行電極、もしくはくし型電極を印刷してコンデンサーを形成し、コイルリード端子と並列もしくは直列に接続した事を特徴とする磁性体アンテナ。 10. The magnetic antenna according to claim 3, wherein a capacitor is formed by printing parallel electrodes or comb-shaped electrodes on the surface of the insulating layer, and connected in parallel or in series with the coil lead terminal. A magnetic antenna characterized by the above. 請求項3から10のいずれか1項に記載の磁性体アンテナにおいて、磁性層にNi−Zn系フェライトを用いことを特徴とする磁性体アンテナ。 11. The magnetic antenna according to claim 3, wherein Ni—Zn-based ferrite is used for the magnetic layer. 11. 請求項3から11のいずれか1項に記載の磁性体アンテナにおいて、絶縁層にZn系フェライトを用いたことを特徴とする磁性体アンテナ。 The magnetic antenna according to any one of claims 3 to 11, wherein a Zn-based ferrite is used for the insulating layer. 請求項3から12のいずれか1項に記載の磁性体アンテナにおいて、絶縁層にガラス系セラミックを用いたことを特徴とする磁性体アンテナ。 The magnetic antenna according to any one of claims 3 to 12, wherein a glass-based ceramic is used for the insulating layer. 請求項3から13のいずれか1項に記載の磁性体アンテナにおいて、絶縁層上面にICチップが接続できる端子構造を有し、コイルリード端子と並列もしくは直列に接続したことを特徴とする磁性体アンテナ。 14. The magnetic antenna according to claim 3, wherein the magnetic antenna has a terminal structure to which an IC chip can be connected on the upper surface of the insulating layer, and is connected in parallel or in series with a coil lead terminal. antenna. 請求項3から14のいずれか1項に記載の磁性体アンテナにおいて、絶縁層上面に可変コンデンサーを設ける端子をコイルリード端子と並列もしくは直列に接続した事を特徴とする磁性体アンテナ。
The magnetic antenna according to any one of claims 3 to 14, wherein a terminal for providing a variable capacitor on an upper surface of the insulating layer is connected in parallel or in series with a coil lead terminal.
JP2005199451A 2005-07-07 2005-07-07 Magnetic antenna Active JP4821965B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005199451A JP4821965B2 (en) 2005-07-07 2005-07-07 Magnetic antenna
CN200680023105.2A CN101208830B (en) 2005-07-07 2006-07-06 Magnetic antenna
KR1020077030092A KR101274354B1 (en) 2005-07-07 2006-07-06 Magnetic antenna
EP06767954.8A EP1901394B1 (en) 2005-07-07 2006-07-06 Magnetic antenna
CN201310002009.1A CN103094667B (en) 2005-07-07 2006-07-06 Magnetic antenna
PCT/JP2006/313495 WO2007007639A1 (en) 2005-07-07 2006-07-06 Magnetic antenna
US12/003,951 US8072387B2 (en) 2005-07-07 2008-01-03 Magnetic antenna and board mounted with the same
US13/285,041 US8159405B2 (en) 2005-07-07 2011-10-31 Magnetic antenna and board mounted with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199451A JP4821965B2 (en) 2005-07-07 2005-07-07 Magnetic antenna

Publications (2)

Publication Number Publication Date
JP2007019891A true JP2007019891A (en) 2007-01-25
JP4821965B2 JP4821965B2 (en) 2011-11-24

Family

ID=37756646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199451A Active JP4821965B2 (en) 2005-07-07 2005-07-07 Magnetic antenna

Country Status (2)

Country Link
JP (1) JP4821965B2 (en)
CN (1) CN101208830B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133018A1 (en) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. Magnetic field coupling type antenna, magnetic field coupling type antenna module, magnetic field coupling type antenna device, and their manufacturing methods
WO2009066629A1 (en) * 2007-11-20 2009-05-28 Tyco Electronics Raychem K.K. Antenna element and method for manufacturing the same
JP2009130446A (en) * 2007-11-20 2009-06-11 Smart:Kk Radio transmitter-receiver, non-contact information recording medium, information reader/writer, and management system
WO2009130901A1 (en) 2008-04-25 2009-10-29 戸田工業株式会社 Magnetic antenna, substrate with the magnetic antenna mounted thereon, and rf tag
WO2009139148A1 (en) 2008-05-13 2009-11-19 戸田工業株式会社 Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
WO2010087413A1 (en) 2009-01-30 2010-08-05 戸田工業株式会社 Magnetic antenna, rf tag, and substrate having the rf tag mounted thereon
WO2010113751A1 (en) 2009-03-31 2010-10-07 戸田工業株式会社 Composite rf tag and tool provided with the composite rf tag
WO2012017921A1 (en) 2010-08-04 2012-02-09 戸田工業株式会社 Rf tag, magnetic antenna, substrate with the rf tag mounted thereon, and communication system
WO2012111430A1 (en) 2011-02-15 2012-08-23 株式会社村田製作所 Antenna device and communication terminal device
WO2012124561A1 (en) * 2011-03-16 2012-09-20 株式会社 村田製作所 Electronic part
JP5062382B2 (en) * 2010-09-07 2012-10-31 株式会社村田製作所 Antenna device
JP2013172241A (en) * 2012-02-20 2013-09-02 Murata Mfg Co Ltd Stacked antenna, antenna device and electronic apparatus using the same
JP2013247436A (en) * 2012-05-24 2013-12-09 Murata Mfg Co Ltd Coil antenna and communication terminal device
JP2014154896A (en) * 2013-02-04 2014-08-25 Murata Mfg Co Ltd Antenna, antenna device, and mobile terminal
WO2014142345A1 (en) * 2013-03-15 2014-09-18 Ricoh Company, Ltd. Antenna device
JP2014179850A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Antenna device
JP2014195138A (en) * 2013-03-28 2014-10-09 Ricoh Co Ltd Antenna device
US9214728B2 (en) 2012-04-27 2015-12-15 Murata Manufacturing Co., Ltd. Coil antenna and communication terminal device
WO2016031454A1 (en) * 2014-08-27 2016-03-03 株式会社村田製作所 Surface mountable antenna and electronic device
JP2016129421A (en) * 2016-03-08 2016-07-14 株式会社村田製作所 Stacked antenna, antenna device and electronic apparatus using the same
US9509049B2 (en) 2011-12-22 2016-11-29 Murata Manufacturing Co., Ltd. Magnetic antenna, antenna device, and electronic apparatus
WO2017038884A1 (en) * 2015-09-02 2017-03-09 戸田工業株式会社 Magnetic antenna and antenna device
WO2017038885A1 (en) * 2015-09-02 2017-03-09 戸田工業株式会社 Magnetic antenna and antenna device
US11228106B2 (en) 2017-01-31 2022-01-18 Toda Kogyo Corporation Electronic component, antenna and RF tag

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135450B2 (en) * 2010-03-31 2013-02-06 デクセリアルズ株式会社 Antenna device, communication device
CN103636066B (en) * 2012-05-09 2017-02-08 株式会社村田制作所 Coil antenna element and antenna module
JP5967028B2 (en) 2012-08-09 2016-08-10 株式会社村田製作所 ANTENNA DEVICE, WIRELESS COMMUNICATION DEVICE, AND ANTENNA DEVICE MANUFACTURING METHOD
CN104868251A (en) * 2014-02-20 2015-08-26 联想(北京)有限公司 Near field communication (NFC) antenna
CN103825100B (en) * 2014-03-12 2016-05-18 深圳市麦捷微电子科技股份有限公司 Antenna and RF identification module
CN106299633B (en) * 2015-05-15 2019-05-14 佳邦科技股份有限公司 Antenna structure and preparation method thereof for communication module
US10476162B2 (en) * 2016-09-21 2019-11-12 Wits Co., Ltd. Wireless communication antenna and mobile device including the same
KR20180047889A (en) * 2016-11-01 2018-05-10 삼성전기주식회사 Antenna device
DE102018209189A1 (en) * 2018-06-08 2019-12-12 Sivantos Pte. Ltd. Antenna and device with such an antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132083A (en) * 1981-02-09 1982-08-16 Seiko Instr & Electronics Ltd Antenna device for portable timepiece
JPH11297520A (en) * 1998-04-08 1999-10-29 Mitsubishi Materials Corp Burglarproof tag and its manufacture
JP2003059722A (en) * 2001-08-10 2003-02-28 Murata Mfg Co Ltd Laminated inductor and its manufacturing method
JP2003152416A (en) * 2001-08-30 2003-05-23 Kyocera Corp Chip antenna manufacturing method
JP4218519B2 (en) * 2003-12-26 2009-02-04 戸田工業株式会社 Magnetic field antenna, wireless system and communication system using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940468B2 (en) * 2001-02-15 2005-09-06 Integral Technologies, Inc. Transformers or inductors (“transductors”) and antennas manufactured from conductive loaded resin-based materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132083A (en) * 1981-02-09 1982-08-16 Seiko Instr & Electronics Ltd Antenna device for portable timepiece
JPH11297520A (en) * 1998-04-08 1999-10-29 Mitsubishi Materials Corp Burglarproof tag and its manufacture
JP2003059722A (en) * 2001-08-10 2003-02-28 Murata Mfg Co Ltd Laminated inductor and its manufacturing method
JP2003152416A (en) * 2001-08-30 2003-05-23 Kyocera Corp Chip antenna manufacturing method
JP4218519B2 (en) * 2003-12-26 2009-02-04 戸田工業株式会社 Magnetic field antenna, wireless system and communication system using the same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133018A1 (en) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. Magnetic field coupling type antenna, magnetic field coupling type antenna module, magnetic field coupling type antenna device, and their manufacturing methods
GB2461443B (en) * 2007-04-13 2012-06-06 Murata Manufacturing Co Magnetic field coupling antenna module arrangements including a magnetic core embedded in an insulating layer and their manufacturing methods.
GB2461443A (en) * 2007-04-13 2010-01-06 Murata Manufacturing Co Magnetic field coupling type antenna, magnetic field coupling type antenna module, magnetic field coupling type antenna device,and their manufacturing methods
WO2009066629A1 (en) * 2007-11-20 2009-05-28 Tyco Electronics Raychem K.K. Antenna element and method for manufacturing the same
JP2009130446A (en) * 2007-11-20 2009-06-11 Smart:Kk Radio transmitter-receiver, non-contact information recording medium, information reader/writer, and management system
KR20110005249A (en) 2008-04-25 2011-01-17 도다 고교 가부시끼가이샤 Magnetic antenna, substrate with the magnetic antenna mounted thereon, and rf tag
WO2009130901A1 (en) 2008-04-25 2009-10-29 戸田工業株式会社 Magnetic antenna, substrate with the magnetic antenna mounted thereon, and rf tag
CN102017302A (en) * 2008-04-25 2011-04-13 户田工业株式会社 Magnetic antenna, substrate with the magnetic antenna mounted thereon, and RF tag
JP2009278292A (en) * 2008-05-13 2009-11-26 Toda Kogyo Corp Composite magnetic antenna and rf tag, the composite magnetic antenna or metal part attached with rf tag, and metal instrument
EP2280450A1 (en) * 2008-05-13 2011-02-02 Toda Kogyo Corporation Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
KR20110015415A (en) 2008-05-13 2011-02-15 도다 고교 가부시끼가이샤 Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
US8479999B2 (en) 2008-05-13 2013-07-09 Toda Kogyo Corporation Composite magnetic antenna and RF tag, and metal part and metal tool on which the composite magnetic antenna or RF tag is installed
EP2280450A4 (en) * 2008-05-13 2014-05-07 Toda Kogyo Corp Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
WO2009139148A1 (en) 2008-05-13 2009-11-19 戸田工業株式会社 Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
JP2010200314A (en) * 2009-01-30 2010-09-09 Toda Kogyo Corp Magnetic antenna and rf tag, and substrate having the rf tag mounted thereon
WO2010087413A1 (en) 2009-01-30 2010-08-05 戸田工業株式会社 Magnetic antenna, rf tag, and substrate having the rf tag mounted thereon
US10027017B2 (en) 2009-01-30 2018-07-17 Toda Kogyo Corporation Magnetic antenna, and RF tag and board mounted with the RF tag
KR101757615B1 (en) 2009-01-30 2017-07-26 도다 고교 가부시끼가이샤 Magnetic antenna, rf tag, and substrate having the rf tag mounted thereon
US9634735B2 (en) 2009-01-30 2017-04-25 Toda Kogyo Corporation Magnetic antenna, and RF tag and board mounted with the RF tag
WO2010113751A1 (en) 2009-03-31 2010-10-07 戸田工業株式会社 Composite rf tag and tool provided with the composite rf tag
KR20130142991A (en) 2010-08-04 2013-12-30 도다 고교 가부시끼가이샤 Rf tag, magnetic antenna, substrate with the rf tag mounted thereon, and communication system
WO2012017921A1 (en) 2010-08-04 2012-02-09 戸田工業株式会社 Rf tag, magnetic antenna, substrate with the rf tag mounted thereon, and communication system
JP2012039242A (en) * 2010-08-04 2012-02-23 Toda Kogyo Corp Rf tag, magnetic body antenna, and board mounted with the rf tag, and communication system
US9311590B2 (en) 2010-08-04 2016-04-12 Toda Kogyo Corporation RF tag, magnetic antenna, board mounted with the RF tag, and communication system
US9391369B2 (en) 2010-09-07 2016-07-12 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9948005B2 (en) 2010-09-07 2018-04-17 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
JP5062382B2 (en) * 2010-09-07 2012-10-31 株式会社村田製作所 Antenna device
US9865924B2 (en) 2010-09-07 2018-01-09 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9825365B2 (en) 2010-09-07 2017-11-21 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
JP2013013110A (en) * 2010-09-07 2013-01-17 Murata Mfg Co Ltd Antenna device
US9917366B2 (en) 2011-02-15 2018-03-13 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
WO2012111430A1 (en) 2011-02-15 2012-08-23 株式会社村田製作所 Antenna device and communication terminal device
WO2012124561A1 (en) * 2011-03-16 2012-09-20 株式会社 村田製作所 Electronic part
US9509049B2 (en) 2011-12-22 2016-11-29 Murata Manufacturing Co., Ltd. Magnetic antenna, antenna device, and electronic apparatus
JP2013172241A (en) * 2012-02-20 2013-09-02 Murata Mfg Co Ltd Stacked antenna, antenna device and electronic apparatus using the same
US9214728B2 (en) 2012-04-27 2015-12-15 Murata Manufacturing Co., Ltd. Coil antenna and communication terminal device
JP2013247436A (en) * 2012-05-24 2013-12-09 Murata Mfg Co Ltd Coil antenna and communication terminal device
JP2014154896A (en) * 2013-02-04 2014-08-25 Murata Mfg Co Ltd Antenna, antenna device, and mobile terminal
JP2014179850A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Antenna device
US10164337B2 (en) 2013-03-15 2018-12-25 Ricoh Company, Ltd. Antenna device
WO2014142345A1 (en) * 2013-03-15 2014-09-18 Ricoh Company, Ltd. Antenna device
JP2014195138A (en) * 2013-03-28 2014-10-09 Ricoh Co Ltd Antenna device
JP2017158200A (en) * 2014-08-27 2017-09-07 株式会社村田製作所 Surface-mounted antenna and electronic apparatus
JPWO2016031454A1 (en) * 2014-08-27 2017-05-25 株式会社村田製作所 Surface mount antenna and electronic equipment
WO2016031454A1 (en) * 2014-08-27 2016-03-03 株式会社村田製作所 Surface mountable antenna and electronic device
WO2017038885A1 (en) * 2015-09-02 2017-03-09 戸田工業株式会社 Magnetic antenna and antenna device
WO2017038884A1 (en) * 2015-09-02 2017-03-09 戸田工業株式会社 Magnetic antenna and antenna device
JP2016129421A (en) * 2016-03-08 2016-07-14 株式会社村田製作所 Stacked antenna, antenna device and electronic apparatus using the same
US11228106B2 (en) 2017-01-31 2022-01-18 Toda Kogyo Corporation Electronic component, antenna and RF tag

Also Published As

Publication number Publication date
CN101208830B (en) 2013-02-20
JP4821965B2 (en) 2011-11-24
CN101208830A (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4821965B2 (en) Magnetic antenna
JP4793584B2 (en) A substrate with a magnetic antenna
US8072387B2 (en) Magnetic antenna and board mounted with the same
KR101274354B1 (en) Magnetic antenna
TWI483472B (en) A magnetic antenna, a substrate on which the magnetic antenna is mounted, and a radio frequency tag
JP5239499B2 (en) Composite magnetic antenna and RF tag, metal parts and metal tools provided with the composite magnetic antenna or RF tag
JP5634717B2 (en) Magnetic antenna, RF tag, and substrate mounted with the RF tag
WO2012017921A1 (en) Rf tag, magnetic antenna, substrate with the rf tag mounted thereon, and communication system
WO2010113751A1 (en) Composite rf tag and tool provided with the composite rf tag
CN110214396B (en) Electronic device, antenna and RF tag
JP2007028114A (en) Magnetic material antenna
WO2017038884A1 (en) Magnetic antenna and antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4821965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250