JP2007017549A - オーバーコート心線 - Google Patents

オーバーコート心線 Download PDF

Info

Publication number
JP2007017549A
JP2007017549A JP2005196888A JP2005196888A JP2007017549A JP 2007017549 A JP2007017549 A JP 2007017549A JP 2005196888 A JP2005196888 A JP 2005196888A JP 2005196888 A JP2005196888 A JP 2005196888A JP 2007017549 A JP2007017549 A JP 2007017549A
Authority
JP
Japan
Prior art keywords
overcoat
layer
core wire
overcoat layer
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005196888A
Other languages
English (en)
Inventor
Kazunori Tanaka
和典 田中
Toshihisa Sato
登志久 佐藤
Kiyoaki Moriuchi
清晃 森内
Atsuya Takahashi
篤哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Nippon Telegraph and Telephone East Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Nippon Telegraph and Telephone East Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd, Nippon Telegraph and Telephone East Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005196888A priority Critical patent/JP2007017549A/ja
Publication of JP2007017549A publication Critical patent/JP2007017549A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】 一度の操作で確実に除去可能なオーバーコート層が従来になく長いオーバーコート心線を提供することを目的とする。さらに、低温であっても伝送損失が悪化しないオーバーコート心線を提供することを目的とする。
【解決手段】 本発明のオーバーコート心線19は、ガラスファイバ30上に樹脂層31が被覆された光ファイバ心線1上にさらにオーバーコート層16が被覆されたオーバーコート心線19であって、オーバーコート層16が熱可塑性樹脂からなり、かつその内面表層が微小な凹凸構造であることを特徴とする。
【選択図】 図1

Description

本発明は、ガラスファイバ上に樹脂層が被覆された光ファイバ心線上にさらにオーバーコート層が被覆されたオーバーコート心線に関する。
光ファイバの被覆構造に関しては既に膨大な種類のものが知られており、その中に、ガラスファイバ上に樹脂層(樹脂内層)を被覆した光ファイバ心線の外周面に更に樹脂のオーバーコート層(樹脂外層)を形成したオーバーコート心線がある。
そのような樹脂の被覆層が複数層設けられたオーバーコート心線の例として、光ファイバ心線の最外層とオーバーコート層との間に、べたつき解消を目的としたシリコーンオイル層を設けたものが知られている(例えば、特許文献1参照)。また、光ファイバ心線の最外層とオーバーコート層との間に、離型剤からなる中間緩衝層を設け、トレードオフ関係にある耐側圧性と低温特性とのバランスを図ったものが知られている(特許文献2参照)。
特開昭61−145514号公報 特開昭62−73214号公報
上記特許文献1,2に記載のオーバーコート心線は、いずれもシリコーンオイル層などが樹脂層の間に存在するので、ある程度は外層樹脂を除去する際の被覆除去性の向上に寄与すると考えられる。しかし、長い寸法(5cm以上)の被覆除去性を満たすまでには至らなかった。外径の太いオーバーコート心線を市販品のメカニカルスプライス(簡易コネクタ)等で接続する場合、メカニカルスプライスの溝に位置決めするために5cm以上被覆を除去しなければならないが、現状では一回の操作で除去できる被覆は3cm程度であり、当該オーバーコート心線をメカニカルスプライスにより接続することは困難であった。
本発明は、上記事情を考慮し、被覆の除去性を向上して、一度の操作で確実に除去可能なオーバーコート層が従来になく長いオーバーコート心線を提供することを目的とする。
さらに、本発明は、低温であっても伝送損失が悪化しないオーバーコート心線を提供することを目的とする。
本発明のオーバーコート心線は、ガラスファイバ上に樹脂層が被覆された光ファイバ心線上にさらにオーバーコート層が被覆されたオーバーコート心線であって、前記オーバーコート層が熱可塑性樹脂からなり、かつその内面表層が微小な凹凸構造であることを特徴とする。
本発明のオーバーコート心線は、前記オーバーコート層が低極性分子と極性分子との混合物からなり、前記オーバーコート層内面表層の凸部に低極性分子が偏在しているものを含む。
本発明のオーバーコート心線は、前記オーバーコート層に無機物フィラーが配合されたものを含む。
本発明のオーバーコート心線は、前記光ファイバ心線の最外層に滑剤が混合されたものを含む。
本発明によれば、光ファイバ心線の最外層とオーバーコート層との化学的な密着力或いは両者間に働く摩擦力を低減させることができ、その結果、一度の操作で確実に除去可能なオーバーコート層の長さが10cmであり従来になく長い。
さらに、本発明によれば、低温であっても伝送損失が悪化しないオーバーコート心線が提供される。
以下、本発明の好適な実施の形態を図面に基づいて説明する。
図1は本発明のオーバーコート心線の軸に垂直な断面図である。
ここで製造しようとするオーバーコート心線19は、ガラスファイバ(裸光ファイバ)30上に3種類の紫外線硬化型樹脂層31(内側からソフト層31a、ハード層31b、着色層31c)を被覆した光ファイバ心線1の外周面に、熱可塑性樹脂を使用したオーバーコート層16を形成してなるものである。オーバーコート心線19の径は0.5mmで、通常の光ファイバ心線1の径である0.25mmより当然に太いものである。この太さにより、布設現場での取り扱い性が向上し、耐側圧性が向上する。
本発明のオーバーコート心線19は、オーバーコート層16が熱可塑性樹脂からなり、オーバーコート層16の内面表層が微少な凹凸構造である。
オーバーコート層16の内面表層が微少な凹凸構造であると、すなわち、オーバーコート層16の内面16aがいくつかの微少な凹部および凸部からなると、オーバーコート層16はその内面の凸部で光ファイバ心線1の最外層(この例では着色層31c)と接することになる。一方、オーバーコート層16の内面16aの凹部はオーバーコート層16と光ファイバ心線1との隙間になる。この結果、オーバーコート層16と光ファイバ心線1間には微少な隙間が点在する。オーバーコート層16と光ファイバ心線16の最外層との間に適宜な隙間があることにより、両者の密着力が小さくなり、オーバーコート層16を光ファイバ心線1に対して移動させ易い。つまり、オーバーコート層16を除去し易い。
オーバーコート層16の内面表層の微少な凹凸構造を定量的に示すのに、表面粗さを指標とすることができる。例えば、算術平均粗さ(Ra)を指標とすることができる。本発明のオーバーコート心線19の内面表層の粗さの例としては、0.5(μm)<Ra<5(μm)である場合を挙げることができる。Ra<0.5μmの状況では、オーバーコート層16と光ファイバ心線1の最外層の接触面積が大きく、両者間に大きな摩擦力が生じてオーバーコート層16の除去性が悪くなる。一方でRa>5μmの状況では、オーバーコート層16の内面16aに離散的に存在する凸部が光ファイバ心線1に及ぼす力が光ファイバ心線1の円周方向および長さ方向に均一にならない。その結果、光ファイバ心線1にマイクロベンド歪を与えてしまうことになり、温度サイクル試験中(特に低温下)で伝送特性が悪化してしまう。
オーバーコート層の内面表層に微小な凹凸がある場合の例には、オーバーコート層に微粒子が混在していて、オーバーコート層の内面表層に微粒子が存在する箇所が凸部となり、微粒子のない箇所が凹部となっている場合がある。あるいは、オーバーコート層を構成する熱可塑性樹脂が低極性分子と極性分子とからなり、両者の相溶性が悪い場合がある。さらには、両者が組み合わされて、微粒子に由来する凸部に低極性分子が偏在しているという場合もある。
ここで、低極性分子とは、その分子からなるシート上に水滴を垂らしたときの25℃での接触角が60°以上であるものをいう。接触角が60°未満である場合はそのシートを構成する分子が極性分子であるとする。接触角の測定は次のようにして行う。
接触角を測定しようとする熱可塑性樹脂を軟化させた状態で0.2mmの厚さに成形し、縦横50mmのシートを作製する。前記シートの上に純水をマイクロシリンジで一滴垂らす。その滴下30秒後の液滴を、市販の接触角計(例えば、共和界面化学社製FACE CA−D)を用いて測定する。
低極性分子が偏在するとは、前記凸部分における極性分子が存在する面積、低極性分子が存在する面積をそれぞれ求め、低極性分子の面積/(極性分子の面積+低極性分子の面積)×100の値(オーバーコート層の内面表層凸部での低極性分子の占有率)が60(%)以上となることをいう。低極性分子の偏在を考慮する場合は、極性分子が必ず混入するので、この値が100(%)になることはない。
ところで、光ファイバ心線の最外層は一般に紫外線硬化型樹脂が使用され、その表面にはアクリル部やウレタン結合部などの極性の高い官能基が存在する。オーバーコート層は凸部で光ファイバ心線の最外層と接するが、その部分に低極性分子が偏在すると、極性を有する光ファイバ心線の最外層に作用する力が小さく、結果としてオーバーコート層と光ファイバ心線間に生じる摩擦力が小さくなる。
なお、低極性分子が内面表層の凸部分に偏在すると、その分内面表層の凸部分以外の箇所(例えば凹部分)では低極性分子の割合が少なくなる。
オーバーコート層内面のRaが0.5μm以上かつ5μm以下の場合には、オーバーコート層の除去性と温度サイクル試験時の伝送損失とが良好である。ただし、オーバーコート層を構成する熱可塑性樹脂が低極性分子と極性分子とからなり、凸部における極性分子の割合が大きい場合(換言すると、凸部での低極性分子の占有率が60%未満の場合)、光ファイバ心線の最外層表面において極微小な傷が入ってしまい、外観不良を発生させてしまうことが予想される。この現象は以下のように解釈される。まず、除去の初期段階でオーバーコート層に付与されるせん断力によりオーバーコート層の凸部の極一部が粉々に破壊され、サブミクロンオーダーの微小なオーバーコート層のカスが生じる。その後除去する中で、この微小カスがせん断力を受けることになるが、オーバーコート層内層表面の凸部分における極性が低い場合、この微小な被覆カスが容易にオーバーコート層の凹部分に入りこんでしまい、被覆除去時に光ファイバ心線の最外層表面を傷付けることなく、スムーズな除去が可能となる。一方で、凸部において極性が高い場合、カスと極性分子との間で静電的な相互作用が生じ、凸部表面にカスが付着した状態でせん断を受けることになるので、オーバーコート層或いは光ファイバ心線最外層がミクロな傷を受けてしまうと考えられる。
本発明のオーバーコート心線のオーバーコート層を除去するには、例えば、除去冶具の刃をオーバーコート層の端から10cmの箇所に切り込ませ、除去するオーバーコート層を前記刃で端に向かって押して前記オーバーコート層を光ファイバ心線上で滑らせて除去する。
刃を切り込ませるときには、刃が光ファイバ心線に達しないように、オーバーコート層中に刃が止まるように切り込ませる。そして、図2に示すように、刃21を端16eにむけて移動させると、刃21から見て刃が移動する側と反対側(図2における左側)のオーバーコート層が伸びる。除去冶具22を移動させ続け刃21を移動させ続けるとやがてオーバーコート層16が引きちぎられて破断する。刃21をなおも端部へ移動させると、図3に示すように、刃21から端部16eまでの除去すべきオーバーコート層16bが刃21に押されて光ファイバ心線1上を滑り、オーバーコート層16bが除去される。
オーバーコート層を除去するときに重要なことは、オーバーコート層を光ファイバ心線上で滑らせることである。本発明では、オーバーコート層と光ファイバ心線の最外層との摩擦力が小さいので、オーバーコート層が光ファイバ心線上をなめらかに滑り、除去性がよい。
本発明では、オーバーコート層を形成する熱可塑性樹脂の種類、及びその配合量を調整して、オーバーコート層の内面表層に凸凹及び凸部分における低極性分子を偏在させるようなモルフォロジーを実現している。
本発明のオーバーコート心線の前記オーバーコート層は、二種類以上の熱可塑性樹脂からなり、かつ無機物フィラーが配合されたものを含む。例えば、無極性でかつ結晶性のポリオレフィン系熱可塑性樹脂と極性基を有する低結晶または非晶性ポリマーを混合し、さらに、水酸化アルミニウム、水酸化マグネシウム、モンモリナイト、炭酸カルシウムなどの無機物フィラーを混合することができる。無極性でかつ結晶性のポリオレフィン系熱可塑性樹脂40ないし60重量部に対して、極性基を有する低結晶または非晶性ポリマー40ないし60重量部を混合する。無機物フィラーの量は、熱可塑性樹脂(二種以上の場合を含む)100重量部に対して50ないし150重量部とする。
本発明のオーバーコート心線で、光ファイバ心線の最外層にシリコーン系添加剤等の滑剤を数重量部混合すると、滑剤の影響でオーバーコート層と前記最外層との間の摩擦力がさらに小さくなり、オーバーコート層の除去がさらに容易になり、オーバーコート層だけを15cmにわたり除去することが可能になる。例えば、光ファイバ心線の最外層が着色層である場合は、着色層にシリコーンオイル等の滑剤を数重量部添加する例を挙げることができる。
光ファイバ心線の外周にオーバーコート層を被覆するには、オーバーコート層となる樹脂を溶融させて光ファイバ心線上に押出塗布し、その樹脂を冷却させて固化させる。
オーバーコート層の樹脂が硬化されたオーバーコート心線は、ガイドローラによりパスラインの向きを変えられて引取装置により引き取られる。前記引取装置を通過した後に巻取装置に巻き取られる。引取装置と巻取装置との間にはスクリーニング手段や蓄線装置などが設けられてもよい。
なお、図1では、1層のオーバーコート層16を示したがオーバーコート層は2層以上積層されてもよい。その場合、オーバーコート層の内面とはオーバーコート層全体の内面であるので最内層のオーバーコート層の内面になる。
オーバーコート層が2層以上ある場合、オーバーコート層をいわゆる多層同時押出方式で塗布してもよい。この方式では、一つの塗布装置に二つ以上のダイスを直列に並べて配置し、ダイスの数だけの種類の樹脂をほぼ同時に塗布するようにしている。そして塗布した複数種類の樹脂をほぼ同時に硬化させる。
また、光ファイバ心線に含まれるガラスファイバの直径は、通常125μmであるが、80μm以上125μm以下の直径のガラスファイバを使用してもよい。また、光ファイバ心線の直径は、通常240μm以上255μm以下であるが、160μm以上180μm以下の直径の光ファイバ心線を使用してもよい。オーバーコート心線の直径は、例えば400μm以上900μm以下となる。
(実施例1)
融点100℃以上のポリエチレン50重量部とエチレン−エチルアクリレート共重合体(EEA)50重量部とを混合し、これに水酸化アルミニウム100重量部、酸化防止剤等から構成される添加剤を数重量部程度混合し、これらを熱可塑性樹脂成型装置(バンバリーミキサー)で溶融破砕した後に、ペレット形状に成型した。なお、バンバリーミキサーの代わりに二軸混錬押出機が使用できる。
このペレットを押出機で溶融して、直径が0.25mmの光ファイバ心線1上に押出被覆し、直径が0.5mmのオーバーコート心線19を製造した。押出機のスクリュー径は40mm、L(スクリュー長)/D(スクリュー径)=25とした。シリンダー部の温度は170℃ないし180℃、ネック部の温度は185℃、クロスヘッド部の温度は190℃とした。
(実施例2)
融点100℃以上のポリエチレン50重量部とエチレン−酢酸ビニル共重合体(EVA)50重量部とを混合し、これに水酸化マグネシウム100重量部、酸化防止剤等から構成される添加剤を数重量部程度混合し、実施例1と同様にしてペレット形状に成型した。
このペレットを実施例1と同様に光ファイバ心線上に押出被覆し、直径が0.5mmのオーバーコート心線を製造した。
(比較例)
融点100℃以上のポリエチレン25重量部とEEA75重量部とを混合し、これに水酸化アルミニウム100重量部、酸化防止剤等から構成される添加剤を数重量部程度混合し、実施例1と同様にしてペレット形状に成型した。
このペレットを実施例1と同様に光ファイバ心線上に押出被覆し、直径が0.5mmのオーバーコート心線を製造した。
上記の実施例、比較例とも光ファイバ心線1はソフト層31a、ハード層31b、着色層31cの3層の樹脂層が被覆されたものであり、着色層31cに、25℃における粘度が50Pa・sのシリコーンオイルを3重量部含有させた。
カッターナイフで各オーバーコート心線19にその長さ方向に直線状に切れ目をいれ、その切れ目のオーバーコート層16をピンセットでつまんで、オーバーコート層16を光ファイバ心線1から剥がした。
表面粗さ測定は、オーバーコート心線19からオーバーコート層16を剥がし、その内面16aのRaを(株)東京精密製表面形状測定機サーフコム590Aで測定した。同装置の測定規格は、JISB0601:’82に基づく。測定長は4.000mm、測定速度0.300mm/秒、カットオフ波長は0.800mmとした。オーバーコート層16を剥がす時には、カッターナイフでオーバーコート心線19にその長さ方向に直線状に切れ目を入れ、その切れ目からオーバーコート層16をピンセットでつまんで、オーバーコート層16を光ファイバ心線1から剥がした。
オーバーコート層16の内面表層の微少領域の熱分析を、TA−インスツルメント社製のマイクロサーマルアナライザー2900型(以下、μ−TAと称する)を用いて実施する。測定温度範囲は−40〜150℃で、昇温速度は25℃/分とする。温度を上昇させながら測定装置の先端に取り付けてあるカンチレバーの潜り込み度合いを測定し、温度を横軸にカンチレバーの潜り込み度合いを縦軸にして表面の熱分布図(トポグラフ)にする。μ−TAでの測定時には、カンチレバーの変位量をモニターしているが、カンチレバーの変位が認められなくなった温度を融点温度と定義し、この融点を元に内層表面のトポグラフを作成する。
実施例および比較例に記載した熱可塑樹脂は、EEAまたはEVAが極性分子であり、それら単体の融点はμ-TAでいずれも100℃未満と測定される。一方、ポリエチレン樹脂は基本的にメチレン鎖で構成されるため低極性分子である。その融点はμ−TAで100℃以上と測定される。そこで、μ−TAで測定された融点に基づいて低極性分子と極性分子とを区別することができる。
このトポグラフに現れた低極性分子面積および極性分子面積に対する低極性分子面積の比(低極性分子面積)/(低極性分子面積+極性分子面積))×100(%)を算出する。
各オーバーコート心線19のオーバーコート層16を加熱しないで、マイクロストリップ(マイクロエレクトロニク社製 0.016インチの穴径の刃)で100mm除去した。具体的にはオーバーコート心線19の端16eから100mmの箇所にマイクロストリップの刃21(図2参照)を0.05mmの深さまで切り込ませてオーバーコート心線19の径方向に刃を固定し、光ファイバ心線1の端に向けて刃21を光ファイバ心線1の軸に沿って動かして100mmのオーバーコート層16bを除去した。オーバーコート層16bのみが完全に除去されたときを成功とした。オーバーコート層16bが一部残ったり、光ファイバ心線1の最外層の一部が剥げたり、オーバーコート層16bを引き抜くことができなかったときはいずれも失敗とした。各オーバーコート心線19について100回ずつ除去を行ったときの成功率を求めた。各例についての結果を、表1に、99回以上成功したときを○、98回以下しか成功しなかったときを×として示す。
さらに、各オーバーコート心線19の伝送損失を測定した。1000mのオーバーコート心線19をコイル状に巻いた束を恒温槽に入れ、−40℃〜70℃の範囲で恒温槽の温度を変化させることを3サイクル繰り返し、その間の波長1.55μmでの伝送損失をOTDRで測定した。−40℃および75℃での維持時間は120分とし、−40℃から75℃または75℃から−40℃の間の温度変化率は1℃/分とした。
測定された伝送損失から最大伝送損失変化量(すなわち最大値と最小値の差)を求めた。結果を表1に示す。
Figure 2007017549
実施例1,実施例2とも0.5≦Ra≦5となっており、オーバーコート層16の内面表層での低極性分子面積/(低極性分子面積+極性分子面積)の値が60(%)以上である。すなわち、オーバーコート層16の内面16aが微少な凹凸構造であり、同時にこの凸部に低極性分子が偏在している。これによりオーバーコート層16の除去成功率およびオーバーコート層16が除去されて露出された光ファイバ心線1の外観がよい。本発明のオーバーコート心線19は100mmという従来になく長いオーバーコート層16を一度の操作で確実に除去できる。同時に最大伝送損失変化量も小さく、低温でも伝送損失が悪化せず、この温度サイクル試験で心線突き出しは発生しない。
一方、比較例では、Ra>5となっており、低極性分子面積/(低極性分子面積+極性分子面積)の値が60(%)よりも小さい。すなわち、オーバーコート層16の内面表層が微少な凹凸とは言えない。また、オーバーコート層16の内面表層に低極性分子が偏在していない。これにより被覆除去成功率が悪く、最大伝送損失変化量も小さく、低温で伝送損失が悪化する。
実施例と比較例とを比較すると、オーバーコート層16の内面表層に凹凸構造が存在すること、または凸部に低極性分子が偏在することにより、一度の操作で確実に除去可能なオーバーコート層16の長さが従来になく長く、同時に低温でも伝送損失が悪化しないことが分かる。
本発明に係るオーバーコート心線の一形態の断面図である。 本発明のオーバーコート心線のオーバーコート層の除去の開始時の様子を例示する図である。 本発明のオーバーコート心線のオーバーコート層の除去の途中過程を例示する図である。
符号の説明
1 光ファイバ心線
5 無機物フィラー
16 オーバーコート層
19 オーバーコート心線
21 刃
22 分岐工具
30 ガラスファイバ
31 樹脂層

Claims (4)

  1. ガラスファイバ上に樹脂層が被覆された光ファイバ心線上に、更にオーバーコート層が被覆されたオーバーコート心線であって、前記オーバーコート層が熱可塑性樹脂からなり、かつその内面表層が微小な凹凸構造であることを特徴とするオーバーコート心線。
  2. 前記オーバーコート層が低極性分子と極性分子との混合物からなり、前記オーバーコート層内面表層の凸部に低極性分子が偏在していることを特徴とする請求項1記載のオーバーコート心線。
  3. 前記オーバーコート層に無機物フィラーが配合されたことを特徴とする請求項1または2記載のオーバーコート心線。
  4. 前記光ファイバ心線の最外層に滑剤が混合されたことを特徴とする請求項1から3のいずれか一項に記載のオーバーコート心線。
JP2005196888A 2005-07-05 2005-07-05 オーバーコート心線 Pending JP2007017549A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196888A JP2007017549A (ja) 2005-07-05 2005-07-05 オーバーコート心線

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196888A JP2007017549A (ja) 2005-07-05 2005-07-05 オーバーコート心線

Publications (1)

Publication Number Publication Date
JP2007017549A true JP2007017549A (ja) 2007-01-25

Family

ID=37754798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196888A Pending JP2007017549A (ja) 2005-07-05 2005-07-05 オーバーコート心線

Country Status (1)

Country Link
JP (1) JP2007017549A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221978A (ja) * 2012-04-13 2013-10-28 Sumitomo Electric Ind Ltd 光ファイバ
JP2014201489A (ja) * 2013-04-05 2014-10-27 古河電気工業株式会社 オーバーコート心線及び当該オーバーコート心線を備えた光ファイバケーブル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221978A (ja) * 2012-04-13 2013-10-28 Sumitomo Electric Ind Ltd 光ファイバ
US9229159B2 (en) 2012-04-13 2016-01-05 Sumitomo Electric Industries, Ltd. Optical fiber
JP2014201489A (ja) * 2013-04-05 2014-10-27 古河電気工業株式会社 オーバーコート心線及び当該オーバーコート心線を備えた光ファイバケーブル

Similar Documents

Publication Publication Date Title
US8582939B2 (en) Fiber optic cables with access features
US9690062B2 (en) Film for a flame-retardant fiber optic cable
EP0690033B1 (en) Strippable tight buffered optical waveguide
JP4856180B2 (ja) 機械的に剥ぎ取り可能なアップコーテッド光ファイバ
US9778434B2 (en) Buffered fibers with access features
JPH0545546A (ja) 密着緩衝光導波路フアイバおよびその作成方法
JP2006505006A (ja) 優先引裂き部分を有する剥離可能なバッファ層及びその製造方法
JP2007017549A (ja) オーバーコート心線
TW201116776A (en) Optically conductive sheet with embedded perturbation sites and process for production thereof
JP2007017552A (ja) オーバーコート心線
JP2001278641A (ja) 光ファイバ心線の製造方法
JP2006323072A (ja) 光ファイバ心線
JP6459960B2 (ja) 光ファイバケーブル及びセンサ
JP2010210711A (ja) 光ファイバ心線
JP4500740B2 (ja) オーバーコート心線およびその製造方法
JP6010901B2 (ja) 光ファイバケーブル
US20010016104A1 (en) Plastic optical fiber cable and method of manufacturing the same
JP2003226557A (ja) 被覆光ファイバ心線、コネクタ付被覆光ファイバ心線およびその製造方法
US20090257721A1 (en) Optical Transmission Element Having High Temperature Stability
JP4304057B2 (ja) 光ファイバ心線
US20230038299A1 (en) Systems and methods for removing coating from an optical fiber
JP2006235200A (ja) 光ファイバ心線
JP2004069618A (ja) 密着度の検査方法およびその検査装置
JP2006078913A (ja) 光ファイバテープおよび光ファイバケーブル
JP2004083634A (ja) ポリカーボネート系樹脂材料