JP2007017326A - Position detection method for highly precisely positioning self-running mobile object and mechanism thereof - Google Patents

Position detection method for highly precisely positioning self-running mobile object and mechanism thereof Download PDF

Info

Publication number
JP2007017326A
JP2007017326A JP2005200113A JP2005200113A JP2007017326A JP 2007017326 A JP2007017326 A JP 2007017326A JP 2005200113 A JP2005200113 A JP 2005200113A JP 2005200113 A JP2005200113 A JP 2005200113A JP 2007017326 A JP2007017326 A JP 2007017326A
Authority
JP
Japan
Prior art keywords
sensor
detection
sensor board
magnetic field
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2005200113A
Other languages
Japanese (ja)
Inventor
Yoshihisa Ishii
喜久 石井
Masahisa Takizawa
真央 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens KK
Original Assignee
Siemens KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens KK filed Critical Siemens KK
Priority to JP2005200113A priority Critical patent/JP2007017326A/en
Publication of JP2007017326A publication Critical patent/JP2007017326A/en
Ceased legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable highly precise positioning without at least two positioning sensors by employing a unitized digitizer as a final positioning sensor for controlling precise positioning and functioning the digitizer as the sensor. <P>SOLUTION: A detection body provided with a resonance circuit for storing energy by the action of a magnetic field including a coil and a capacitor at a fixation system positioning point or in the vicinity thereof in a mobile object provided with a stop position sensor 13 of a cart 11 and a lift is installed. A plurality of loop coils arranged regularly with respect to the detection body on a mobile object side facing the detection body are successively selected to generate the magnetic field to store energy in the resonance circuit. The magnetic field generated in the loop coil is detected by a sensor board 1 provided for detecting the generation position of magnetic field as position data, thereby detecting by receiving the action of the energy, the stop position of the mobile object by detection precision possessed by a sensor board 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、平面内などを自走する台車や自動搬送台車、或は、エレベータなどの昇降台のように、外部駆動力又は搭載駆動力によって水平方向及び/又は垂直方向に移動する対象物を、高精度で位置決めするための位置検出方法とそのための機構に関する。   The present invention relates to an object that moves in a horizontal direction and / or a vertical direction by an external driving force or a mounting driving force, such as a carriage or an automatic conveyance carriage that is self-propelled in a plane or the like, or a lift such as an elevator. The present invention relates to a position detection method for positioning with high accuracy and a mechanism therefor.

従来より、自走台車,自動搬送台車,昇降リフト,自動倉庫のスタッカクレーンなどのような自走式の移動体は、X−Y座標系やX−Y−Z座標系における各軸の移動データにより公知の位置決め制御を行い、最終的には位置検出センサによる検出位置に基づいて位置決め制御が行われている。   Conventionally, a self-propelled movable body such as a self-propelled carriage, an automatic conveyance carriage, a lift, a stacker crane of an automatic warehouse, etc. has a movement data of each axis in an XY coordinate system or an XYZ coordinate system. Thus, known positioning control is performed, and finally positioning control is performed based on the detection position by the position detection sensor.

しかし、従来の位置決め制御において最終位置出しセンサの精度を上げると、コントローラでのX,Yデータなど、各軸についてのデータ精度を上げる必要が生じ、処理データ量が徒らに大きくなるという難点がある。X,Yデータなど各軸のデータ量を従来レベルにしておくには、機械側と同じ精度で大まかに位置を検出するセンサと、最終的に位置出しをするセンサの少なくとも2つのセンサを必要とする。   However, if the accuracy of the final positioning sensor is increased in conventional positioning control, it is necessary to increase the data accuracy for each axis, such as X and Y data in the controller, and the amount of processing data becomes large. is there. In order to keep the amount of data of each axis such as X and Y data at the conventional level, at least two sensors, that is, a sensor for roughly detecting the position with the same accuracy as the machine side and a sensor for finally positioning are required. To do.

また、最終位置出しセンサの検出精度を上げるのはよいが、制御される自走式移動体の機械精度を位置出しセンサのレベルに引上げなければ、全体としての位置決め精度の向上を得ることができないため、移動体側の機械精度を向上させるには多大の手間やコストを不可欠とするという問題があって、現実的でない。   Although it is good to increase the detection accuracy of the final positioning sensor, the overall positioning accuracy cannot be improved unless the mechanical accuracy of the controlled self-propelled moving body is raised to the level of the positioning sensor. Therefore, there is a problem that a great deal of labor and cost are indispensable for improving the machine accuracy on the moving body side, which is not realistic.

本発明は上記のような自走型移動体の位置決め精度を高精度にしようとする場合の問題点に鑑み、高精度の位置決め制御をするのに、ユニット化されたデジタイザを最終位置出しセンサとして使用し、このデジタイザを最終位置出しセンサとして機能させることによって、少なくとも2つの位置決めセンサを用いることなく高精度の位置決めを可能にする位置検出方法、並びに、そのための機構を提供することを、その課題とする。   In view of the problem in the case where the positioning accuracy of the self-propelled moving body is to be high, the present invention uses a unitized digitizer as a final positioning sensor for high-precision positioning control. It is an object of the present invention to provide a position detection method that enables high-accuracy positioning without using at least two positioning sensors by using this digitizer as a final positioning sensor, and a mechanism therefor. And

上記課題を解決することを目的としてなされた本発明方法の第一の構成は、台車やリフトなどの停止位置センサを備えた移動体における固定系の位置決め点乃至その近傍にコイルとコンデンサを含み磁界の作用でエネルギを蓄える共振回路を備えた検知体を設置する一方、前記検知体に対面する移動体側に、当該検知体に対して規則的に配列した複数のループコイルを順次選択し磁界を発生させて前記共振回路にエネルギを蓄えさせると共に当該エネルギの作用を受けて前記ループコイルに発生する磁界を検出処理しその磁界の発生位置を位置データとして検出するセンサボードを設けることにより、前記移動体の停止位置を、前記センサボードが備えた検出精度により検出することを特徴とするものである。   The first configuration of the method of the present invention made for the purpose of solving the above problems is that a magnetic field including a coil and a capacitor at or near a fixed system positioning point in a moving body having a stop position sensor such as a carriage or a lift. While installing a detection body equipped with a resonance circuit that stores energy by the action of the above, on the moving body side facing the detection body, a plurality of loop coils regularly arranged with respect to the detection body are sequentially selected to generate a magnetic field By providing a sensor board for storing energy in the resonance circuit and detecting a magnetic field generated in the loop coil under the action of the energy and detecting the generation position of the magnetic field as position data. The stop position is detected by the detection accuracy provided in the sensor board.

また、上記課題を解決することができる本発明方法の第二の構成は、台車やリフトなどの停止位置センサを備えた移動体における固定系の位置決め点乃至その近傍にコイルとコンデンサを含み電磁波に同調する同調回路を備えた検知体を設置する一方、前記検知体に対面する移動体側に、規則的に配列した複数のループコイルと前記ループコイルを順次選択して当該ループコイルに励起信号を付与する励起回路と励起された電磁波を前記検知体に向け送信すると共に前記検知体に生じる電磁波により前記ループコイルに発生する誘導電圧を検出する送信回路を備え前記誘導電圧を生じたループコイルの位置を位置データとして検出するセンサボードを設けることにより、前記移動体の停止位置を、前記センサボードが備えた検出精度により検出することを特徴とするものである。   In addition, the second configuration of the method of the present invention that can solve the above-described problem is that the electromagnetic wave includes a coil and a capacitor at or near the fixed system positioning point in the moving body having a stop position sensor such as a carriage or a lift. While installing a detection body equipped with a tuning circuit to be tuned, a plurality of regularly arranged loop coils and the loop coil are sequentially selected on the side of the moving body facing the detection body, and an excitation signal is applied to the loop coil. An excitation circuit that transmits the excited electromagnetic wave to the detection body, and a transmission circuit that detects an induced voltage generated in the loop coil by the electromagnetic wave generated in the detection body. By providing a sensor board that detects the position data, the stop position of the moving body is detected by the detection accuracy of the sensor board. It is characterized in that.

そして、上記の本発明方法を実施するための本発明機構の第一の構成は、停止位置センサを備えた台車やリフトなどの移動体における固定系の位置決め点乃至その近傍に設置したコイルとコンデンサを含み磁界の作用でエネルギを蓄える共振回路を備えた検知体と、前記検知体に対面する移動体の側面に設けた規則的に配列した複数のループコイルを備えるセンサボードであって、そのセンサボードのループコイルが前記検知体に対する磁界を発生することにより検知体の共振回路にエネルギを蓄えさせると共に当該エネルギの作用を受けて前記ループコイルに生じる磁界を検出処理しその磁界の発生位置を位置データとして検出するセンサボードとを備え、前記停止位置センサで検出される移動体の停止位置を、前記検出体とセンサボードの協働作用によって得られる位置データに基づいて検出するようにしたことを特徴とするものである。   The first configuration of the mechanism of the present invention for carrying out the above-described method of the present invention is that a fixed system positioning point in a moving body such as a cart or a lift provided with a stop position sensor or a coil and a capacitor installed in the vicinity thereof. A sensor board including a resonance body including a resonance circuit that stores energy by the action of a magnetic field, and a plurality of regularly arranged loop coils provided on a side surface of the moving body facing the detection body, the sensor board The loop coil of the board generates a magnetic field for the detection body, so that energy is stored in the resonance circuit of the detection body, and the magnetic field generated in the loop coil is detected by the action of the energy and the position where the magnetic field is generated is positioned. And a sensor board for detecting the stop position of the moving body detected by the stop position sensor. It is characterized in that it has to be detected based on the position data obtained by the cooperative action.

更に、本発明機構の第二の構成は、停止位置センサを備えた台車やリフトなどの移動体における固定系の位置決め点乃至その近傍に設置したコイルとコンデンサを含み同調回路が電磁信号を発生する検知体と、前記検知体に対面する移動体の側面に設けたセンサボードであって、そのセンサボードが前記検知体に対する電磁波を発生することにより検知体の同調回路に電磁波を発生させると共に当該電磁波を受けて誘導電圧を生じる規則的に配列されたループコイルの位置を検出しその位置を位置データとして検出するセンサボードとを備え、前記停止位置センサで検出される移動体の停止位置を、前記検出体とセンサボードの協働作用によって得られる位置データに基づいて検出するようにしたことを特徴とするものである。   Furthermore, the second configuration of the mechanism of the present invention is that a tuning circuit generates a magnetic signal including a coil and a capacitor installed at or near a positioning point of a fixed system in a moving body such as a carriage or a lift provided with a stop position sensor. A sensor board provided on a side surface of a detection body and a moving body facing the detection body, and the sensor board generates an electromagnetic wave to the detection body, thereby generating an electromagnetic wave in a tuning circuit of the detection body and the electromagnetic wave And a sensor board that detects the positions of regularly arranged loop coils that generate an induced voltage and detects the positions as position data, and the stop position of the moving body detected by the stop position sensor, The detection is based on position data obtained by the cooperative action of the detection body and the sensor board.

本発明では、台車やリフトなどの停止位置センサを備えた移動体における固定系の位置決め点乃至その近傍に、磁界の作用でエネルギを蓄える共振回路を備えた検知体を設置する一方、前記検知体に対面する移動体側に、当該検知体に対する磁界を発生し前記共振回路にエネルギを蓄えさせると共に当該エネルギの作用を受けて発生する磁界を検出処理しその磁界の発生位置を位置データとして検出するセンサボードを設けることにより、前記移動体の停止位置を、前記センサボードが備えた検出精度により移動体の停止位置を検出するようにしたので、2つの機械的構成の位置決めセンサを用いることなく高精度の位置決めを可能にする。   In the present invention, a detector including a resonance circuit that stores energy by the action of a magnetic field is installed at or near a positioning point of a fixed system in a movable body including a stop position sensor such as a carriage or a lift. A sensor that generates a magnetic field for the sensing body on the side of the moving body facing the sensor, stores energy in the resonance circuit, detects a magnetic field generated by the action of the energy, and detects a position where the magnetic field is generated as position data By providing the board, the stop position of the moving body is detected by the detection accuracy of the sensor board, so that the high accuracy can be achieved without using two mechanical configuration positioning sensors. Enables positioning.

次に本発明の実施の形態例について図を参照して説明する。図1は本発明方法を自走台車の位置決めに使用した例の模式的な平面図、図2は本発明方法を昇降リフトの位置決めに使用した例の模式的な側面図、図3は本発明方法を自動搬送台車の位置決めに使用した例の模式的な平面図、図4と図5は本発明方法を自動倉庫のスタッカークレーンの移載装置部分に適用した例の模式図で、図4は平面から見た模式図、図5は側面から見た模式図、図6は本発明で使用する電磁誘導方式のタブレットによるセンサユニットの一例を説明するための模式図である。   Next, embodiments of the present invention will be described with reference to the drawings. 1 is a schematic plan view of an example in which the method of the present invention is used for positioning a self-propelled carriage, FIG. 2 is a schematic side view of an example in which the method of the present invention is used for positioning a lift, and FIG. FIG. 4 and FIG. 5 are schematic plan views of an example in which the method is applied to a transfer device portion of a stacker crane in an automatic warehouse. FIG. 5 is a schematic diagram viewed from the side, FIG. 5 is a schematic diagram viewed from the side, and FIG. 6 is a schematic diagram for explaining an example of a sensor unit using an electromagnetic induction tablet used in the present invention.

図6は、本発明に使用する電磁誘導方式のタブレット(デジタイザともいう)によるセンサユニットSUの模式的断面図で、複数のループコイルを規則的に配列したセンサコイルScが内部に配置されたセンサボード1と該ボード1の上面に配置された移動軸又は座標などを示す液晶パネル2と、前記ボード1に対向して配置される細い棒状をなす検知体としてのマーカ3とから成り、マーカ3の内部には、一例としてコイルとコンデンサを含む共振回路Hsが内蔵されている。   FIG. 6 is a schematic cross-sectional view of a sensor unit SU using an electromagnetic induction type tablet (also referred to as a digitizer) used in the present invention, in which a sensor coil Sc in which a plurality of loop coils are regularly arranged is arranged inside. The marker 1 includes a board 1, a liquid crystal panel 2 indicating a movement axis or coordinates disposed on the upper surface of the board 1, and a marker 3 as a thin rod-shaped detector disposed opposite to the board 1. As an example, a resonance circuit Hs including a coil and a capacitor is built in the.

上記センサユニットSUの動作原理は、マーカ3をセンサボード1に対向させた状態でそのセンサボード1のセンサコイルScに電流を流すと、当該ボード1の前面に磁界が生じ、マーカ3の共振回路Hsにエネルギが蓄えられる。この状態で、センサボード1のコイル側の電流を止めてマーカ3に蓄えられたエネルギを用いてマーカ3側からの磁界をセンサコイルSc側に送り出すと、マーカ3のセンサボード1の上での位置情報が得られる。本発明はこの位置情報を最終位置出し情報として利用しようとするものである。因みに、上記センサユニットSUは、そのセンサボード1の有効読取り長が4〜15mm、読取り分解能が0.05mm、座標精度が±0.4mm、センサボード1の表面とマーカ3の先端との間隔が4〜14mmのユニットである。このセンサユニットSUは、「ペンタブレットデバイス」の商品名で(株)ワコムにより市販されているので、本発明ではこの市販品を利用した。   The operation principle of the sensor unit SU is that when a current is passed through the sensor coil Sc of the sensor board 1 with the marker 3 facing the sensor board 1, a magnetic field is generated on the front surface of the board 1, and the resonance circuit of the marker 3 Energy is stored in Hs. In this state, when the current on the coil side of the sensor board 1 is stopped and the magnetic field from the marker 3 side is sent to the sensor coil Sc side using the energy stored in the marker 3, the marker 3 on the sensor board 1 is Location information is obtained. The present invention intends to use this position information as final position determination information. Incidentally, in the sensor unit SU, the effective reading length of the sensor board 1 is 4 to 15 mm, the reading resolution is 0.05 mm, the coordinate accuracy is ± 0.4 mm, and the distance between the surface of the sensor board 1 and the tip of the marker 3 is 4 to 4 mm. It is a 14mm unit. Since this sensor unit SU is marketed by Wacom Co., Ltd. under the trade name “Pen Tablet Device”, this commercial product is used in the present invention.

上記態様のパレタイザ型式のセンサユニットSUは、図1〜図3、及び、図4と図5の態様で、高精度の位置決め制御を行うための最終位置出しセンサとして使用するので、次にこの点について説明する。   The palletizer-type sensor unit SU of the above aspect is used as a final positioning sensor for performing high-precision positioning control in the aspects of FIGS. 1 to 3 and FIGS. 4 and 5. Will be described.

図1において、11は自走台車、12a,12bは前記台車11の走行を支持案内するガイドレール、13は前記台車11との間で光や音波などを利用して当該台車11の停止位置を検出する停止センサで、従来技術では、自走台車11の位置決めは、移動軸(図1ではX軸)に関する移動データに基づいて走行して来た自走台車11が停止センサ13の前を横切ったことを当該センサ13が検出すると、自走台車11の走行駆動源を停止制御するようになされているが、この位置決め態様であると、精度が粗くなり易く、位置決め精度に限界があった。   In FIG. 1, 11 is a self-propelled carriage, 12a and 12b are guide rails that support and guide the running of the carriage 11, and 13 is a stop position of the carriage 11 with the carriage 11 using light, sound waves, or the like. In the conventional technology, the self-propelled carriage 11 is positioned based on the movement data related to the movement axis (X-axis in FIG. 1). When the sensor 13 detects this, the travel drive source of the self-propelled carriage 11 is controlled to stop. However, in this positioning mode, the accuracy tends to be rough and the positioning accuracy is limited.

そこで本発明では、図1に例示したように、移動軸に関する移動データに基づいて自走台車11を走行させ、停止センサ13の作用で停止をさせる点は、従来手法と基本的に同様であるが、自走台車11にセンサユニットSUのセンサボード1を取付ける一方、その台車11の最終停止位置乃至はその近傍の固定系に、前記センサボード1に対向させてマーカ3を設置する構成とした。   Therefore, in the present invention, as illustrated in FIG. 1, the self-propelled carriage 11 is caused to travel based on the movement data related to the movement axis and is stopped by the action of the stop sensor 13, which is basically the same as the conventional method. However, while the sensor board 1 of the sensor unit SU is attached to the self-propelled carriage 11, the marker 3 is installed opposite to the sensor board 1 in the final stop position of the carriage 11 or a fixed system in the vicinity thereof. .

図1の上記構成により、自走台車11を停止センサ13などの作用で停止させたとき又は停止させるとき、センサユニットSUを起動させることによって、自走台車11の停止位置を、一例として±0.4mmの座標精度で検出できるので、この精度で最終位置出しをすることができる。この理由について次に説明する。   1, when the self-propelled carriage 11 is stopped by the action of the stop sensor 13 or the like, the stop position of the self-propelled carriage 11 is set to ± 0.4 as an example by starting the sensor unit SU. Since it can be detected with a coordinate accuracy of mm, the final position can be determined with this accuracy. The reason for this will be described next.

図1の自走台車11の停止センサ13による位置決め精度が、移動軸(ここではX軸)に設定される目的地(最終停止点)に対し例えば±7mmであったとする。このとき、自走台車11に取付けるセンサボード1に対向して固定系に配置するマーカ3を、前記停止点におけるセンサボード1の有効読取り長さ15mmの中点を原点としてレール12aなどの固定系に設けておく。   It is assumed that the positioning accuracy of the self-propelled carriage 11 in FIG. 1 by the stop sensor 13 is, for example, ± 7 mm with respect to the destination (final stop point) set on the movement axis (here, the X axis). At this time, the marker 3 disposed in the fixed system facing the sensor board 1 attached to the self-propelled carriage 11 is fixed to the fixed system such as the rail 12a with the midpoint of the effective reading length of 15 mm of the sensor board 1 at the stop point as the origin. It is prepared in.

いま、一例として前記台車11が停止センサ13の検出出力に基づいて停止点の±7mmの範囲で停止したとき、マーカ3のセンサボード1に設定した原点に対する位置を検出し、その検出値がセンサボード1に予め設定されている原点(センサボード1の有効読取り長15mmの中点)と一致しているか否か、並びに、不一致であれば原点から+側又は−側にどれだけの距離(量)離れているかを検出し、原点と一致しない離れている検出値であれば、その検出値をゼロにする補正動作を自走台車11に行わせる。このようにすれば、自走台車11は、このセンサユニットSUにおけるセンサボード1の座標精度±0.4mmの精度によって停止点に位置決め制御できることとなる。   As an example, when the carriage 11 stops within a range of ± 7 mm of the stop point based on the detection output of the stop sensor 13, the position of the marker 3 relative to the origin set on the sensor board 1 is detected, and the detected value is the sensor Whether or not it coincides with the origin set in advance on board 1 (the midpoint of the effective reading length of 15 mm of sensor board 1), and if not, how much distance (amount) from origin to + or – side ) It is detected whether the vehicle is separated, and if it is a detected value that is not coincident with the origin, the self-propelled carriage 11 is caused to perform a correction operation for setting the detected value to zero. In this way, the self-propelled carriage 11 can be positioned and controlled at the stop point with the accuracy of the coordinate accuracy ± 0.4 mm of the sensor board 1 in the sensor unit SU.

図2は、上記自走台車11に代えてセンサユニットSUを昇降リフト21に適用した例である。図1の自走台車11と異なるのは、移動軸が上,下方向、つまりY軸であること、走行ガイドレール12a,12bがY軸方向の昇降レール22a,22bとなることの2点で、センサユニットSUのセンサボード1とマーカ3の関係は、センサボード1を昇降リフト21に、マーカ3を固定系に配置する点で共通し、従って、昇降停止位置の検出とその位置決め制御の内容は移動軸の違いだけで、図1の例と基本的に同じである。なお、図2において23は昇降停止センサである。   FIG. 2 shows an example in which the sensor unit SU is applied to the lift lift 21 in place of the self-propelled carriage 11. 1 differs from the self-propelled carriage 11 in FIG. 1 in that the movement axis is the up and down direction, that is, the Y axis, and the traveling guide rails 12a and 12b become the elevating rails 22a and 22b in the Y axis direction. The relationship between the sensor board 1 and the marker 3 of the sensor unit SU is common in that the sensor board 1 is disposed on the lift lift 21 and the marker 3 is disposed on the fixed system. Is basically the same as the example of FIG. In FIG. 2, reference numeral 23 denotes an elevation stop sensor.

図3は、上述した図1と図2に示した構成を、レールを備えないバッテリとモータなどを主体に形成された自動搬送台車31に適用した例である。自動搬送台車31は、充電ステーションのように規定の位置に設置された少なくとも1箇所乃至複数箇所のステーション32に自動搬送されて位置決めされるので、前述の実施例の場合と同様に、移動する自動搬送台車31にセンサユニットSUのセンサボード1を取付ける一方、固定系のステーション32にセンサボード1に対向したマーカ3を設けている。33は停止センサである。図3の例における自動搬送台車31の停止センサ33などによる停止と、センサユニットSUの機能を利用した高精度な停止位置の検出と、この検出に基づく位置決めの補正も、上記の図1,図2の例と基本的に同じである。   FIG. 3 shows an example in which the configuration shown in FIGS. 1 and 2 is applied to an automatic conveyance carriage 31 mainly composed of a battery and a motor that do not have rails. Since the automatic conveyance carriage 31 is automatically conveyed and positioned at at least one or a plurality of stations 32 installed at a predetermined position like a charging station, the automatic conveyance carriage 31 moves automatically as in the above-described embodiment. The sensor board 1 of the sensor unit SU is attached to the transport carriage 31, while the marker 3 facing the sensor board 1 is provided in the stationary system station 32. 33 is a stop sensor. The stop by the stop sensor 33 or the like of the automatic conveyance carriage 31 in the example of FIG. 3, the detection of a highly accurate stop position using the function of the sensor unit SU, and the correction of positioning based on this detection are also shown in FIGS. This is basically the same as the second example.

図4の自動倉庫などの移載手段であるスタッカクレーンのピッカー41は、図4に示すY軸に沿った垂直方向(昇降)での動作と、X軸に沿った水平方向での動作を、ポール42yとレール42xに沿って行う。従って、センサユニットSUは、各軸(X軸とY軸)に沿って2組のユニットを用いてもよいが、一つのセンサユニットSUにおけるセンサボード1は、X軸方向とY軸方向において距離データの読取り能力を備えているので、1台のセンサボード1でX軸とY軸とのセンサボード1を兼用させ、固定系に設けるマーカ3を、Y軸系のマーカ3yとX軸系のマーカ3xとに分け、各軸のマーカ3x,3yを保管棚42zにおける各区画42mに夫々に配置するようにした。
そして、各軸(Y軸又はX軸)におけるピッカー41の最終停止位置の位置検出とそれに基づく補正制御は、各軸ごとに、図1〜図3の例と同等の内容で行われる。
The picker 41 of the stacker crane, which is a transfer means such as an automatic warehouse in FIG. 4, performs the operation in the vertical direction (up and down) along the Y axis and the operation in the horizontal direction along the X axis shown in FIG. Perform along pole 42y and rail 42x. Therefore, the sensor unit SU may use two sets of units along each axis (X axis and Y axis), but the sensor board 1 in one sensor unit SU is a distance in the X axis direction and the Y axis direction. Since it has a data reading capability, the sensor board 1 for both the X axis and the Y axis can be shared by a single sensor board 1, and the marker 3 provided in the fixed system is replaced with the marker 3y for the Y axis system and the X axis system. The marker 3x is divided into the marker 3x, and the markers 3x and 3y of each axis are arranged in each section 42m in the storage shelf 42z.
Then, the position detection of the final stop position of the picker 41 on each axis (Y axis or X axis) and the correction control based thereon are performed for each axis with the same content as the example of FIGS.

図4,図5のスタッカクレーンでは、マーカ3x,3yの共振回路に、一例として機械的構成の開閉器(スイッチ)を挿入し、保管棚42zの任意の区画42mの内部に存在する荷物Wが前記スイッチを押すようにしておくと、荷物で押されたスイッチがマーカ内の閉成している共振回路を開放するか、又は、開成している共振回路を閉成する構成を付与しておけば、前記マーカ3x又は3yは、センサボード1と協働してピッカー41が或る区画42mに移動して来たとき、当該区画42mの内部に荷物Wが有るか無いかを判断するための信号をセンサボード1に形成させることができるので、区画42mの荷物Wの有無を検出する機構として利用することができる。   In the stacker crane shown in FIGS. 4 and 5, a switch (switch) having a mechanical configuration is inserted into the resonance circuit of the markers 3x and 3y as an example, and the load W existing in an arbitrary section 42m of the storage shelf 42z is obtained. If the switch is pushed, the switch pushed by the load opens the closed resonance circuit in the marker or provides a configuration for closing the opened resonance circuit. For example, the marker 3x or 3y is used to determine whether or not there is a load W inside the section 42m when the picker 41 moves to a section 42m in cooperation with the sensor board 1. Since the signal can be formed on the sensor board 1, it can be used as a mechanism for detecting the presence or absence of the luggage W in the section 42m.

上記実施例のマーカ3は、電源を有しないもので構成したが、本発明では電池などの内部電源を有するもの、或は、外部電源をケーブル等を介して導入したものであってもよい。電源を備えたマーカ3では、バーコードセンサなどのセンサ機能を持たせてこのマーカ経由で区画内の荷物に関する情報、例えば荷物の名称やコードなどを外部に出力させることができる利点がある。但し、内部電源は消耗による交換を必要とし、また、外部電源は配線を不可欠とするので、面倒な面がある。
また、マーカ3に、その動作条件を変更したものを使用することにより、位置決め対象の相対的位置検出と絶対的位置検出とを選択した態様で本発明の実施をすることができる。
The marker 3 of the above embodiment is configured with no power source, but in the present invention, it may be one having an internal power source such as a battery, or one having an external power source introduced through a cable or the like. The marker 3 having a power supply has an advantage that a sensor function such as a barcode sensor can be provided so that information relating to the parcels in the compartment, such as the parcel name and code, can be output to the outside via the marker. However, the internal power supply needs to be replaced due to wear, and the external power supply requires wiring, which is troublesome.
Further, by using a marker 3 whose operating conditions are changed, the present invention can be implemented in a mode in which relative position detection and absolute position detection of a positioning target are selected.

本発明は以上の通りであって、次のような固有の効果を得ることができる。
(1) 従来手法で最終位置出しセンサの精度を上げると、位置決め制御用のコントローラでのX,Yデータも精度を上げる必要が生じるが、本発明ではセンサユニットの周辺位置(有効読取り長さの範囲内)までをX,Yデータで追い込み、最終位置はボードセンサ上でのX,Y軸上の位置が位置データとして認識できるため、ラフな制御での精度の高い位置決めが可能になる。因みに、従来方法であれば、大まかに位置を検出するセンサと最終的に位置を検出するセンサの2つ以上のセンサの組み合わせが必要であったが、これが不要になる。
(2) センサユニットにおけるマーカ側を固定位置においた場合、センサボードとマーカの間は非接触であり、その上、金属検出センサの非接触距離(通常5mm位)などに比べ、非接触距離が大きく(例えば15mm位)取れるため、機械側の精度が楽になる。因みに、本発明で用いるセンサユニットは従来方法の3倍以上近く検出体と離れた(平均15mm程度)状態でも、位置検出ができるため、接触による障害等が生じ難い一方、機械要素の設計において大きな自由度を取ることができる。
(3) 一般的なセンサを複数個使用する従来方法に比べ、コストダウンを図ることができる。
The present invention is as described above, and the following unique effects can be obtained.
(1) If the accuracy of the final positioning sensor is increased by the conventional method, it is necessary to increase the accuracy of the X and Y data in the controller for positioning control. However, in the present invention, the peripheral position of the sensor unit (effective reading length Since the final position can be recognized as position data on the X and Y axes on the board sensor, positioning with high accuracy can be achieved with rough control. Incidentally, in the conventional method, a combination of two or more sensors, that is, a sensor for roughly detecting the position and a sensor for finally detecting the position is necessary, but this is not necessary.
(2) When the marker side of the sensor unit is placed at a fixed position, there is no contact between the sensor board and the marker. In addition, the non-contact distance is larger than the non-contact distance (usually about 5 mm) of the metal detection sensor. Because it is large (for example, about 15mm), the accuracy on the machine side becomes easy. By the way, the sensor unit used in the present invention can detect the position even when the sensor unit is separated from the detection object by more than three times the conventional method (average of about 15 mm), so that it is difficult to cause obstacles due to contact. Freedom can be taken.
(3) Cost can be reduced compared to the conventional method using a plurality of general sensors.

本発明方法を自走台車の位置決めに使用した例の模式的な平面図。The typical top view of the example which used the method of the present invention for positioning of a self-propelled cart. 本発明方法を昇降リフトの位置決めに使用した例の模式的な側面図。The typical side view of the example which used the method of this invention for positioning of the raising / lowering lift. 本発明方法を自動搬送台車の位置決めに使用した例の模式的な平面図。The typical top view of the example which used the method of the present invention for positioning of an automatic conveyance trolley. 本発明方法を自動倉庫のスタッカークレーンの移載装置部分に適用した例の平面から見た模式図。The schematic diagram seen from the plane of the example which applied this invention method to the transfer apparatus part of the stacker crane of an automatic warehouse. 本発明方法を自動倉庫のスタッカークレーンの移載装置部分に適用した例の側面から見た模式図。The schematic diagram seen from the side of the example which applied this invention method to the transfer apparatus part of the stacker crane of an automatic warehouse. 本発明で使用する電磁誘導方式のタブレットによるセンサユニットの一例を説明するための模式図。The schematic diagram for demonstrating an example of the sensor unit by the electromagnetic induction type tablet used by this invention.

符号の説明Explanation of symbols

SU センサユニット
1 センサボード
2 液晶パネル
3 マーカ
11 自走台車
12a,12b 走行ガイドレール
13 停止センサ
21 昇降リフト
22a,22b 昇降レール
31 自動搬送台車
32 固定系のステーション
SU Sensor unit 1 Sensor board 2 LCD panel 3 Marker
11 Self-propelled cart
12a, 12b Traveling guide rail
13 Stop sensor
21 Lifting lift
22a, 22b Elevating rail
31 Automatic transport cart
32 Stationary station

Claims (5)

台車やリフトなどの停止位置センサを備えた移動体における固定系の位置決め点乃至その近傍にコイルとコンデンサを含み磁界の作用でエネルギを蓄える共振回路を備えた検知体を設置する一方、前記検知体に対面する移動体側に、当該検知体に対して規則的に配列した複数のループコイルを順次選択し磁界を発生させて前記共振回路にエネルギを蓄えさせると共に当該エネルギの作用を受けて前記ループコイルに発生する磁界を検出処理しその磁界の発生位置を位置データとして検出するセンサボードを設けることにより、前記移動体の停止位置を、前記センサボードが備えた検出精度により検出することを特徴とする自走移動体の高精度位置決めのための位置検出方法。   In the movable body provided with a stop position sensor such as a carriage or a lift, a detection body having a resonance circuit for storing energy by the action of a magnetic field including a coil and a capacitor is installed at or near the fixed system positioning point. A plurality of loop coils regularly arranged with respect to the detection body are sequentially selected on the side of the moving body facing to generate a magnetic field to store energy in the resonance circuit and receive the action of the energy to receive the loop coil. In addition, a sensor board is provided that detects a magnetic field generated in the sensor and detects a position where the magnetic field is generated as position data, thereby detecting the stop position of the moving body with the detection accuracy of the sensor board. A position detection method for high-precision positioning of a self-propelled moving body. 台車やリフトなどの停止位置センサを備えた移動体における固定系の位置決め点乃至その近傍にコイルとコンデンサを含み電磁波に同調する同調回路を備えた検知体を設置する一方、前記検知体に対面する移動体側に、規則的に配列した複数のループコイルと前記ループコイルを順次選択して当該ループコイルに励起信号を付与する励起回路と励起された電磁波を前記検知体に向け送信すると共に前記検知体に生じる電磁波により前記ループコイルに発生する誘導電圧を検出する送信回路を備え前記誘導電圧を生じたループコイルの位置を位置データとして検出するセンサボードを設けることにより、前記移動体の停止位置を、前記センサボードが備えた検出精度により検出することを特徴とする自走移動体の高精度位置決めのための位置検出方法。   A detection body having a tuning circuit that includes a coil and a capacitor and is tuned to an electromagnetic wave is installed at or near a fixed system positioning point in a moving body having a stop position sensor such as a carriage or a lift, and faces the detection body. A plurality of regularly arranged loop coils and the loop coils are sequentially selected on the moving body side, and an excitation circuit for applying an excitation signal to the loop coils and an excited electromagnetic wave are transmitted to the detection body and the detection body By providing a sensor board that includes a transmission circuit that detects an induced voltage generated in the loop coil due to an electromagnetic wave generated in the position, and detects a position of the loop coil that generated the induced voltage as position data, Position detection for high-accuracy positioning of a self-propelled moving body, which is detected by detection accuracy provided in the sensor board. Method. 停止位置センサを備えた台車やリフトなどの移動体における固定系の位置決め点乃至その近傍に設置したコイルとコンデンサを含み磁界の作用でエネルギを蓄える共振回路を備えた検知体と、前記検知体に対面する移動体の側面に設けた規則的に配列した複数のループコイルを備えるセンサボードであって、そのセンサボードのループコイルが前記検知体に対する磁界を発生することにより検知体の共振回路にエネルギを蓄えさせると共に当該エネルギの作用を受けて前記ループコイルに生じる磁界を検出処理しその磁界の発生位置を位置データとして検出するセンサボードとを備え、前記停止位置センサで検出される移動体の停止位置を、前記検出体とセンサボードの協働作用によって得られる位置データに基づいて検出するようにしたことを特徴とする自走移動体の高精度位置決めのための位置検出機構。   A detection body including a resonance circuit that stores energy by the action of a magnetic field, including a coil and a capacitor installed at or near a fixed system positioning point in a movable body such as a carriage or a lift provided with a stop position sensor, and the detection body A sensor board having a plurality of regularly arranged loop coils provided on a side surface of a moving body facing each other, wherein the loop coil of the sensor board generates a magnetic field with respect to the detection body, thereby energizing a resonance circuit of the detection body. And a sensor board for detecting the magnetic field generated in the loop coil under the action of the energy and detecting the generation position of the magnetic field as position data, and stopping the moving body detected by the stop position sensor The position is detected based on position data obtained by the cooperative action of the detection body and the sensor board. Position detecting mechanism for precision positioning of the self-propelled mobile, wherein. 停止位置センサを備えた台車やリフトなどの移動体における固定系の位置決め点乃至その近傍に設置したコイルとコンデンサを含み同調回路が電磁信号を発生する検知体と、前記検知体に対面する移動体の側面に設けたセンサボードであって、そのセンサボードが前記検知体に対する電磁波を発生することにより検知体の同調回路に電磁波を発生させると共に当該電磁波を受けて誘導電圧を生じる規則的に配列されたループコイルの位置を検出しその位置を位置データとして検出するセンサボードとを備え、前記停止位置センサで検出される移動体の停止位置を、前記検出体とセンサボードの協働作用によって得られる位置データに基づいて検出するようにしたことを特徴とする自走移動体の高精度位置決めのための位置検出機構。   A detecting body including a coil and a capacitor installed in or near a fixed system positioning point in a moving body such as a carriage or a lift provided with a stop position sensor, and a moving body facing the detecting body, the tuning circuit generating an electromagnetic signal The sensor board is provided on the side surface of the sensor board, and the sensor board generates an electromagnetic wave to the detection body, thereby generating an electromagnetic wave in a tuning circuit of the detection body and receiving the electromagnetic wave to generate an induced voltage regularly. And a sensor board for detecting the position of the loop coil as position data, and the stop position of the moving body detected by the stop position sensor is obtained by the cooperative action of the detection body and the sensor board. A position detection mechanism for high-accuracy positioning of a self-propelled moving body, characterized in that the detection is based on position data. 検知体は、内部に電源を備えるか又は外部から電源を導入した請求項3又は4の自走移動体の高精度位置決めのための位置検出機構。

The position detection mechanism for high-precision positioning of the self-propelled mobile body according to claim 3 or 4, wherein the detection body is provided with a power supply inside or introduced from the outside.

JP2005200113A 2005-07-08 2005-07-08 Position detection method for highly precisely positioning self-running mobile object and mechanism thereof Ceased JP2007017326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200113A JP2007017326A (en) 2005-07-08 2005-07-08 Position detection method for highly precisely positioning self-running mobile object and mechanism thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200113A JP2007017326A (en) 2005-07-08 2005-07-08 Position detection method for highly precisely positioning self-running mobile object and mechanism thereof

Publications (1)

Publication Number Publication Date
JP2007017326A true JP2007017326A (en) 2007-01-25

Family

ID=37754613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200113A Ceased JP2007017326A (en) 2005-07-08 2005-07-08 Position detection method for highly precisely positioning self-running mobile object and mechanism thereof

Country Status (1)

Country Link
JP (1) JP2007017326A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222657A (en) * 2008-03-18 2009-10-01 Ntt Facilities Inc Environment measurement apparatus and method
WO2017150005A1 (en) * 2016-03-03 2017-09-08 村田機械株式会社 Conveyance system
WO2017150006A1 (en) * 2016-03-03 2017-09-08 村田機械株式会社 Temporary storage system
KR20180069684A (en) * 2016-12-15 2018-06-25 가부시키가이샤 다이후쿠 Article transport vehicle

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250258A (en) * 1975-10-20 1977-04-22 Kyosan Electric Mfg Co Ltd Detector for position of vehicle
JPS5544941A (en) * 1978-09-26 1980-03-29 Toshiba Corp Location detector of elevator
JPS5741872U (en) * 1980-08-25 1982-03-06
JPS61127159U (en) * 1985-01-25 1986-08-09
JPS61230030A (en) * 1985-04-04 1986-10-14 Kanto Seiki Kk Liquid level detector
JPS61174629U (en) * 1985-04-19 1986-10-30
JPS61203670U (en) * 1985-06-12 1986-12-22
JPS6258713U (en) * 1985-10-02 1987-04-11
JPS62265517A (en) * 1986-05-13 1987-11-18 Mitsubishi Electric Corp Position detecting device for moving body
JPH0238958A (en) * 1988-07-29 1990-02-08 Fuji Photo Film Co Ltd Stop controller for web conveyance line
JPH0269815A (en) * 1988-09-05 1990-03-08 Omron Tateisi Electron Co Coordinate position detector
JPH06229707A (en) * 1991-02-28 1994-08-19 Omron Corp Position sensor
JPH06300512A (en) * 1993-02-18 1994-10-28 Egawa:Kk Position measuring device
JPH08314616A (en) * 1995-05-12 1996-11-29 Wacom Co Ltd Position indicator and coordinate detecting device using same
JPH09210721A (en) * 1996-02-07 1997-08-15 Nippon Signal Co Ltd:The System for detecting information on movement of moving body
JPH10260002A (en) * 1997-03-19 1998-09-29 Kawasaki Heavy Ind Ltd Non-contact type two-dimensional position measuring device and its method
JP2000514198A (en) * 1997-06-21 2000-10-24 マイクロエプシロン・メステクニク・ゲーエムベーハー・アンド・カンパニー・カーゲー Eddy current sensor
JP2001165703A (en) * 1999-12-08 2001-06-22 Tamagawa Seiki Co Ltd Winding type rotation detector
JP2003502628A (en) * 1999-06-15 2003-01-21 サイエンティフィック ジェネリクス リミテッド Position encoder
JP2004003906A (en) * 2002-06-03 2004-01-08 Jfe Engineering Kk Measuring method of position and depth of embedded line
JP2004101320A (en) * 2002-09-09 2004-04-02 Sigma Tec Kk Positioning method and device
JP2004251901A (en) * 2003-02-06 2004-09-09 Ego Elektro Geraete Blanc & Fischer Circuit layout of inductively operating sensor and operation method of the circuit layout

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250258A (en) * 1975-10-20 1977-04-22 Kyosan Electric Mfg Co Ltd Detector for position of vehicle
JPS5544941A (en) * 1978-09-26 1980-03-29 Toshiba Corp Location detector of elevator
JPS5741872U (en) * 1980-08-25 1982-03-06
JPS61127159U (en) * 1985-01-25 1986-08-09
JPS61230030A (en) * 1985-04-04 1986-10-14 Kanto Seiki Kk Liquid level detector
JPS61174629U (en) * 1985-04-19 1986-10-30
JPS61203670U (en) * 1985-06-12 1986-12-22
JPS6258713U (en) * 1985-10-02 1987-04-11
JPS62265517A (en) * 1986-05-13 1987-11-18 Mitsubishi Electric Corp Position detecting device for moving body
JPH0238958A (en) * 1988-07-29 1990-02-08 Fuji Photo Film Co Ltd Stop controller for web conveyance line
JPH0269815A (en) * 1988-09-05 1990-03-08 Omron Tateisi Electron Co Coordinate position detector
JPH06229707A (en) * 1991-02-28 1994-08-19 Omron Corp Position sensor
JPH06300512A (en) * 1993-02-18 1994-10-28 Egawa:Kk Position measuring device
JPH08314616A (en) * 1995-05-12 1996-11-29 Wacom Co Ltd Position indicator and coordinate detecting device using same
JPH09210721A (en) * 1996-02-07 1997-08-15 Nippon Signal Co Ltd:The System for detecting information on movement of moving body
JPH10260002A (en) * 1997-03-19 1998-09-29 Kawasaki Heavy Ind Ltd Non-contact type two-dimensional position measuring device and its method
JP2000514198A (en) * 1997-06-21 2000-10-24 マイクロエプシロン・メステクニク・ゲーエムベーハー・アンド・カンパニー・カーゲー Eddy current sensor
JP2003502628A (en) * 1999-06-15 2003-01-21 サイエンティフィック ジェネリクス リミテッド Position encoder
JP2001165703A (en) * 1999-12-08 2001-06-22 Tamagawa Seiki Co Ltd Winding type rotation detector
JP2004003906A (en) * 2002-06-03 2004-01-08 Jfe Engineering Kk Measuring method of position and depth of embedded line
JP2004101320A (en) * 2002-09-09 2004-04-02 Sigma Tec Kk Positioning method and device
JP2004251901A (en) * 2003-02-06 2004-09-09 Ego Elektro Geraete Blanc & Fischer Circuit layout of inductively operating sensor and operation method of the circuit layout

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222657A (en) * 2008-03-18 2009-10-01 Ntt Facilities Inc Environment measurement apparatus and method
JPWO2017150006A1 (en) * 2016-03-03 2018-12-06 村田機械株式会社 Temporary storage system
KR102041391B1 (en) 2016-03-03 2019-11-06 무라다기카이가부시끼가이샤 Temporary storage system
US10913601B2 (en) 2016-03-03 2021-02-09 Murata Machinery, Ltd. Temporary storage system
CN108698759A (en) * 2016-03-03 2018-10-23 村田机械株式会社 Interim safeguard system
CN108698757A (en) * 2016-03-03 2018-10-23 村田机械株式会社 Transport system
KR20180121953A (en) * 2016-03-03 2018-11-09 무라다기카이가부시끼가이샤 Temporary storage system
WO2017150006A1 (en) * 2016-03-03 2017-09-08 村田機械株式会社 Temporary storage system
WO2017150005A1 (en) * 2016-03-03 2017-09-08 村田機械株式会社 Conveyance system
JPWO2017150005A1 (en) * 2016-03-03 2018-12-06 村田機械株式会社 Transport system
US10497594B2 (en) 2016-03-03 2019-12-03 Murata Machinery, Ltd. Conveyance system
KR20200096709A (en) * 2016-03-03 2020-08-12 무라다기카이가부시끼가이샤 Conveyance system
KR102165426B1 (en) * 2016-03-03 2020-10-14 무라다기카이가부시끼가이샤 Conveyance system
CN108698757B (en) * 2016-03-03 2020-11-24 村田机械株式会社 Conveying system
KR20180069684A (en) * 2016-12-15 2018-06-25 가부시키가이샤 다이후쿠 Article transport vehicle
KR102320464B1 (en) * 2016-12-15 2021-11-02 가부시키가이샤 다이후쿠 Article transport vehicle

Similar Documents

Publication Publication Date Title
JP4304625B2 (en) Tracked cart system
KR100447308B1 (en) Method and device for detecting the position of a vehicle a given area
KR101601735B1 (en) Moving body system and method for controlling travel of moving body
JP4214533B2 (en) Mobile system
TW200827282A (en) Facility for traveling vehicles and method to control the same
CN208700510U (en) AGV fork truck automatic access goods control system
TWI698069B (en) Moving body
TWI400590B (en) Mobile system
CN103547926A (en) Laboratory product transport element and path arrangement
CN102491181A (en) Steel freight yard digitalized three-dimensional positioning method based on portal crane positioning
JP2007017326A (en) Position detection method for highly precisely positioning self-running mobile object and mechanism thereof
CN102897503A (en) Combined positioning control system and control method thereof
CN107357290A (en) One kind is based on magnetic navigation robot ambulation system
JP2012153470A (en) Automatic warehouse
CN104792337B (en) The method for detecting position and its detecting system of tracked movement thing
CN208938119U (en) Iron ladle identifying system based on planar bar code technology
US9339931B2 (en) Method and apparatus for locating a pickup point for an object in an installation
KR102310390B1 (en) Overhead transfer system
KR101308777B1 (en) Method and apparatus for controling route in automated guided vehicle system
KR101007110B1 (en) Remote controll apparatus for stacker crane using optical repeater
JP2012113765A (en) Traveling body system
JP2013161399A (en) Carriage vehicle
JP3174125B2 (en) Physical tracking method
JPH06298316A (en) Recognizer of iron manufacturing coil yard storage location
CN202897851U (en) Crane locator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20110329