JP2007016811A - Shaft fitting structure of constant velocity universal joint - Google Patents

Shaft fitting structure of constant velocity universal joint Download PDF

Info

Publication number
JP2007016811A
JP2007016811A JP2005196225A JP2005196225A JP2007016811A JP 2007016811 A JP2007016811 A JP 2007016811A JP 2005196225 A JP2005196225 A JP 2005196225A JP 2005196225 A JP2005196225 A JP 2005196225A JP 2007016811 A JP2007016811 A JP 2007016811A
Authority
JP
Japan
Prior art keywords
retaining ring
shaft
constant velocity
velocity universal
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005196225A
Other languages
Japanese (ja)
Inventor
Shinichi Takabe
真一 高部
Takaaki Shibata
貴章 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005196225A priority Critical patent/JP2007016811A/en
Publication of JP2007016811A publication Critical patent/JP2007016811A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fitting structure of an internal joint member and a shaft of a constant velocity universal joint capable of achieving both of a specification for precluding disassembling after once assembling and a specification for allowing disassembling even after assembling, without increasing the kinds of internal joint member and shaft. <P>SOLUTION: The separation of the shaft is prevented when the power in the drawing-out direction is added to the shaft 6, by mounting retaining rings 14 respectively between a contact portion 10, 12 formed on a through hole 9 of the internal joint member 3 and a retaining ring groove, and the contact portions 10, 12 are composed of planes vertical to the drawing-out direction of the shaft 6. The specification for precluding disassembling after once assembling, and the specification for allowing disassembling even after assembling, can be distinguished by the shape of the retaining ring 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は等速自在継手とそれに結合するシャフトとの嵌合構造に関する。   The present invention relates to a fitting structure between a constant velocity universal joint and a shaft coupled thereto.

自動車の駆動軸、推進軸等に使用されている等速自在継手において、ブーツ交換時等の整備工数簡素化を目的として、等速自在継手の内方継手部材と、その内方継手部材と結合するシャフトとの、分解可能な嵌合構造が従来から採用されている。   For constant velocity universal joints used in automobile drive shafts, propulsion shafts, etc., for the purpose of simplifying maintenance man-hours when replacing boots, etc., the constant velocity universal joint inner joint member and the inner joint member are combined. A separable fitting structure with the shaft to be used has been conventionally employed.

特許文献1および2に記載のものは、シャフトの端部に形成した溝に止め輪を装着し、止め輪の弾性拡開により内方継手部材に形成した当接面と係合させる。そして、シャフトを引き抜く際に止め輪と干渉する当接面に角度を設けて、止め輪との干渉力の分力により止め輪を縮径させて係合を外す仕組みになっている。   In the devices described in Patent Documents 1 and 2, a retaining ring is attached to a groove formed at the end of the shaft, and is engaged with a contact surface formed on the inner joint member by elastic expansion of the retaining ring. Then, an angle is provided on the contact surface that interferes with the retaining ring when the shaft is pulled out, and the retaining ring is reduced in diameter by the component force of the interference force with the retaining ring to disengage the engagement.

特許文献3に記載のものでは、シャフトの端部に形成した溝に断面略矩形の止め輪を装着し、内方継手部材のスプラインの終端部に形成した傾斜面と止め輪を当接させる構造とし、止め輪と溝および止め輪と傾斜面がそれぞれ面接触する仕組みとなっている。
特開平08−068426号公報 実公昭64−005124号公報 特開平08−145065号公報
Patent Document 3 discloses a structure in which a retaining ring having a substantially rectangular cross section is attached to a groove formed at an end portion of a shaft, and an inclined surface formed at a terminal end portion of a spline of an inner joint member is brought into contact with the retaining ring. The retaining ring and the groove and the retaining ring and the inclined surface are in surface contact with each other.
Japanese Patent Laid-Open No. 08-068426 Japanese Utility Model Publication No. 64-005124 Japanese Patent Laid-Open No. 08-145065

シャフトと内方継手部材との嵌合構造においては、一度組み込むと分解不可能な仕様のものと、分解可能な仕様のものの両方が要求される。しかし、特許文献1のものは、止め輪装着位置をシャフトの非端面側とし、内方継手部材の端面に止め輪を縮径させるための工具係合溝を設けることにより、組立および分解が可能な構造としているが、この場合、内方継手部材の工具係合溝の加工に時間と費用を費やさねばならない。   In the fitting structure between the shaft and the inner joint member, both a specification that cannot be disassembled once assembled and a specification that can be disassembled are required. However, the one of Patent Document 1 can be assembled and disassembled by setting the retaining ring mounting position to the non-end face side of the shaft and providing a tool engagement groove for reducing the diameter of the retaining ring on the end face of the inner joint member. However, in this case, time and cost must be spent on machining the tool engagement groove of the inner joint member.

特許文献2では、止め輪を縮径させてシャフトを引き抜けるようにすることが開示されているが、分解不可能な仕様と分解可能な仕様を成立させるためには傾斜部の角度をどのように管理するのか明らかでない。   Patent Document 2 discloses that the retaining ring is reduced in diameter so that the shaft can be pulled out. However, in order to establish a specification that cannot be disassembled and a specification that can be disassembled, the angle of the inclined portion is determined. It is not clear what to manage.

特許文献3では、止め輪が内方継手部材の傾斜面と当接するために、シャフトに引き抜き方向の力が加わった場合、止め輪が縮径して抜けるという構造が開示されているのみで、シャフトと内方継手部材が分解不可能な仕様と分解可能な仕様をどのように区別することができるのか明らかでない。   In Patent Document 3, since the retaining ring abuts against the inclined surface of the inner joint member, when a force in the pulling direction is applied to the shaft, only a structure in which the retaining ring is reduced in diameter and pulled out is disclosed. It is not clear how the shaft and the inner joint member can be distinguished from those that cannot be disassembled and those that can be disassembled.

この発明の目的は、内方継手部材やシャフトの種類を増やすことなく、一度組み付けると分解不可能となる仕様と、組み付けた後も分解可能な仕様の、両仕様を成立させ得る等速自在継手の内方継手部材とシャフトとの嵌合構造を提供することである。   The object of the present invention is to provide a constant velocity universal joint capable of satisfying both specifications: a specification that cannot be disassembled once assembled and a specification that can be disassembled after assembly without increasing the types of inner joint members and shafts. It is providing the fitting structure of the inner joint member of this, and a shaft.

この発明の等速自在継手のシャフト嵌合構造は、リング状の止め輪溝を有するシャフトと、シャフトと嵌合するための貫通孔を有する等速自在継手の内方継手部材と、止め輪溝内に配置した弾性的に拡径・縮径が可能な止め輪とからなり、シャフトに引抜き方向の力が加わったとき、内方継手部材の貫通孔に形成した当接部と止め輪溝との間に止め輪が介在することにより、シャフトの抜けを防止するようにしたものであって、前記当接部がシャフトの引き抜き方向に対して垂直な平面で構成される。そして、用いる止め輪の形状を選択することにより、シャフトと内方継手部材が、一度組み付けると分解不可能となる仕様と、組み付けた後でも分解可能な仕様の、両仕様を成立させることができる。しかも、止め輪の形状が異なることで、分解不可能な仕様と分解可能な仕様のいずれであるかを視覚的に容易に判別することが可能となる。   The shaft fitting structure of the constant velocity universal joint of the present invention includes a shaft having a ring-shaped retaining ring groove, an inner joint member of the constant velocity universal joint having a through hole for fitting with the shaft, and a retaining ring groove. A retaining ring that can be elastically expanded and contracted in diameter, and when a force in the drawing direction is applied to the shaft, a contact portion formed in the through hole of the inner joint member and a retaining ring groove A retaining ring is interposed between the shafts to prevent the shaft from coming off, and the contact portion is formed of a plane perpendicular to the shaft drawing direction. And, by selecting the shape of the retaining ring to be used, it is possible to establish both the specifications that the shaft and the inner joint member cannot be disassembled once assembled and the specifications that can be disassembled even after being assembled. . In addition, since the shape of the retaining ring is different, it is possible to easily visually determine whether the specification is a non-decomposable specification or a demountable specification.

この発明によれば、止め輪の形状を選択することにより、内方継手部材の貫通孔に形成した止め輪との当接部と止め輪との接触状態を変化させ、シャフトが引き抜き方向の力を受けた際の止め輪に掛かる縮径方向の分力をコントロールし、分解不可能な仕様と分解可能な仕様に分けることができる。したがって、それぞれの仕様毎に専用の内方継手部材やシャフトを作製する必要がなく、部品管理工数やコスト等の負荷を増大させることなく、分解不可能な仕様と分解可能な仕様のものを組み立てることができる。   According to the present invention, by selecting the shape of the retaining ring, the contact state between the retaining ring and the retaining ring formed in the through hole of the inner joint member is changed, and the shaft is pulled in the pulling direction. By controlling the component force in the direction of diameter reduction applied to the retaining ring when it receives, it can be divided into specifications that cannot be disassembled and specifications that can be disassembled. Therefore, it is not necessary to produce a dedicated inner joint member or shaft for each specification, and assembling a specification that cannot be disassembled and a specification that can be disassembled without increasing load such as parts management man-hours and costs. be able to.

以下、図面に従ってこの発明の実施の形態を説明する。初めに図1〜図3を参照しながら内方継手部材とシャフトの嵌合構造を説明し、次に、図2、図4、図5を参照しながら止め輪の形状による分解不可能な仕様について説明し、続いて図6、図7を参照しながら分解可能な仕様について説明する。説明の都合上、先端側とは図中左側を、反先端側とは図中右側を意味するものとする。   Embodiments of the present invention will be described below with reference to the drawings. First, the fitting structure of the inner joint member and the shaft will be described with reference to FIGS. 1 to 3, and then the specification that cannot be disassembled by the shape of the retaining ring with reference to FIGS. 2, 4, and 5. Next, the disassembled specification will be described with reference to FIGS. For convenience of explanation, the tip side means the left side in the figure, and the anti-tip side means the right side in the figure.

等速自在継手は、角度をなす回転軸間で等角速度でトルクの伝達を行うことができ、例えば自動車の駆動軸、推進軸などの動力伝達装置や各種産業機械の動力伝達装置等に用いられる。等速自在継手は固定式と摺動式に大別され、固定式にはツェッパ型、アンダーカットフリー型などがあり、摺動式にはダブルオフセット型、クロスグルーブ型、トリポード型などがある。この発明は等速自在継手の種類を問わず適用可能であるが、ここでは固定式等速自在継手の場合を例にとって説明する。なお、トリポード型以外では内輪が内方継手部材となるが、トリポード型ではトラニオンまたは脚軸と呼ばれる部分をもったスパイダまたはトリポード部材が内方継手部材となる。   Constant velocity universal joints can transmit torque at an equal angular speed between rotating shafts that form an angle, and are used for power transmission devices such as drive shafts and propulsion shafts of automobiles and power transmission devices of various industrial machines, for example. . Constant velocity universal joints are roughly classified into fixed types and sliding types. The fixed types include the Zepper type and the undercut free type, and the sliding types include the double offset type, the cross groove type, and the tripod type. The present invention can be applied regardless of the type of constant velocity universal joint, but here, a fixed type constant velocity universal joint will be described as an example. In addition to the tripod type, the inner ring is an inner joint member, but in the tripod type, a spider or tripod member having a portion called a trunnion or a leg shaft is an inner joint member.

固定式等速自在継手1は、図1に示すように、外方継手部材としての外輪2と、内方継手部材としての内輪3と、トルク伝達要素としてのボール4と、保持器5を主要な構成要素としている。外輪2と内輪3のうちいずれか一方を駆動側とし他方を従動側とすると、ボール4が両者間に介在してトルクを伝達する。   As shown in FIG. 1, the fixed type constant velocity universal joint 1 mainly includes an outer ring 2 as an outer joint member, an inner ring 3 as an inner joint member, a ball 4 as a torque transmission element, and a cage 5. As a component. If one of the outer ring 2 and the inner ring 3 is on the driving side and the other is on the driven side, the ball 4 is interposed between them to transmit torque.

外輪2はここではベル型で、球面状の内周面に軸方向に延びるボール溝7を円周方向等間隔に形成してある。内輪3は、球面状の外周面に軸方向に延びるボール溝8を円周方向等間隔に形成してある。外輪2のボール溝7と内輪3のボール溝8は対をなし、各対のボール溝7,8間に1個のボール4が組み込んである。保持器5は外輪2と内輪3との間に介在し、すべてのボール4が保持器5によって同一平面に保持される。   Here, the outer ring 2 is bell-shaped, and ball grooves 7 extending in the axial direction are formed on the spherical inner peripheral surface at equal intervals in the circumferential direction. In the inner ring 3, ball grooves 8 extending in the axial direction are formed on a spherical outer peripheral surface at equal intervals in the circumferential direction. The ball groove 7 of the outer ring 2 and the ball groove 8 of the inner ring 3 form a pair, and one ball 4 is incorporated between each pair of ball grooves 7 and 8. The cage 5 is interposed between the outer ring 2 and the inner ring 3, and all the balls 4 are held on the same plane by the cage 5.

内輪3の中心部には貫通孔9が形成してあり、その内周面にはスプライン10が形成してある。このスプライン10を、シャフト6の端部に形成したスプライン11と嵌合させることにより、内輪3とシャフト6がトルク伝達可能に結合する。貫通孔9の先端側は、図2に示すように、貫通孔9よりも大きな径の孔12を設けることにより、スプライン10の終端に形成した、軸線に対して垂直な面10aと連続した面12aが形成してある。なお、孔12はスプライン10の小径(歯先の作る円の直径)より大きく大径(歯底の作る円の直径)より小さい径であってもよく、その場合、面12aは形成されず、スプライン10の終端の、軸線に対して垂直な面10aのみが存在する。   A through hole 9 is formed at the center of the inner ring 3, and a spline 10 is formed on the inner peripheral surface thereof. By fitting the spline 10 with a spline 11 formed at the end of the shaft 6, the inner ring 3 and the shaft 6 are coupled so that torque can be transmitted. As shown in FIG. 2, the front end side of the through hole 9 is a surface continuous with a surface 10 a perpendicular to the axis formed at the end of the spline 10 by providing a hole 12 having a larger diameter than the through hole 9. 12a is formed. The hole 12 may be larger in diameter than the small diameter of the spline 10 (the diameter of the circle formed by the tooth tip) and smaller than the large diameter (the diameter of the circle formed by the tooth bottom). In this case, the surface 12a is not formed, There is only a surface 10a at the end of the spline 10 perpendicular to the axis.

シャフト6の先端側には、止め輪14を装着するためのリング状の止め輪溝13が形成してある。止め輪溝13は、外径が内輪3のスプライン10の小径より小さくなるまで止め輪14の縮径を可能にする深さを有している。止め輪溝13のシャフト6上の位置は、内輪3とシャフト6を組み付けた状態で貫通孔9の長さの範囲内にあればよく、シャフト6の先端の、スプライン11の終端よりも軸端側であってもよい。   A ring-shaped retaining ring groove 13 for mounting a retaining ring 14 is formed on the distal end side of the shaft 6. The retaining ring groove 13 has a depth that allows the retaining ring 14 to be reduced in diameter until the outer diameter becomes smaller than the small diameter of the spline 10 of the inner ring 3. The position of the retaining ring groove 13 on the shaft 6 only needs to be within the range of the length of the through hole 9 in a state where the inner ring 3 and the shaft 6 are assembled, and the shaft end at the end of the shaft 6 is more than the end of the spline 11. It may be on the side.

止め輪溝13の両側壁すなわち先端側の壁13aと反先端側の壁13bは、軸線に対して垂直に延在している。壁13a,13b間の寸法は、止め輪14の幅に対して若干すきまを与えてある。反先端側の壁13bは、シャフト6を貫通孔9に挿入していく時に止め輪14を挿入方向へ押す当接部となる。また、先端側の壁13aは、シャフト6に引き抜き力が加えられたときに止め輪14を引き抜き方向へ押す当接部となる。   Both side walls of the retaining ring groove 13, that is, the tip side wall 13 a and the opposite tip side wall 13 b extend perpendicular to the axis. The dimension between the walls 13a and 13b is given a slight gap with respect to the width of the retaining ring. The wall 13b on the opposite end side serves as a contact portion that pushes the retaining ring 14 in the insertion direction when the shaft 6 is inserted into the through hole 9. Further, the distal wall 13a serves as a contact portion that pushes the retaining ring 14 in the pulling direction when a pulling force is applied to the shaft 6.

止め輪14は、図3に示すように、一部を切り欠いたリング状で、弾性的に拡径、縮径が可能である。止め輪14は、縮径させようとする力が付与されない状態で、シャフト6の外径(スプライン11の大径)よりも外方へ部分的に飛び出している。   As shown in FIG. 3, the retaining ring 14 is a ring shape with a part cut away, and can be elastically expanded and contracted. The retaining ring 14 partially protrudes outward from the outer diameter of the shaft 6 (the large diameter of the spline 11) in a state where a force for reducing the diameter is not applied.

シャフト6と内輪3の組み付けは、止め輪14を止め輪溝13に配置し、止め輪14を縮径させた状態で、シャフト6を貫通孔9に挿入する。この時、止め輪14は貫通孔9のスプライン10の小径と弾性的に接しながら滑って移動していく。そして、シャフト6の先端が貫通孔9を抜けて、実質的にはスプライン10との当接がなくなる位置に至ると、貫通孔9の反先端側の端部9aがシャフト6の肩部6aと当たって挿入が阻止される。シャフト6の挿入しろを規制するために、別途止め輪を取り付けておいて、その止め輪が貫通孔9の反先端側と当たってそれ以上の挿入を阻止するようにしてもよい。   The shaft 6 and the inner ring 3 are assembled by inserting the shaft 6 into the through hole 9 with the retaining ring 14 disposed in the retaining ring groove 13 and the retaining ring 14 having a reduced diameter. At this time, the retaining ring 14 slides and moves while elastically contacting the small diameter of the spline 10 of the through hole 9. When the tip of the shaft 6 passes through the through hole 9 and reaches a position where the contact with the spline 10 is substantially eliminated, the end 9a on the side opposite to the tip of the through hole 9 is connected to the shoulder 6a of the shaft 6. Insertion is prevented by hitting. In order to restrict the insertion allowance of the shaft 6, a retaining ring may be attached separately so that the retaining ring hits the opposite end side of the through hole 9 to prevent further insertion.

シャフト6の貫通孔9への挿入が止まった時点では、止め輪14はスプライン10を脱してカウンタボア12内に位置するため、弾性により拡径する。止め輪14が拡径すると、止め輪14の外周面がカウンタボア12の周壁に接してシャフト6と内輪3の組み付けが完了する。なお、止め輪14が拡径した際に、その外径がスプライン10の小径よりも大きいならば、必ずしも止め輪14の外周面が孔12の周壁に接しなくてよい。   When the insertion of the shaft 6 into the through-hole 9 is stopped, the retaining ring 14 is removed from the spline 10 and positioned in the counter bore 12, so that the diameter is expanded by elasticity. When the retaining ring 14 is enlarged in diameter, the outer peripheral surface of the retaining ring 14 comes into contact with the peripheral wall of the counterbore 12 to complete the assembly of the shaft 6 and the inner ring 3. If the outer diameter of the retaining ring 14 is larger than the small diameter of the spline 10, the outer peripheral surface of the retaining ring 14 does not necessarily need to contact the peripheral wall of the hole 12.

止め輪14の断面形状としては種々採用できるが、内輪3とシャフト6が分解不可能な仕様のものと分解可能な仕様のものとの2つに大別される。   Various types of cross-sectional shapes of the retaining ring 14 can be adopted, but the inner ring 3 and the shaft 6 are roughly classified into two types, one having specifications that cannot be disassembled and one having specifications that can be disassembled.

分解不可能な仕様を成立させるための止め輪14は、止め輪14を縮径させる力が発生しない形状であればよい。たとえば、図2に示すように、止め輪14の断面形状が平行な面14a,14bをもった角形である場合、反先端側の面14bが貫通孔9の軸線に対して垂直な面10aおよびそれと連続した面12aと接触すればよい。シャフト6に引き抜力すなわち図2の矢印B方向の力が加わると、止め輪14の先端側の面14aが止め輪溝13の壁13aによって押される。その結果、シャフト6が少しだけ図中右側へ平行移動する、つまり、止め輪溝13の幅と止め輪14の幅の差(すきま)の範囲内で移動する。しかし、止め輪14の反先端側の面14bが内方継手部材の面10a,面12aに当たり、引き抜き力の反力Fが引き抜き力と正反対の向きとなるので、止め輪14を縮径させる分力が発生しない。したがって、シャフト6を内輪3から引き抜くことができない。   The retaining ring 14 for establishing a specification that cannot be disassembled may have a shape that does not generate a force for reducing the diameter of the retaining ring 14. For example, as shown in FIG. 2, when the retaining ring 14 has a square shape with parallel surfaces 14 a and 14 b, the surface 14 b on the opposite end side is a surface 10 a perpendicular to the axis of the through hole 9 and What is necessary is just to contact the surface 12a continuous with it. When a pulling force, that is, a force in the direction of arrow B in FIG. 2 is applied to the shaft 6, the front surface 14 a of the retaining ring 14 is pushed by the wall 13 a of the retaining ring groove 13. As a result, the shaft 6 moves slightly to the right in the drawing, that is, moves within the range (gap) between the width of the retaining ring groove 13 and the width of the retaining ring 14. However, since the surface 14b on the opposite end side of the retaining ring 14 hits the surfaces 10a and 12a of the inner joint member and the reaction force F of the withdrawal force is in the opposite direction to the withdrawal force, the diameter of the retaining ring 14 is reduced. No power is generated. Therefore, the shaft 6 cannot be pulled out from the inner ring 3.

このような分解不可能な仕様となる止め輪14の断面形状を例示したのが図8(a)〜(h)である。図8(a)〜(f)に示す断面形状の止め輪は基本的には図2の止め輪14の面14a,14bに相当する面を有しているが、他の隅部に傾斜面や円弧面、凸部が設けてある。また、図8(g),(h)は内方継手部材の面10a,12aと接する面を傾斜させて全体的断面形状を三角形または台形とすることにより、面10a,12aと点接触するようにしたものである。止め輪14を縮径させる力が発生しないため、必ずしも面10a,12aと面当たりする必要はないのである。   FIGS. 8A to 8H illustrate the cross-sectional shape of the retaining ring 14 having such a specification that cannot be disassembled. 8 (a) to 8 (f) basically have surfaces corresponding to the surfaces 14a and 14b of the retaining ring 14 of FIG. 2, but are inclined at other corners. A circular arc surface and a convex portion are provided. 8 (g) and 8 (h) show point contact with the surfaces 10a and 12a by inclining the surfaces in contact with the surfaces 10a and 12a of the inner joint member so that the overall cross-sectional shape is triangular or trapezoidal. It is a thing. Since no force for reducing the diameter of the retaining ring 14 is generated, it is not always necessary to make contact with the surfaces 10a and 12a.

また、分解不可能な仕様とするためには、止め輪を拡径させる分力が発生してもよい。たとえば図4に示す止め輪14は、断面形状が多角形で、先端側の面が、内径側から外径側にいくほど幅が漸増するような傾斜面14cとなっている。シャフト6に引き抜き力Bが加わると、シャフト6が図中右側へ平行移動し、止め輪14の傾斜面14cとシャフトの止め輪溝13の先端側の壁13aの端部13cとが接するが、止め輪14の傾斜面14cの傾斜角によって、止め輪14を拡径させる向きの分力が発生する。しかし、止め輪4の外周面が孔12の周壁に接すると、止め輪14はそれ以上拡径することはできない。したがって、結局、内方継手部材3とシャフト6は分解不可能である。   Moreover, in order to make it a specification which cannot be disassembled, the component force which expands a retaining ring may be generated. For example, the retaining ring 14 shown in FIG. 4 has a polygonal cross-sectional shape, and the tip side surface is an inclined surface 14c whose width gradually increases from the inner diameter side to the outer diameter side. When the pulling force B is applied to the shaft 6, the shaft 6 moves in parallel to the right side in the figure, and the inclined surface 14 c of the retaining ring 14 comes into contact with the end portion 13 c of the wall 13 a on the tip side of the retaining ring groove 13 of the shaft. Depending on the inclination angle of the inclined surface 14 c of the retaining ring 14, a component force in the direction of expanding the retaining ring 14 is generated. However, when the outer peripheral surface of the retaining ring 4 is in contact with the peripheral wall of the hole 12, the retaining ring 14 cannot be further expanded in diameter. Therefore, after all, the inner joint member 3 and the shaft 6 cannot be disassembled.

このような分解不可能な仕様となる止め輪14の断面形状を例示したのが図8(i)〜(o)である。いずれも、止め輪溝13の先端側の壁13aの端部13cと接する上記傾斜面14cに相当する傾斜面をもった多角形断面となっている。図8(i)〜(m)に示す断面形状の止め輪の場合は図4の場合と同じ原理で作用するが、図8(n),(o)に示す断面形状の止め輪は、内方継手部材3の面10a,12aと接する面を傾斜させて全体的断面形状を三角形(n)または台形(o)とすることにより、面10a,12aと点接触するようにしたものである。止め輪14の外周面が孔12と接することによってそれ以上の拡径が阻止されるため、必ずしも面10a,12aと面当たりする必要はないのである。   FIGS. 8 (i) to 8 (o) exemplify the cross-sectional shape of the retaining ring 14 having such specifications that cannot be disassembled. Both have a polygonal cross section having an inclined surface corresponding to the inclined surface 14c in contact with the end portion 13c of the wall 13a on the distal end side of the retaining ring groove 13. In the case of the retaining ring having the sectional shape shown in FIGS. 8 (i) to 8 (m), the retaining ring having the sectional shape shown in FIGS. 8 (n) and (o) operates in the same principle as in FIG. The surface of the joint member 3 that contacts the surfaces 10a and 12a is inclined so that the overall cross-sectional shape is a triangle (n) or a trapezoid (o), thereby making point contact with the surfaces 10a and 12a. Since the outer peripheral surface of the retaining ring 14 is in contact with the hole 12 and further diameter expansion is prevented, it is not always necessary to make contact with the surfaces 10a and 12a.

さらに、分解不可能な仕様とするための止め輪14の断面形状は、上述のような角形に限らず、図8(p)に示すような円形であってもよい。その場合、図5に示すように、貫通孔9の軸線に対して垂直な面10a、または、それと連続した面12aのいずれかと止め輪14が点接触する。また、止め輪14の半径rが貫通孔9の軸線に対して垂直な面10aおよびそれと連続した面12aを足した半径方向寸法より大きくても分解不可能な仕様が成立する。この場合、貫通孔9の軸線に対して垂直な面10aの端部10b(スプライン10の歯先端部)と止め輪14が接することになり、止め輪14を縮径させる向きの分力が多少は発生するが、止め輪14を縮径させるために必要な力に比べて充分小さいため、結局、内方継手部材3とシャフト6は分解不可能である。   Furthermore, the cross-sectional shape of the retaining ring 14 for making the specification that cannot be disassembled is not limited to the square shape as described above, but may be a circular shape as shown in FIG. In that case, as shown in FIG. 5, the retaining ring 14 is in point contact with either the surface 10a perpendicular to the axis of the through hole 9 or the surface 12a continuous therewith. Further, a specification that cannot be disassembled is established even if the radius r of the retaining ring 14 is larger than the radial dimension obtained by adding the surface 10a perpendicular to the axis of the through hole 9 and the surface 12a continuous therewith. In this case, the end portion 10b of the surface 10a perpendicular to the axis of the through-hole 9 (the tooth tip portion of the spline 10) and the retaining ring 14 are in contact with each other, and the component force in the direction of reducing the diameter of the retaining ring 14 is somewhat However, since the force required to reduce the diameter of the retaining ring 14 is sufficiently small, the inner joint member 3 and the shaft 6 cannot be disassembled after all.

ちなみに、貫通孔9の軸線に対して垂直な面10aの端部10bと止め輪14との接点と、止め輪14の中心とを結ぶ線分の傾きが20度を越えると、止め輪14を縮径させる向きの分力が、止め輪14自身が拡径しようとする力と止め輪14を縮径させるために必要な力の和より大きくなるため分解可能な仕様に変化する。しかし、そのような大きな径の止め輪14を装着するためには止め輪溝13の幅が必要以上に大きくなってしまうため、効率的な設計とは言えない。この図8(p)に示すような円形断面の、分解不可能な仕様となる止め輪14の変形例を例示したのが図8(q)〜(u)である。これらは円形断面の一部に平面部や切り欠きを設けた形状であるが、図5に関連して上に述べた条件で作用する場合に分解不可能な仕様を成立させる。   Incidentally, when the inclination of the line segment connecting the contact point between the end portion 10b of the surface 10a perpendicular to the axis of the through hole 9 and the retaining ring 14 and the center of the retaining ring 14 exceeds 20 degrees, the retaining ring 14 is removed. Since the component force in the direction to reduce the diameter becomes larger than the sum of the force that the retaining ring 14 itself wants to expand and the force necessary to reduce the diameter of the retaining ring 14, it changes to a resolvable specification. However, in order to mount the retaining ring 14 having such a large diameter, the width of the retaining ring groove 13 becomes unnecessarily large. FIGS. 8 (q) to 8 (u) exemplify modified examples of the retaining ring 14 having a circular cross section and a specification that cannot be disassembled as shown in FIG. 8 (p). These are shapes in which a flat portion and a notch are provided in a part of a circular cross section, but the specifications which cannot be disassembled are established when operating under the conditions described above with reference to FIG.

次に、分解可能な仕様を選択するときの止め輪14の形状について説明する。この場合、止め輪14自身の拡径しようとする力と止め輪14を縮径させるために必要な力の和よりも大きな止め輪14を縮径させる向きの力が発生すればよい。たとえば、図6に示すように、止め輪14の断面形状を多角形とし、反先端側に軸線に対する傾斜角αが70度以下の傾斜面14dを設け、その傾斜面14dが内方継手部材3の軸線に対して垂直な面10aの端部10b(スプライン10の歯先端部)に接するようにしてもよい。   Next, the shape of the retaining ring 14 when selecting a decomposable specification will be described. In this case, it is only necessary to generate a force for reducing the diameter of the retaining ring 14 larger than the sum of the force of the retaining ring 14 itself to increase the diameter and the force necessary to reduce the diameter of the retaining ring 14. For example, as shown in FIG. 6, the retaining ring 14 has a polygonal cross-sectional shape, and an inclined surface 14 d with an inclination angle α with respect to the axis of 70 degrees or less is provided on the opposite end side, and the inclined surface 14 d is the inner joint member 3. You may make it contact | connect the edge part 10b (tooth front-end | tip part of the spline 10) of the surface 10a perpendicular | vertical to the axis line.

シャフト6に引き抜き力Bが加わると、シャフト6が図中右側へ平行移動し、止め輪14の傾斜面14dと内方継手部材3の面10aの端部10bとが接する。そして、止め輪14の傾斜面14dの傾斜角αが作用して止め輪14を縮径させる向きの分力が発生する。したがって、図7に示すように、止め輪14を縮径させてシャフト6を内輪3から引き抜くことが可能となる。傾斜面14dの傾斜角αが70度を越えると、止め輪14を縮径させる向きの分力が小さくなるため、止め輪14を縮径させることができずに分解不可能な仕様となる。   When the pulling force B is applied to the shaft 6, the shaft 6 moves in parallel to the right side in the drawing, and the inclined surface 14 d of the retaining ring 14 and the end portion 10 b of the surface 10 a of the inner joint member 3 come into contact with each other. And the inclination angle (alpha) of the inclined surface 14d of the retaining ring 14 acts, and the component force of the direction which reduces the diameter of the retaining ring 14 generate | occur | produces. Therefore, as shown in FIG. 7, the retaining ring 14 can be reduced in diameter and the shaft 6 can be pulled out from the inner ring 3. When the inclination angle α of the inclined surface 14d exceeds 70 degrees, the component force in the direction to reduce the diameter of the retaining ring 14 becomes small, so that the retaining ring 14 cannot be reduced in diameter and cannot be disassembled.

分解可能な仕様を成立させるための止め輪14の断面形状を例示したのが図9(a)〜(h)である。図9(a)〜(d)に示す断面形状は多角形、台形、三角形となっており、止め輪断面において端部10b(図6)と接する部分に傾斜面を設けた形状になっている。また、図9(e)〜(h)に示す断面形状では端部10b(図6)に接する部分が円弧や楕円形状になっている。   FIGS. 9A to 9H illustrate the cross-sectional shape of the retaining ring 14 for establishing the decomposable specification. The cross-sectional shapes shown in FIGS. 9A to 9D are polygonal, trapezoidal, and triangular, and have a shape in which an inclined surface is provided in a portion in contact with the end 10b (FIG. 6) in the retaining ring cross-section. . Further, in the cross-sectional shapes shown in FIGS. 9E to 9H, the portion in contact with the end portion 10b (FIG. 6) is an arc or an ellipse.

分解不可能な仕様の止め輪と分解可能な仕様の止め輪が互いに似た形状となる場合もあるが、分解不可能な仕様では、軸線に垂直な止め輪14の面14b(図2,図4)が貫通孔9の軸線に対して垂直な面10aおよびそれと連続した面12aと接し、分解可能な仕様では、止め輪14の傾斜角αの斜面14d(図6)が、貫通孔9の軸線に対して垂直な面10aの端部10b(スプライン10の歯先端部)と接することから、各々の作用機構が全く異なる。しかしながら、止め輪の形状差がわずかであれば、分解不可能な仕様と分解可能な仕様を視覚的に容易に見分けられない場合も考えられるため、分解不可能な仕様には四角形または円形の断面をした止め輪を採用し、分解可能な仕様には傾斜角αの斜面14d(図6)を持つ多角形の断面をした止め輪を採用するなど、明確な形状差を与えることが望ましい。   In some cases, the retaining ring of the specification that cannot be disassembled and the retaining ring of the specification that can be disassembled may have similar shapes, but in the specification that cannot be disassembled, the surface 14b of the retaining ring 14 perpendicular to the axis (FIGS. 2 and 2) 4) is in contact with a surface 10a perpendicular to the axis of the through-hole 9 and a surface 12a continuous therewith, and in a decomposable specification, the inclined surface 14d (FIG. 6) with the inclination angle α of the retaining ring 14 is Each contact mechanism is completely different because it is in contact with the end 10b of the surface 10a perpendicular to the axis (the tooth tip of the spline 10). However, if there is a slight difference in the shape of the retaining ring, it may not be possible to easily distinguish between the specifications that cannot be disassembled and the specifications that can be disassembled. It is desirable to give a clear shape difference, for example, by adopting a retaining ring with a polygonal cross section having a sloped surface 14d (FIG. 6) with an inclination angle α as a dismountable specification.

ところで、貫通孔9の軸線に対して垂直な面10aおよびそれと連続した面12aは、文字どおりの垂直でなくとも、貫通孔9の軸線に対して垂直な面から反先端側に向かって20度以内に傾斜した角度をとってもよく、それによってこれまで説明してきた効果が阻害されることはない。ただし、止め輪14が図8(a)などに示す形状の場合、面10aまたは面12aと線接触することになる。   By the way, the surface 10a perpendicular to the axis of the through-hole 9 and the surface 12a continuous therewith are within 20 degrees from the surface perpendicular to the axis of the through-hole 9 to the opposite tip side, even if not literally perpendicular. The angle described above may be taken so that the effects described so far are not hindered. However, when the retaining ring 14 has the shape shown in FIG. 8A or the like, it comes into line contact with the surface 10a or the surface 12a.

一方、止め輪溝13の位置は、内輪3とシャフト6を組み付けた状態における内輪3の貫通孔9の範囲内ならばどこにあってもよく、例えば図10,11に示すようにスプライン10の途中に溝15を設け、この溝15と止め輪溝13を対向させて止め輪14が溝15に入り込むようにすることもできる。その場合もこれまでに説明したのと同じ作用効果を奏する。   On the other hand, the position of the retaining ring groove 13 may be anywhere within the range of the through hole 9 of the inner ring 3 in a state where the inner ring 3 and the shaft 6 are assembled. For example, as shown in FIGS. It is also possible to provide the groove 15 with the retaining ring 14 so that the retaining ring 14 enters the groove 15. In that case, the same effect as described above is obtained.

等速自在継手の縦断面図Vertical section of constant velocity universal joint 実施の形態を示す図1のA部拡大図Enlarged view of part A in FIG. 1 showing the embodiment 止め輪の斜視図Perspective view of retaining ring 実施の形態を示す図2と類似の拡大図Enlarged view similar to FIG. 2 showing the embodiment 実施の形態を示す図2と類似の拡大図Enlarged view similar to FIG. 2 showing the embodiment 実施の形態を示す図2と類似の拡大図Enlarged view similar to FIG. 2 showing the embodiment 実施の形態を示す図2と類似の拡大図Enlarged view similar to FIG. 2 showing the embodiment 止め輪の断面図Cross section of retaining ring 止め輪の断面図Cross section of retaining ring 実施の形態を示す図2と類似の拡大図Enlarged view similar to FIG. 2 showing the embodiment 実施の形態を示す図2と類似の拡大図Enlarged view similar to FIG. 2 showing the embodiment

符号の説明Explanation of symbols

1 等速自在継手
2 外輪(外方継手部材)
7 ボール溝
3 内輪(内方継手部材)
8 ボール溝
9 貫通孔
9a 反先端側の端部
10 スプライン
10a 軸線に垂直な面
12 孔
12a 軸線に垂直な面
15 溝
4 ボール(トルク伝達要素)
5 保持器
6 シャフト
6a 肩部
11 スプライン
13 止め輪溝
13a 先端側の壁
13b 反先端側の壁
13c 先端側の壁の端部
14 止め輪
14a 先端側の面(軸線に垂直)
14b 反先端側の面(軸線に垂直)
14c 傾斜面
14d 傾斜面
1 Constant velocity universal joint 2 Outer ring (outer joint member)
7 Ball groove 3 Inner ring (inner joint member)
8 Ball groove 9 Through hole 9a End on the opposite end side 10 Spline 10a Surface perpendicular to the axis 12 Hole 12a Surface perpendicular to the axis 15 Groove 4 Ball (torque transmission element)
5 Cage 6 Shaft 6a Shoulder 11 Spline 13 Retaining Ring Groove 13a Tip Side Wall 13b Anti-tip Side Wall 13c End Side Wall End 14 Retaining Ring 14a Tip Side Surface (Vertical to Axis)
14b Anti-tip side surface (perpendicular to axis)
14c inclined surface 14d inclined surface

Claims (7)

リング状の止め輪溝を有するシャフトと、シャフトと嵌合するための貫通孔を有する等速自在継手の内方継手部材と、止め輪溝内に配置した弾性的に拡径・縮径が可能な止め輪とからなり、シャフトに引抜き方向の力が加わったとき、内方継手部材の貫通孔に形成した当接部と止め輪溝との間に止め輪が介在することにより、シャフトの抜けを防止するようにしたものであって、前記当接部がシャフトの引き抜き方向に対して垂直な平面で構成される等速自在継手のシャフト嵌合構造。   A shaft having a ring-shaped retaining ring groove, an inner joint member of a constant velocity universal joint having a through-hole for fitting with the shaft, and elastically expanding / reducing diameter disposed in the retaining ring groove are possible. When a force in the pulling direction is applied to the shaft, the retaining ring is interposed between the abutting portion formed in the through hole of the inner joint member and the retaining ring groove, so that the shaft can be removed. A shaft fitting structure for a constant velocity universal joint, wherein the contact portion is formed by a plane perpendicular to the shaft drawing direction. 前記当接部と接する止め輪の表面は前記当接部に対して垂直な方向から接する形状である、請求項1の等速自在継手のシャフト嵌合構造。   The shaft fitting structure for a constant velocity universal joint according to claim 1, wherein a surface of a retaining ring that comes into contact with the abutting portion is in a shape that comes into contact with the abutting portion from a direction perpendicular thereto. 止め輪の断面形状が三角以上の多角形である、請求項2の等速自在継手のシャフト嵌合構造。   The shaft fitting structure for a constant velocity universal joint according to claim 2, wherein the retaining ring has a cross-sectional shape of a triangle or more. 止め輪の断面形状が円形または楕円形である請求項2の等速自在継手のシャフト嵌合構造。   The shaft fitting structure for a constant velocity universal joint according to claim 2, wherein the retaining ring has a circular or oval cross-sectional shape. 前記当接部が前記貫通孔の最小径部であって止め輪の表面と線接触し、かつ、前記止め輪の表面は、止め輪を縮径させる向きの分力を発生させる形状である、請求項1の等速自在継手のシャフト嵌合構造。   The abutting portion is the smallest diameter portion of the through hole and is in line contact with the surface of the retaining ring, and the surface of the retaining ring has a shape that generates a component force in a direction to reduce the diameter of the retaining ring; The shaft fitting structure of the constant velocity universal joint according to claim 1. 前記止め輪の表面が前記貫通孔の当接部と線接触する斜面を有し、前記止め輪の断面形状が三角以上の多角形である、請求項5の等速自在継手のシャフト嵌合構造。   The shaft fitting structure for a constant velocity universal joint according to claim 5, wherein a surface of the retaining ring has an inclined surface that is in line contact with a contact portion of the through-hole, and a sectional shape of the retaining ring is a triangle or more polygon. . 止め輪の断面形状の一部で前記貫通孔の当接部と線接触する部分が円形または楕円形である、請求項5の等速自在継手のシャフト嵌合構造。   The shaft fitting structure for a constant velocity universal joint according to claim 5, wherein a part of a cross-sectional shape of the retaining ring that is in line contact with the contact portion of the through hole is circular or elliptical.
JP2005196225A 2005-07-05 2005-07-05 Shaft fitting structure of constant velocity universal joint Withdrawn JP2007016811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196225A JP2007016811A (en) 2005-07-05 2005-07-05 Shaft fitting structure of constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196225A JP2007016811A (en) 2005-07-05 2005-07-05 Shaft fitting structure of constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2007016811A true JP2007016811A (en) 2007-01-25

Family

ID=37754151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196225A Withdrawn JP2007016811A (en) 2005-07-05 2005-07-05 Shaft fitting structure of constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2007016811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045393A (en) * 2013-08-29 2015-03-12 日本精工株式会社 Taper snap ring
KR20190020939A (en) * 2017-08-22 2019-03-05 현대위아 주식회사 Fixing device for velocity joint
CN110566593A (en) * 2019-09-30 2019-12-13 浙江欧迪恩传动科技股份有限公司 Driving shaft structure convenient to dismantle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045393A (en) * 2013-08-29 2015-03-12 日本精工株式会社 Taper snap ring
KR20190020939A (en) * 2017-08-22 2019-03-05 현대위아 주식회사 Fixing device for velocity joint
KR101969221B1 (en) * 2017-08-22 2019-04-15 현대위아 주식회사 Fixing device for velocity joint
CN110566593A (en) * 2019-09-30 2019-12-13 浙江欧迪恩传动科技股份有限公司 Driving shaft structure convenient to dismantle

Similar Documents

Publication Publication Date Title
JP4964417B2 (en) Prevention of shaft dropout of constant velocity joint
JP2006258254A (en) Structure preventing shaft of constant velocity joint from coming off
JP2007177994A (en) Structure of tripod constant velocity joint and assembly method for roller assembly
US9982720B2 (en) Rotating shaft coupling
JP7256603B2 (en) power transmission shaft
JP5133155B2 (en) Shaft removal prevention structure
JP2007024088A (en) Shaft fitting structure for constant velocity universal joint
JP2007016811A (en) Shaft fitting structure of constant velocity universal joint
JP2007092932A (en) Shaft coming-off prevention structure of constant velocity universal joint
JP2009068508A (en) Constant velocity universal joint
JP2007010029A (en) Outer ring for constant velocity joint
JP2007270904A (en) Shaft coming-off preventing structure for constant velocity universal joint
JP2006258206A (en) Structure preventing shaft of constant velocity joint from coming off
JP2006266460A (en) Structure for preventing constant velocity joint shaft from coming off
JP2008095843A (en) Circlip and constant velocity joint
JP2007263161A (en) Shaft fitting structure
JP2007010086A (en) Constant velocity universal joint
JP2006283835A (en) Shaft mounting structure of constant velocity joint
JP2006266462A (en) Structure for preventing constant velocity joint shaft from coming off
JP2006275239A (en) Shaft fitting structure of constant velocity joint
JP5214177B2 (en) Tripod type constant velocity universal joint
JP2007255659A (en) Shaft-fitting structure
JP2007032645A (en) Sliding type constant velocity universal joint
JP2007303531A (en) Shaft fitting structure of constant velocity joint
JP2013245781A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007