JP2007016169A - Cerium-based abrasive - Google Patents

Cerium-based abrasive Download PDF

Info

Publication number
JP2007016169A
JP2007016169A JP2005200537A JP2005200537A JP2007016169A JP 2007016169 A JP2007016169 A JP 2007016169A JP 2005200537 A JP2005200537 A JP 2005200537A JP 2005200537 A JP2005200537 A JP 2005200537A JP 2007016169 A JP2007016169 A JP 2007016169A
Authority
JP
Japan
Prior art keywords
class
cerium
value
based abrasive
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005200537A
Other languages
Japanese (ja)
Other versions
JP4411251B2 (en
Inventor
Daisaku Kobayashi
大作 小林
Hidehiko Yamazaki
秀彦 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005200537A priority Critical patent/JP4411251B2/en
Publication of JP2007016169A publication Critical patent/JP2007016169A/en
Application granted granted Critical
Publication of JP4411251B2 publication Critical patent/JP4411251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cerium-based abrasive for finishing a glass substrate in a hard disk, a photomask, a flat panel display, etc., which yields a polished surface showing extremely small surface roughness and micro-waviness. <P>SOLUTION: The cerium-based abrasive contains fluorine and has a ratio of CeO<SB>2</SB>/TREO of ≥40 mass%. A pore size distribution is calculated as a differential pore volume (dV/dD) obtained from an adsorption isotherm measurement by a gas adsorption method. The pores size distribution is specified by classifying the cerium-based abrasive within a pore size range covering at least 3.2-100 nm into a plurality of grades and setting the width of each grade so that a value obtained by subtracting the common logarithm of the lower limit value from the common logarithm of the upper limit value of the grade becomes ≤0.10. The differential pore volume (dV/dD) within a range between the minimum pore size grade and the pore size grade including 100 nm reaches its maximum at the grade whose median falls within the range of 5.0-30 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フッ素を含有するセリウム系研摩材及びその製造方法並びに該セリウム系研摩材にて研摩されたガラス基板に関する。   The present invention relates to a cerium-based abrasive containing fluorine, a method for producing the same, and a glass substrate polished with the cerium-based abrasive.

従来より、フッ素成分を含有したガラス基板用のセリウム系研摩材として、例えば、La及びNdをセリウム(Ce)に対して0.5原子%以上含有し、比表面積が12m/g以下で、X線回折におけるCeOを含有する希土類酸化物のメインピークの強度に対する、希土類三フッ化物、のピーク強度の比の範囲を規定したもの、加えて希土類オキシフッ化物の強度の比の範囲を規定したセリウム系研摩材が知られている。(特許文献1及び特許文献2参照)。また、全細孔容積が0.002〜0.1cmであるセリウム系研摩材もある(特許文献3参照)。
特開2002−97457号公報 特開2002−97458号公報 特開2002−241740号公報
Conventionally, as a cerium-based abrasive for a glass substrate containing a fluorine component, for example, La and Nd are contained in an amount of 0.5 atomic% or more based on cerium (Ce), and a specific surface area is 12 m 2 / g or less. The range of the ratio of the peak intensity of the rare earth trifluoride to the intensity of the main peak of the rare earth oxide containing CeO 2 in the X-ray diffraction is defined. In addition, the range of the ratio of the intensity of the rare earth oxyfluoride is defined. Cerium-based abrasives are known. (See Patent Document 1 and Patent Document 2). There is also a cerium-based abrasive having a total pore volume of 0.002 to 0.1 cm 3 (see Patent Document 3).
JP 2002-97457 A JP 2002-97458 A JP 2002-241740 A

希土類元素であるセリウム(Ce)を必須とし、酸素、場合によってはフッ素を主成分とするセリウム系研摩材は、ハードディスク(HD)用、フォトマスク用、液晶(LCD)用などのガラス基板や、半導体基板の研摩に用いられている。このセリウム系研摩材には、研摩速度を高めること、研摩対象物への研摩材の付着を減らすとともにたとえ付着しても容易に洗浄できることなどの特性が要求される。   Cerium-based abrasives, which are essentially composed of rare earth element cerium (Ce) and oxygen, and in some cases fluorine, are mainly used for glass substrates for hard disks (HD), photomasks, liquid crystals (LCD), etc. Used for polishing semiconductor substrates. This cerium-based abrasive is required to have characteristics such as increasing the polishing rate, reducing adhesion of the abrasive to the object to be polished, and easily cleaning it even if it adheres.

上記特許文献1及び特許文献2に開示されたセリウム系研摩材は、研摩速度に優れ、研摩傷の発生も少ない優れた研摩材である。しかしながら、近年、研摩後のガラス基板(ハードディスク用、フォトマスク用、フラットパネルディスプレイ用等)及び水晶基板の表面粗さ及び微小うねりの低減要求は非常に厳しくなり、特許文献1及び特許文献2のセリウム系研摩材では、特に表面粗さ及び微小うねりの低減が厳しく要求されるガラス基板の仕上げ研摩には適用が困難となっている。また、特許文献3のセリウム系研摩材についても、ある程度の仕上げ研摩ができるものの、特許文献1及び特許文献2のセリウム系研摩材と同様に、近年のガラス基板における仕上げ研摩用途としては満足できるものではない。   The cerium-based abrasives disclosed in Patent Document 1 and Patent Document 2 are excellent abrasive materials that are excellent in polishing speed and have few scratches. However, in recent years, the requirements for reducing the surface roughness and microwaviness of polished glass substrates (for hard disks, photomasks, flat panel displays, etc.) and quartz substrates have become very strict. Cerium-based abrasives are difficult to apply to finish polishing of glass substrates that are particularly required to reduce surface roughness and microwaviness. Further, although the cerium-based abrasive of Patent Document 3 can be polished to some extent, it can be satisfied as a final polishing application on a recent glass substrate, like the cerium-based abrasives of Patent Document 1 and Patent Document 2. is not.

そこで、本発明は、被研摩物の表面、特に、ガラス基板及び水晶基板の表面粗さ及び微小うねりを極力小さくした状態に研摩できる、フッ素含有セリウム系研摩材並びにその製造方法を提供することを目的とする。また、非常に厳しい研摩後の表面性状、即ち、表面粗さ及び微小うねりが極力小さく研摩ガラス基板を実現することを課題とする。   Accordingly, the present invention provides a fluorine-containing cerium-based abrasive that can be polished to a state in which the surface roughness of the object to be polished, in particular, the surface roughness and microwaviness of the glass substrate and the quartz substrate are minimized, and a method for producing the same. Objective. Another object of the present invention is to realize a polished glass substrate with extremely harsh surface properties after polishing, that is, surface roughness and minute waviness as much as possible.

本発明は、フッ素を含有し、CeO/TREO≧40質量%であるセリウム系研摩材において、前記セリウム研摩材をガス吸着法で測定した吸着等温線から細孔径分布を微分細孔容積(dV/dD)として算出する際に、少なくとも細孔径3.2nm〜100nmを含む範囲において、複数の級に分割し、各級の幅を、級の上限値の常用対数値から級の下限値の常用対数値を引いた値が0.10以下となるようにして細孔径分布を特定し、細孔径の最小の級から細孔径100nmを含む級の間における微分細孔容積(dV/dD)が、級の中心値が5.0〜30nmの範囲にある級において最大値をとることを特徴とするものとした。 The present invention relates to a cerium-based abrasive containing fluorine and having CeO 2 / TREO ≧ 40% by mass, and the pore size distribution is calculated from a differential pore volume (dV) from an adsorption isotherm obtained by measuring the cerium abrasive by a gas adsorption method. / DD), it is divided into a plurality of classes in a range including at least a pore diameter of 3.2 nm to 100 nm, and the width of each class is changed from the common logarithm value of the upper limit value of the class to the common use of the lower limit value of the class. The pore diameter distribution is specified such that the value obtained by subtracting the logarithmic value is 0.10 or less, and the differential pore volume (dV / dD) between the smallest pore diameter class and the class including the pore diameter of 100 nm is The center value of the class takes the maximum value in the class in the range of 5.0 to 30 nm.

本発明では、ガス吸着法で測定した吸着等温線から得られる細孔径分布より算出される微分細孔容積(dV/dD)によって、セリウム系研摩材を特定したことに特徴がある。この微分細孔容積(dV/dD)は、広い範囲の細孔分布を表現する際に利用されるもので、特に細孔径の小さな値を領域の細孔径分布を強調して表現できるファクターである。この微分細孔容積(dV/dD)とは、差分細孔容積(dV)を級の幅、即ち、級の上限値から級の下限値についての差の値により割ったものをいう。そして、差分細孔容積(dV)とは、細孔径分布を特定する際における、各級の細孔径を有する細孔の容積をいう。この差分細孔容積は級の幅により大きく変化するので、級の幅が異なる細孔径分布について、その差分細孔容積の最大値をもってセリウム径研摩材を特徴付けることは殆ど意味がないものといえる。一方、本発明のように、差分細孔容積(dV)を級の幅(dD)で割ることにより、級の幅の影響を排除した、微分細孔容積(dV/dD)の最大値によりセリウム系研摩材を特定すると、その研摩特性を的確に表現できるようになるのである。   The present invention is characterized in that the cerium-based abrasive is specified by the differential pore volume (dV / dD) calculated from the pore diameter distribution obtained from the adsorption isotherm measured by the gas adsorption method. This differential pore volume (dV / dD) is used when expressing a wide range of pore distribution, and is a factor that can express a small value of the pore diameter particularly by emphasizing the pore size distribution of the region. . The differential pore volume (dV / dD) means the difference pore volume (dV) divided by the class width, that is, the difference between the upper limit value of the class and the lower limit value of the class. The differential pore volume (dV) refers to the volume of pores having each grade of pore diameter when specifying the pore diameter distribution. Since the differential pore volume varies greatly depending on the class width, it can be said that it is almost meaningless to characterize the cerium-diameter abrasive with the maximum value of the differential pore volume for the pore size distribution with different class widths. On the other hand, as in the present invention, by dividing the differential pore volume (dV) by the class width (dD), the influence of the class width is eliminated, and the maximum value of the differential pore volume (dV / dD) is used. When the abrasive material is specified, the polishing characteristics can be expressed accurately.

本発明における細孔径分布に関する用語は、JIS Z 8101−1:統計−用語と記号−第1部 確率及び一般統計用語 に記載されたものである。ちなみに、「級」とは計量特性の変動の全範囲を順次分割して作る一連の区間をいい、「級の幅」とは計量特性に対する級の上限と下限の差をいい、「級の中心」とは計量特性に対する級の上限と下限の算術平均をいうものである。   The terms relating to the pore size distribution in the present invention are those described in JIS Z 8101-1: Statistics-Terms and Symbols-Part 1 Probability and General Statistical Terms. By the way, “class” refers to a series of sections created by sequentially dividing the entire range of variation of the metric characteristics, and “class width” refers to the difference between the upper and lower limits of the class for the metric characteristics. "Means the arithmetic average of the upper and lower limits of the class for the metric properties.

本発明に係るセリウム径研摩材を特定する際の細孔径分布の測定について説明する。本発明では、いわゆるガス吸着法で測定した吸着等温線からその細孔径分布を特定する。このとき、細孔径の測定範囲は、少なくとも細孔径3.2nm〜100nmを含むようにする。そして分布状態を特定する為の級の幅は、級の上限値の常用対数値から級の下限値の常用対数値を引いた値が0.10以下となるようする。このようにして特定した細孔径分布に基づき、各級における微分細孔容積(dV/dD)を算出し、その最大値を見つけだす。この微分細孔容積の最大値が、級の中心値が5.0〜30nmの範囲にある級に存在するものが、本発明のセリウム径研摩材となる。   The measurement of the pore size distribution when specifying the cerium diameter abrasive according to the present invention will be described. In the present invention, the pore size distribution is specified from an adsorption isotherm measured by a so-called gas adsorption method. At this time, the measurement range of the pore diameter includes at least the pore diameter of 3.2 nm to 100 nm. The class width for specifying the distribution state is such that the value obtained by subtracting the common logarithmic value of the lower limit value of the class from the common logarithm value of the upper limit value of the class is 0.10 or less. Based on the pore diameter distribution specified in this way, the differential pore volume (dV / dD) in each class is calculated, and the maximum value is found. The cerium diameter abrasive of the present invention has a maximum differential pore volume that exists in a class having a class center value in the range of 5.0 to 30 nm.

本発明のセリウム系研摩材において、上記微分細孔容積の最大値を示す級が、級の中心値が5nm未満の領域に存在する場合、被研摩物における研摩面の表面粗さ及び微小うねりが大きくなり易くなる。また、級の中心値が30nmを超える級に存在する場合には、研摩速度が低くなる傾向となる。実用的には、級の中心値で7〜25nmの範囲にあることが好ましく、10〜20nmの範囲にあることが更に望ましい。尚、本発明において細孔径分布を特定する際の級については、級の幅を定める上限値の常用対数値から下限値の常用対数値を引いた値が0.10以下となるように決定するが、好ましくは0.08以下、より好ましくは0.06以下とする。この級の幅が広すぎる場合、つまり、0.10を超えると、細孔径分布の最大値の精度が悪くなり、本発明に係るセリウム系研摩材の研摩特性に対する信頼性が低下する傾向となる。   In the cerium-based abrasive of the present invention, when the class showing the maximum value of the differential pore volume is present in a region where the center value of the class is less than 5 nm, the surface roughness and micro-waviness of the polished surface of the object to be polished are present. It becomes easy to grow. Further, when the center value of the class is in a class exceeding 30 nm, the polishing rate tends to be low. Practically, it is preferably in the range of 7 to 25 nm, more preferably in the range of 10 to 20 nm as the center value of the class. In the present invention, the class for specifying the pore size distribution is determined so that the value obtained by subtracting the common logarithm of the lower limit from the common logarithm of the upper limit defining the class width is 0.10 or less. However, it is preferably 0.08 or less, more preferably 0.06 or less. When the width of this class is too wide, that is, when it exceeds 0.10, the accuracy of the maximum value of the pore diameter distribution is deteriorated, and the reliability of the cerium-based abrasive according to the present invention tends to decrease. .

本発明に係るセリウム系研摩材は、フッ素を含有していることが前提で、フッ素を含有していないと研摩速度が低いものとなる。このフッ素含有量は、好ましくは3.0〜5.5質量%、より好ましくは4.0〜5.0質量%である。3.0質量%未満であると、研摩速度が低くなる傾向となる。また、5.5質量%を超えると、研摩面の表面粗さが大きくなり易くなる傾向となる。   The cerium-based abrasive according to the present invention is premised on containing fluorine, and if it does not contain fluorine, the polishing rate is low. The fluorine content is preferably 3.0 to 5.5% by mass, more preferably 4.0 to 5.0% by mass. If it is less than 3.0% by mass, the polishing rate tends to be low. On the other hand, if it exceeds 5.5% by mass, the surface roughness of the polished surface tends to increase.

また、本発明のセリウム系研摩材は、CeO/TREO、即ち、酸化セリウム/全酸化希土が、実用的な研摩速度の点から40質量%以上が必要であり、望ましくは50質量%以上である。また、上限としては、焙焼時にフッ素の揮発が少なく、フッ素含有量の制御が容易である点を考慮すると95質量%以下であればよく、好ましくは90質量%以下、より好ましくは80質量%以下である。加えて、本発明のセリウム系研摩材では、(U+Th)/TREO、即ち(ウラン+トリウム)/全酸化希土が、0.01質量%以下であることが好ましく、より好ましくは0.001質量%以下である。本発明のセリウム系研摩材においても、当然に放射性元素は少ない方が好ましい。 Further, the cerium-based abrasive of the present invention requires CeO 2 / TREO, that is, cerium oxide / total rare earth rare earth, 40 mass% or more from the point of practical polishing speed, desirably 50 mass% or more. It is. Further, the upper limit may be 95% by mass or less, preferably 90% by mass or less, more preferably 80% by mass in consideration of the fact that the volatilization of fluorine is small during roasting and the control of the fluorine content is easy. It is as follows. In addition, in the cerium-based abrasive of the present invention, (U + Th) / TREO, that is, (uranium + thorium) / total rare earth oxide is preferably 0.01% by mass or less, more preferably 0.001% by mass. % Or less. Of course, in the cerium-based abrasive of the present invention, it is preferable that the amount of radioactive elements is small.

そして、本発明のセリウム系研摩材では、BET法比表面積が10〜30m/gであることが好ましい。10m/g未満であると、研摩面の表面粗さが大きくなり易く、30m/gを超えると研摩速度が低下する傾向となる。この比表面積は、11〜25m/g がより好ましく、12〜20m/g がさらに好ましい。 And in the cerium type abrasive of this invention, it is preferable that a BET method specific surface area is 10-30 m < 2 > / g. If it is less than 10 m 2 / g, the surface roughness of the polished surface tends to increase, and if it exceeds 30 m 2 / g, the polishing speed tends to decrease. The specific surface area is more preferably 11~25m 2 / g, more preferably 12~20m 2 / g.

次に、本発明のセリウム系研摩材は、レーザ回折散乱法による粒子径分布測定の体積基準の積算分率における50%径(D50)が、0.3〜1.2μmであることが好ましい。0.3μm未満であると、研摩速度が低くなり易く、1.2μmを超えると、研摩面の表面粗さが大きくなる傾向となる。このD50は、0.4〜1.1μmがより好ましく、0.5〜1.0μmがさらに好ましい。 Next, the cerium-based abrasive of the present invention preferably has a 50% diameter (D 50 ) in a volume-based cumulative fraction of particle size distribution measurement by laser diffraction scattering method of 0.3 to 1.2 μm. . If it is less than 0.3 μm, the polishing speed tends to be low, and if it exceeds 1.2 μm, the surface roughness of the polished surface tends to increase. The D 50 is more preferably 0.4 to 1.1 μm, and further preferably 0.5 to 1.0 μm.

さらに、本発明のセリウム系研摩材は、前記セリウム研摩材をガス吸着法で測定した吸着等温線から細孔径分布を差分細孔容積(dV)及び微分細孔容積(dV/dD)として算出する際に、少なくとも細孔径3.2nm〜200nmを含む範囲において、複数の級に分割して、各級の幅を、級の上限値の常用対数値から級の下限値の常用対数値を引いた値が0.10以下となるようにして細孔径分布を特定し、細孔径の最小の級から細孔径200nmを含む級の間における差分細孔容積(dV)を算出し、細孔径の最小の級から細孔径200nmを含む級までの差分細孔容積(dV)の積算値に対する、細孔径の最小の級から級の上限値が50nmを超えない級までの差分細孔容積(dV)の積算値の割合が、50%以上であることが好ましい。この場合のガス吸着法で測定した吸着等温線からその細孔径分布を特定する際の細孔径の測定範囲は、少なくとも細孔径3.2nm〜200nmを含むようにする。そして、上記と同様に、細孔径分布の級の幅を決定し、細孔径の最小の級から細孔径200nmを含む級の間における、各級の差分細孔容積を算出する。この各級の差分細孔容積より、細孔径の最小の級から細孔径200nmを含む級までの差分細孔容積(dV)の積算値(ここではΣdV200とする)と、細孔径の最小の級から級の上限値が50nmを超えない級までの差分細孔容積(dV)の積算値(ここではΣdV50とする)とを求め、その割合(ΣdV50/ΣdV200×100)を計算する。この割合が50%以上であるセリウム系研摩材が優れた研摩特性を備えるのである。 Furthermore, the cerium-based abrasive of the present invention calculates the pore size distribution as a differential pore volume (dV) and a differential pore volume (dV / dD) from an adsorption isotherm obtained by measuring the cerium abrasive with a gas adsorption method. In this case, in a range including at least a pore diameter of 3.2 nm to 200 nm, the range was divided into a plurality of classes, and the width of each class was subtracted from the common logarithm of the upper limit of the class and the common logarithm of the lower limit of the class. The pore diameter distribution is specified so that the value is 0.10 or less, the differential pore volume (dV) between the class having the smallest pore diameter and the class including the pore diameter of 200 nm is calculated, and the smallest pore diameter is obtained. Integration of differential pore volume (dV) from the minimum class of pore diameter to a class where the upper limit of the class does not exceed 50 nm with respect to the integrated value of differential pore volume (dV) from class to class including pore diameter of 200 nm The value ratio is preferably 50% or more. There. In this case, the measurement range of the pore diameter when specifying the pore diameter distribution from the adsorption isotherm measured by the gas adsorption method includes at least a pore diameter of 3.2 nm to 200 nm. Then, in the same manner as described above, the width of the pore diameter distribution class is determined, and the differential pore volume of each class between the class having the smallest pore diameter and the class including the pore diameter of 200 nm is calculated. From the differential pore volume of each class, the integrated value (here, ΣdV 200 ) of the differential pore volume (dV) from the class having the smallest pore diameter to the class including the pore diameter of 200 nm, and the smallest pore diameter. The integrated value of the differential pore volume (dV) from the class to the class where the upper limit value of the class does not exceed 50 nm is calculated (here, ΣdV 50 ), and the ratio (ΣdV 50 / ΣdV 200 × 100) is calculated. . A cerium-based abrasive having this ratio of 50% or more has excellent polishing characteristics.

割合(ΣdV50/ΣdV200×100)が50%未満であると、研摩面の表面粗さや微小うねりが大きくなる傾向となる。この割合の上限に特段の制限はないが、製造の容易性を考慮すると95%以下が好ましい。実用的には、90%以下であればよく、より望ましくは85%以下である。 When the ratio (ΣdV 50 / ΣdV 200 × 100) is less than 50%, the surface roughness and microwaviness of the polished surface tend to increase. Although there is no particular limitation on the upper limit of this ratio, it is preferably 95% or less in consideration of ease of manufacture. Practically, it may be 90% or less, more desirably 85% or less.

上記した本発明のセリウム系研摩材においては、その他の条件として、全細孔容積、粗粒子含有量、X線回折におけるLnF/CeOピーク強度比及びLnOF/CeO
ピーク強度比を満足することが望ましい。まず、本発明のセリウム系研摩材の全細孔容積は、0.03〜0.11cmであることが好ましい。0.03cm未満であると研摩面に傷が発生し易くなり、0.11cmを超えると研摩速度が低くなる傾向となる。好ましくは0.04〜0.10cmであり、0.05〜0.09cmであることがさらに好ましい。尚、この全細孔容積とは、上記した細孔径分布における差分細孔容積の全積算値とは異なり、対象となるセリウム系研摩材全体の細孔容積を示すもので、具体的にはガス吸着法における、いわゆるT−プロット法により測定されるものである(参考:特許文献3)。
In the above-described cerium-based abrasive of the present invention, other conditions include total pore volume, coarse particle content, LnF 3 / CeO 2 peak intensity ratio and LnOF / CeO 2 in X-ray diffraction.
It is desirable to satisfy the peak intensity ratio. First, the total pore volume of the cerium-based abrasive of the present invention is preferably 0.03 to 0.11 cm 3 . Easily scratches occurred polished surface to be 0.03cm less than 3, the polishing rate greater than 0.11 cm 3 tends to decrease. Preferably it is 0.04-0.10 cm < 3 >, and it is still more preferable that it is 0.05-0.09 cm < 3 >. The total pore volume is different from the total integrated value of the differential pore volume in the pore diameter distribution described above, and indicates the total pore volume of the target cerium-based abrasive. It is measured by the so-called T-plot method in the adsorption method (reference: Patent Document 3).

また、本発明のセリウム系研摩材の粗粒子含有量は、ストークス径5μm以上の研摩材粒子の含有量が200質量ppm以下であることが好ましく、100質量ppm以下がより好ましく、50質量ppm以下がさらに好ましい。粗大粒子の含有量が多くなると研摩面に傷が発生し易くなるからである。   The coarse particle content of the cerium-based abrasive of the present invention is preferably such that the content of abrasive particles having a Stokes diameter of 5 μm or more is 200 mass ppm or less, more preferably 100 mass ppm or less, and 50 mass ppm or less. Is more preferable. This is because if the content of coarse particles increases, scratches are likely to occur on the polished surface.

そして、本発明のセリウム系研摩材のX線回折測定を行った場合は、LnF/CeOピーク強度比は0.1以下であることが好ましい。具体的には、CuKα線を使用したX線回折において、2θ=約28°に出現する立方晶のCeOを主成分とする希土類酸化物の最大ピークのピーク強度に対する2θ=24.2±0.5°に出現する希土類三フッ化物(LnF)のこの範囲における最大ピークのピーク強度の比が0.1以下であることが好ましい。0.05以下であることがより好ましく、実質的には観察されないことがさらに好ましいものである。0.1を超えると研摩傷の発生が多くなるからである。立方晶のCeOを主成分とする希土類酸化物のピークは純粋なCeOでは2θ=約28.6°に立方晶のCeOを主成分とする希土類酸化物のピークは純粋なCeOでは2θ=約28.6°に出現するが、LaやNdの含有量が増えると低角度側にシフトし、2θ=28.0°以下になる場合もある。 When subjected to X-ray diffraction measurement of the cerium-based abrasive of the present invention, LnF 3 / CeO 2 peak intensity ratio is preferably 0.1 or less. Specifically, in X-ray diffraction using CuKα rays, 2θ = 24.2 ± 0 with respect to the peak intensity of the maximum peak of a rare earth oxide mainly composed of cubic CeO 2 appearing at 2θ = about 28 °. It is preferable that the peak intensity ratio of the maximum peak in this range of the rare earth trifluoride (LnF 3 ) appearing at .5 ° is 0.1 or less. More preferably, it is 0.05 or less, and it is still more preferable that it is not observed substantially. This is because when the ratio exceeds 0.1, the generation of abrasive scratches increases. In CeO 2 peaks of pure rare earth oxides to the CeO 2 cubic mainly the peak pure CeO 2 at 2 [Theta] = about 28.6 ° of the rare earth oxide mainly composed of CeO 2 cubic It appears at 2θ = about 28.6 °, but when the content of La 2 O 3 or Nd 2 O 3 increases, it shifts to the lower angle side and may be 2θ = 28.0 ° or less.

さらに、本発明のセリウム系研摩材のX線回折測定を行った場合は、LnOF/CeO ピーク強度比が0.25以下であることが好ましい。具体的には、CuKα線を使用するX線回折において、2θ=約28°に出現する立方晶のCeOを主成分とする希土類酸化物の最大ピークのピーク強度に対する2θ=26.0±0.5°に出現する希土類オキシフッ化物(LnOF)のこの範囲における最大ピークのピーク強度の比が0.25以下であることが好ましく、0.1以下であることがより好ましい。0.25を超えると、LnFの場合ほどではないが研摩傷が発生し易くなる傾向となる。 Furthermore, when the X-ray diffraction measurement of the cerium-based abrasive of the present invention is performed, the LnOF / CeO 2 peak intensity ratio is preferably 0.25 or less. Specifically, in X-ray diffraction using CuKα rays, 2θ = 26.0 ± 0 with respect to the peak intensity of the maximum peak of a rare earth oxide mainly composed of cubic CeO 2 appearing at 2θ = about 28 °. The ratio of the peak intensity of the maximum peak in this range of the rare earth oxyfluoride (LnOF) appearing at .5 ° is preferably 0.25 or less, and more preferably 0.1 or less. If it exceeds 0.25, it tends to cause abrasive scratches more easily than in the case of LnF 3 .

上述した本発明のセリウム系研摩材は、次のような原料により製造することができる。まず、研摩材の原料としては、(1)セリウム系希土類炭酸塩、(2)セリウム系希土類酸化物、或いは(3)セリウム系希土類炭酸塩及びセリウム系希土類酸化物を混合して乾燥質量基準の強熱減量を5〜20%、好ましくは5〜15%にしたもの、若しくは(4)セリウム系希土類炭酸塩を仮焼して乾燥質量基準の強熱減量を5〜20%、好ましくは5〜15%にしたものを用いることができる。研摩面の研摩傷が少ないという観点からは(1)又は(4)の原料が好ましく、研摩速度が高いという観点からは、(2)、(3)或いは(4)の原料が好ましい。フッ素を含有しているバストネサイト精鉱をさらなる精製処理しないで原料として使用してもよいが、フッ化処理を行わなくてもフッ素含有量が若干多すぎ、U、Thの含有量が若干多いという不具合がある。   The cerium-based abrasive of the present invention described above can be produced from the following raw materials. First, as the raw material of the abrasive, (1) cerium-based rare earth carbonate, (2) cerium-based rare earth oxide, or (3) cerium-based rare earth carbonate and cerium-based rare earth oxide are mixed to determine the dry mass basis. An ignition loss of 5 to 20%, preferably 5 to 15%, or (4) calcined cerium-based rare earth carbonate to give an ignition loss on a dry mass basis of 5 to 20%, preferably 5 What was made 15% can be used. The raw material (1) or (4) is preferable from the viewpoint of few polishing scratches on the polished surface, and the raw material (2), (3) or (4) is preferable from the viewpoint of high polishing speed. The bust nesite concentrate containing fluorine may be used as a raw material without further purification treatment, but the fluorine content is slightly too much even without fluorination treatment, and the contents of U and Th are slightly There are many problems.

そして、原料のフッ素含有量、F/TREOは、(1)〜(4)の原料において、通常0.5質量%以下である。フッ素含有量がばらついている原料ではフッ素添加量の計算が煩雑になるので、0.5質量%以下で安定していることが好ましい。また、原料におけるCeO/TREO及び(U+Th)/TREOについては、本発明のセリウム系研摩材と同じとする。 And the fluorine content of a raw material and F / TREO are 0.5 mass% or less normally in the raw material of (1)-(4). Since the calculation of the fluorine addition amount becomes complicated for a raw material with a varying fluorine content, it is preferable that the raw material is stable at 0.5 mass% or less. Further, CeO 2 / TREO and (U + Th) / TREO in the raw material are the same as those of the cerium-based abrasive of the present invention.

上記したセリウム系研摩材の原料についての製造方法としては、例えば、バストネサイト精鉱、モナザイト精鉱、中国複雑鉱精鉱等のCe含有希土類精鉱を硫酸分解法又はアルカリ分解法等により分解し、分別沈澱、分別溶解等の処理を行い、F、U、Th及びその他の希土類元素以外の不純物を低減した後、溶媒抽出によりCe以外の希土類元素を必要に応じて低減したCe系希土類溶液を得て、該希土類溶液と炭酸水素アンモニウム等の炭酸系沈澱剤を混合して沈澱を生成し、ろ過、水洗してCe系希土類炭酸塩を得る。このCe系希土類炭酸塩を十分に焙焼して、ほぼ完全に酸化物にしたものがCe系希土類酸化物である。Ce系希土類炭酸塩を完全には酸化物にならないように仮焼して、乾燥質量基準の強熱減量を調整した原料を得ることもできる。   As a manufacturing method for the raw material of the above-mentioned cerium-based abrasive, for example, Ce-containing rare earth concentrates such as bastonite concentrate, monazite concentrate, Chinese complex ore concentrate are decomposed by sulfuric acid decomposition method or alkali decomposition method etc. Ce-based rare earth solution in which rare earth elements other than Ce are reduced as needed by performing solvent extraction to reduce impurities such as F, U, Th and other rare earth elements after performing treatments such as fractional precipitation and fractional dissolution. The rare earth solution and a carbonate-based precipitant such as ammonium hydrogen carbonate are mixed to form a precipitate, which is filtered and washed with water to obtain a Ce-based rare earth carbonate. A Ce-based rare earth oxide is obtained by sufficiently roasting this Ce-based rare earth carbonate to almost completely convert it into an oxide. A Ce-based rare earth carbonate can be calcined so as not to become an oxide completely to obtain a raw material adjusted for loss on ignition based on the dry mass.

上記した原料については、粉砕することにより次のような粒径にする。粉砕原料の粒径は、レーザ回折・散乱法粒子径分布における体積基準の積算分率における50%径(D50)が0.5〜1.3μm(より好ましくは0.6〜1.0μm)であり、90%径(D90)が、1.4〜2.5μm(より好ましくは1.5〜2.3μm)がとする。D50が0.5μm未満であると、製造された研摩材の研摩速度が低くなり易く、1.3μmを超えると、製造された研摩材にて研摩された面の表面粗さが大きくなり易くなる。また、D90が1.4μm未満であると、製造された研摩材の研摩速度が低くなり易く、2.5μmを超えると、製造された研摩材にて研摩すると研摩傷が発生し易くなる。 About the above-mentioned raw material, it is set as the following particle size by grind | pulverizing. As for the particle size of the pulverized raw material, the 50% diameter (D 50 ) in the volume-based integrated fraction in the laser diffraction / scattering method particle size distribution is 0.5 to 1.3 μm (more preferably 0.6 to 1.0 μm). The 90% diameter (D 90 ) is 1.4 to 2.5 μm (more preferably 1.5 to 2.3 μm). When D 50 is less than 0.5 μm, the polishing speed of the manufactured abrasive tends to be low, and when it exceeds 1.3 μm, the surface roughness of the surface polished with the manufactured abrasive tends to increase. Become. Further, when D 90 is less than 1.4 μm, the polishing speed of the manufactured abrasive is likely to be low, and when it exceeds 2.5 μm, polishing scratches are likely to occur when polishing is performed with the manufactured abrasive.

粉砕により上記の粒径にする方法に制限はないが、多段階粉砕、特に二段階粉砕が上記粒径を達成することが容易であるため好ましい。媒体ミルの場合、第一段階に使用する粉砕媒体の個数平均体積は0.065〜530mm(球状媒体の場合、直径0.5〜10mmに相当)が好ましく、0.26〜280mm(球状媒体の場合、直径0.8mmに相当)がより好ましく、0.52〜150mm(球状媒体の場合、直径1.0〜6.5mmに相当)が、さらに好ましい。また、第2段階以降に使用する粉砕媒体の個数平均体積は、その前段階で使用した粉砕媒体の個数平均体積の0.1〜55%が好ましく、0.2〜45%がより好ましく、0.5〜35%がさらに好ましい。 Although there is no restriction | limiting in the method of making said particle size by grinding | pulverization, since it is easy to achieve the said particle size, multistage grinding | pulverization, especially 2 stage grinding | pulverization is preferable. In the case of a medium mill, the number average volume of the grinding medium used in the first stage is preferably 0.065 to 530 mm 3 (in the case of a spherical medium, the diameter corresponds to 0.5 to 10 mm), and preferably 0.26 to 280 mm 3 (spherical). In the case of a medium, the diameter is more preferably 0.8 mm, and more preferably 0.52 to 150 mm 3 (in the case of a spherical medium, the diameter is equivalent to 1.0 to 6.5 mm). Further, the number average volume of the grinding medium used in the second stage and thereafter is preferably 0.1 to 55%, more preferably 0.2 to 45% of the number average volume of the grinding medium used in the previous stage, 0 More preferably, it is 5 to 35%.

粉砕した原料に対しては、次のようなフッ化処理を施す。粉砕原料を、フッ化水素、フッ化アンモニウム、フッ化水素アンモニウム等の水溶性フッ素含有化合物と混合することによりフッ化処理する。この場合、均一にフッ化処理するためには、粉砕原料はスラリーとし、フッ素含有化合物は水溶液として混合に供用するのが好ましい。また、水に不溶の希土類フッ化物の場合、希土類フッ化物を微粒に粉砕した後、粉砕原料と混合する方法も適用可能であるが、水溶性フッ素化合物を使用した場合と比べてフッ化処理が不均一になり、焙焼時に異常粒成長を起こしして粗大粒子の多い研摩材になりやすいため、水溶性フッ素化合物を使用する方が好ましい。フッ化処理は、焙焼によるフッ素の揮発を考慮して、研摩材中のフッ素が目的含有量になるよう調整して行う。なお、焙焼によるフッ素の揮発は、原料のCeO/TREO含有量が多いほど、また、焙焼温度が高いほど多くなる。 The ground material is subjected to the following fluorination treatment. The ground raw material is fluorinated by mixing with a water-soluble fluorine-containing compound such as hydrogen fluoride, ammonium fluoride, or ammonium hydrogen fluoride. In this case, in order to uniformly perform the fluorination treatment, it is preferable to use the pulverized raw material as a slurry and the fluorine-containing compound as an aqueous solution for mixing. In addition, in the case of rare earth fluoride insoluble in water, a method in which the rare earth fluoride is pulverized into fine particles and then mixed with the pulverized raw material can be applied, but the fluorination treatment is more effective than the case of using a water-soluble fluorine compound. It is preferable to use a water-soluble fluorine compound because it becomes non-uniform and tends to cause abnormal grain growth during roasting and becomes an abrasive with many coarse particles. The fluorination treatment is performed by adjusting the fluorine in the abrasive to the target content in consideration of the volatilization of fluorine by roasting. In addition, the volatilization of fluorine by roasting increases as the CeO 2 / TREO content of the raw material increases and the roasting temperature increases.

フッ化処理後の原料は、水洗により酸や塩を低減した後、ろ過等により固液分離してから、乾燥するのが好ましい。そして、乾燥品は解砕してから焙焼に供用するのが好ましい。   The raw material after the fluorination treatment is preferably dried after the acid and salt are reduced by washing, followed by solid-liquid separation by filtration or the like. The dried product is preferably crushed and then used for roasting.

続いて、フッ化処理後の原料(ろ過ケーキ、乾燥ケーキ又は乾燥ケーキ解砕品)は、焙焼温度700〜1000℃により焙焼する。より好ましくは750〜950℃であるが、700℃未満であると、製造される研摩材の研摩速度が低くなり易く、1000℃を超えると、研摩面の表面粗さや微小うねりが大きくなるセリウム系研摩材になり易い。また、焙焼時間としては、0.2〜72時間が好ましく、0.5〜60時間がより好ましく、1〜48時間がさらに好ましい。0.2時間未満であると、製造される研摩材の研摩速度が低くなる恐れが高く、逆に72時間を超えて焙焼を行っても、 ほとんど変化がなく、エネルギーの無駄となる。   Subsequently, the raw material (filter cake, dried cake or dried cake crushed product) after fluorination treatment is roasted at a roasting temperature of 700 to 1000 ° C. More preferably, the temperature is 750 to 950 ° C., but if it is less than 700 ° C., the polishing speed of the produced abrasive tends to be low, and if it exceeds 1000 ° C., the surface roughness and micro-waviness of the polished surface increase. Easy to become an abrasive. The roasting time is preferably 0.2 to 72 hours, more preferably 0.5 to 60 hours, and further preferably 1 to 48 hours. If the time is less than 0.2 hours, the polishing rate of the produced abrasive is likely to be low, and conversely, even if roasting is performed for more than 72 hours, there is almost no change, and energy is wasted.

焙焼を行った後は、乾式粉砕又は乾式分級を実施することで、粉末状の本発明のセリウム系研摩材を得ることができる。この粉末状のセリウム系研摩材を得る場合には、通常、乾式粉砕又は乾式分級の両方の処理を実施するものである。また、スラリー研摩材を乾燥、解砕することにより、粉末状の本発明のセリウム系研摩材を得ることもできる。そして、焙焼後、湿式粉砕又は湿式分級を実施することでスラリーの本発明のセリウム系研摩材を得ることができる。スラリーのセリウム系研摩材を得る場合、湿式粉砕又は湿式分級の両方の処理を実施してもよいが、湿式粉砕だけでもよい。乾式粉砕後湿式分級を行ったり、乾式分級後湿式粉砕することにより、スラリーの本発明のセリウム系研摩材を得ることもできる。   After roasting, the powdered cerium-based abrasive of the present invention can be obtained by carrying out dry pulverization or dry classification. In order to obtain this powdery cerium-based abrasive, usually both dry pulverization and dry classification are carried out. Moreover, a powdery cerium-based abrasive of the present invention can also be obtained by drying and pulverizing the slurry abrasive. And after baking, the cerium type abrasive | polishing material of this invention of a slurry can be obtained by implementing wet grinding or wet classification. When obtaining a cerium-based abrasive of slurry, both wet pulverization and wet classification may be performed, but only wet pulverization may be performed. The slurry of the cerium-based abrasive of the present invention can also be obtained by wet classification after dry pulverization or wet pulverization after dry classification.

上記した本発明のセリウム系研摩材を用いてガラス基板を研摩すると、研摩面の表面粗さ及び微小うねりが非常に小さく、ハードディスク、フォトマスク、フラットパネルディスプレイ(液晶、プラズマ)等の用途に好適なものとなる。ガラス基板の研摩面における表面性状としては、算術平均表面粗さ(Ra)で0.5nm以下である。より好ましくは0.4nm以下で、0.3nm以下がさらに望ましい。また、表面性状としての算術平均微小うねりは、0.6nm以下であり、0.5nm以下がより好ましく、0.4nm以下がさらに好ましい。この算術平均表面粗さは、原子間力顕微鏡(AFM)にて測定することができ、算術平均微小うねりは、3次元表面構造解析顕微鏡(Zygo社製NewView200)を用い、測定波長を0.2〜1.4mmとして基板の所定領域を白色光で走査して測定することができる。   When a glass substrate is polished using the above-described cerium-based abrasive of the present invention, the surface roughness and fine waviness of the polished surface are very small, and it is suitable for applications such as hard disks, photomasks, flat panel displays (liquid crystal, plasma), etc. It will be something. The surface property on the polished surface of the glass substrate is 0.5 nm or less in terms of arithmetic average surface roughness (Ra). More preferably, it is 0.4 nm or less, and further desirably 0.3 nm or less. In addition, the arithmetic average microwaviness as the surface property is 0.6 nm or less, more preferably 0.5 nm or less, and further preferably 0.4 nm or less. The arithmetic average surface roughness can be measured with an atomic force microscope (AFM), and the arithmetic average microwaviness is measured using a three-dimensional surface structure analysis microscope (New View 200 manufactured by Zygo) with a measurement wavelength of 0.2. It is possible to measure by scanning a predetermined area of the substrate with white light as ˜1.4 mm.

以上説明したように、本発明によれば、研摩面の表面粗さ及び微小うねりが非常に小さく、ハードディスク、フォトマスク、フラットパネルディスプレイ(液晶、プラズマ)等のガラス基板の仕上げ用のセリウム系研摩材として非常に好適なものとなる。   As described above, according to the present invention, the surface roughness and micro-waviness of the polished surface are very small, and cerium-based polishing for finishing glass substrates such as hard disks, photomasks, flat panel displays (liquid crystal, plasma), etc. It becomes a very suitable material.

本発明の最良の実施形態について、実施例及び比較例を参照しながら詳説する。まず初めに、本実施例及び比較例のセリウム系研摩材を製造する際に用いた原料について説明する。表1には、各原料の強熱減量、全酸化希土(TREO)、その他組成成分量等を示す。   The best embodiment of the present invention will be described in detail with reference to examples and comparative examples. First, the raw materials used when manufacturing the cerium-based abrasives of this example and the comparative example will be described. Table 1 shows the ignition loss of each raw material, total oxidized rare earth (TREO), the amount of other composition components, and the like.

表1に示すように、原料は、Ce系稀土類酸化物(記号O)、Ce系稀土類炭酸塩(記号C)、Ce系稀土類酸化物及びCe系稀土類炭酸塩の混合品(記号M)、Ce系稀土類炭酸塩仮焼品(記号S)、バストネサイト精鉱(記号B)、Ce系稀土類酸化物及びバストネサイト精鉱の混合品(記号BC)の6種類を使用した。表1中の原料記号がそれぞれの原料を示し、記号の添え数字が異なるものは同一種類の原料であっても混合比率や強熱減量等が相違する原料を示している。表1のM1〜M6原料については、原料記号C1と、この原料記号C1を850℃にて10時間焼成して得た原料記号O1とを、所定比率で混合したものである。また、表1のM7〜M13原料については、各々原料記号O1とは異なる組成のCe系希土類酸化物と、その炭酸塩を850℃にて10時間焙焼して得たCe系希土類酸化物とを、所定比率で混合したものである。さらに、表1のBM1原料については、O1原料とB1原料とを1:1比率で混合したものである。尚、原料記号S1は、原料記号C1を500℃にて12時間焼成して得たものである。   As shown in Table 1, the raw material is a Ce-based rare earth oxide (symbol O), a Ce-based rare earth carbonate (symbol C), a mixture of Ce-based rare earth oxide and Ce-based rare earth carbonate (symbol M), Ce rare earth carbonate calcined product (symbol S), bastonite concentrate (symbol B), Ce rare earth oxide and basnetite concentrate (symbol BC) used. The raw material symbols in Table 1 indicate the respective raw materials, and those with different numbers attached to the symbols indicate the raw materials having different mixing ratios, ignition loss, etc. even for the same type of raw materials. About the M1-M6 raw material of Table 1, the raw material symbol C1 and the raw material symbol O1 obtained by baking this raw material symbol C1 at 850 degreeC for 10 hours are mixed by a predetermined ratio. For the M7 to M13 raw materials in Table 1, Ce-based rare earth oxides each having a composition different from that of the raw material symbol O1, and Ce-based rare earth oxides obtained by roasting the carbonates at 850 ° C. for 10 hours; Are mixed at a predetermined ratio. Further, the BM1 raw material in Table 1 is a mixture of the O1 raw material and the B1 raw material in a 1: 1 ratio. The raw material symbol S1 is obtained by baking the raw material symbol C1 at 500 ° C. for 12 hours.

また、表1における各原料の(U+Th)/TREOは、B1原料が0.089質量%、BM1原料が0.037質量%、その他の原料は全て0.0005質量%以下である。そして、各原料のF/TREOは、B1原料が7.0質量%、BM1原料が4.1質量%、その他の原料は全て0.1質量%以下である。   Moreover, (U + Th) / TREO of each raw material in Table 1 is 0.089 mass% for the B1 raw material, 0.037 mass% for the BM1 raw material, and 0.0005 mass% or less for all other raw materials. And as for F / TREO of each raw material, B1 raw material is 7.0 mass%, BM1 raw material is 4.1 mass%, and all other raw materials are 0.1 mass% or less.

次に、各セリウム系研摩材の製造について説明する。基本的な製造フローを図1に示す。製造手順としては、原料の粉砕、フッ化処理、洗浄、乾燥、焙焼を行い、その後粉砕、分級を順次行うものである。本実施形態における各実施例及び比較例については、表2及び表3に示す各製造条件にして製造されたセリウム系研摩材である。   Next, the production of each cerium-based abrasive will be described. A basic manufacturing flow is shown in FIG. As a production procedure, the raw material is pulverized, fluorinated, washed, dried and roasted, and then pulverized and classified sequentially. About each Example and comparative example in this embodiment, it is the cerium type abrasive | polishing material manufactured on each manufacturing condition shown in Table 2 and Table 3. FIG.

まず、実施例1〜7、比較例1及び2についての製造条件を説明する。原料(M3)及び湿式媒体ミルによる原料粉砕の条件は一定とし、焙焼温度はそれぞれ変化させた。また、フッ化処理については、製造されるセリウム系研摩材のフッ素含有量が4.5質量%となることを目標にして実施した。このフッ化処理では、焙焼温度によって、焙焼中のフッ素の揮発しやすさが変化することを考慮してフッ化処理量を変えて行った。   First, manufacturing conditions for Examples 1 to 7 and Comparative Examples 1 and 2 will be described. The conditions of the raw material (M3) and the raw material pulverization by the wet medium mill were fixed, and the roasting temperature was changed. Moreover, about the fluorination process, it implemented with the target that the fluorine content of the cerium type abrasive | polishing material manufactured will be 4.5 mass%. In this fluorination treatment, the amount of fluorination treatment was changed in consideration of the fact that the easiness of volatilization of fluorine during roasting changes depending on the roasting temperature.

次に実施例8〜13の製造条件は、原料(M3)、原料粉砕条件及び焙焼温度(850℃)は一定とした。そして、フッ化処理量を変化させた。   Next, the raw material (M3), raw material grinding | pulverization conditions, and the baking temperature (850 degreeC) were made constant as the manufacturing conditions of Examples 8-13. And the amount of fluorination treatment was changed.

実施例14〜20(実施例4)の製造条件は、原料の乾燥質量基準強熱減量を変化させ、原料粉砕条件、フッ化処理条件及び焙焼温度は一定とした。   The production conditions of Examples 14 to 20 (Example 4) were such that the dry mass reference ignition loss of the raw material was changed, and the raw material pulverization condition, the fluorination treatment condition, and the roasting temperature were constant.

実施例21〜25(実施例4)、比較例3〜5の製造条件は、原料(M3)、フッ化処理条件及び焙焼温度は一定とし、原料粉砕条件(各粉砕状の詳細は表3に示す通りである)を変化させた。   The production conditions of Examples 21 to 25 (Example 4) and Comparative Examples 3 to 5 were as follows: the raw material (M3), the fluorination treatment conditions and the roasting temperature were constant, and the raw material grinding conditions (details of each ground state are shown in Table 3). As shown in FIG.

実施例24〜30(実施例4)の製造条件は、原料粉砕条件及び焙焼温度は一定とし、原料の CeO/TREO含有量
を変えた。また、フッ化処理は、研摩材中でほぼ一定になるように、原料のCeO/TREO含有量によりあわせて変化させた。
In the production conditions of Examples 24 to 30 (Example 4), the raw material grinding conditions and the roasting temperature were constant, and the CeO 2 / TREO content of the raw material was changed. Further, the fluorination treatment was changed according to the CeO 2 / TREO content of the raw material so as to be almost constant in the abrasive.

実施例31、32、比較例6の製造条件は、原料として希土類炭酸塩仮焼品、バストネサイト精鉱又はバストネサイト精鉱と希土類酸化物の混合物を用い、表3に示す条件とした。   The production conditions of Examples 31 and 32 and Comparative Example 6 were the conditions shown in Table 3 using rare earth carbonate calcined products, bastosite concentrate or a mixture of bastonesite concentrate and rare earth oxide as raw materials. .

尚、表2及び表3に示した製造条件により得られた各セリウム系研摩材の(U+Th)/TREOは、実施例31が0.037質量%、比較例6が0.089質量%、その他は全て0.0005質量%以下であった。   In addition, (U + Th) / TREO of each cerium-based abrasive obtained under the production conditions shown in Tables 2 and 3 is 0.037% by mass in Example 31, 0.089% by mass in Comparative Example 6, and others. All were 0.0005 mass% or less.

以上のようにして製造した各実施例及び比較例のセリウム系研摩材について、比表面積、細孔径分布、全細孔容積、粗粒子含有量、X線回折などの各測定、そして、ガラス基板についての研摩評価を行った結果を表4、表5に示す。   Regarding the cerium-based abrasives of Examples and Comparative Examples produced as described above, specific surface area, pore size distribution, total pore volume, coarse particle content, X-ray diffraction, etc., and glass substrate Tables 4 and 5 show the results of the polishing evaluation.

ここで、表4及び表5に示す各測定条件及び研摩評価条件について説明する。   Here, each measurement condition and polishing evaluation condition shown in Table 4 and Table 5 will be described.

BET法比表面積(BET)の測定:
JIS R 1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 の(3.5)一点法」に準拠して測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。なお、スラリー研摩材についての測定では、当該スラリーを十分に乾燥(105℃に加熱)させることにより得られた乾燥品についてBET法比表面積を測定した。
Measurement of BET specific surface area (BET):
The measurement was performed in accordance with “6.2 Flow Method (3.5) Single Point Method” in JIS R 1626-1996 (Method for Measuring Specific Surface Area of Fine Ceramic Powder by Gas Adsorption BET Method). At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used. In the measurement of the slurry abrasive, the BET method specific surface area was measured for a dried product obtained by sufficiently drying (heating to 105 ° C.) the slurry.

平均粒径(D50)の測定:
レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製:LA−920)を使用して粒度分布を測定することにより、平均粒径(D50:小粒径側からの累積質量50質量%における粒径<メジアン径>)を求めた。
Measurement of average particle size (D 50 ):
By measuring the particle size distribution using a laser diffraction / scattering particle size distribution measuring device (Horiba, Ltd .: LA-920), the average particle size (D 50 : cumulative mass 50 from the small particle size side) The particle diameter <median diameter>) in mass% was determined.

細孔径分布及び全細孔容積の測定条件:
ここでは、表4及び表5で示す、微分細孔容積(dV/dD)が最大値を示す級の中心値(本実施形態ではこの級の中心値を平均細孔径と称す)、細孔容積比率、全細孔容積の各測定値を得るために行った、セリウム系研摩材の細孔径分布及び全細孔容積の測定条件について説明する。
Measurement conditions of pore size distribution and total pore volume:
Here, as shown in Tables 4 and 5, the center value of the class in which the differential pore volume (dV / dD) shows the maximum value (in this embodiment, the center value of this class is referred to as the average pore diameter), the pore volume The measurement conditions of the pore diameter distribution and the total pore volume of the cerium-based abrasive, which were performed to obtain the measured values of the ratio and the total pore volume, will be described.

細孔径分布及び全細孔容積の測定は、比表面積・細孔分布測定装置(SA3100 BECKMAN COULTER社製)により行った。測定手順を説明すると、まず始めに、細孔容積測定用のガラス製サンプルセルを乾燥秤量した(Ag)。次ぎに、このサンプルセルへ、測定対象となるセリウム系研摩材を約0.3g秤量して投入した。そして、この研摩材が投入されたサンプルセルを、測定装置内の脱ガスポートにセットして脱ガス処理(120℃に加熱、真空ポンプで吸引しながら15分間保持)し、室温まで放冷した。放冷されたサンプルセルは脱ガスポートから取り外され、測定装置内の測定ポートにセットし、サンプルセル内を真空に引いた後、デュワー(液体窒素用保温容器)の液体窒素にサンプルセルの一部を浸漬した。この状態でサンプルセル内の自由容積をヘリウムガスにより、3基準のガス圧力で測定した。この自由容積とは、サンプルセル内の容積であり、サンプルセルに投入する研摩材の占める容積によって変動するものである。尚、このサンプルセルは、各ポート間の移動時には密閉された状態となり、測定ポートセット時には、測定用のガスのみをサンプルセルに流通できるような装置構造とされている。   The pore size distribution and the total pore volume were measured with a specific surface area / pore distribution measuring device (SA3100 BECKMAN COULTER). The measurement procedure will be described. First, a glass sample cell for pore volume measurement was dried and weighed (Ag). Next, about 0.3 g of a cerium-based abrasive to be measured was weighed and introduced into this sample cell. Then, the sample cell in which this abrasive was put was set in a degassing port in the measuring apparatus, degassed (heated to 120 ° C., held for 15 minutes while being sucked with a vacuum pump), and allowed to cool to room temperature. . The cooled sample cell is removed from the degassing port, set in the measuring port in the measuring device, and the sample cell is evacuated and then placed in the liquid nitrogen in the dewar (liquid nitrogen insulation container). The part was immersed. In this state, the free volume in the sample cell was measured with helium gas at 3 standard gas pressures. This free volume is the volume in the sample cell, and varies depending on the volume occupied by the abrasive material put into the sample cell. The sample cell is in a sealed state when moving between the ports, and has a device structure that allows only the measurement gas to flow through the sample cell when the measurement port is set.

続いて、吸着質として窒素ガスを用い、吸着等温線測定を行った。この吸着等温線は、一定容積の窒素ガスをサンプルセルに加えた際、吸着現象が平衡状態となった時の窒素ガス圧力をその時の窒素ガス飽和蒸気圧力で除した値を相対圧力としてX軸にとり、吸着した窒素ガス容積をY軸にプロットすることにより得られる。吸着した窒素ガス容積は、サンプルセルに加えた窒素ガスの容積から、自由容積(サンプルセル内部の全容積から投入した研摩材の占める容積を引いた容積)中にある窒素ガス容積(標準状態に換算したもの)を差し引いて得られる。そして、この吸着等温線測定は、吸着質の窒素ガスの圧力を最高約101kPa(760mmHg)まで小刻みに変化させて、測定、プロットを繰り返して行った。吸着等温線測定後、サンプルセルを取り外し、該セルに付着する水分除去の乾燥処理を行って、そのサンプルセルを秤量した(Bg)。   Subsequently, adsorption isotherm measurement was performed using nitrogen gas as an adsorbate. This adsorption isotherm is obtained by dividing the nitrogen gas pressure when the adsorption phenomenon is in an equilibrium state when a certain volume of nitrogen gas is added to the sample cell by the relative pressure and the value obtained by dividing the nitrogen gas pressure by the nitrogen gas saturated vapor pressure. Alternatively, it is obtained by plotting the adsorbed nitrogen gas volume on the Y axis. The volume of nitrogen gas adsorbed is the volume of nitrogen gas added to the sample cell, the volume of nitrogen gas in the free volume (the volume obtained by subtracting the volume occupied by the abrasive from the total volume inside the sample cell) (in the standard state) It is obtained by subtracting (converted). The adsorption isotherm was measured by repeating the measurement and plotting while changing the pressure of the adsorbate nitrogen gas to a maximum of about 101 kPa (760 mmHg). After measurement of the adsorption isotherm, the sample cell was removed, and the drying process for removing water adhering to the cell was performed, and the sample cell was weighed (Bg).

微分細孔容積(dV/dD)が最大値を示す級の中心値(平均細孔径):
微分細孔容積(dV/dD)が最大値を示す級の平均細孔径は、上記した比表面積・細孔分布測定装置の測定において、細孔径3.19〜211.57nmの変量域について64の級に区分することで細孔径分布を特定した結果より算出されたものである。その算出法は、上記のように窒素ガスを用いて測定した吸着(脱離)等温線より、測定対象である研摩材の細孔が円柱状と仮定し、ケルビンの式(窒素ガスが凝縮する毛管の太さと平衡ガス圧との関係の定量化式)を適用して、BJH(Barrett,Joyner,Halenda)法により細孔径分布を解析し、級毎の差分細孔容積(dV)、微分細孔容積(dV/dD)が自動計算され、そして、細孔径の最小の級から細孔径100nmを含む級において、微分細孔容積(dV/dD)の最大値を見つけだし、その最大値が存在する級を特定したものである。その最大値が存在する級における級の中心値(平均細孔径)を表4及び表5に示す(表4及び表5中、「細孔径分布(dV/dD)MAX平均細孔径」の欄)。
Central value (average pore diameter) of the class in which the differential pore volume (dV / dD) shows the maximum value:
The average pore diameter of the class in which the differential pore volume (dV / dD) shows the maximum value is 64 in the variable range of the pore diameter of 3.19 to 211.57 nm in the measurement of the specific surface area / pore distribution measuring apparatus described above. It is calculated from the result of specifying the pore size distribution by classifying into a class. The calculation method is based on the adsorption (desorption) isotherm measured using nitrogen gas as described above, assuming that the pores of the abrasive to be measured are cylindrical, and the Kelvin equation (nitrogen gas condenses). Applying the quantification formula of the relationship between the capillary thickness and the equilibrium gas pressure), the pore size distribution is analyzed by the BJH (Barrett, Joyner, Halenda) method, the differential pore volume (dV) for each class, the differential fineness The pore volume (dV / dD) is automatically calculated, and the maximum value of the differential pore volume (dV / dD) is found in the class including the pore diameter of 100 nm from the minimum class of the pore diameter, and the maximum value exists. The class is specified. The center value (average pore diameter) of the class in which the maximum value exists is shown in Table 4 and Table 5 (in Table 4 and Table 5, “Pore Diameter Distribution (dV / dD) MAX Average Pore Diameter” column) .

尚、上記細孔径分布における級については、64区間の各級における級の幅、即ち、級の上限の常用対数値から級の下限の常用対数値を引いた値を調べたところ、最も小さい値は0.0147であり、最も大きな値は0.0658であった。また、最小の級は上限3.33nm、下限3.19nmであり、最大の級は上限211.57nm、下限190.68nmであった。   As for the class in the pore size distribution, the width of the class in each of the 64 sections, that is, the value obtained by subtracting the common logarithm of the lower limit of the class from the common logarithm of the upper limit of the class, was the smallest value. Was 0.0147, and the largest value was 0.0658. The minimum class had an upper limit of 3.33 nm and a lower limit of 3.19 nm, and the maximum class had an upper limit of 211.57 nm and a lower limit of 190.68 nm.

細孔容積比率:
細孔容積比率は、上記のようにして得られた差分細孔容積(dV)の結果より算出した。算出法は、細孔径が最小の級(3.19nmから3.33nm)から、級の上限細孔径が50nmを超えない級(49.29〜46.65nm)までの、差分細孔容積の積算値(ΣdV50)を求め、また、細孔径が最小の級(3.19nmから3.33nm)から、級の上限細孔径が200nmを含む級(190.68〜211.57nm)までの差分細孔容積の積算値(ΣdV200)を求めて、その割合(ΣdV50/ΣdV200×100)を算出した。その結果を表4及び表5に示す。
Pore volume ratio:
The pore volume ratio was calculated from the result of the differential pore volume (dV) obtained as described above. The calculation method is the integration of the differential pore volume from the class having the smallest pore diameter (3.19 nm to 3.33 nm) to the class having the upper limit pore diameter of the class not exceeding 50 nm (49.29 to 46.65 nm). The value (ΣdV 50 ) was determined, and the difference fineness from the class having the smallest pore diameter (from 3.19 nm to 3.33 nm) to the class including the upper limit pore diameter of 200 nm (190.68 to 211.57 nm). The integrated value (ΣdV 200 ) of the pore volume was determined, and the ratio (ΣdV 50 / ΣdV 200 × 100) was calculated. The results are shown in Tables 4 and 5.

全細孔容積:
この全細孔容積は、上記した細孔径測定器の測定によって得られる吸着等温線データより算出した。その算出法は、いわゆるハーキンス及びジュラ計算式により、吸着質分子の膜の厚みtに換算され、測定した吸着ガス容積(窒素ガス容積)に対してその膜厚tをプロットした‘T−プロット’グラフを作成し(X軸に膜厚t、Y軸に吸着ガス容積)、この‘T−プロット’グラフからY切片の値を読み取り、このY切片値と、秤量して得られた研摩材重量値(B−A)gとの値により、各研摩材の細孔容積を算出した。尚、上記した細孔容積の測定に関する吸着等温線及びT−プロットグラフ、細孔容積算出については、測定装置により自動的に作成計算されるようになっている。また、この測定における容積は、全て標準状態に換算した値である(参照:特許文献3)。この全細孔容積の測定結果を表4及び表5に示す。
Total pore volume:
This total pore volume was calculated from the adsorption isotherm data obtained by the measurement by the above-mentioned pore diameter measuring instrument. The calculation method is a “T-plot” in which the film thickness t is plotted against the measured adsorbed gas volume (nitrogen gas volume) converted into the adsorbate molecule film thickness t by the so-called Harkins and Jura equation. Create a graph (film thickness t on the X-axis, adsorbed gas volume on the Y-axis), read the Y-intercept value from this 'T-plot' graph, and weigh the abrasive weight obtained by weighing this Y-intercept value The pore volume of each abrasive was calculated based on the value (BA) g. The adsorption isotherm, T-plot graph, and pore volume calculation related to the above-described measurement of the pore volume are automatically created and calculated by the measuring device. Moreover, all the volumes in this measurement are the values converted into the standard state (see: Patent Document 3). The measurement results of the total pore volume are shown in Tables 4 and 5.

ストークス径5μm以上の粗大粒子:
この粗大粒子の含有量は、次の手順により行った。まず、測定用容器に、測定対象のセリウム系研摩材を200g入れると共に、0.1%ヘキサメタリン酸ナトリウム水溶液を容器上部標線まで入れて十分に混合した。指定時間経過後、上部標線から下部標線の間のスラリーを抜き出した。スラリーを抜き出し終えると、新たな0.1%ヘキサメタリン酸ナトリウム水溶液を容器上部標線まで再度投入して十分に混合して、指定時間、容器を静置して沈降させた後、上部標線から下部標線の間のスラリーを抜き出しという、一連の操作(ヘキサメタリン酸ナトリウム水溶液の注液、静置・沈降、スラリーの抜き出しからなる操作)を繰り返した(本実施形態では、全部で8回の操作を行った)。最後の操作を行った後、下部標線以下に残留した研摩材粒子を105℃で十分に乾燥した。このようにして得られた乾燥残留粒子の質量A(g)を精密天秤似て測定した。そして、ストークス径が5μm以上の粗大粒子の含有率S(質量ppm)を、算出式(S=A÷200×1000000)を用いて算出した。指定時間(静置・沈降時間)は、上部標線(スラリー上面)の位置にあるストークス径が5μmの粒子が下部標線まで沈降するのに要する時間であり、上部標線と下部標線間の距離をストークスの式から算出される沈降速度で割ることにより算出される。上記一連の操作を一回だけしか行わないと、下部標線以下の部分にストークス径が5μm以下の粒子が多く混入してしまうが、操作回数を増やすことでその混入量は少なくなる。尚、測定対象がスラリー研摩材である場合、BET法比表面積測定で乾燥品を得るときに、スラリー重量に対する乾燥品の重量の割合を予め測定しておき、この割合から200gに相当するスラリー量を分取して試料とした。
Coarse particles with a Stokes diameter of 5 μm or more:
The coarse particle content was determined according to the following procedure. First, 200 g of the cerium-based abrasive to be measured was placed in a measurement container, and a 0.1% sodium hexametaphosphate aqueous solution was placed up to the upper line of the container and mixed thoroughly. After the designated time had elapsed, the slurry between the upper marked line and the lower marked line was extracted. When the slurry has been extracted, a new 0.1% sodium hexametaphosphate aqueous solution is again added up to the container upper marking line and mixed thoroughly. After allowing the container to settle and settle for a specified time, from the upper marking line. Repeated a series of operations (operation consisting of injection of sodium hexametaphosphate aqueous solution, standing and settling, extraction of slurry) of extracting the slurry between the lower marked lines (in this embodiment, a total of 8 operations) Performed). After the last operation, the abrasive particles remaining below the lower marked line were sufficiently dried at 105 ° C. The mass A (g) of the dry residual particles thus obtained was measured in the same manner as a precision balance. The content S (mass ppm) of coarse particles having a Stokes diameter of 5 μm or more was calculated using a calculation formula (S = A ÷ 200 × 1000000). The specified time (stationary / sedimentation time) is the time required for the particles with a Stokes diameter of 5 μm at the position of the upper marked line (the upper surface of the slurry) to settle to the lower marked line, and between the upper marked line and the lower marked line. Is divided by the sedimentation velocity calculated from the Stokes equation. If the above series of operations is performed only once, a large amount of particles having a Stokes diameter of 5 μm or less are mixed in the portion below the lower marked line, but the amount of mixing is reduced by increasing the number of operations. In addition, when a measuring object is a slurry abrasive, when obtaining a dry product by BET method specific surface area measurement, the ratio of the weight of the dry product to the slurry weight is measured in advance, and the slurry amount corresponding to 200 g from this ratio Was taken as a sample.

X線回折ピーク強度比:
X線分析装置(マックサイエンス(株)製、MXP18)により、各セリウム系研摩材の結晶回折分析を行った。具体的には、CuKα線を使用したX線回折において、2θ=約28°に出現する立方晶のCeOを主成分とする希土類酸化物の最大ピークのピーク強度に対する2θ=24.2±0.5°に出現する希土類三フッ化物(LnF)のこの範囲における最大ピークのピーク強度の比と、2θ=約28°に出現する立方晶のCeOを主成分とする希土類酸化物の最大ピークのピーク強度に対する2θ=26.0±0.5°に出現する希土類オキシフッ化物(LnOF)のこの範囲における最大ピークのピーク強度の比を算出した。
X-ray diffraction peak intensity ratio:
Crystal diffraction analysis of each cerium-based abrasive was performed with an X-ray analyzer (MXP18, manufactured by Mac Science Co., Ltd.). Specifically, in X-ray diffraction using CuKα rays, 2θ = 24.2 ± 0 with respect to the peak intensity of the maximum peak of a rare earth oxide mainly composed of cubic CeO 2 appearing at 2θ = about 28 °. The ratio of the peak intensity of the maximum peak in this range of rare earth trifluoride (LnF 3 ) appearing at .5 ° to the maximum of the rare earth oxide mainly composed of cubic CeO 2 appearing at 2θ = about 28 °. The ratio of the peak intensity of the maximum peak in this range of rare earth oxyfluoride (LnOF) appearing at 2θ = 26.0 ± 0.5 ° to the peak intensity was calculated.

研摩速度:
研摩機として、研摩試験機(HSP−2I型、台東精機(株)製)を用意した。この研摩試験機は、スラリー状の研摩材を研摩対象面に供給しながら、当該研摩対象面を研摩パッドで研摩するものである。研摩材スラリーの砥粒濃度は、100g/Lとした(分散媒は水のみ)。そして、本研摩試験では、スラリー状の研摩材を5リットル/分の割合で供給することとし、研摩材を循環使用した。なお、研摩対象物は65mmφの平面パネル用ガラスとした。また、研摩パッドはポリウレタン製のものを使用した。研摩面に対する研摩パッドの圧力は9.8kPa(100g/cm2)とし、研摩試験機の回転速度は100min−1(rpm)に設定し、所定時間研摩をした。そして、特定時間の研摩処理を行い、研摩前後のガラス重量を測定して研摩によるガラス重量の減少量を求め、この値に基づき研摩値を求めた。本研摩評価では、この研摩値を用いて研摩速度を評価した。なお、この研摩速度の評価値は、表4で示すように、比較例1のセリウム系研摩材により得られた研摩値を基準(100)とし、他の研摩速度の評価値を算定した。
Polishing speed:
A polishing tester (HSP-2I type, manufactured by Taito Seiki Co., Ltd.) was prepared as a polishing machine. This polishing tester polishes the polishing target surface with a polishing pad while supplying a slurry-like polishing material to the polishing target surface. The abrasive grain concentration of the abrasive slurry was 100 g / L (dispersion medium was water only). In this polishing test, a slurry-like abrasive was supplied at a rate of 5 liters / minute, and the abrasive was circulated. The polishing object was 65 mmφ flat panel glass. A polishing pad made of polyurethane was used. The polishing pad pressure on the polishing surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set at 100 min −1 (rpm), and polishing was performed for a predetermined time. Then, a polishing treatment was performed for a specific time, the glass weight before and after polishing was measured to determine the amount of reduction in glass weight by polishing, and the polishing value was determined based on this value. In this polishing evaluation, the polishing rate was evaluated using this polishing value. In addition, as shown in Table 4, this polishing rate evaluation value was calculated based on the polishing value obtained with the cerium-based polishing material of Comparative Example 1 as a reference (100).

研摩傷:
研摩傷評価は、30万ルクスのハロゲンランプを光源として用いる反射法で研摩後のガラス表面を観察し、大きな傷および微細な傷の数を点数化し、100点を満点として減点評価する方式で行った。この傷評価では、ハードディスク用あるいはLCD用のガラス基板の仕上げ研摩で要求される研摩精度を判断基準とした。具体的には表4及び表5中、「◎」は、98点以上(HD用・LCD用ガラス基板の仕上げ研摩に非常に好適)であることを、「○」は、98点未満95点以上(HD用・LCD用ガラス基板の仕上げ研摩に好適)であることを、「△」は、95点未満90点以上(HD用・LCD用ガラス基板の仕上げ研摩に使用可能)であることを、そして「×」は、90点未満(HD用・LCD用ガラス基板の仕上げ研摩に使用不可)であることを示す。
Abrasion wound:
Abrasion scratches are evaluated by a method of observing the polished glass surface by a reflection method using a 300,000 lux halogen lamp as the light source, scoring the number of large and fine scratches, and deducting the score from 100 points. It was. In this scratch evaluation, the polishing accuracy required for finish polishing of a glass substrate for hard disk or LCD was used as a criterion. Specifically, in Tables 4 and 5, “◎” is 98 points or more (very suitable for finishing polishing of glass substrates for HD and LCD), and “◯” is 95 points less than 98 points. That it is above (suitable for finishing polishing of HD / LCD glass substrates), and “△” is less than 95 points and 90 points or more (can be used for finishing polishing of HD / LCD glass substrates). "X" indicates that it is less than 90 points (cannot be used for finish polishing of glass substrates for HD and LCD).

算術平均表面粗さ:
算術平均表面粗さ(Ra)は、プローブ顕微鏡SP−400(エスエスアイ・ナノテクノロジー(株)社製)を用いてDFMモード(ダイナミックフォース顕微鏡モード)にて、研摩面の10μm×10μmの範囲を測定をして得られたものである。
Arithmetic mean surface roughness:
Arithmetic average surface roughness (Ra) is 10 μm × 10 μm of the polished surface in DFM mode (dynamic force microscope mode) using a probe microscope SP-400 (manufactured by SSI Nanotechnology Co., Ltd.). It was obtained by measurement.

算術平均微小うねり:
算術平均微小うねりは、3次元表面構造解析顕微鏡(Zygo社製NewView200)を用い、測定波長を0.2〜1.4mmとして基板の所定領域を白色光で研摩面を走査して測定した。
Arithmetic mean swell:
Arithmetic mean microwaviness was measured by using a three-dimensional surface structure analysis microscope (New View 200 manufactured by Zygo Co., Ltd.), measuring a wavelength of 0.2 to 1.4 mm, and scanning a polished surface with white light over a predetermined region of the substrate.

表4及び5に示す結果より、各実施例のセリウム系研摩材は、比較例のものよりも、研摩特性に非常に優れることが判明した。この各実施例に関する微分細孔容積の最大値を示す平均細孔径<(dV/dD)MAX平均細孔径>は、全て5.0nm〜30nmの範囲にあり、細孔容積比率は50%以上であることが判った。一方、比較例のセリウム径研摩材については、細孔容積比率が50%以上のものも存在していた(比較例2、比較例4、比較例6)が、(dV/dD)MAX平均細孔径は5.0nm〜30nmの範囲から外れていることが判明した。この表4及び表5の研摩評価結果では、各実施例では、研摩面の表面粗さ、微小うねりは極めて小さなものとなっており、ハードディスク、フォトマスク、フラットパネルディスプレイ(液晶、プラズマ)等の用途に非常に好適なガラス基板に仕上がっていることが判明した。   From the results shown in Tables 4 and 5, it was found that the cerium-based abrasive of each example was much superior in polishing characteristics than the comparative example. The average pore diameter <(dV / dD) MAX average pore diameter> indicating the maximum value of the differential pore volume for each example is in the range of 5.0 nm to 30 nm, and the pore volume ratio is 50% or more. It turns out that there is. On the other hand, some of the cerium diameter abrasives of the comparative examples had a pore volume ratio of 50% or more (Comparative Example 2, Comparative Example 4, and Comparative Example 6), but (dV / dD) MAX average fine particles were present. It was found that the pore diameter was out of the range of 5.0 nm to 30 nm. According to the polishing evaluation results in Table 4 and Table 5, in each example, the surface roughness and microwaviness of the polished surface are extremely small, such as a hard disk, a photomask, a flat panel display (liquid crystal, plasma), etc. It has been found that the glass substrate is very suitable for the application.

セリウム系研摩材の概略製造フロー図。Schematic production flow diagram of cerium-based abrasive.

Claims (6)

フッ素を含有し、CeO/TREO≧40質量%であるセリウム系研摩材において、
前記セリウム研摩材をガス吸着法で測定した吸着等温線から細孔径分布を微分細孔容積(dV/dD)として算出する際に、
少なくとも細孔径3.2nm〜100nmを含む範囲において、複数の級に分割し、各級の幅を、級の上限値の常用対数値から級の下限値の常用対数値を引いた値が0.10以下となるようにして細孔径分布を特定し、
細孔径の最小の級から細孔径100nmを含む級の間における微分細孔容積(dV/dD)が、級の中心値が5.0〜30nmの範囲にある級において最大値をとることを特徴とするセリウム系研摩材。
In the cerium-based abrasive containing fluorine and having CeO 2 / TREO ≧ 40% by mass,
When calculating the pore size distribution as the differential pore volume (dV / dD) from the adsorption isotherm measured by the gas adsorption method for the cerium abrasive,
In a range including at least a pore diameter of 3.2 nm to 100 nm, the range is divided into a plurality of classes, and the width of each class is a value obtained by subtracting the common logarithmic value of the lower limit value of the class from the common logarithm value of the upper limit value of the class. Specify the pore size distribution to be 10 or less,
The differential pore volume (dV / dD) between the minimum pore size class and the class including the pore diameter of 100 nm has the maximum value in the class having the center value of the class in the range of 5.0 to 30 nm. A cerium-based abrasive.
フッ素含有量が3.0〜5.5%である請求項1に記載のセリウム系研摩材。 The cerium-based abrasive according to claim 1, wherein the fluorine content is 3.0 to 5.5%. BET法比表面積が10〜30m/gである請求項1又は請求項2に記載のセリウム系研摩材。 The cerium-based abrasive according to claim 1 or 2, wherein the BET method specific surface area is 10 to 30 m 2 / g. レーザ回折・散乱法粒子径分布測定の体積基準の積算分率における50%径(D50)が0.3〜1.2μmである請求項1〜請求項3いずれかに記載のセリウム系研摩材。 The cerium-based abrasive according to any one of claims 1 to 3, wherein a 50% diameter (D 50 ) in a volume-based integrated fraction of laser diffraction / scattering particle size distribution measurement is 0.3 to 1.2 µm. . 前記セリウム研摩材をガス吸着法で測定した吸着等温線から細孔径分布を差分細孔容積(dV)及び微分細孔容積(dV/dD)として算出する際に、
少なくとも細孔径3.2nm〜200nmを含む範囲において、複数の級に分割して、各級の幅を、級の上限値の常用対数値から級の下限値の常用対数値を引いた値が0.10以下となるようにして細孔径分布を特定し、
細孔径の最小の級から細孔径200nmを含む級までの差分細孔容積(dV)の積算値に対する、細孔径の最小の級から級の上限値が50nmを超えない級までの差分細孔容積(dV)の積算値の割合が、50%以上である請求項1〜請求項4に記載のセリウム系研摩材。
When calculating the pore size distribution as the differential pore volume (dV) and differential pore volume (dV / dD) from the adsorption isotherm measured by the gas adsorption method for the cerium abrasive,
In a range including at least a pore diameter of 3.2 nm to 200 nm, the width of each class is 0, and the value obtained by subtracting the common logarithm of the lower limit of the class from the common logarithm of the upper limit of the class is 0. Identify the pore size distribution so that it is 10 or less,
The differential pore volume from the minimum pore diameter class to the class in which the upper limit of the class does not exceed 50 nm with respect to the integrated value of the differential pore volume (dV) from the minimum pore diameter class to the class including the pore diameter of 200 nm The ratio of the integrated value of (dV) is 50% or more. The cerium-based abrasive according to claim 1.
請求項1〜請求項5のいずれかに記載のセリウム系研摩材により研摩されたガラス基板であって、
ガラス基板の研摩表面における算術平均表面粗さが0.5nm以下であるとともに算術平均微小うねりが0.6nm以下であることを特徴とするガラス基板。
A glass substrate polished with the cerium-based abrasive according to any one of claims 1 to 5,
An arithmetic average surface roughness on a polished surface of a glass substrate is 0.5 nm or less, and an arithmetic average microwaviness is 0.6 nm or less.
JP2005200537A 2005-07-08 2005-07-08 Cerium-based abrasive Active JP4411251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200537A JP4411251B2 (en) 2005-07-08 2005-07-08 Cerium-based abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200537A JP4411251B2 (en) 2005-07-08 2005-07-08 Cerium-based abrasive

Publications (2)

Publication Number Publication Date
JP2007016169A true JP2007016169A (en) 2007-01-25
JP4411251B2 JP4411251B2 (en) 2010-02-10

Family

ID=37753611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200537A Active JP4411251B2 (en) 2005-07-08 2005-07-08 Cerium-based abrasive

Country Status (1)

Country Link
JP (1) JP4411251B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174625A (en) * 2007-01-17 2008-07-31 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material
JP2010132834A (en) * 2008-12-08 2010-06-17 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material containing fluorine and sulfur
JP2011001515A (en) * 2009-06-22 2011-01-06 Mitsui Mining & Smelting Co Ltd Abrasive composition powder and abrasive composition slurry
US20170313594A1 (en) * 2014-11-12 2017-11-02 Rhodia Operations Cerium oxide particles and method for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174625A (en) * 2007-01-17 2008-07-31 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material
JP2010132834A (en) * 2008-12-08 2010-06-17 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material containing fluorine and sulfur
JP2011001515A (en) * 2009-06-22 2011-01-06 Mitsui Mining & Smelting Co Ltd Abrasive composition powder and abrasive composition slurry
US20170313594A1 (en) * 2014-11-12 2017-11-02 Rhodia Operations Cerium oxide particles and method for production thereof
US10160658B2 (en) * 2014-11-12 2018-12-25 Rhodia Operations Cerium oxide particles and method for production thereof
US11034589B2 (en) 2014-11-12 2021-06-15 Rhodia Operations Cerium oxide particles and method for production thereof

Also Published As

Publication number Publication date
JP4411251B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
KR100495774B1 (en) Cerium based abrasive material
JP4401353B2 (en) Cerium-based abrasive
EP3354705B1 (en) Cerium-based abrasive material and process for producing same
JP4411251B2 (en) Cerium-based abrasive
JP4248889B2 (en) Abrasive particle quality evaluation method, polishing method and abrasive for polishing glass
JP4450424B2 (en) Cerium-based abrasive and its raw materials
JP5379351B2 (en) Cerium-based abrasive
JP2006206870A (en) Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP5237542B2 (en) Cerium oxide abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
Kang et al. The deterioration characteristics and mechanism of polishing pads in chemical mechanical polishing of fused silica
JP3392398B2 (en) Cerium-based abrasive, its quality inspection method and manufacturing method
JP4043230B2 (en) Cerium oxide-based abrasive and method for producing the same
JP4237957B2 (en) Quality evaluation method for cerium-based abrasive materials
JP3986384B2 (en) Cerium-based abrasive and method for producing the same
JP4395049B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
KR100536853B1 (en) Cerium based abrasive material, method of quality examination therefor and method for production thereof
JP5993323B2 (en) Polishing material
JP2007126525A (en) Cerium-based polishing material
JP3392399B2 (en) Cerium-based abrasive, its quality inspection method and manufacturing method
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive
WO2023211707A9 (en) High removal rate chemical mechanical polish for ophthalmic polishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Ref document number: 4411251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250