JP2006206870A - Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive - Google Patents

Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive Download PDF

Info

Publication number
JP2006206870A
JP2006206870A JP2005237112A JP2005237112A JP2006206870A JP 2006206870 A JP2006206870 A JP 2006206870A JP 2005237112 A JP2005237112 A JP 2005237112A JP 2005237112 A JP2005237112 A JP 2005237112A JP 2006206870 A JP2006206870 A JP 2006206870A
Authority
JP
Japan
Prior art keywords
raw material
cerium
abrasive
rare earth
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005237112A
Other languages
Japanese (ja)
Inventor
Yoshiji Uchino
義嗣 内野
Naoyoshi Mochizuki
直義 望月
Kazuya Ushiyama
和哉 牛山
Yuki Nakajima
祐樹 中島
Yoshi Onuki
佳 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005237112A priority Critical patent/JP2006206870A/en
Priority to CN 200510137849 priority patent/CN1810911B/en
Publication of JP2006206870A publication Critical patent/JP2006206870A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material for a cerium type abrasive capable of forming a polished surface with a high accuracy, while keeping an polishing speed, by using a raw material for the cerium type abrasive in which a fluorine concentration is reduced. <P>SOLUTION: The raw material for the cerium type abrasive contains content of cerium oxide of ≥30 mass% per the total rare earth oxide (TREO), fluorine concentration of ≤0.5 mass% per the TREO and further contains a rare earth compound including carbonate radical, and its sedimentation volume is ≥30 mL per 100 mL of the raw material slurry when the raw material slurry mixed with pure water to be made the TREO concentration of 126 g/L is settled for 10 min. The raw material for the abrasive preferably has a standing apparent specific volume of 1.0-3.0 mL/g after drying for 12 hr at 120°C and further content of a hexane extract measured by dissolving it in hydrochloric acid to be preferably to be ≤700 mass ppm based on the TREO. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セリウム系研摩材用原料、その製造方法、及び、このセリウム系研摩材用原料により製造されるセリウム系研摩材に関する。   The present invention relates to a cerium-based abrasive material, a method for producing the same, and a cerium-based abrasive material produced from the cerium-based abrasive material.

セリウム系研摩材(以下、単に研摩材と称するときがある。)は、主成分である酸化セリウム(CeO)粒子と、他の希土類金属酸化物粒子とからなる研摩材粒子からなり、従来から種々のガラス材料の研摩に用いられている。特に最近では、ハードディスク等の磁気記録媒体用ガラス、液晶ディスプレイ(LCD)のガラス基板といった電気・電子機器で用いられているガラス材料の研摩にも用いられており、その応用分野が広がっている。 A cerium-based abrasive (hereinafter sometimes simply referred to as an abrasive) is composed of abrasive particles composed of cerium oxide (CeO 2 ) particles, which are main components, and other rare earth metal oxide particles. It is used for polishing various glass materials. In particular, it has recently been used for polishing glass materials used in electrical and electronic equipment such as glass for magnetic recording media such as hard disks and glass substrates for liquid crystal displays (LCDs), and its application fields are expanding.

セリウム系研摩材の製造方法としては、まず、研摩材用原料を粉砕し、必要に応じて化学処理を施した後、高温加熱して焙焼することにより原料粒子同士を焼結し、これを再度粉砕して適宜に分級することで所望の粒径、粒度分布を有する研摩材が製造される。   As a method for producing a cerium-based abrasive, first, the raw material for the abrasive is pulverized, subjected to chemical treatment as necessary, and then heated at high temperature to be baked to sinter the raw material particles. Abrasive material having a desired particle size and particle size distribution is produced by pulverization and classification as appropriate.

ここで、セリウム系研摩材の原料としては、従来は、バストネサイトと呼ばれる希土鉱石を選鉱したバストネサイト精鉱という天然原料を使用するのが一般的であった。しかし、近年の環境問題に対する関心及び製造される研摩材の性能の改善を目的として、最近ではバストネサイト鉱や比較的安価な中国産複雑鉱より希土類化合物を分離抽出した研摩材用原料が使用されつつある。   Here, as a raw material for the cerium-based abrasive, conventionally, a natural raw material called bastonite concentrate obtained by selecting a rare earth ore called bastonite has been generally used. However, for the purpose of improving the performance of the abrasives produced in recent years and interest in environmental problems, recently, raw materials for abrasives that are extracted from bastonite ore and relatively inexpensive Chinese complex ore are used. It is being done.

例えば、特許文献1では、アルカリ金属、アルカリ土類金属、放射性物質の含量が低減されたセリウムを主成分とする軽希土類原料が開示されている。この研摩材用原料では、バストネサイトに含まれている放射性物質、フッ素を除去することにより環境問題への対応を考慮しており、また、研摩材としたとき研摩傷の発生に影響を与えるアルカリ金属、アルカリ土類金属を除去することで研摩材の性能改善を図っている。
特開2004−2870号公報
For example, Patent Document 1 discloses a light rare earth material mainly composed of cerium in which the content of alkali metal, alkaline earth metal, and radioactive material is reduced. In this raw material for abrasives, consideration is given to dealing with environmental problems by removing radioactive substances and fluorine contained in bust nesitet, and when it is used as an abrasive, it affects the generation of abrasive scratches. The performance of abrasives is improved by removing alkali metals and alkaline earth metals.
JP 2004-2870 A

また、本願出願人は、研摩力および研摩精度に優れた研摩材用原料として、特許文献2記載の研摩材用原料を開示している。この研摩材用原料は、バストネサイト等から製造される希土類化合物(セリウム系希土類炭酸塩)を仮焼することにより、その一部をセリウム系希土類酸化物に変化させて製造され、1000℃で1時間加熱した場合の強熱減量が乾燥質量基準で0.5〜25%であるセリウム系研摩材用原料である。
特許第3365993号公報
Further, the applicant of the present application discloses an abrasive material described in Patent Document 2 as an abrasive material having excellent polishing power and polishing accuracy. This raw material for abrasives is produced by calcining a rare earth compound (cerium-based rare earth carbonate) produced from bastonite, etc., and changing a part thereof to a cerium-based rare earth oxide at 1000 ° C. It is a cerium-based abrasive raw material having a loss on ignition of 0.5 to 25% on a dry mass basis when heated for 1 hour.
Japanese Patent No. 3365993

ところで、セリウム系研摩材に限らず研摩材全般には研摩面に傷を生じさせることなく高精度の研摩面を高い研摩速度で形成することができることが求められる。特に、セリウム系研摩材においては、上記のように磁気記録媒体用ガラス等の研摩への適用例が増えており、その要求が強い。   By the way, not only cerium-based abrasives but also all abrasive materials are required to be able to form a highly accurate polished surface at a high polishing rate without causing scratches on the polished surface. In particular, cerium-based abrasives are increasingly applied to polishing of magnetic recording medium glass and the like as described above, and the demand is strong.

しかしながら、上記特許文献1記載の研摩材用原料は、環境問題への配慮に関しては有用であるが、これにより製造される研摩材は研摩速度が低く、また、研摩傷の発生が十分抑制できない。また、特許文献2記載の原料についていえば、特許文献1記載の原料よりも研摩速度、研摩面精度に優れる研摩材を低コストで効率的に製造することができる。しかし、ハードディスク等の記録媒体の高密度化、LCD板の高精度化・精密化に伴い、仕上げ研摩用の研摩材には、これまで以上に精度の高い研摩面を形成できるものが求められている。従って、この研摩材用原料にもより一層の改良が必要である。   However, although the raw material for polishing material described in Patent Document 1 is useful in consideration of environmental problems, the polishing material produced thereby has a low polishing speed, and the generation of polishing flaws cannot be sufficiently suppressed. In addition, with regard to the raw material described in Patent Document 2, it is possible to efficiently produce an abrasive material that is superior in polishing speed and polished surface accuracy than the raw material described in Patent Document 1. However, as recording media such as hard disks increase in density and LCD plates become more accurate and precise, polishing materials for finishing polishing are required to be able to form a polished surface with higher accuracy than ever. Yes. Therefore, further improvement is required for the raw material for abrasives.

本発明は、以上のような背景の下になされたものであり、セリウム系研摩材に適用される原料であって、研摩速度を維持しつつ高精度の研摩面を形成することができる研摩材の製造を可能とするものを提供することを目的とする。また、そのような研摩材用原料の製造方法についても明らかとすることを目的とする。   The present invention has been made under the background as described above, and is a raw material applied to a cerium-based abrasive, which can form a highly accurate polished surface while maintaining the polishing speed. It aims at providing what enables manufacture of this. Moreover, it aims at clarifying the manufacturing method of such a raw material for abrasives.

上記課題を解決するため、本発明者等はセリウム系研摩材用原料の諸特性と研摩材とした際の研摩特性との関係について検討した。そして、研摩材用原料を水に混合し原料スラリー化した際の特性である沈降体積と研摩材の研摩特性との間に着目し、本発明に想到した。   In order to solve the above-mentioned problems, the present inventors examined the relationship between various characteristics of a cerium-based abrasive material and the polishing characteristics when used as an abrasive. The inventors of the present invention have arrived at the present invention by paying attention between the sedimentation volume, which is a characteristic when the raw material for the abrasive is mixed with water to form a raw material slurry, and the abrasive characteristic of the abrasive.

即ち、本発明は、全希土類酸化物(TREO)に対する酸化セリウム含有量30質量%以上、TREOに対するフッ素濃度0.5質量%以下であり、且つ、炭酸根を含む希土類化合物を含むセリウム系研摩材用原料であって、TREO濃度が126g/Lとなるように純水と混合した原料スラリーを10分間静置した際の沈降体積が、該原料スラリー100mLに対して30mL以上であるセリウム系研摩材用原料である。   That is, the present invention provides a cerium-based abrasive having a cerium oxide content of 30% by mass or more with respect to total rare earth oxide (TREO) and a fluorine concentration of 0.5% by mass or less with respect to TREO and containing a rare earth compound containing a carbonate radical. A cerium-based abrasive that has a sedimentation volume of 30 mL or more with respect to 100 mL of the raw material slurry when the raw material slurry mixed with pure water so as to have a TREO concentration of 126 g / L is allowed to stand for 10 minutes. Raw material.

研摩材用原料の沈降体積を、原料スラリー100mLに対して30mL以上とするのは、30mL未満であると、製造される研摩材の研摩精度が低くなり研摩傷発生の問題が生じるからである。一方、沈降体積の上限については、研摩精度の観点からは特に限定されるものではないが、沈降体積が大きすぎる場合、研摩速度が低くなり効率的な研摩作業ができなくなる。そこで、これらの点を考慮すると、沈降体積は、30〜90mLが好ましく、30〜70mLがより好ましく、40〜60mLが更に好ましい。   The reason why the settling volume of the raw material for the abrasive is set to 30 mL or more with respect to 100 mL of the raw material slurry is that when it is less than 30 mL, the polishing accuracy of the manufactured abrasive is lowered and a problem of occurrence of scratches occurs. On the other hand, the upper limit of the sedimentation volume is not particularly limited from the viewpoint of polishing accuracy. However, if the sedimentation volume is too large, the polishing speed becomes low and efficient polishing work cannot be performed. Therefore, considering these points, the sedimentation volume is preferably 30 to 90 mL, more preferably 30 to 70 mL, and even more preferably 40 to 60 mL.

また、本発明において沈降体積の測定基準となるスラリー濃度を126g/Lとしたのは次の理由による。即ち、典型的なセリウム系研摩材用原料(TREO45質量%)の場合、原料と水とを質量比1対3で混合したスラリーにおいては、原料による沈降体積の差が明確に出易く、その結果、原料の沈降体積と、それから製造される研摩材の性能の差がわかり易い。そして、この原料と水とを質量比1対3で混合したスラリーのTREO濃度が約126g/Lだからである。但し、本発明に係る研摩材用原料は水分を含む場合があり、スラリーのTREO濃度を正確に126g/Lとするのは困難である。そこで、実際にはTREO濃度126g/Lを目標にしつつ、126±5g/Lの範囲内とすることで、測定される沈降体積の誤差は少なくなり、研摩材用原料の評価基準として使用可能な値を得ることができる。   In the present invention, the slurry concentration, which is a measurement standard of the sedimentation volume, is set to 126 g / L for the following reason. That is, in the case of a typical cerium-based abrasive raw material (TREO 45 mass%), in a slurry in which the raw material and water are mixed at a mass ratio of 1: 3, the difference in the sedimentation volume due to the raw material tends to clearly appear. The difference between the sediment volume of the raw material and the performance of the abrasive produced therefrom is easy to understand. This is because the TREO concentration of the slurry in which the raw material and water are mixed at a mass ratio of 1: 3 is about 126 g / L. However, the abrasive raw material according to the present invention may contain moisture, and it is difficult to accurately set the TREO concentration of the slurry to 126 g / L. Therefore, by actually setting the TREO concentration to 126 g / L and setting it within the range of 126 ± 5 g / L, the error in the measured sedimentation volume is reduced, and it can be used as an evaluation standard for abrasive raw materials. A value can be obtained.

沈降体積の測定法としては、セリウム系研摩材用原料と純水とを混合し、TREO濃度126g/Lになるように原料スラリーを調製し、十分混合させて原料スラリーを製造する。そして、原料スラリーを呼び容量100mLのメスシリンダーに100mLの線まで注ぎ、10分間経過後の沈澱と液の界面を読み取り、沈澱の占める体積を沈降体積とする。尚、呼び容量100mLのメスシリンダーとしては、JIS R 3505−1994「ガラス製体積計」に記載のクラスAもしくはクラスBのものまたは同等以上の精度を有するものを使用する。このとき、無栓形、有栓形いずれも使用可能である。また、沈降体積を測定する際の温度は、10〜50℃の一定温度で測定することが好ましく、より好ましくは、15〜40℃、更に好ましくは20〜30℃の一定温度で測定することが好ましい。そして、TREO含有率がA(質量%)である研摩材用原料から、TREO濃度126g/Lの原料スラリーをB(mL)調整する場合、使用する研摩材用原料の量C(g)は、下記の計算式に基づいて計算される。   As a method for measuring the sedimentation volume, a raw material slurry for cerium-based abrasive and pure water are mixed to prepare a raw slurry so as to have a TREO concentration of 126 g / L. Then, the raw slurry is poured into a 100 mL graduated cylinder up to a 100 mL line, the interface between the precipitate and the liquid after 10 minutes is read, and the volume occupied by the precipitate is defined as the settling volume. In addition, as a measuring cylinder with a nominal capacity of 100 mL, a class A or class B described in JIS R 3505-1994 “Glass volumetric meter” or a cylinder having a precision equal to or higher than that is used. At this time, both a non-plugged type and a plugged type can be used. Moreover, it is preferable to measure the temperature at the time of measuring a sedimentation volume at the constant temperature of 10-50 degreeC, More preferably, it measures at a constant temperature of 15-40 degreeC, More preferably, it is 20-30 degreeC. preferable. And, when adjusting the raw material slurry having a TREO concentration of 126 g / L to B (mL) from the abrasive raw material having a TREO content of A (mass%), the amount C (g) of the abrasive raw material used is: It is calculated based on the following formula.

Figure 2006206870
Figure 2006206870

尚、原料のTREO含有率Aは、原料のTREOを測定することで求めてもよいが、TREOの測定には手間と時間を要する。そこで、TREOよりは比較的測定が容易な強熱減量D(質量%)を求め、A=100−Dとして求めてもよい。   The TREO content A of the raw material may be obtained by measuring the TREO of the raw material, but the measurement of TREO requires time and effort. Therefore, the ignition loss D (mass%), which is relatively easier to measure than TREO, may be obtained, and A = 100−D.

そして、本発明に係る研摩材用原料は、更に、120℃で12時間乾燥後の静置法見掛け比容が、1.0〜3.0mL/gであることが好ましい。見掛け比容が小さすぎる原料から製造される研摩材は平均表面粗さ(Ra)が大きくなり易い一方、見掛け比容が大きい原料より製造される研摩材は、研摩速度が低くなる傾向があるからである。この見掛け比容は、JIS K 5101−1991(顔料試験方法)の「20.見掛け密度又は見掛け比容」の「20.1 静置法」により得られる値である。見掛け比容のより好ましい範囲は1.3〜2.7mL/gであり、更に好ましい範囲は1.5〜2.5mL/gである。   And as for the raw material for abrasives which concerns on this invention, it is preferable that the stationary method apparent specific volume after drying for 12 hours at 120 degreeC is 1.0-3.0 mL / g. Abrasives manufactured from raw materials with an apparent specific volume are likely to have a large average surface roughness (Ra), whereas abrasives manufactured from raw materials with a large apparent specific volume tend to have a low polishing rate. It is. This apparent specific volume is a value obtained by “20.1 stationary method” of “20. Apparent density or apparent specific volume” of JIS K 5101-1991 (pigment test method). A more preferable range of the apparent specific volume is 1.3 to 2.7 mL / g, and a further preferable range is 1.5 to 2.5 mL / g.

また、見掛け比容の測定対象を乾燥後のものとするのは、本発明に係る研摩材用原料は、水分を含有している場合が多く、そのまま見掛け比容を測定すると、測定値が変動し、特に、水分量が非常に多い場合には測定が困難となり、研摩材用原料としての良否の判定基準とすることができなくなるからである。そこで、十分に水分を除去するため、120℃、12時間で乾燥させることとしたのである。   The material for measuring the apparent specific volume after drying is that the raw material for abrasives according to the present invention often contains moisture, and the measured value fluctuates when the apparent specific volume is measured as it is. In particular, when the amount of water is very large, the measurement becomes difficult, and it becomes impossible to use it as a criterion for determining the quality as an abrasive material. Therefore, in order to sufficiently remove the moisture, the film was dried at 120 ° C. for 12 hours.

本発明に係る研摩材用原料においては、TREOに対する酸化セリウム含有量が30質量%以上であることが必要であるが、50質量%以上が好ましい。原料中の酸化セリウム含有量は、そのまま研摩材中の酸化セリウム含有量に反映し、研摩材の研摩速度に影響を及ぼす。原料中の酸化セリウム含有量が30質量%未満の場合、製造される研摩速度が低くなる。尚、酸化セリウム含有量の上限については特に制限はないが、原料コストの観点から99.9%以下のものが好ましい。   In the raw material for abrasives according to the present invention, the cerium oxide content with respect to TREO needs to be 30% by mass or more, but preferably 50% by mass or more. The cerium oxide content in the raw material is directly reflected in the cerium oxide content in the abrasive and affects the polishing rate of the abrasive. When the content of cerium oxide in the raw material is less than 30% by mass, the polishing rate produced is low. In addition, although there is no restriction | limiting in particular about the upper limit of cerium oxide content, A 99.9% or less thing is preferable from a viewpoint of raw material cost.

また、原料中のフッ素濃度は、TREOに対して0.5質量%以下でありことが必要であり、0.2質量%以下が好ましく、0.1質量%以下がより好ましい。上記のように、フッ素についての環境問題等の観点から、フッ素成分の添加のない研摩材を製造する場合には当然に原料中のフッ素も低減されることが好ましいからである。また、フッ素成分を添加して研摩材を製造するような場合であっても、フッ素濃度が低い原料を用いた方がフッ素成分量の制御が容易となるからである。   Further, the fluorine concentration in the raw material needs to be 0.5% by mass or less with respect to TREO, preferably 0.2% by mass or less, and more preferably 0.1% by mass or less. This is because, as described above, from the viewpoint of environmental problems regarding fluorine and the like, it is naturally preferable that fluorine in the raw material is also reduced when an abrasive without addition of a fluorine component is produced. Further, even when an abrasive is produced by adding a fluorine component, it is easier to control the amount of the fluorine component by using a raw material having a low fluorine concentration.

尚、本発明において、「炭酸根を含む」とするのは、本発明に係る研摩材用原料がセリウム系希土類炭酸塩を含むものであることを明確にするものである。そして、本発明に係る研摩材用原料は、一部にモノオキシ炭酸塩、水酸化炭酸塩、水酸化物、酸化物を含有していても良い。   In the present invention, “including carbonate radical” clearly indicates that the raw material for an abrasive according to the present invention contains a cerium-based rare earth carbonate. And the raw material for abrasives which concerns on this invention may contain the monooxy carbonate, the hydroxide carbonate, the hydroxide, and the oxide in part.

本発明に係る研摩材用原料は、塩素濃度が低減されているものが好ましく、具体的には、0.5質量%以下(TREO基準)が好ましく、0.3質量%以下がより好ましく、0.1質量%以下が更に好ましい。研摩材用原料に塩素が含まれていると、研摩材としたときに研摩速度が低下する傾向があるからである。   The raw material for abrasives according to the present invention preferably has a reduced chlorine concentration. Specifically, it is preferably 0.5% by mass or less (TREO standard), more preferably 0.3% by mass or less, and 0 More preferably, it is 1% by mass or less. This is because if the polishing material contains chlorine, the polishing rate tends to decrease when the polishing material is used.

そして、この研摩材用原料は、1000℃で1時間加熱した場合の強熱減量が、20%以上のものが好ましい。強熱減量とは、対象物を強熱した際の質量減少率をいう。本発明において強熱減量を20質量%以上とするのは、強熱減量が20質量%未満であると、原料中の炭酸根の含有量が少なく、研摩材製造工程で後述する浸漬加熱粉砕を行う際に、その効果が不十分になるからである。そして、この理由により、強熱減量の値は大きいことが好ましく、35質量%以上がより好ましく、50質量%以上が更に好ましい。また、上限については特に限定はないが、強熱減量が高すぎる場合、その運搬コストが上昇することとなるため、90質量%以下のものが好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましい範囲となる。   The abrasive raw material preferably has a loss on ignition of 20% or more when heated at 1000 ° C. for 1 hour. The loss on ignition is the mass reduction rate when the object is ignited. In the present invention, the loss on ignition is set to 20% by mass or more. If the loss on ignition is less than 20% by mass, the content of carbonate radicals in the raw material is small, and immersion heating and pulverization described later in the abrasive production process is performed. This is because the effect is insufficient when performing. For this reason, the value of ignition loss is preferably large, more preferably 35% by mass or more, and even more preferably 50% by mass or more. The upper limit is not particularly limited, but if the loss on ignition is too high, the transportation cost will increase, so 90 mass% or less is preferred, 70 mass% or less is more preferred, and 60 mass% is preferred. The following is a more preferable range.

尚、強熱減量の測定方法としては、予め質量を測定したるつぼに研摩材用原料を入れ、その質量を測定した後、炉中で1000℃で1時間強熱した後乾燥雰囲気下で放冷し、放冷後るつぼの質量を測定し、下記計算式に従うことで強熱減量を求めることができる。尚、原料が水分を多く含む場合、1000℃で急に強熱すると、るつぼの外に原料が吹きこぼれて正確な測定ができないことがあるため、水分の多い原料では、予め質量を測定したるつぼに研摩材用原料を入れ、その質量を測定した後、100〜150℃で加熱して水分量を低減させてから強熱すると良い。   In addition, as a measuring method of ignition loss, after putting the raw material for abrasives into the crucible whose mass was measured in advance and measuring its mass, it was ignited at 1000 ° C. for 1 hour in a furnace and then allowed to cool in a dry atmosphere. Then, after allowing to cool, the mass of the crucible is measured, and the ignition loss can be obtained by following the following formula. If the raw material contains a lot of moisture, suddenly igniting at 1000 ° C may cause the raw material to blow out of the crucible and prevent accurate measurement. After putting the raw material for abrasives and measuring the mass, it is good to heat at 100-150 degreeC, and to ignite after reducing a moisture content.

Figure 2006206870
Figure 2006206870

また、本発明に係る研摩材用原料は、塩酸に溶解した際に測定されるヘキサン抽出物質の含有量が、TREO基準で700質量ppm以下であることが好ましい。このヘキサン抽出物質は、原料を研摩材としたときの研摩特性に直接影響を及ぼすものではない。ただ、ヘキサン抽出物質が多いと研摩材用原料の沈降体積を測定する際の界面が見難くなるため、ヘキサン抽出物質は少ない方が好ましい。そして、ヘキサン抽出物質は、700質量ppm以下が好ましい。より好ましくは、250質量ppm以下であり、150質量ppm以下が更に好ましい。   Moreover, it is preferable that content of the hexane extract substance measured when the raw material for abrasives which concerns on this invention melt | dissolves in hydrochloric acid is 700 mass ppm or less on the basis of TREO. This hexane extract material does not directly affect the polishing characteristics when the raw material is an abrasive. However, if the amount of hexane extractable material is large, it is difficult to see the interface when measuring the sedimentation volume of the abrasive material. The hexane extractant is preferably 700 ppm by mass or less. More preferably, it is 250 mass ppm or less, and 150 mass ppm or less is still more preferable.

ヘキサン抽出物質含有量の測定方法は、研摩材用原料を塩酸に溶解し、JIS K 0102:1998「工場排水試験方法」の「24.ヘキサン抽出物質」の「24.2 抽出法」に準じてヘキサン抽出物質の量を測定することで算出される。即ち、TREO含有率A(質量%)である研摩材用原料D(g)を、塩酸に溶解し、この液について測定されたヘキサン抽出物質の量をE(mg)とすると、研摩材用原料中のTREO基準のヘキサン抽出物質(質量ppm)は、E×1000÷(D×A÷100)となる。   The hexane extractable substance content is measured by dissolving the raw material for abrasives in hydrochloric acid and in accordance with “24.2 Extraction method” of “24.Hexane extractable substance” in JIS K 0102: 1998 “Factory drainage test method”. Calculated by measuring the amount of hexane extract. That is, when an abrasive material D (g) having a TREO content A (% by mass) is dissolved in hydrochloric acid and the amount of the hexane extractable substance measured for this liquid is E (mg), the abrasive material The TREO standard hexane extraction substance (mass ppm) in the inside is E × 1000 ÷ (D × A ÷ 100).

本発明に係る研摩材用原料の製造方法においては、製造された原料をスラリー化した際の沈降体積が所定範囲内となるようにする必要がある。本発明者等によれば、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素からなる群から選択された少なくとも1種の炭酸系沈澱剤の水溶液と、希土類化合物を含む水溶液とを混合することで沈降体積が制御された研摩材用原料が製造できるようになる。   In the method for producing an abrasive material according to the present invention, it is necessary that the sedimentation volume when the produced material is slurried is within a predetermined range. According to the inventors, at least one carbonate-based precipitate selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates, ammonium carbonate, ammonium bicarbonate, guanidine carbonate, ammonium carbamate, and urea. By mixing an aqueous solution of an agent and an aqueous solution containing a rare earth compound, a raw material for an abrasive with a controlled sedimentation volume can be produced.

ここで重要なのは、炭酸系沈澱剤の水溶液と希土類化合物を含む水溶液との混合の順序である。本発明に係る研摩材用原料は、沈降体積を30mL(原料スラリー100mLに対して)以上となるように増大させることが必要となる。本発明者等によれば、これら水溶液の混合の順序によらずに、沈降体積が増大した原料を製造することはできるが、攪拌した炭酸系沈澱剤の水溶液に希土類化合物を含む水溶液を添加する場合(以下、説明を簡易にするため、この順序での混合を逆添加法と称する。)においては、炭酸系沈澱剤の水溶液の攪拌速度によらずに沈降体積が増大した原料を製造できる。   What is important here is the order of mixing the aqueous solution of the carbonic acid precipitant and the aqueous solution containing the rare earth compound. The raw material for abrasives according to the present invention is required to increase the sedimentation volume to 30 mL (relative to 100 mL of raw material slurry) or more. According to the present inventors, a raw material having an increased sedimentation volume can be produced regardless of the mixing order of these aqueous solutions, but an aqueous solution containing a rare earth compound is added to the stirred aqueous solution of the carbonic acid precipitant. In the case (hereinafter, in order to simplify the explanation, mixing in this order is referred to as a reverse addition method), a raw material having an increased sedimentation volume can be produced regardless of the stirring speed of the aqueous solution of the carbonic acid precipitant.

即ち、本発明に係る研摩材用原料を製造するための第1の方法は、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素からなる群から選択された少なくとも1種の炭酸系沈澱剤の水溶液を攪拌し、この水溶液に、全希土類酸化物(TREO)に対する酸化セリウム含有量30質量%以上、TREOに対するフッ素濃度0.5質量%以下であり、且つ、炭酸根を含む希土類化合物を含む水溶液を混合して沈澱物を生成し、この沈澱物を分離及び洗浄するものである。   That is, the first method for producing the raw material for abrasives according to the present invention comprises alkali metal carbonate, alkali metal bicarbonate, ammonium carbonate, ammonium bicarbonate, guanidine carbonate, ammonium carbamate, and urea. Stirring an aqueous solution of at least one carbonate-based precipitant selected from the group consisting of: a cerium oxide content of at least 30% by mass relative to the total rare earth oxide (TREO), and a fluorine concentration of 0.5% by mass relative to TREO An aqueous solution containing a rare earth compound containing a carbonate radical is mixed to produce a precipitate, and this precipitate is separated and washed.

一方、上記逆添加法とは逆の混合順序、つまり、希土類化合物を含む水溶液を攪拌し、これに炭酸系沈澱剤の水溶液を添加する場合(以下、説明を簡易にするため、この順序での混合を正添加法と称する。)においては、順序)では、希土類化合物水溶液を攪拌する際の攪拌速度を速く、具体的には、100m/分以上とすることで、沈降体積が増大した原料を製造することができる。   On the other hand, when the mixing order reverse to the reverse addition method, that is, when the aqueous solution containing the rare earth compound is stirred and the aqueous solution of the carbonic acid precipitant is added thereto (hereinafter, in order to simplify the explanation, Mixing is referred to as a positive addition method.) In the order), the stirring speed when stirring the rare earth compound aqueous solution is high, specifically, the raw material having an increased sedimentation volume is set to 100 m / min or more. Can be manufactured.

即ち、本発明に係る研摩材用原料を製造するための第2の方法は、全希土類酸化物(TREO)に対する酸化セリウム含有量30質量%以上であり、且つ、TREOに対するフッ素濃度0.5質量%以下である希土類化合物水溶液を周速100m/分以上で攪拌し、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素からなる群から選択された少なくとも1種の炭酸系沈澱剤の水溶液を、前記希土類化合物水溶液に添加して沈澱物を生成し、前記沈澱物を分離及び洗浄する工程を含むものである。   That is, the second method for producing the abrasive raw material according to the present invention has a cerium oxide content of 30% by mass or more with respect to the total rare earth oxide (TREO) and a fluorine concentration of 0.5% with respect to TREO. % Of a rare earth compound aqueous solution at a peripheral speed of 100 m / min or more, from the group consisting of alkali metal carbonate, alkali metal bicarbonate, ammonium carbonate, ammonium bicarbonate, guanidine carbonate, ammonium carbamate, and urea A step of adding an aqueous solution of at least one selected carbonic acid precipitant to the rare earth compound aqueous solution to form a precipitate, and separating and washing the precipitate.

以下、本発明に係る2つの研摩材用原料の製造方法について説明する。尚、特に明示がない限り、以下の説明は、逆添加法、正添加法の双方に適用されるものである。本発明に係る方法においては、まず、炭酸系沈澱剤の水溶液と希土類化合物を含む水溶液の2つの水溶液を製造する。   Hereinafter, the manufacturing method of the raw material for two abrasives which concerns on this invention is demonstrated. Unless otherwise specified, the following description applies to both the reverse addition method and the normal addition method. In the method according to the present invention, first, two aqueous solutions of an aqueous solution of a carbonic acid precipitant and an aqueous solution containing a rare earth compound are produced.

希土類化合物を含む水溶液の製造は、例えば、モナザイト精鉱、バストネサイト精鉱等のセリウム含有希土類精鉱を硫酸分解法、アルカリ分解法にて分解し、分別沈澱、分別溶解等の処理を行い、ウラン、トリウム、カルシウム、バリウム、鉄、リン等の不純物を低減・除去して、必要に応じて溶媒抽出等によりTREO基準の酸化セリウム品位を高めることで製造できる。また、このようにして得られる塩酸系の希土類化合物水溶液を、煮詰めて冷却・固化して得られる塩化希土を水又は希塩酸で溶解しても良い。更に、上記のように天然のセリウム含有希土類精鉱を出発原料とするのではなく、製造済みの塩化希土、セリウム系希土類炭酸塩等の希土類化合物を入手し、これを塩酸等の酸で溶解し、適宜に成分調整して溶液としても良い。このとき、酸化セリウム含有量が本発明の対象外(30質量%未満)であっても、酸で溶解した後、溶媒抽出等によりTREO基準の酸化セリウム含有量を高めることで本発明に使用することができる。   The production of aqueous solutions containing rare earth compounds includes, for example, decomposition of cerium-containing rare earth concentrates such as monazite concentrate and bastonite concentrate by sulfuric acid decomposition method and alkali decomposition method, followed by treatment such as fractional precipitation and fractional dissolution. It can be produced by reducing and removing impurities such as uranium, thorium, calcium, barium, iron, phosphorus, etc. and, if necessary, improving the quality of cerium oxide based on TREO by solvent extraction or the like. Further, a rare earth chloride obtained by boiling, cooling and solidifying the hydrochloric acid-based rare earth compound aqueous solution thus obtained may be dissolved in water or dilute hydrochloric acid. Furthermore, instead of using natural cerium-containing rare earth concentrate as a starting material as described above, we will obtain manufactured rare earth compounds such as rare earth chlorides and cerium-based rare earth carbonates and dissolve them with acids such as hydrochloric acid. And it is good also as a solution by adjusting components appropriately. At this time, even if the cerium oxide content is outside the scope of the present invention (less than 30% by mass), it is used in the present invention by increasing the TREO-based cerium oxide content by solvent extraction or the like after dissolution with an acid. be able to.

また、TREOに対するフッ素濃度0.5質量%以下の研摩材用原料を製造するためには、TREOに対するフッ素濃度0.5質量%以下の希土類化合物水溶液を使用することは当然である。但し、フッ素が含まれている希土類化合物溶液は、溶液中でフッ化希土類の沈澱が生じており、固形分をほとんど含んでいない希土類化合物溶液は、TREOに対するフッ素濃度が0.5質量%以下である。そこで、固形分を含む希土類水溶液(即ち、フッ素が含まれている希土類化合物溶液)であっても、ろ過などにより固形分を除去することでTREOに対するフッ素濃度0.5質量%以下の希土類化合物水溶液とすることができる。   Moreover, in order to manufacture the raw material for abrasives having a fluorine concentration of 0.5% by mass or less with respect to TREO, it is natural to use a rare earth compound aqueous solution having a fluorine concentration of 0.5% by mass or less with respect to TREO. However, in the rare earth compound solution containing fluorine, precipitation of rare earth fluoride occurs in the solution, and the rare earth compound solution containing almost no solid content has a fluorine concentration of 0.5% by mass or less with respect to TREO. is there. Therefore, even a rare earth aqueous solution containing a solid content (that is, a rare earth compound solution containing fluorine), a rare earth compound aqueous solution having a fluorine concentration of 0.5% by mass or less with respect to TREO by removing the solid content by filtration or the like. It can be.

希土類化合物水溶液中の希土類化合物の濃度は、TREO基準で10〜250g/Lが好ましく、20〜200g/Lがより好ましい。希土類化合物の濃度が低すぎる場合、多量の溶液が必要となり排水処理の観点から好ましくない。一方、希土類化合物の濃度が高すぎる場合、沈澱発生の反応が不均一になりやすく、粗粒子発生のおそれがある。   The concentration of the rare earth compound in the rare earth compound aqueous solution is preferably 10 to 250 g / L on the basis of TREO, and more preferably 20 to 200 g / L. When the concentration of the rare earth compound is too low, a large amount of solution is required, which is not preferable from the viewpoint of wastewater treatment. On the other hand, when the concentration of the rare earth compound is too high, the reaction of precipitation generation tends to be non-uniform, and there is a risk of generation of coarse particles.

尚、上記説明から理解できるように、本発明で使用する希土類化合物水溶液の希土類化合物は、塩化物、硝酸塩、硫酸塩、過塩素酸塩等の形態が例示されるが、本発明で使用する希土類化合物水溶液は、希土類化合物が塩化物として存在するものが好ましい。塩化物水溶液から原料を製造すると、塩素の残留が懸念されるものの、残留塩素は後の洗浄工程での洗浄を十分行うことで容易に対応できるからである。この点、希土類化合物が硝酸塩として存在する水溶液を使用する場合においては、残留窒素除去のためには最近の窒素規制を考慮した高コストの排水処理が必要となる。   As can be understood from the above description, the rare earth compound of the rare earth compound aqueous solution used in the present invention is exemplified by forms such as chloride, nitrate, sulfate, perchlorate, etc., but the rare earth compound used in the present invention is used. The compound aqueous solution is preferably one in which the rare earth compound is present as a chloride. This is because when raw materials are produced from an aqueous chloride solution, there is concern about residual chlorine, but residual chlorine can be easily dealt with by performing sufficient cleaning in a subsequent cleaning step. In this regard, in the case of using an aqueous solution in which a rare earth compound is present as a nitrate, a high-cost wastewater treatment considering recent nitrogen regulations is required for removing residual nitrogen.

炭酸系沈澱剤の水溶液は、水(純水)に炭酸系沈澱剤を混合することで製造可能である。炭酸系沈澱剤は、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素の少なくともいずれかを含むものである。アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩のアルカリ金属としては、ナトリウム、カリウム、リチウムが好適である。炭酸系沈澱剤としては、アルカリ金属を含まないものが沈澱物中にアルカリ金属が混入しない点で好ましく、中でも、炭酸水素アンモニウムが好ましい。炭酸系沈澱剤の濃度は、0.2〜1.0mol/Lが好ましい。0.2mol/L未満では排水量が増えるからであり、1.0mol/Lを超えると反応が不均一となるおそれがあるからである。そして、炭酸系沈澱剤の水溶液の使用量は、希土類化合物水溶液の使用量(目的とする原料の製造量に関連する)による。炭酸系沈澱剤の量が、希土類化合物水溶液中の希土類元素及び過剰な酸に対して、化学量論量の0.95〜2.5倍(好ましくは1.0〜2.0倍、より好ましくは1.1〜1.5倍)となるようにし、この量を基準として炭酸系沈澱剤濃度を考慮し、その水溶液の使用量を決定するのが好ましい。下限値未満では、希土類元素の沈澱が十分生じないため収率が低下することとなる。尚、希土類化合物水溶液の過剰な酸の量は、例えばブロモクレゾールグリーン−メチルレッド溶液を指示薬とした中和滴定により求めることができる。但し、希土類化合物水溶液のpHが1以上(特に2以上)の場合は、過剰な酸の量は少ないといえるため、無視してもほとんど影響はない。   An aqueous solution of a carbonic acid precipitant can be produced by mixing a carbonic acid precipitant with water (pure water). The carbonate-based precipitant contains at least one of alkali metal carbonate, alkali metal bicarbonate, ammonium carbonate, ammonium bicarbonate, guanidine carbonate, ammonium carbamate, and urea. Sodium, potassium, and lithium are suitable as the alkali metal of the alkali metal carbonate and alkali metal hydrogencarbonate. As the carbonate-based precipitating agent, those containing no alkali metal are preferable in that the alkali metal is not mixed into the precipitate, and among them, ammonium hydrogen carbonate is preferable. The concentration of the carbonic acid precipitating agent is preferably 0.2 to 1.0 mol / L. This is because if the amount is less than 0.2 mol / L, the amount of drainage increases, and if it exceeds 1.0 mol / L, the reaction may become non-uniform. And the usage-amount of the aqueous solution of a carbonic acid type precipitation agent is based on the usage-amount of rare earth compound aqueous solution (it relates to the production amount of the target raw material). The amount of the carbonate-based precipitant is 0.95 to 2.5 times (preferably 1.0 to 2.0 times, more preferably) the stoichiometric amount with respect to the rare earth element and the excess acid in the rare earth compound aqueous solution. Is preferably 1.1 to 1.5 times), and the amount of the aqueous solution used is preferably determined in consideration of the concentration of the carbonate-based precipitant based on this amount. If the amount is less than the lower limit, precipitation of rare earth elements does not occur sufficiently and the yield decreases. The amount of excess acid in the rare earth compound aqueous solution can be determined by neutralization titration using, for example, bromocresol green-methyl red solution as an indicator. However, when the pH of the rare earth compound aqueous solution is 1 or more (especially 2 or more), it can be said that the amount of excess acid is small, so there is little influence even if ignored.

そして、製造した炭酸系沈澱剤の水溶液と希土類化合物水溶液とを混合することにより沈澱が生成する。ここで、逆添加法、正添加法では、攪拌の対象及び混合の順序が異なる。逆添加法では、炭酸系沈澱剤の水溶液を攪拌し、これに希土類化合物水溶液を添加するが、この際の攪拌速度に制限はない。   And precipitation is produced | generated by mixing the aqueous solution of the manufactured carbonate type precipitation agent, and rare earth compound aqueous solution. Here, the object of stirring and the order of mixing differ between the reverse addition method and the normal addition method. In the reverse addition method, an aqueous solution of a carbonic acid precipitant is stirred and a rare earth compound aqueous solution is added thereto, but the stirring speed at this time is not limited.

一方、正添加法では、希土類化合物水溶液を攪拌しつつ、炭酸系沈澱剤の水溶液を添加するが、この際の攪拌速度は周速(攪拌羽根の攪拌軸から最も遠い部分の速度をいう)で100m/分以上とすることが必要である。これ以下の攪拌速度で攪拌しても沈降体積が30mL未満の研摩材用原料が製造される可能性が高いからである。そして、正添加法における攪拌速度は、125m/分以上がより好ましく、特に好ましいのは150m/分以上である。攪拌速度の上限には制限はないが、攪拌装置のコストの観点から、4000m/分以下、好ましくは3000m/分以下、より好ましくは2000m/分以下が好ましい。   On the other hand, in the positive addition method, an aqueous carbonate precipitant solution is added while stirring the rare earth compound aqueous solution, and the stirring speed at this time is the peripheral speed (the speed at the part farthest from the stirring shaft of the stirring blade). It is necessary to set it as 100 m / min or more. This is because there is a high possibility that a raw material for an abrasive having a sedimentation volume of less than 30 mL will be produced even if stirring is performed at a stirring speed below this. The stirring speed in the positive addition method is more preferably 125 m / min or more, and particularly preferably 150 m / min or more. Although there is no restriction | limiting in the upper limit of stirring speed, From a viewpoint of the cost of a stirring apparatus, 4000 m / min or less, Preferably it is 3000 m / min or less, More preferably, it is 2000 m / min or less.

希土類化合物水溶液又は炭酸系沈澱剤の水溶液の添加時間は、5〜1200分が好ましく、10〜600分がより好ましく、20〜300分が更に好ましい。あまりに素早く添加すると、生成する沈澱物が微粒となり、製造される研摩材の研摩速度が低下すると共に、生成する沈殿物が不均一となり、製造される研摩材の研摩精度も若干低下する。一方、あまりにゆっくりと添加しても、粗大な沈殿物が生成し、製造される研摩材の研摩精度が低下することとなる。また、混合時には、溶液を加温する必要は特にないが、加温しても良い。この場合、液温を60℃以下とするのが好ましく、40℃以下が特に好ましい。溶液が高温となると沈殿物が粗大となり、製造される研摩材の研摩精度が低下する。   The addition time of the rare earth compound aqueous solution or the carbonic acid precipitant aqueous solution is preferably 5 to 1200 minutes, more preferably 10 to 600 minutes, and still more preferably 20 to 300 minutes. If added too quickly, the resulting precipitate becomes fine particles, the polishing speed of the produced abrasive is reduced, the produced precipitate is non-uniform, and the polishing accuracy of the produced abrasive is slightly reduced. On the other hand, if it is added too slowly, a coarse precipitate is formed, and the polishing accuracy of the produced abrasive is lowered. Further, at the time of mixing, there is no particular need to warm the solution, but it may be warmed. In this case, the liquid temperature is preferably 60 ° C. or less, particularly preferably 40 ° C. or less. When the temperature of the solution becomes high, the precipitate becomes coarse, and the polishing accuracy of the manufactured abrasive is lowered.

以上の炭酸系沈澱剤の水溶液と希土類化合物水溶液との混合で生成した沈澱物を固液分離し、洗浄することで本発明に係る研摩材用原料とすることができる。洗浄後の研摩材用原料は、適宜に乾燥を行っても良い。   The precipitate formed by mixing the aqueous carbonate precipitant solution and the rare earth compound aqueous solution is subjected to solid-liquid separation and washing, whereby the raw material for the abrasive according to the present invention can be obtained. The abrasive raw material after washing may be appropriately dried.

尚、上述のように、本発明に係る研摩材は、塩酸に溶解した際に測定されるヘキサン抽出物質の含有量が、TREO基準で700質量ppm以下であることが好ましい。ヘキサン抽出物質は、研摩材用原料の製造工程で一般的に実施される溶媒抽出用いる有機溶媒に由来するものである。そこで、ヘキサン抽出物質を低減する方法としては、第1の方法として、ヘキサン抽出物質を含む希土類化合物水溶液を静置し、水溶液中のヘキサン抽出物質を分離させて除去する方法がある。また、第2の方法として、ヘキサン抽出物質を含む希土類化合物水溶液をポリプロピレン繊維、植物繊維、活性炭等の油吸着剤と接触させ、ヘキサン抽出物質を吸着除去する方法がある。これらのヘキサン抽出物質除去の工程は、少なくともいずれかが実施されることが好ましいが、第1の方法を実施した後に第2の方法を実施することで、一層効果的なものとなる。   In addition, as mentioned above, it is preferable that the abrasive according to the present invention has a hexane extract substance content of 700 mass ppm or less based on TREO as measured when dissolved in hydrochloric acid. The hexane extract material is derived from an organic solvent used for solvent extraction, which is generally performed in the manufacturing process of the raw material for abrasives. Thus, as a first method for reducing the hexane extract material, there is a method in which a rare earth compound aqueous solution containing the hexane extract material is allowed to stand and the hexane extract material in the aqueous solution is separated and removed. As a second method, there is a method in which an aqueous rare earth compound solution containing a hexane extract substance is brought into contact with an oil adsorbent such as polypropylene fiber, plant fiber, activated carbon, etc., and the hexane extract substance is adsorbed and removed. It is preferable that at least one of these steps for removing the hexane extractant is performed. However, by performing the second method after the first method is performed, it becomes more effective.

また、ヘキサン抽出物質を低減するためには、上記第1、第2の方法いずれにおいてもpHが低い方が効率的である。具体的には、希土類化合物水溶液のpHは、3.0以下が好ましく、2.0以下がより好ましく、1.0以下が更に好ましい。但し、pHを低くしすぎると、ヘキサン抽出物質除去の観点からは好ましいが、沈澱剤がより多く必要になる。したがって、ヘキサン抽出物質低減処理に供する希土類化合物水溶液のpHの下限値としては、0.0以上が好ましく、0.2以上がより好ましい。   Further, in order to reduce the hexane extract material, it is more efficient that the pH is lower in both the first and second methods. Specifically, the pH of the rare earth compound aqueous solution is preferably 3.0 or less, more preferably 2.0 or less, and even more preferably 1.0 or less. However, if the pH is too low, it is preferable from the viewpoint of removing the hexane extract material, but more precipitant is required. Therefore, the lower limit of the pH of the rare earth compound aqueous solution to be subjected to the hexane extract substance reduction treatment is preferably 0.0 or more, and more preferably 0.2 or more.

本発明に係る研摩材用原料によりセリウム系研摩材を製造するためには、基本的に従来の方法が適用できる。即ち、研摩材用原料を粉砕した後、焙焼して適宜に粉砕・分級することで研摩材が製造できる。   In order to produce a cerium-based abrasive with the raw material for an abrasive according to the present invention, a conventional method can be basically applied. That is, the abrasive material can be produced by pulverizing the raw material for the abrasive material and then roasting and appropriately pulverizing and classifying it.

ここで、焙焼工程前に行なう研摩材用原料の粉砕工程としては、一般的には粉砕装置、特に湿式粉砕装置により行なう。本発明においても粉砕装置による粉砕は有用である。但し、より有効な粉砕の手法として、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素からなる群から選択された少なくとも1種の化合物を含む水溶液、又は、水に研摩材用原料を混合し、これを60〜100℃で加熱して、研摩材用原料を粉砕しても良い(以下、このような粉砕方法を浸漬加熱粉砕と称する。)。この浸漬加熱粉砕を行なうことで、製造される研摩材は、研摩傷の少ないより高精度の研摩面を形成できるものとなる。この浸漬加熱粉砕のタイミングは、焙焼工程の前であれば特に限定されることはない。もっとも、浸漬加熱粉砕を行うことは、粉砕装置による粉砕を行なうことを妨げるものではない。従って、両方の粉砕法を適宜に組み合わせて行なっても良い。   Here, as a grinding | pulverization process of the raw material for abrasives performed before a roasting process, it is generally performed by a grinding | pulverization apparatus, especially a wet grinding apparatus. In the present invention, pulverization by a pulverizer is also useful. However, as a more effective grinding method, an aqueous solution containing at least one compound selected from the group consisting of ammonia, ammonium carbonate, ammonium hydrogen carbonate, guanidine carbonate, ammonium carbamate, and urea, or polishing with water The raw material for materials may be mixed, and this may be heated at 60-100 degreeC, and the raw material for abrasives may be grind | pulverized (Hereinafter, such a grinding method is called immersion heating grinding). By performing this immersion heating and pulverization, the manufactured abrasive can form a highly accurate polished surface with few abrasive scratches. The timing of this immersion heating pulverization is not particularly limited as long as it is before the roasting step. However, the immersion heating pulverization does not prevent the pulverization by the pulverizer. Therefore, both pulverization methods may be appropriately combined.

以上説明したように、本発明に係るセリウム系研摩材用原料を用いることで、従来のセリウム系研摩材用原料を用いて製造した研摩材に対し、研摩速度を同等以上としつつ、より高精度の研摩面が形成可能なセリウム系研摩材を製造することができる。本発明に係る研摩材用原料は、その本来の性質としてフッ素などをほとんど含有していないことから、環境問題、研摩材のリサイクルにも対応できる。尚、本発明に係るセリウム系研摩材用原料は、フッ素成分を添加せずに研摩材を製造する場合に特に有用であるが、フッ素成分濃度を調整しつつフッ素成分を添加して研摩材を製造する場合にも利用可能である。   As described above, by using the cerium-based abrasive raw material according to the present invention, the polishing speed is equal to or higher than that of the conventional abrasive produced using the cerium-based abrasive raw material. A cerium-based abrasive capable of forming a polished surface can be produced. Since the raw material for abrasives according to the present invention hardly contains fluorine or the like as its original property, it can cope with environmental problems and recycling of abrasives. The cerium-based abrasive raw material according to the present invention is particularly useful in the case of producing an abrasive without adding a fluorine component, but the fluorine component is added while adjusting the concentration of the fluorine component. It can also be used for manufacturing.

以下、本発明の好適な実施形態を説明する。本実施形態では、炭酸系沈澱剤水溶液と希土類化合物水溶液とを混合して研摩材用原料を製造する方法において、異なる出発原料、工程により複数の希土類化合物水溶液を製造し、これを炭酸系沈澱剤水溶液に添加・混合して複数の研摩材用原料を製造した。そして、これらからセリウム系研摩材を製造し、それらの研摩特性を評価した。   Hereinafter, preferred embodiments of the present invention will be described. In the present embodiment, in a method for producing a raw material for abrasives by mixing a carbonate-based precipitant aqueous solution and a rare-earth compound aqueous solution, a plurality of rare-earth compound aqueous solutions are produced by different starting materials and steps, and this is used as a carbonate-based precipitant. A plurality of raw materials for abrasives were produced by adding and mixing with an aqueous solution. And the cerium type abrasive material was manufactured from these, and those polishing characteristics were evaluated.

A:希土類化合物水溶液の製造
以下の2種の工程により、複数の希土類化合物水溶液を製造した。
製造工程1
この製造工程は、出発原料として塩化希土を用いて希土類化合物水溶液を製造するものである。この製造工程により製造される希土類化合物水溶液から得られた研摩材用原料は、後述の実施例1〜30、36〜44、比較例1、2、4に該当する。この製造工程の概要を図1(a)に示す。
A: Production of Rare Earth Compound Aqueous Solution A plurality of rare earth compound aqueous solutions were produced by the following two steps.
Manufacturing process 1
In this production process, an aqueous rare earth compound solution is produced using rare earth chloride as a starting material. The raw material for abrasives obtained from the rare earth compound aqueous solution produced by this production process corresponds to Examples 1 to 30, 36 to 44, and Comparative Examples 1, 2, and 4 described later. An outline of this manufacturing process is shown in FIG.

塩化希土(TREO46質量%)を0.3mol/Lの塩酸で溶解してTREO濃度150g/Lの溶解液とし、これを溶媒抽出する。溶媒抽出は、30段(向流抽出10段、向流逆抽出20段)のミキサセトラーセトラー部有効容量:200L/段)にて行った。有機溶媒は、容量6L/分で抽出部の第1段に入り第10段から出て、そのまま逆抽出部の第1段に入り第20段から出るようになっている。水相は、抽出部では溶解液を抽出部に第10段に1L/分で入れ、2mol/Lの水酸化ナトリウム水溶液を抽出部の第1、3、5、7段に各0.35L/分添加し、抽出部の第1段から出るようになっている。逆抽出部では、5.2mol/Lの塩酸を逆抽出部第20段から1L/分で入れ、第11段から0.56L/分抜出し、残りを逆抽出部第1段から抜出した。水酸化ナトリウムは、溶解液中の希土類元素をほぼ全量有機溶媒に抽出するために添加したものである。尚、有機溶媒は抽出剤(PC−88A(大八化学工業(株)製))と希釈剤(IPソルベント(出光石油化学(株)製))を容量比で1:2で混合したものである。   A rare earth chloride (46% by mass of TREO) is dissolved in 0.3 mol / L hydrochloric acid to obtain a solution having a TREO concentration of 150 g / L, and this is subjected to solvent extraction. Solvent extraction was performed in 30 stages (10 counter-current extraction stages, 20 counter-current counter-extraction stages) mixer-settler-settler section effective capacity: 200 L / stage). The organic solvent enters the first stage of the extraction unit at a capacity of 6 L / min, exits from the tenth stage, enters the first stage of the back extraction unit as it is, and exits from the 20th stage. In the extraction part, a solution is put into the extraction part at 1 L / min in the extraction part in the extraction part, and a 2 mol / L sodium hydroxide aqueous solution is added to each of the extraction parts in the first, third, fifth, and seventh stages at 0.35 L / min. The amount is added and comes out from the first stage of the extraction section. In the back extraction unit, 5.2 mol / L hydrochloric acid was added at 1 L / min from the 20th stage of the back extraction unit, 0.56 L / min was extracted from the 11th stage, and the rest was extracted from the 1st stage of the back extraction unit. Sodium hydroxide is added to extract almost all of the rare earth elements in the solution into an organic solvent. The organic solvent is a mixture of an extractant (PC-88A (manufactured by Daihachi Chemical Industry Co., Ltd.)) and a diluent (IP solvent (manufactured by Idemitsu Petrochemical Co., Ltd.)) at a volume ratio of 1: 2. is there.

次いで、溶媒抽出工程の逆抽出部の第1段から抜出した逆抽出液(TREO濃度:291g/L)について塩酸にてpH調整を行い、pH=0.9とし、これを24時間静置し、油水分離した(但し、実施例22では静置時間を3時間とし、実施例21、24では油水分離を行っていない。)。   Next, the pH of the back extract (TREO concentration: 291 g / L) extracted from the first stage of the back extraction part of the solvent extraction step was adjusted with hydrochloric acid to pH = 0.9, which was left to stand for 24 hours. The oil and water were separated (however, in Example 22, the standing time was 3 hours, and in Examples 21 and 24, oil and water were not separated).

そして、上記処理後の逆抽出液をポリプロピレン繊維が充填されたカラムに通して吸着剤処理を行った(但し、実施例21〜23では、吸着剤処理は行っていない。)。   And the adsorbent process was performed by passing the back extraction liquid after the said process through the column filled with the polypropylene fiber (however, in Examples 21-23, the adsorbent process was not performed).

以上の処理を行った逆抽出液(希土類化合物水溶液)について、純水にて適宜に濃度調整を行い、TREO濃度5〜270g/Lの希土類化合物水溶液とした。尚、以上の工程における、処理前の塩化希土(溶解液)に含まれるTREO中の組成、及び、溶媒抽出後の逆抽出液(希土類化合物水溶液)に含まれるTREO中の組成は以下のようになっていた。また、製造された希土類化合物水溶液のTREO1kgあたりの希土類元素量は5.92molであった。   About the back extraction liquid (rare earth compound aqueous solution) which performed the above process, the density | concentration was adjusted suitably with a pure water, and it was set as the rare earth compound aqueous solution of 5-270 g / L of TREO density | concentration. In the above steps, the composition in TREO contained in the rare earth chloride (solution) before treatment and the composition in TREO contained in the back extraction solution (rare earth compound aqueous solution) after solvent extraction are as follows. It was. Moreover, the rare earth element amount per 1 kg of TREO of the manufactured rare earth compound aqueous solution was 5.92 mol.

Figure 2006206870
Figure 2006206870

製造工程2
この製造工程は、中国産の炭酸セリウム(TREO45質量%、CeO/TREO>99.9質量%:この炭酸セリウムからなる研摩材用原料を比較例3とする。)を用いて希土類化合物水溶液を製造した。この製造工程により製造される希土類化合物水溶液から得られた研摩材用原料は、後述の実施例31〜35に該当する。この製造工程の概要を図1(b)に示す。
Manufacturing process 2
In this manufacturing process, a rare earth compound aqueous solution is prepared using cerium carbonate (TREO 45 mass%, CeO 2 /TREO>99.9 mass%: a raw material for an abrasive material comprising this cerium carbonate is used as Comparative Example 3). Manufactured. The raw material for abrasives obtained from the rare earth compound aqueous solution produced by this production process corresponds to Examples 31 to 35 described later. An outline of this manufacturing process is shown in FIG.

上記炭酸セリウムを0.2mol/Lの塩酸で溶解してろ過し、TREO濃度180g/Lの溶解液とした。そして、この溶解液について塩酸にてpH調整を行い、pH=0.9とし、これを24時間静置し、油水分離した。   The cerium carbonate was dissolved in 0.2 mol / L hydrochloric acid and filtered to obtain a solution having a TREO concentration of 180 g / L. Then, the pH of this solution was adjusted with hydrochloric acid to pH = 0.9, and this solution was allowed to stand for 24 hours to separate oil and water.

そして、上記処理後の溶解液をポリプロピレン繊維が充填されたカラムに通して吸着剤処理を行った。吸着剤処理後の溶液について、純水にて適宜に濃度調整を行い、TREO濃度50g/Lの希土類化合物水溶液とした。尚、この希土類化合物水溶液の酸化セリウム濃度(CeO/TREO)は99.9質量%以上であった。また、製造された希土類化合物水溶液のTREO1kgあたりの希土類元素量は5.81molであった(CeO/TREOを100質量%として計算)。 Then, the treated solution was passed through a column filled with polypropylene fibers to carry out adsorbent treatment. The solution after the adsorbent treatment was appropriately adjusted with pure water to obtain a rare earth compound aqueous solution having a TREO concentration of 50 g / L. The rare earth compound aqueous solution had a cerium oxide concentration (CeO 2 / TREO) of 99.9% by mass or more. Further, the amount of rare earth element per kg of TREO in the produced rare earth compound aqueous solution was 5.81 mol (calculated assuming CeO 2 / TREO as 100 mass%).

B:炭酸系沈澱剤水溶液の製造
炭酸系沈澱剤の水溶液は、水に炭酸系沈澱剤(炭酸水素アンモニウム又は炭酸ナトリウム)を溶解させて製造した。炭酸系沈澱剤の溶解量は、各希土類化合物水溶液が含有する希土類元素に対する化学量論量と、中和滴定で求めた過剰の酸を中和するのに必要な化学量論量との合計量に対して1.2倍量とした。尚、各実施例の希土類化合物水溶液中の希土類元素は、ほとんどすべてが3価であるので、3価で計算した。
B: Production of Aqueous Carbonic Precipitant Solution An aqueous carbonate precipitant solution was produced by dissolving a carbonate precipitant (ammonium hydrogen carbonate or sodium carbonate) in water. The dissolution amount of the carbonate-based precipitant is the total amount of the stoichiometric amount with respect to the rare earth element contained in each rare earth compound aqueous solution and the stoichiometric amount necessary for neutralizing excess acid determined by neutralization titration. 1.2 times the amount. In addition, since almost all of the rare earth elements in the rare earth compound aqueous solutions of the respective examples are trivalent, calculation was performed with trivalence.

C:炭酸系沈澱剤水溶液と炭酸系沈澱剤水溶液との混合
そして、希土類化合物溶液と、炭酸系沈澱剤水溶液とを混合して沈澱生成し、これを洗浄して研摩材用原料を製造した。
C: Mixing a carbonate-based precipitant aqueous solution and a carbonate-based precipitant aqueous solution, and mixing a rare earth compound solution and a carbonate-based precipitant aqueous solution to form a precipitate, which was washed to produce an abrasive raw material.

実施例1〜40では、逆添加法、つまり、炭酸系沈澱剤の水溶液を攪拌しつつ、希土類化合物水溶液をTREO30kg分添加した。このときの添加時間としては、3〜1200分と複数の添加時間を採用し、また、水溶液の攪拌速度(周速)として50〜175m/分と複数の速度を設定した。更に、添加時の溶液加熱については、行う場合(30〜70℃)と行わない場合についての双方で混合を行った。希土類化合物水溶液添加後の溶液は、次のろ過工程開始まで30分間攪拌しておいた。   In Examples 1 to 40, the reverse addition method, that is, 30 kg of the rare earth compound aqueous solution was added while stirring the aqueous solution of the carbonic acid precipitation agent. As the addition time at this time, a plurality of addition times of 3 to 1200 minutes were adopted, and a plurality of speeds of 50 to 175 m / min were set as the stirring speed (peripheral speed) of the aqueous solution. Furthermore, about the solution heating at the time of addition, it mixed by both the case where it performs (30-70 degreeC) and the case where it does not perform. The solution after addition of the rare earth compound aqueous solution was stirred for 30 minutes until the start of the next filtration step.

一方、実施例41〜44、比較例1、2、4では、正添加法、つまり、希土類化合物水溶液を攪拌しつつ、炭酸系沈澱剤の水溶液を添加する方法にて沈澱を生成した。この場合においても、攪拌速度として50〜175m/分と複数の速度を設定した。   On the other hand, in Examples 41 to 44 and Comparative Examples 1, 2, and 4, precipitates were generated by the positive addition method, that is, the method of adding an aqueous solution of a carbonic acid precipitant while stirring the rare earth compound aqueous solution. Even in this case, a plurality of speeds of 50 to 175 m / min were set as the stirring speed.

尚、上記実施例においては、逆添加法、正添加法いずれの場合でも、炭酸系沈澱剤水溶液又は希土類化合物水溶液の攪拌速度は、特記しない限り75m/分とした。   In the above examples, the stirring speed of the aqueous carbonic acid precipitant solution or the rare earth compound aqueous solution was 75 m / min in both cases of the reverse addition method and the normal addition method, unless otherwise specified.

D:固液分離、洗浄
炭酸系沈澱剤の水溶液と希土類化合物水溶液との攪拌により生成する沈澱を分離するため、溶液を真空ろ過した。そして、ろ別された沈澱物を洗浄し、セリウム系研摩材用原料とした。この洗浄は、100L/回純水にて行い、0〜5回の洗浄を行った(比較例7のみ洗浄せず(0回))。
D: Solid-liquid separation, washing The solution was vacuum filtered in order to separate the precipitate formed by stirring the aqueous solution of the carbonated precipitant and the rare earth compound aqueous solution. And the precipitate separated by filtration was wash | cleaned and it was set as the raw material for cerium type abrasives. This washing was performed with 100 L / times pure water, and was washed 0 to 5 times (only Comparative Example 7 was not washed (0 times)).

以上の工程により製造されたセリウム系研摩材用原料について、沈降体積、ヘキサン抽出物質含有量、TREO濃度、フッ素濃度、塩素濃度、強熱減量、平均粒径(D50粒径)を測定した。これらの特性の測定において、沈降体積、静置法見掛け比容、ヘキサン抽出物質含有量、強熱減量の測定は、上述の測定方法に従った。 For manufactured cerium-raw material for the above process, sedimentation volume, hexane extract content, TREO concentration, the fluorine concentration, chlorine concentration, loss on ignition was measured average particle diameter (D 50 particle size). In the measurement of these characteristics, the measurement of the sedimentation volume, the apparent specific volume of the stationary method, the hexane extract substance content, and the loss on ignition was in accordance with the measurement method described above.

フッ素濃度の測定は、研摩材をアルカリ溶融して温水抽出し、フッ化物イオン電極法により測定した。塩素濃度の測定は、研摩材を硝酸にて溶解後、Volhard滴定法にて測定した。また、これらの基準となるTREOは、研摩材を酸溶解し、溶液にシュウ酸を添加して沈澱物を生じさせ、この沈澱物を焼成して重量法にて測定した。   The fluorine concentration was measured by melting the abrasive with alkali and extracting it with hot water, and measuring it by the fluoride ion electrode method. The chlorine concentration was measured by the Volhard titration method after the abrasive was dissolved in nitric acid. In addition, TREO serving as a reference was measured by a gravimetric method by dissolving an abrasive in an acid and adding oxalic acid to the solution to form a precipitate. The precipitate was fired.

平均粒径(D50粒径)の測定は、レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製:LA−920)を使用して粒度分布を測定することにより、体積基準の積算分率における50質量%径を求めることにより行った。 Measurement of the average particle diameter (D 50 particle size) is a laser diffraction scattering method particle size distribution measuring apparatus (manufactured by HORIBA, Ltd.: LA-920) using by measuring the particle size distribution, the volume-based This was carried out by determining the 50 mass% diameter in the integrated fraction.

表2〜表7は、本実施形態で製造した各種の研摩材用原料の諸特性を示す。   Tables 2 to 7 show various characteristics of various abrasive raw materials produced in this embodiment.

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

次に、製造した複数のセリウム系研摩材用原料を用いてセリウム系研摩材を製造した。研摩材製造工程では、まず、製造した研摩材用原料を浸漬加熱粉砕した。浸漬加熱粉砕は、容量350Lの槽で、研摩材用原料TREO30kgを純水150Lと混合し、攪拌しながら蒸気を吹き込み90℃に到達してから3時間この温度を維持し、その後放冷することにより行った。   Next, a cerium-based abrasive was produced using the plurality of produced cerium-based abrasive materials. In the abrasive production process, first, the produced raw material for abrasive was immersed and pulverized. Immersion heating pulverization is performed in a tank with a capacity of 350 L, mixing 30 kg of abrasive raw material TREO with 150 L of pure water, blowing in steam with stirring and maintaining this temperature for 3 hours after reaching 90 ° C., and then allowing to cool. It went by.

そして、浸漬加熱粉砕後のスラリーをろ過し、研摩材用原料を150℃で48時間乾燥を行い、アトマイザーにて乾式粉砕を行い、焙焼処理した。焙焼条件は、加熱温度を980℃(CeO/TREO>99.9質量%の場合)、1050℃(CeO/TREO 60質量%の場合)とし、時間を24時間とした。 And the slurry after immersion heating grinding | pulverization was filtered, the raw material for abrasives was dried at 150 degreeC for 48 hours, the dry grinding | pulverization was performed with the atomizer, and the baking process was carried out. The roasting conditions were a heating temperature of 980 ° C. (CeO 2 /TREO>99.9% by mass) and 1050 ° C. (CeO 2 / TREO 60% by mass), and a time of 24 hours.

焙焼処理後、焙焼品を純水により64Lのスラリーとした後、湿式粉砕した。湿式粉砕は、直径1.0mmのジルコニアボールを用いたビーズミルにて5パス行った。そして、スラリーをろ過後、150℃で48時間乾燥を行い、アトマイザーにて乾式粉砕を行うことでセリウム系研摩材とした。   After the roasting treatment, the roasted product was made into a 64 L slurry with pure water and then wet pulverized. The wet pulverization was performed for 5 passes in a bead mill using zirconia balls having a diameter of 1.0 mm. And after filtering a slurry, it dried at 150 degreeC for 48 hours, and it was set as the cerium type abrasive | polishing material by performing dry grinding | pulverization with an atomizer.

研摩材の特性評価
そして、製造された各種のセリウム系研摩材について、平均粒径及びBET表面積を測定すると共に、その研摩特性(研摩速度、研摩精度)を評価すべく研摩試験を行った。
Evaluation of Characteristics of Abrasives And various cerium-based abrasives produced were measured for average particle diameter and BET surface area, and were subjected to a polishing test to evaluate their polishing characteristics (polishing speed, polishing accuracy).

BET法比表面積の測定は、JIS R 1626−1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 の(3.5)一点法」に準拠して測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。また、平均粒径(D50粒径)の測定は原料の測定方法と同様とした。 The measurement of the specific surface area of the BET method is based on “(3.5) One-point method of 6.2 flow method” of JIS R 1626-1996 (Method of measuring specific surface area of fine ceramic powder by gas adsorption BET method). Measurements were made. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used. Also, measurement of the average particle diameter (D 50 particle size) were the same as the measuring method of the raw material.

研摩試験については、研摩試験機(HSP−2I型、台東精機(株)製)を用意した。この研摩試験機は、スラリー状の研摩材を研摩対象面に供給しながら、当該研摩対象面を研摩パッドで研摩するものである。研摩試験に当たっては、研摩材と純水とを混合してTREO100g/Lのスラリー状の研摩材を20L調製した。そして、研摩試験では、スラリー状の研摩材を5リットル/分の割合で供給することとし、研摩材を循環使用した。尚、研摩対象物は65mmφの平面パネル用ガラスとした。また、研摩パッドはポリウレタン製のものを使用した。研摩面に対する研摩パッドの圧力は9.8kPa(100g/cm2)とし、研摩試験機の回転速度は100rpmに設定し、30分間研摩した。 For the polishing test, a polishing tester (HSP-2I type, manufactured by Taito Seiki Co., Ltd.) was prepared. This polishing tester polishes the polishing target surface with a polishing pad while supplying a slurry-like polishing material to the polishing target surface. In the polishing test, a polishing material and pure water were mixed to prepare 20 L of a slurry-like polishing material of TREO 100 g / L. In the polishing test, a slurry-like abrasive was supplied at a rate of 5 liters / minute, and the abrasive was recycled. The polishing object was a glass for a flat panel having a diameter of 65 mm. A polishing pad made of polyurethane was used. The polishing pad pressure against the polishing surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set at 100 rpm, and polishing was performed for 30 minutes.

そして、研摩特性の評価は、まず、研摩前後のガラス重量を測定して研摩によるガラス重量の減少量を求め、この値に基づき研摩値を求めた。本研摩試験では、この研摩値を用いて研摩速度を評価した。なお、ここでは、実施例1によって得られた試料を用いて研摩した場合の研摩値を基準(100)とした。   Then, the evaluation of the polishing characteristics was performed by first measuring the glass weight before and after polishing to determine the amount of glass weight reduction by polishing, and determining the polishing value based on this value. In this polishing test, the polishing rate was evaluated using this polishing value. Here, the polishing value when polishing was performed using the sample obtained in Example 1 was used as the reference (100).

そして、研摩により得られたガラスの被研摩面を純水で洗浄し、無塵状態で乾燥させた後、研摩精度を評価を行った。この評価は、研摩後のガラスの被研摩面について、原子間力顕微鏡(AFM)により表面粗さを測定し、Ra(平均表面粗さ)を評価することにより行った。   Then, the polished surface of the glass obtained by polishing was washed with pure water and dried in a dust-free state, and then the polishing accuracy was evaluated. This evaluation was performed by measuring the surface roughness of the polished surface of the glass after polishing with an atomic force microscope (AFM) and evaluating Ra (average surface roughness).

製造した各種研摩材の物性、及び、研摩特性について、表8〜表13にその結果を示す。   Tables 8 to 13 show the results of the physical properties and polishing characteristics of the various abrasives produced.

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

Figure 2006206870
Figure 2006206870

以上の各種製造工程により製造された研摩材用原料の物性値(表2〜表7)、及び、それらにより製造された研摩材の研摩特性(表8〜表13)を基に対比を行うと、以下のように考察される。   When comparison is made on the basis of the physical property values (Tables 2 to 7) of the raw materials for abrasives produced by the above various production processes and the abrasive properties (Tables 8 to 13) of the abrasives produced by them. Considered as follows.

評価1:沈降体積による評価
表8〜表11は、製造条件を変化させつつ製造した沈降体積の異なる研摩材用原料を用いて製造した研摩材の特性の比較結果を示すものである。研摩材用原料の沈降体積は、その製造条件(希土類化合物水溶液の濃度、添加時間、沈澱物の洗浄回数)により変化するが(この点は後述する)、いずれの場合においても、沈降体積が30mL未満の研摩材用原料から製造される研摩材は、研摩速度は高いものの、表面粗さが大きく研摩精度に劣る(傷の発生が確認された)。従って、研摩材用原料の沈降体積については、30mL以上であることが必要であることがわかる。一方、沈降体積が90mLを超える研摩材用原料から製造される研摩材は、研摩速度が低くなる。そこで、研摩速度と研摩精度とのバランスを考慮すると、沈降体積は、30〜90mLが好ましく、30〜70mLがより好ましく、40〜60mLであるものが更に好ましいといえる。
Evaluation 1: Evaluation by sedimentation volume Tables 8 to 11 show comparison results of characteristics of abrasives produced using raw materials for abrasives having different sedimentation volumes produced while changing production conditions. The settling volume of the raw material for abrasives varies depending on the production conditions (concentration of rare earth compound aqueous solution, addition time, number of times the precipitate is washed) (this point will be described later). In either case, the settling volume is 30 mL. Abrasives produced from less than the raw material for abrasives have a high polishing speed but a large surface roughness and poor polishing accuracy (scratches were confirmed). Therefore, it can be seen that the settling volume of the raw material for the abrasive is required to be 30 mL or more. On the other hand, an abrasive produced from a raw material for an abrasive having a sedimentation volume exceeding 90 mL has a low polishing rate. Therefore, considering the balance between the polishing speed and the polishing accuracy, the sedimentation volume is preferably 30 to 90 mL, more preferably 30 to 70 mL, and even more preferably 40 to 60 mL.

尚、研摩材用原料の沈降体積を測定する際の温度の影響について補完的に検討した結果を表14に示す。この検討は、実施例6で製造した研摩材用原料の沈降体積を測定する場合において、測定時の温度を変化させたときの測定値を調査したものである。   Table 14 shows the results of a complementary study on the influence of temperature when measuring the sedimentation volume of the abrasive raw material. This examination investigated the measured value when the temperature at the time of measurement was changed when measuring the sedimentation volume of the raw material for abrasives manufactured in Example 6.

Figure 2006206870
Figure 2006206870

表14からわかるように、10〜50℃の測定温度の範囲においては、沈降体積の測定値に大きな差はない。従って、沈降体積の測定はこの温度範囲で行なうことがより好ましいといえる。尚、本実施形態で示す沈降体積の値は、いずれも25℃で測定したものを示している。   As can be seen from Table 14, in the measurement temperature range of 10 to 50 ° C., there is no significant difference in the measured value of the sedimentation volume. Therefore, it can be said that the sedimentation volume is preferably measured in this temperature range. In addition, all the values of the sedimentation volume shown by this embodiment have shown what was measured at 25 degreeC.

評価2:静置法見掛け比容による評価
また、表8〜表11では、静置法見掛け比容の値も示している(表中FVで表記)。研摩材用原料の静置法見掛け比容は、沈降体積と同様、その製造条件により変化するが、静置法見掛け比容の値は、1.0〜3.0mL/gであるもの(実施例3〜13)が、研摩速度と研摩精度とのバランスに特に優れている。そして、より好ましくは、1.3〜2.7mL/gであるものであり、更に好ましいのは、1.5〜2.5mL/gであるといえる。
Evaluation 2: Evaluation by standing method apparent specific volume Further , Tables 8 to 11 also show values of the standing method apparent specific volume (indicated by FV in the table). The apparent specific volume of the abrasive raw material varies depending on the production conditions as well as the sedimentation volume, but the value of the static specific volume is 1.0 to 3.0 mL / g (implementation) Examples 3 to 13) are particularly excellent in the balance between the polishing speed and the polishing accuracy. More preferably, it is 1.3 to 2.7 mL / g, and even more preferably 1.5 to 2.5 mL / g.

評価3:ヘキサン抽出物質の濃度による評価
表9は、研摩材用原料のヘキサン抽出物質の濃度と研摩材の研摩特性との関係を示すものである。この表から、ヘキサン抽出物質は、研摩材の研摩特性を大きく損なうものではないといえるが、ヘキサン抽出物質の増加により、研摩材用原料の沈降体積測定の際に界面の見易さに影響を与えている。従って、ヘキサン抽出物質の濃度については、できるだけ少ないことが好ましい。
Evaluation 3: Evaluation by concentration of hexane extractant Table 9 shows the relationship between the concentration of the hexane extractant of the raw material for the abrasive and the polishing characteristics of the abrasive. From this table, it can be said that the hexane extractant does not significantly impair the polishing characteristics of the abrasive, but the increase in the hexane extractant affects the visibility of the interface when measuring the sediment volume of the abrasive material. Giving. Therefore, it is preferable that the concentration of the hexane extractant be as small as possible.

評価4:塩素濃度による評価
表10は、研摩材用原料の塩素濃度と研摩材の研摩特性との関係を示すものである。この表から、原料中の塩素は、研摩材としたときに研摩速度、研摩精度の双方に対し影響を及ぼすことがわかる。そして、より好適な研摩材を製造するためには、研摩材用原料の塩素濃度は、0.5質量%以下とするが好ましく、0.3質量%以下がより好ましく、0.1質量%以下が更に好ましい。
Evaluation 4: Evaluation by Chlorine Concentration Table 10 shows the relationship between the chlorine concentration of the raw material for the abrasive and the polishing characteristics of the abrasive. From this table, it can be seen that chlorine in the raw material affects both the polishing speed and the polishing accuracy when it is used as an abrasive. In order to produce a more suitable abrasive, the chlorine concentration of the abrasive raw material is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and 0.1% by mass or less. Is more preferable.

評価5:原料製造条件の評価I(希土類化合物水溶液の添加時間・添加順序)
表2は、研摩材用原料の製造工程の条件中、炭酸系沈澱剤水溶液へ希土類化合物水溶液を添加する際の添加時間と、研摩材用原料の沈降体積との関係を示す。この結果からわかるように、希土類化合物水溶液の添加時間が長くなるに従い、沈降体積が減少する傾向があるが、比較的広い範囲としても、沈降体積が好適範囲内となることがわかる。但し、原料の沈降体積を上記した好適範囲内のものとするためには、添加時間は、5〜1200分が好ましく、10〜600分がより好ましく、20〜300分が更に好ましい。
Evaluation 5: Evaluation of raw material production conditions I (addition time and order of addition of rare earth compound aqueous solution)
Table 2 shows the relationship between the addition time when adding the rare earth compound aqueous solution to the carbonate-based precipitant aqueous solution and the sedimentation volume of the abrasive raw material during the conditions of the manufacturing process of the raw material for abrasive. As can be seen from this result, the sedimentation volume tends to decrease as the addition time of the rare earth compound aqueous solution increases, but it can be seen that the sedimentation volume falls within the preferred range even in a relatively wide range. However, the addition time is preferably 5 to 1200 minutes, more preferably 10 to 600 minutes, and still more preferably 20 to 300 minutes in order to set the sedimentation volume of the raw material within the above-described preferred range.

また、表6に示すように、逆添加法により沈澱生成する際の、炭酸系沈澱剤溶液の攪拌速度の影響について、炭酸系沈澱剤溶液の攪拌速度を広範囲で設定しても沈降体積に大きな変動はないことがわかる。   Further, as shown in Table 6, regarding the influence of the stirring speed of the carbonic acid precipitant solution when the precipitate is produced by the reverse addition method, the settling volume is large even if the stirring speed of the carbonic acid precipitant solution is set in a wide range. It can be seen that there is no fluctuation.

一方、表2の比較例1、2は、正添加法にて沈澱生成したものであるが、この比較例の研摩材用原料は沈降体積が30未満となっている。この結果に関し、正添加法で希土類化合物水溶液の攪拌速度を変化させて沈澱を生成したときの結果を示すのが表7である。この結果から、正添加法を適用する場合には、攪拌速度を適当な範囲(100m/分以上)にすることで、沈降体積が30mL以上の研摩材用原料が製造できることがわかる。   On the other hand, Comparative Examples 1 and 2 in Table 2 were precipitated by the positive addition method, but the raw material for abrasives of this Comparative Example had a sedimentation volume of less than 30. Regarding this result, Table 7 shows the result when the precipitate was generated by changing the stirring speed of the rare earth compound aqueous solution by the positive addition method. From this result, it can be seen that when the positive addition method is applied, a raw material for an abrasive having a sedimentation volume of 30 mL or more can be produced by setting the stirring speed to an appropriate range (100 m / min or more).

評価6:原料製造条件の評価II(水溶液混合時の加熱の有無)
表3は、炭酸系沈澱剤水溶液と希土類化合物水溶液とを混合する際の加熱の有無、温度による研摩材用原料の物性を示す。この表から、水溶液混合時の加熱は、研摩材用原料の沈降体積を制御する上で必須ではないことがわかる。また、加温する場合でも液温を60℃超とすると、沈降体積が低くなる傾向がある。従って、混合時の液温は60℃以下とするのが好ましく、40℃以下が特に好ましいといえる。
Evaluation 6: Evaluation of raw material production conditions II (presence or absence of heating during mixing of aqueous solution)
Table 3 shows the physical properties of the raw material for the abrasive depending on the presence or absence of heating and the temperature when mixing the aqueous carbonate-based precipitant solution and the rare earth compound aqueous solution. From this table, it can be seen that heating at the time of mixing the aqueous solution is not essential for controlling the sedimentation volume of the abrasive material. Even when heating, if the liquid temperature exceeds 60 ° C., the sedimentation volume tends to be low. Therefore, the liquid temperature during mixing is preferably 60 ° C. or less, and particularly preferably 40 ° C. or less.

評価7:原料製造条件の評価III(希土類化合物水溶液の濃度)
表3では、研摩材用原料の製造工程の条件中、炭酸系沈澱剤へ希土類化合物水溶液を添加する際の希土類化合物の濃度(TREO濃度)と、研摩材用原料の沈降体積との関係を示す。この結果からわかるように、希土類化合物水溶液の濃度の上昇に従い、沈降体積も上昇する傾向があるが、広い濃度範囲で好適な沈降体積の研摩材用原料が得られることがわかる。但し、より好ましい沈降体積の研摩材用原料を得るためには、希土類化合物水溶液の濃度は、TREO基準で10〜250g/Lが好ましく、20〜200g/Lがより好ましいといえる。
Evaluation 7: Evaluation of raw material production conditions III (concentration of rare earth compound aqueous solution)
Table 3 shows the relationship between the rare earth compound concentration (TREO concentration) and the sedimentation volume of the abrasive raw material when adding the rare earth compound aqueous solution to the carbonate-based precipitant during the conditions of the manufacturing process of the abrasive raw material. . As can be seen from this result, as the concentration of the rare earth compound aqueous solution increases, the sedimentation volume also tends to increase, but it is understood that a material for an abrasive material having a suitable sedimentation volume can be obtained in a wide concentration range. However, in order to obtain a raw material for an abrasive with a more preferable sedimentation volume, the concentration of the rare earth compound aqueous solution is preferably 10 to 250 g / L, more preferably 20 to 200 g / L on the basis of TREO.

評価8:原料製造条件の評価IV(希土類化合物水溶液の吸着処理)
また、表3は、希土類化合物水溶液の製造工程において、溶媒抽出後の残液について、静置処理及び吸着処理の有無による研摩材用原料の物性相違も示すものである。この結果からわかるように、静置処理及び吸着処理は、研摩材用原料中のヘキサン抽出物質の濃度を低減する効果がある。そして、上述のように、ヘキサン抽出物質は、研摩材としたときの特性に大きな影響は与えないものの、研摩材用原料の沈降体積測定の際に界面の見易さに影響を与える。従って、静置処理及び吸着処理の少なくともいずれかを行うことが好ましいといえる。
Evaluation 8: Evaluation of raw material manufacturing conditions IV (adsorption treatment of rare earth compound aqueous solution)
Table 3 also shows differences in the physical properties of the raw materials for the abrasives depending on whether or not the remaining liquid after solvent extraction in the manufacturing process of the rare earth compound aqueous solution is subjected to a stationary treatment and an adsorption treatment. As can be seen from this result, the stationary treatment and the adsorption treatment have an effect of reducing the concentration of the hexane extract substance in the raw material for the abrasive. As described above, the hexane extract material does not greatly affect the characteristics of the abrasive material, but affects the visibility of the interface when measuring the sedimentation volume of the abrasive material. Therefore, it can be said that it is preferable to perform at least one of a stationary treatment and an adsorption treatment.

評価9:原料製造条件の評価V(沈澱物の洗浄の効果)
表4は、炭酸系沈澱剤水溶液と希土類化合物水溶液とを混合して生成する沈澱物の洗浄の有無、回数と研摩材用原料の物性を示すものである。この表からわかるように、洗浄を行うことで研摩材用原料の塩素濃度が低減され、洗浄回数が多いほどその濃度は減少する。原料中の塩素濃度と研摩材の研摩特性は上述した通りである。研摩材用原料の製造工程においては、沈澱物の洗浄を十分行うことが好ましいといえる。
Evaluation 9: Evaluation of raw material production conditions V (effect of washing the precipitate)
Table 4 shows the presence / absence of washing and the number of precipitates produced by mixing a carbonate-based precipitant aqueous solution and a rare earth compound aqueous solution, and the physical properties of the abrasive material. As can be seen from this table, the chlorine concentration of the abrasive raw material is reduced by washing, and the concentration decreases as the number of washings increases. The chlorine concentration in the raw material and the polishing characteristics of the abrasive are as described above. In the manufacturing process of the raw material for abrasives, it can be said that it is preferable to sufficiently wash the precipitate.

評価10:原料製造条件の評価VI(炭酸系沈澱剤の種類)
また、表4は、希土類化合物水溶液と混合する炭酸系沈澱剤水溶液の沈澱剤の種類による相違を示すものである。この表から、炭酸水素アンモニウム、炭酸ナトリウムいずれの炭酸系沈澱剤を使用しても、研摩材用原料の沈降体積は、好ましい範囲内にある。つまり、沈澱剤の種類により大きな差はない。
Evaluation 10: Evaluation of raw material production conditions VI (type of carbonate-based precipitant)
Table 4 shows the difference depending on the kind of the precipitating agent in the aqueous carbonate precipitant mixed with the rare earth compound aqueous solution. From this table, the precipitation volume of the raw material for the abrasive is within the preferred range even if any carbonate type precipitation agent such as ammonium bicarbonate or sodium carbonate is used. That is, there is no great difference depending on the kind of the precipitant.

評価11:原料製造条件の評価VI(出発原料の種類)
本実施形態では、出発原料として塩化希土(実施例1〜30)、中国産炭酸セリウム(実施例31〜35)の2種の出発原料を用いて希土類化合物溶液を製造し、研摩材用原料を製造し、研摩材としている。そして、比較のために、中国産炭酸セリウムをそのまま原料として(比較例3)研摩材を製造している。これらの出発原料の相違について検討するに、比較例3のような精製済の炭酸セリウムであっても、各実施例と比較すると、沈降体積、研摩材としたときの研摩特性が劣っていることがわかる。従って、このような純度の良好な炭酸セリウムであっても、本実施例のように、一度希土類化合物水溶液とすることが有効であることがわかる。一方、実施例1〜30と実施例31〜35とを対比するとわかるように。実施例のように希土類化合物水溶液を経由させて原料を製造する場合においては、出発原料の相違によって特性の差異はないものといえる。
Evaluation 11: Evaluation of raw material production conditions VI (type of starting material)
In this embodiment, a rare earth compound solution is produced using two starting materials of rare earth chloride (Examples 1 to 30) and Chinese cerium carbonate (Examples 31 to 35) as starting materials, and the raw materials for abrasives are used. Is manufactured and used as an abrasive. For comparison, an abrasive is produced using cerium carbonate from China as a raw material (Comparative Example 3). When examining the difference between these starting materials, even the purified cerium carbonate as in Comparative Example 3 is inferior in sedimentation volume and polishing characteristics when used as an abrasive compared to each Example. I understand. Accordingly, it can be seen that even such cerium carbonate with good purity is once effective as an aqueous rare earth compound solution as in this example. On the other hand, as can be seen by comparing Examples 1-30 and Examples 31-35. In the case where the raw material is produced via the rare earth compound aqueous solution as in the examples, it can be said that there is no difference in characteristics due to the difference in the starting raw materials.

ところで、本実施形態において、比較例1、2は、その製造条件(希土類化合物水溶液の添加順序)において、実施例とは異なる。そして、その結果製造された研摩材用原料は、沈降体積が好適範囲を超えたものとなっている。そこで、このような研摩材用原料については、これを再度、希土類化合物水溶液とすることで、好適な研摩材用原料を製造することができる(即ち、規格外の研摩材用原料であっても、それを出発原料として、再処理して好適な研摩材用原料とすることができる)。その一例として、下記実施例を示す。   By the way, in this embodiment, the comparative examples 1 and 2 differ from an Example in the manufacturing conditions (addition order of rare earth compound aqueous solution). And as a result, the manufactured raw material for abrasives has a sedimentation volume exceeding a suitable range. Therefore, for such an abrasive raw material, it is possible to produce a suitable abrasive raw material by making it a rare earth compound aqueous solution again (that is, even if it is a non-standard abrasive raw material). It can be reprocessed as a starting material to make a suitable abrasive material). As an example, the following examples are shown.

実施例45、46
比較例1、2で製造された研摩材用原料を塩酸にて溶解し、これをろ過したろ液を純水で希釈し、塩酸にてpH0.9に調整し希土類化合物水溶液とした。このときのTREO濃度は、50g/Lであった。
Examples 45 and 46
The raw materials for abrasives produced in Comparative Examples 1 and 2 were dissolved in hydrochloric acid, and the filtrate obtained by filtering this was diluted with pure water and adjusted to pH 0.9 with hydrochloric acid to obtain a rare earth compound aqueous solution. The TREO concentration at this time was 50 g / L.

次に、攪拌している炭酸系沈澱剤水溶液(炭酸水素アンモニウム水溶液)に、この希土類化合物水溶液を添加時間60分で添加した。生成した沈澱をろ別し、100L/回の純水にて5回洗浄して研摩材用原料とした。尚、炭酸系沈澱剤水溶液の濃度等、その他の条件は上記と同様とした。   Next, this rare earth compound aqueous solution was added to the stirring carbonic acid precipitant aqueous solution (ammonium hydrogen carbonate aqueous solution) in an addition time of 60 minutes. The produced precipitate was filtered off and washed 5 times with 100 L / times of pure water to obtain an abrasive material. The other conditions such as the concentration of the carbonic acid precipitant aqueous solution were the same as described above.

そして、以上の工程で製造された研摩材用原料を、上記と同様の工程にてセリウム系研摩材を製造し、研摩特性を評価した。表15は、その結果を示す。   And the cerium-type abrasive | polishing material was manufactured in the process similar to the above from the raw material for abrasives manufactured at the above process, and the grinding | polishing characteristic was evaluated. Table 15 shows the results.

Figure 2006206870
Figure 2006206870

この結果を見るとわかるように、適正範囲を超えた研摩材用原料であっても希土類化合物水溶液にし、適正な処理を行うことで好ましい特性の研摩材用原料とすることができ、研摩材としたときの研摩特性も改善することができることが確認できる。   As can be seen from this result, even if the raw material for the abrasive exceeds the appropriate range, it can be made into an aqueous solution of a rare earth compound and an appropriate raw material can be used for the raw material for the abrasive. It can be confirmed that the polishing characteristics can be improved.

本実施形態における希土類化合物含有水溶液の製造工程1及び2を概略説明する図。The figure which illustrates schematically manufacturing process 1 and 2 of the rare earth compound containing aqueous solution in this embodiment.

Claims (12)

全希土類酸化物(TREO)に対する酸化セリウム含有量30質量%以上、TREOに対するフッ素濃度0.5質量%以下であり、且つ、炭酸根を含む希土類化合物を含むセリウム系研摩材用原料であって、
TREO濃度が126g/Lとなるように純水と混合した原料スラリーを10分間静置した際の沈降体積が、該原料スラリー100mLに対して30mL以上であるセリウム系研摩材用原料。
A cerium-based abrasive raw material having a cerium oxide content of 30% by mass or more with respect to total rare earth oxide (TREO) and a fluorine concentration of 0.5% by mass or less with respect to TREO and containing a rare earth compound containing a carbonate radical,
A cerium-based abrasive raw material having a sedimentation volume of 30 mL or more with respect to 100 mL of the raw material slurry when the raw material slurry mixed with pure water so as to have a TREO concentration of 126 g / L is allowed to stand for 10 minutes.
120℃で12時間乾燥後の静置法見掛け比容(JIS K 5101−1991による)が、1.0〜3.0mL/gである請求項1記載のセリウム系研摩材用原料。 The raw material for a cerium-based abrasive according to claim 1, wherein the apparent specific volume (according to JIS K 5101-1991) after drying at 120 ° C for 12 hours is 1.0 to 3.0 mL / g. 塩酸に溶解した際に測定されるヘキサン抽出物質の含有量が、TREO基準で700質量ppm以下である請求項1又は請求項2記載のセリウム系研摩材用原料。 The cerium-based abrasive raw material according to claim 1 or 2, wherein the content of the hexane-extracted substance measured when dissolved in hydrochloric acid is 700 ppm by mass or less based on TREO. セリウム系研摩材用原料の製造方法であって、
アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素からなる群から選択された少なくとも1種の炭酸系沈澱剤の水溶液を攪拌し、
全希土類酸化物(TREO)に対する酸化セリウム含有量30質量%以上であり、且つ、TREOに対するフッ素濃度0.5質量%以下である希土類化合物水溶液を前記炭酸系沈澱剤の水溶液に添加して沈澱物を生成し、
前記沈澱物を分離及び洗浄する工程を含むセリウム系研摩材用原料の製造方法。
A method for producing a cerium-based abrasive material,
Stirring an aqueous solution of at least one carbonate-based precipitant selected from the group consisting of alkali metal carbonate, alkali metal bicarbonate, ammonium carbonate, ammonium bicarbonate, guanidine carbonate, ammonium carbamate, and urea;
A rare earth compound aqueous solution having a cerium oxide content of 30% by mass or more with respect to total rare earth oxide (TREO) and a fluorine concentration of 0.5% by mass or less with respect to TREO is added to the aqueous solution of the carbonic acid precipitant. Produces
A method for producing a raw material for a cerium-based abrasive, comprising a step of separating and washing the precipitate.
セリウム系研摩材用原料の製造方法であって、
全希土類酸化物(TREO)に対する酸化セリウム含有量30質量%以上であり、且つ、TREOに対するフッ素濃度0.5質量%以下である希土類化合物水溶液を周速100m/分以上で攪拌し、
アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素からなる群から選択された少なくとも1種の炭酸系沈澱剤の水溶液を、前記希土類化合物水溶液に添加して沈澱物を生成し、
前記沈澱物を分離及び洗浄する工程を含むセリウム系研摩材用原料の製造方法。
A method for producing a cerium-based abrasive material,
A rare earth compound aqueous solution having a cerium oxide content of 30% by mass or more based on total rare earth oxide (TREO) and a fluorine concentration of 0.5% by mass or less based on TREO at a peripheral speed of 100 m / min or more;
An aqueous solution of at least one carbonate-based precipitant selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates, ammonium carbonate, ammonium bicarbonate, guanidine carbonate, ammonium carbamate, and urea; Add to aqueous solution to form precipitate,
A method for producing a raw material for a cerium-based abrasive, comprising a step of separating and washing the precipitate.
希土類化合物水溶液は、下記(a)又は(b)の少なくともいずれかの処理を行なうことにより、ヘキサン抽出物質が低減されたものである請求項4又は請求項5記載のセリウム系研摩材用原料の製造方法。
(a)希土類化合物水溶液を静置して、希土類化合物水溶液中のヘキサン抽出物質を分離除去する処理。
(b)希土類化合物水溶液と油吸着剤とを接触させてヘキサン抽出物質を吸着除去する処理。
6. The cerium-based abrasive raw material according to claim 4, wherein the rare earth compound aqueous solution is obtained by reducing at least one of the following treatments (a) and (b) to reduce the hexane extract material. Production method.
(A) A treatment in which a rare earth compound aqueous solution is allowed to stand to separate and remove the hexane extract material in the rare earth compound aqueous solution.
(B) A process of adsorbing and removing the hexane extract material by bringing a rare earth compound aqueous solution and an oil adsorbent into contact with each other.
請求項4〜請求項6のいずれか1項記載の方法により製造されるセリウム系研摩材用原料。 The raw material for cerium-type abrasives manufactured by the method of any one of Claims 4-6. 請求項4又は請求項5記載の方法により製造される、請求項1又は請求項2記載のセリウム系研摩材用原料。 The raw material for a cerium-based abrasive according to claim 1 or 2, produced by the method according to claim 4 or 5. 請求項6に記載の方法により製造される、請求項3記載のセリウム系研摩材用原料。 The raw material for a cerium-based abrasive according to claim 3, which is produced by the method according to claim 6. 請求項1〜請求項3のいずれか1項、又は、請求項7〜請求項9のいずれか1項記載のセリウム系研摩材用原料より製造されるセリウム系研摩材。 A cerium-based abrasive produced from the cerium-based abrasive raw material according to any one of claims 1 to 3, or any one of claims 7 to 9. 請求項1〜請求項3のいずれか1項、又は、請求項7〜請求項9のいずれか1項記載のセリウム系研摩材用原料を使用するセリウム系研摩材の製造方法。 The manufacturing method of the cerium type abrasive | polishing material which uses the raw material for cerium type | system | group abrasive materials of any one of Claims 1-3 or any one of Claims 7-9. 請求項1〜請求項3のいずれか1項、又は、請求項7〜請求項9のいずれか1項記載のセリウム系研摩材用原料を使用するセリウム系研摩材の製造方法であって、
焙焼工程、該焙焼工程前に行なう研摩材用原料の粉砕工程を含み、
前記粉砕工程は、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、炭酸グアニジン、カルバミン酸アンモニウム、及び、尿素からなる群から選択された少なくとも1種の化合物を含む水溶液、又は、水に前記研摩材用原料を浸漬し、60〜100℃で加熱して研摩材用原料を粉砕するものであるセリウム系研摩材の製造方法。
A method for producing a cerium-based abrasive using the raw material for a cerium-based abrasive according to any one of claims 1 to 3, or any one of claims 7 to 9.
Including a roasting step, a grinding step of the raw material for abrasives performed before the roasting step,
In the pulverization step, an aqueous solution containing at least one compound selected from the group consisting of ammonia, ammonium carbonate, ammonium hydrogen carbonate, guanidine carbonate, ammonium carbamate, and urea, or the raw material for abrasives in water is used. A method for producing a cerium-based abrasive, which is immersed and heated at 60 to 100 ° C. to grind the raw material for the abrasive.
JP2005237112A 2004-12-28 2005-08-18 Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive Pending JP2006206870A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005237112A JP2006206870A (en) 2004-12-28 2005-08-18 Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive
CN 200510137849 CN1810911B (en) 2004-12-28 2005-12-28 Cerium family raw grinding material and preparing process thereof, cerium family grinding material and preparing process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004379586 2004-12-28
JP2005237112A JP2006206870A (en) 2004-12-28 2005-08-18 Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive

Publications (1)

Publication Number Publication Date
JP2006206870A true JP2006206870A (en) 2006-08-10

Family

ID=36964056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237112A Pending JP2006206870A (en) 2004-12-28 2005-08-18 Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive

Country Status (2)

Country Link
JP (1) JP2006206870A (en)
CN (1) CN1810911B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174625A (en) * 2007-01-17 2008-07-31 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material
JP2009227893A (en) * 2008-03-25 2009-10-08 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive slurry
JP2011529020A (en) * 2008-07-29 2011-12-01 エルジー・ケム・リミテッド Method for producing cerium carbonate and method for producing cerium oxide powder
CN115321578A (en) * 2022-09-08 2022-11-11 内蒙古科技大学 Nano quasi-spherical rare earth fluoride polishing powder and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382369B (en) 2012-11-07 2015-07-29 有研稀土新材料股份有限公司 A kind of cerium oxide base compound polishing powder and preparation method thereof
CN111051463B (en) * 2017-09-11 2022-01-11 昭和电工株式会社 Method for producing raw material for cerium-based abrasive and method for producing cerium-based abrasive

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105428A (en) * 1991-10-15 1993-04-27 Santoku Kinzoku Kogyo Kk Cerium oxide having oxygen absorbing and releasing ability and its production
JPH0781932A (en) * 1993-09-14 1995-03-28 Showa Denko Kk Production of ceric oxide
JP2002348563A (en) * 2001-05-29 2002-12-04 Mitsui Mining & Smelting Co Ltd Method for producing cerium abrasive material
JP2002371267A (en) * 2001-06-15 2002-12-26 Mitsui Mining & Smelting Co Ltd Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP2003041239A (en) * 2001-07-26 2003-02-13 Kao Corp Grinding liquid composition
JP2003213250A (en) * 2001-11-16 2003-07-30 Showa Denko Kk Cerium polishing material, cerium polishing material slurry, method for polishing glass substrate and method for producing glass substrate
JP2003212601A (en) * 2002-01-23 2003-07-30 Nippon Electric Glass Co Ltd Glass raw material
JP2003238943A (en) * 2002-02-18 2003-08-27 Fujimi Inc Methods for producing cerium-based abrasive and cerium oxide contained therein
JP2003277729A (en) * 2002-03-22 2003-10-02 Mitsui Mining & Smelting Co Ltd Cerium abrasive material and its preparation process
JP2004043657A (en) * 2002-07-12 2004-02-12 Mitsui Mining & Smelting Co Ltd Cerium abrasive and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI285674B (en) * 2000-11-30 2007-08-21 Showa Denko Kk Cerium-based abrasive and production process thereof
JP4064636B2 (en) * 2001-02-07 2008-03-19 三井金属鉱業株式会社 Cerium-based abrasive particles and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105428A (en) * 1991-10-15 1993-04-27 Santoku Kinzoku Kogyo Kk Cerium oxide having oxygen absorbing and releasing ability and its production
JPH0781932A (en) * 1993-09-14 1995-03-28 Showa Denko Kk Production of ceric oxide
JP2002348563A (en) * 2001-05-29 2002-12-04 Mitsui Mining & Smelting Co Ltd Method for producing cerium abrasive material
JP2002371267A (en) * 2001-06-15 2002-12-26 Mitsui Mining & Smelting Co Ltd Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP2003041239A (en) * 2001-07-26 2003-02-13 Kao Corp Grinding liquid composition
JP2003213250A (en) * 2001-11-16 2003-07-30 Showa Denko Kk Cerium polishing material, cerium polishing material slurry, method for polishing glass substrate and method for producing glass substrate
JP2003212601A (en) * 2002-01-23 2003-07-30 Nippon Electric Glass Co Ltd Glass raw material
JP2003238943A (en) * 2002-02-18 2003-08-27 Fujimi Inc Methods for producing cerium-based abrasive and cerium oxide contained therein
JP2003277729A (en) * 2002-03-22 2003-10-02 Mitsui Mining & Smelting Co Ltd Cerium abrasive material and its preparation process
JP2004043657A (en) * 2002-07-12 2004-02-12 Mitsui Mining & Smelting Co Ltd Cerium abrasive and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174625A (en) * 2007-01-17 2008-07-31 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material
JP2009227893A (en) * 2008-03-25 2009-10-08 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive slurry
JP2011529020A (en) * 2008-07-29 2011-12-01 エルジー・ケム・リミテッド Method for producing cerium carbonate and method for producing cerium oxide powder
CN115321578A (en) * 2022-09-08 2022-11-11 内蒙古科技大学 Nano quasi-spherical rare earth fluoride polishing powder and preparation method thereof
CN115321578B (en) * 2022-09-08 2023-09-19 内蒙古科技大学 Nano sphere-like rare earth fluoride polishing powder and preparation method thereof

Also Published As

Publication number Publication date
CN1810911B (en) 2010-07-21
CN1810911A (en) 2006-08-02

Similar Documents

Publication Publication Date Title
KR100529580B1 (en) Cerium based abrasive material and method for preparation thereof
JP6421887B2 (en) Method for producing cerium salt, cerium oxide and cerium-based abrasive
JP3949147B2 (en) Mixed rare earth oxides, mixed rare earth fluorides, cerium-based abrasives using them, and methods for producing them
KR102090494B1 (en) Cerium abrasive and manufacturing method
KR100697682B1 (en) Cerium-based polishing material
JP2006206870A (en) Raw material for cerium type abrasive and manufacturing method of raw material for cerium type abrasive, cerium type abrasive and manufacturing method of cerium type abrasive
JP4730903B2 (en) Method for recovering raw materials for cerium-based abrasives
WO2003104149A1 (en) Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
JP2004175652A (en) Method of recovering rare earth oxide from waste liquid containing rare earth element
KR100647103B1 (en) Cerium based polishing material and raw materials therefor
JP3694478B2 (en) Cerium-based abrasive and method for producing the same
JP5237542B2 (en) Cerium oxide abrasive
JP4395049B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP2006273994A (en) Cerium-based abrasive and its intermediate, and method for producing these
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP5512962B2 (en) Cerium-based abrasive containing fluorine and sulfur
TWI285674B (en) Cerium-based abrasive and production process thereof
JP3607592B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP4756996B2 (en) Cerium-based abrasive
JPH11147713A (en) Production of raw material for rare earth-based abrasion material from waste of abrasion material
JP2003105326A (en) Raw material for cerium polishing material and method for analyzing raw material for cerium polishing material
JP2002309235A (en) Manufacturing method for cerium type abrasives material and cerium type abrasives material manufactured by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100325