JP2007012545A - Dye-sensitized photoelectric conversion element, its manufacturing method, photoelectric conversion element module, electronic apparatus, movable body, and power generation system - Google Patents

Dye-sensitized photoelectric conversion element, its manufacturing method, photoelectric conversion element module, electronic apparatus, movable body, and power generation system Download PDF

Info

Publication number
JP2007012545A
JP2007012545A JP2005194768A JP2005194768A JP2007012545A JP 2007012545 A JP2007012545 A JP 2007012545A JP 2005194768 A JP2005194768 A JP 2005194768A JP 2005194768 A JP2005194768 A JP 2005194768A JP 2007012545 A JP2007012545 A JP 2007012545A
Authority
JP
Japan
Prior art keywords
dye
photoelectric conversion
conversion element
sensitized
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005194768A
Other languages
Japanese (ja)
Other versions
JP5066792B2 (en
Inventor
Masahiro Morooka
正浩 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005194768A priority Critical patent/JP5066792B2/en
Publication of JP2007012545A publication Critical patent/JP2007012545A/en
Application granted granted Critical
Publication of JP5066792B2 publication Critical patent/JP5066792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized photoelectric conversion element such as a dye-sensitized solar cell, capable of substantially reducing fluctuation of an amount of power generation with respect to an incident angle of light, and excellent in durability. <P>SOLUTION: A transparent conductive layer 2 and a dye-sensitized porous semiconductor layer 3 are provided one by one on the inner surface of a tube 1 made of a transparent material, a counter electrode 5 is inserted in the center part of the tube 1, the space between both end parts of the tube 1 and the counter electrode 5 is sealed by a sealing member, and an electrolyte layer 4 is sealed in the space between the dye-sensitized porous semiconductor layer 3 and the counter electrode 5 to form this dye-sensitized photoelectric conversion element. A quartz tube is used for the tube 1. The counter electrode 5 is formed in a rod shape, a cylindrical shape, or a wire shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、色素増感光電変換素子、色素増感光電変換素子の製造方法、光電変換素子モジュール、電子機器、移動体および発電システムに関し、例えば、色素を担持した半導体微粒子からなる色素増感多孔質半導体層を用いた色素増感太陽電池およびこの色素増感太陽電池を用いる各種の機器、装置、システムなどに適用して好適なものである。   The present invention relates to a dye-sensitized photoelectric conversion element, a method for producing a dye-sensitized photoelectric conversion element, a photoelectric conversion element module, an electronic device, a moving body, and a power generation system, for example, a dye-sensitized porous film composed of semiconductor fine particles carrying a dye. The present invention is suitable for application to dye-sensitized solar cells using a crystalline semiconductor layer and various devices, apparatuses, systems, etc. using the dye-sensitized solar cells.

エネルギー源として石炭や石油などの化石燃料を使用する場合、その結果発生する二酸化炭素のために、地球の温暖化をもたらすと言われている。また、原子力エネルギーを使用する場合には、放射線による汚染の危険性が伴う。環境問題が取り沙汰される現在、これらのエネルギーに依存していくことは大変問題が多い。
一方、太陽光を電気エネルギーに変換する光電変換素子である太陽電池は太陽光をエネルギー源としているため、地球環境に対する影響が極めて少なく、より一層の普及が期待されている。
When fossil fuels such as coal and oil are used as an energy source, it is said that the resulting carbon dioxide causes global warming. In addition, when using nuclear energy, there is a risk of contamination by radiation. Relying on these energies is very problematic now that environmental issues are being addressed.
On the other hand, solar cells, which are photoelectric conversion elements that convert sunlight into electrical energy, use sunlight as an energy source, and therefore have very little influence on the global environment, and are expected to become more widespread.

太陽電池の材質としては様々なものがあるが、シリコンを用いたものが多数市販されており、これらは大別して単結晶または多結晶のシリコンを用いた結晶シリコン系太陽電池と、非晶質(アモルファス)シリコン系太陽電池とに分けられる。従来、太陽電池には、単結晶または多結晶のシリコン、すなわち結晶シリコンが多く用いられてきた。
しかし、結晶シリコン系太陽電池では、光(太陽)エネルギーを電気エネルギーに変換する性能を表す光電変換効率が、アモルファスシリコン系太陽電池に比べて高いものの、結晶成長に多くのエネルギーと時間とを要するため生産性が低く、コスト面で不利であった。
There are various types of materials for solar cells, but there are many commercially available materials using silicon. These are roughly divided into crystalline silicon solar cells using single crystal or polycrystalline silicon, and amorphous ( Amorphous) and silicon-based solar cells. Conventionally, monocrystalline or polycrystalline silicon, that is, crystalline silicon, has been used in many solar cells.
However, although the crystalline silicon solar cell has higher photoelectric conversion efficiency representing the ability to convert light (solar) energy into electric energy than the amorphous silicon solar cell, it requires much energy and time for crystal growth. Therefore, the productivity is low and the cost is disadvantageous.

また、アモルファスシリコン系太陽電池は、結晶シリコン系太陽電池と比べて光吸収性が高く、基板の選択範囲が広い、大面積化が容易であるなどの特徴があるが、光電変換効率が結晶シリコン系太陽電池より低い。さらに、アモルファスシリコン系太陽電池は、生産性は結晶シリコン系太陽電池に比べて高いが、製造に真空プロセスが必要であり、設備面での負担は未だに大きい。   Amorphous silicon-based solar cells are more light-absorbing than crystalline silicon-based solar cells, have a wide substrate selection range, and are easy to increase in area, but have a photoelectric conversion efficiency of crystalline silicon. Lower than solar cells. Furthermore, although the productivity of amorphous silicon solar cells is higher than that of crystalline silicon solar cells, a vacuum process is required for production, and the burden on facilities is still large.

一方、太陽電池のより一層の低コスト化に向けて、シリコン系材料に代えて有機材料を用いた太陽電池が多く研究されてきた。しかし、この太陽電池の光電変換効率は1%以下と非常に低く、耐久性にも問題があった。
こうした中で、色素によって増感された半導体微粒子を用いた安価な太陽電池が報告された(例えば、非特許文献1参照。)。この太陽電池は、増感色素にルテニウム錯体を用いて分光増感した酸化チタン多孔質薄膜を光電極とする湿式太陽電池、すなわち電気化学光電池である。この色素増感太陽電池の利点は、安価な酸化チタンを用いることができ、増感色素の光吸収が800nmまでの幅広い可視光波長域にわたっていること、光電変換の量子効率が高く、高いエネルギー変換効率を実現できることである。また、製造に真空プロセスが必要ないため、大型の設備なども必要ない。
On the other hand, many solar cells using organic materials instead of silicon-based materials have been studied for further cost reduction of solar cells. However, the photoelectric conversion efficiency of this solar cell was as low as 1% or less, and there was a problem with durability.
In these circumstances, an inexpensive solar cell using semiconductor fine particles sensitized with a dye has been reported (for example, see Non-Patent Document 1). This solar cell is a wet solar cell using a titanium oxide porous thin film spectrally sensitized using a ruthenium complex as a sensitizing dye as a photoelectrode, that is, an electrochemical photocell. The advantages of this dye-sensitized solar cell are that inexpensive titanium oxide can be used, the light absorption of the sensitizing dye covers a wide visible light wavelength range up to 800 nm, the quantum efficiency of photoelectric conversion is high, and high energy conversion It is possible to achieve efficiency. Moreover, since a vacuum process is not necessary for production, a large-scale facility is not necessary.

なお、酸化チタン(TiO2 )微粒子が分散されたTiO2 ペーストの作製方法が知られている(例えば、非特許文献2参照)。
Nature,353,p.737-740,1991 荒川裕則「色素増感太陽電池の最新技術」(シーエムシー)p.45-47(2001)
A method for producing a TiO 2 paste in which titanium oxide (TiO 2 ) fine particles are dispersed is known (see, for example, Non-Patent Document 2).
Nature, 353, p.737-740,1991 Hironori Arakawa “Latest Technology for Dye-Sensitized Solar Cells” (CMC) p.45-47 (2001)

しかしながら、太陽電池はエネルギーソースが太陽光であり、太陽光は時刻、季節、天候などにより光量や入射角度が変化するため、発電量はいつも一定ではない。実際、シリコン系太陽電池は入射光量と発電量との間に比例関係があることが知られており、光量の変化に対して発電量も大きく変化してしまう。
この問題は、色素増感太陽電池でも、程度の差こそあれ同様に存在するものであり、その解決が望まれる。
However, in solar cells, the energy source is sunlight, and the amount of power generated is not always constant because the amount of light and the incident angle change depending on the time, season, and weather. In fact, it is known that silicon solar cells have a proportional relationship between the amount of incident light and the amount of power generation, and the amount of power generation changes greatly with changes in the amount of light.
This problem is also present in the dye-sensitized solar cell to some extent, and a solution to this problem is desired.

そこで、この発明が解決しようとする課題は、構造の最適化により、光の入射角度に対する発電量の変化を大幅に低減することができ、しかも耐久性が高い色素増感太陽電池などの色素増感光電変換素子およびその製造方法ならびにそのような色素増感光電変換素子を用いた光電変換素子モジュール、電子機器、移動体および発電システムを提供することである。   Accordingly, the problem to be solved by the present invention is that the optimization of the structure can greatly reduce the change in the amount of power generation with respect to the incident angle of light, and the dye sensitization of a dye-sensitized solar cell having high durability can be achieved. A photoelectric conversion element, a method for producing the same, and a photoelectric conversion element module, an electronic device, a moving body, and a power generation system using the dye-sensitized photoelectric conversion element are provided.

上記課題を解決するために、第1の発明は、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とする色素増感光電変換素子である。
In order to solve the above problem, the first invention is:
A dye-sensitized photoconductor having a structure in which a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the center of the tube. It is a conversion element.

透明材料からなる管の断面形状は問わず、円形、楕円形、多角形(三角形、四角形、五角形、六角形など)などでも、これらの一部または全部を変形した形状でもよく、さらには長手方向の一部または全部の断面形状が変化してもよい。この管は直線状でも、曲線状でもよく、直線部と曲線部とが混在してもよい。また、この管の長さ、外径、内径も問わず、必要に応じて決めることができる。   The cross-sectional shape of the tube made of a transparent material is not limited, and may be a circle, an ellipse, a polygon (triangle, quadrangle, pentagon, hexagon, etc.), a part of or all of these shapes, and a longitudinal direction. A part or all of the cross-sectional shape may be changed. The tube may be straight or curved, and a straight portion and a curved portion may be mixed. Further, the length, outer diameter, and inner diameter of the tube can be determined as needed.

透明材料の種類は特に制限されず、透明であれば種々の材料を用いることができる。この透明材料は、光電変換素子外部から侵入する水分やガスの遮断性、耐溶剤性、耐候性などに優れているものが好ましく、具体的には、石英、ガラスなどの透明無機基板、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンサルファイド、ポリフッ化ビニリデン、テトラアセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルフォン類、ポリオレフィン類などの透明プラスチックが挙げられ、これらの中でも特に可視光領域の透過率が高いものを用いるのが好ましいが、これらに限定されるものではない。この透明材料としては、加工性、軽量性などを考慮すると透明プラスチックを用いるのが好ましい。また、この透明材料の厚さ(管の肉厚に相当)は特に制限されず、光の透過率、光電変換素子の内部と外部との遮断性などによって自由に選択することができる。   The type of the transparent material is not particularly limited, and various materials can be used as long as they are transparent. The transparent material is preferably excellent in moisture and gas barrier properties, solvent resistance, weather resistance, and the like entering from the outside of the photoelectric conversion element. Specifically, the transparent material is a transparent inorganic substrate such as quartz or glass, polyethylene terephthalate. Transparent, such as polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, tetraacetylcellulose, brominated phenoxy, aramids, polyimides, polystyrenes, polyarylates, polysulfones, polyolefins Among them, it is preferable to use a plastic having a high transmittance in the visible light region, but it is not limited thereto. As this transparent material, it is preferable to use a transparent plastic in consideration of processability, lightness and the like. Further, the thickness of the transparent material (corresponding to the thickness of the tube) is not particularly limited, and can be freely selected depending on the light transmittance, the shielding property between the inside and the outside of the photoelectric conversion element, and the like.

透明導電層の材質としては公知のものを用いることが可能であり、具体的には、インジウム(In)−スズ(Sn)複合酸化物(ITO)、SnO2 (フッ素(F)、アンチモン(Sb)などがドープされたものも含む)、インジウム(In)−亜鉛(Zn)複合酸化物(IZO)、ZnOなどが挙げられるが、これらに限定されるものではなく、また、これらを二種類以上組み合わせて用いることもできる。 A known material can be used for the transparent conductive layer. Specifically, indium (In) -tin (Sn) composite oxide (ITO), SnO 2 (fluorine (F), antimony (Sb ), Indium (In) -zinc (Zn) composite oxide (IZO), ZnO, and the like, but are not limited to these, and two or more of these are included. It can also be used in combination.

ところで、色素増感太陽電池などの色素増感光電変換素子においては通常、n型半導体からなる色素増感多孔質半導体層に液体のホール(正孔)移動層である電解質を染み込ませた構造になっていることから、電解質が透明導電性層と直接接する部位が存在し、透明導電性層から電解質への逆電子移動反応による漏れ電流が問題となる。この漏れ電流は色素増感光電変換素子のフィルファクターおよび開放電圧を低下させるため、光電変換効率の向上には大きな問題となる。そこで、この透明導電性層から電解質への逆電子移動反応による漏れ電流を大幅に低減することが重要である。このためには、管の内面に透明導電層および金属酸化物からなる透明な保護層を順次設け、この保護層の内面に色素増感多孔質半導体層を設けた構造とすることが有効である。こうすることで、透明導電層が金属酸化物からなる保護層により覆われ、電解質から遮断された構造になり、透明導電層が電解質と直接接しないため、漏れ電流を大幅に低減することが可能となる。そして、このような構造を有する色素増感光電変換素子はフィルファクターおよび開放電圧が高く、光電変換効率に優れた色素増感光電変換素子の実現が可能となる。この保護層を構成する金属酸化物は、具体的には、例えば、Nb2 5 、Ta2 5 、TiO2 、Al2 3 、ZrO2 、TiSrO3 およびSiO2 からなる群より選ばれた少なくとも一つの金属酸化物である。この保護層の厚さに特に制限はないが、薄すぎる場合は透明導電層と電解質との遮断性が悪く、逆に厚すぎる場合は透過率の減少および透明導電層への電子注入のロスが生じてしまうため、好ましい厚さが存在することになる。この厚さは通常、0.1〜500nmであり、1〜100nmが特に好ましい。 By the way, in a dye-sensitized photoelectric conversion element such as a dye-sensitized solar cell, usually, a dye-sensitized porous semiconductor layer made of an n-type semiconductor is soaked with an electrolyte that is a liquid hole transfer layer. Therefore, there is a portion where the electrolyte is in direct contact with the transparent conductive layer, and leakage current due to a reverse electron transfer reaction from the transparent conductive layer to the electrolyte becomes a problem. Since this leakage current lowers the fill factor and open circuit voltage of the dye-sensitized photoelectric conversion element, it becomes a big problem in improving the photoelectric conversion efficiency. Therefore, it is important to significantly reduce the leakage current due to the reverse electron transfer reaction from the transparent conductive layer to the electrolyte. For this purpose, it is effective to sequentially provide a transparent conductive layer and a transparent protective layer made of a metal oxide on the inner surface of the tube and provide a dye-sensitized porous semiconductor layer on the inner surface of the protective layer. . By doing so, the transparent conductive layer is covered with a protective layer made of a metal oxide and is cut off from the electrolyte, and since the transparent conductive layer is not in direct contact with the electrolyte, the leakage current can be greatly reduced. It becomes. A dye-sensitized photoelectric conversion element having such a structure has a high fill factor and an open circuit voltage, and it is possible to realize a dye-sensitized photoelectric conversion element excellent in photoelectric conversion efficiency. The metal oxide constituting this protective layer is specifically selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , TiO 2 , Al 2 O 3 , ZrO 2 , TiSrO 3 and SiO 2, for example. At least one metal oxide. The thickness of the protective layer is not particularly limited, but if it is too thin, the barrier between the transparent conductive layer and the electrolyte is poor, and conversely, if it is too thick, the transmittance is reduced and electron injection into the transparent conductive layer is lost. As a result, there will be a preferred thickness. This thickness is usually from 0.1 to 500 nm, particularly preferably from 1 to 100 nm.

透明材料からなる管の内面に透明導電層を形成する方法は特に制限されず、各種のコーティング法を用いることができるが、透明導電物質の前駆体を湿式コーティングし、加熱分解させる方法が好ましい。この湿式コーティング法としては、スプレーコート法、ディップコート法、スピンコート法などの種々の方法を用いることができる。また、透明導電物質の前駆体のコーティング後には、不純物の分解と導電性を高めるための結晶成長とを目的とした加熱を行うことが好ましい。また、塗布と加熱とを同時に行ってもよく、このためにはスプレー熱分解法を用いることが簡便であり特に好ましい。このスプレー熱分解法は、ディップコート法やスピンコート法などに比べて、一回のコーティングで形成することができる層の厚さが数十倍程度も大きい点で極めて有利である。このスプレー熱分解法による一回のコーティングで形成することができる層の厚さは具体的には例えば数百nm程度であり、500nm以上も可能である。
透明材料からなる管の内面に透明導電層を形成するためには、この管の内面に、使用する透明材料に導電性を付与することができる不純物をドープすることにより透明導電層を形成するようにしてもよい。
The method for forming the transparent conductive layer on the inner surface of the tube made of a transparent material is not particularly limited, and various coating methods can be used, but a method of wet coating a precursor of a transparent conductive material and thermally decomposing it is preferable. As this wet coating method, various methods such as a spray coating method, a dip coating method, and a spin coating method can be used. Moreover, after the coating of the precursor of the transparent conductive material, it is preferable to perform heating for the purpose of decomposition of impurities and crystal growth for enhancing conductivity. Application and heating may be performed simultaneously, and for this purpose, it is particularly preferable to use a spray pyrolysis method because it is simple. This spray pyrolysis method is extremely advantageous in that the thickness of a layer that can be formed by one coating is several tens of times larger than that of a dip coating method or a spin coating method. Specifically, the thickness of the layer that can be formed by one coating by the spray pyrolysis method is, for example, about several hundred nm, and can be 500 nm or more.
In order to form a transparent conductive layer on the inner surface of a tube made of a transparent material, the transparent conductive layer is formed by doping the inner surface of the tube with an impurity capable of imparting conductivity to the transparent material to be used. It may be.

色素増感多孔質半導体層(色素増感半導体電極)は、典型的には、色素を担持した半導体微粒子からなる。この半導体微粒子の材料としては、シリコンに代表される元素半導体のほかに、各種の化合物半導体、ペロブスカイト構造を有する化合物などを使用することができる。これらの半導体は、光励起下で伝導帯電子がキャリアーとなり、アノード電流を与えるn型半導体であることが好ましい。これらの半導体は、具体的に例示すると、TiO2 、ZnO、WO3 、Nb2 5 、TiSrO3 、SnO2 などであり、これらの中でもアナターゼ型のTiO2 が特に好ましい。半導体の種類はこれらに限定されるものではなく、また、これらを二種類以上混合して用いることもできる。さらに、半導体微粒子は粒子状、チューブ状、棒状など必要に応じて様々な形態を取ることが可能である。 The dye-sensitized porous semiconductor layer (dye-sensitized semiconductor electrode) is typically composed of semiconductor fine particles carrying a dye. As a material for the semiconductor fine particles, various compound semiconductors, compounds having a perovskite structure, and the like can be used in addition to elemental semiconductors represented by silicon. These semiconductors are preferably n-type semiconductors in which conduction band electrons become carriers under photoexcitation and give an anode current. Specifically, these semiconductors are TiO 2 , ZnO, WO 3 , Nb 2 O 5 , TiSrO 3 , SnO 2, etc. Among these, anatase type TiO 2 is particularly preferable. The types of semiconductor are not limited to these, and two or more of these can be used in combination. Furthermore, the semiconductor fine particles can take various forms such as particles, tubes, and rods as required.

半導体微粒子の粒径に特に制限はないが、一次粒子の平均粒径で1〜200nmが好ましく、特に好ましくは5〜100nmである。また、この平均粒径の半導体微粒子にこの平均粒径より大きい平均粒径の半導体微粒子を混合し、平均粒径の大きい半導体微粒子により入射光を散乱させ、量子収率を向上させることも可能である。この場合、別途混合する半導体微粒子の平均粒径は20〜500nmであることが好ましい。   Although there is no restriction | limiting in particular in the particle size of semiconductor fine particle, 1-200 nm is preferable at the average particle diameter of a primary particle, Most preferably, it is 5-100 nm. It is also possible to improve the quantum yield by mixing semiconductor fine particles having an average particle size larger than the average particle size into semiconductor fine particles having an average particle size and scattering incident light by the semiconductor fine particles having a large average particle size. is there. In this case, the average particle diameter of the semiconductor fine particles to be mixed separately is preferably 20 to 500 nm.

半導体微粒子からなる多孔質半導体層は多くの色素を吸着することができるように、表面積の大きいものが好ましい。このため、この多孔質半導体層を支持体上に形成した状態での表面積は、投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限に特に制限はないが、通常1000倍程度である。多孔質半導体層は一般に、その厚さが増大するほど単位投影面積当たりの担持色素量が増えるため光の捕獲率が高くなるが、注入した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。従って、多孔質半導体層には好ましい厚さが存在するが、その厚さは一般的には0.1〜100μmであり、1〜50μmであることがより好ましく、3〜30μmであることが特に好ましい。半導体微粒子からなる多孔質半導体層は支持体に形成した後に半導体微粒子同士を電子的にコンタクトさせ、膜強度の向上や支持体との密着性を向上させるために、焼成することが好ましい。焼成温度の範囲に特に制限はないが、温度を上げ過ぎると支持体の抵抗が高くなってしまい、溶融することもあるため、通常は40〜700℃であり、より好ましくは40〜650℃である。また、焼成時間も特に制限はないが、通常は10分〜10時間程度である。焼成後、多孔質半導体層の表面積を増大させたり、半導体微粒子間のネッキングを高めたりする目的で、例えば四塩化チタン水溶液や直径10nm以下の酸化チタン超微粒子ゾルのディップ処理を行ってもよい。結着剤を含むペーストを透明導電層上に塗布し、加熱プレスによる透明導電層への圧着を行うことも可能である。   The porous semiconductor layer made of fine semiconductor particles preferably has a large surface area so that a large amount of dye can be adsorbed. For this reason, it is preferable that the surface area in the state which formed this porous semiconductor layer on the support body is 10 times or more with respect to a projection area, and it is more preferable that it is 100 times or more. The upper limit is not particularly limited, but is usually about 1000 times. In general, as the thickness of a porous semiconductor layer increases, the amount of supported dye increases per unit projected area and the light capture rate increases. However, the diffusion distance of injected electrons increases and the loss due to charge recombination increases. Become. Therefore, although there exists a preferable thickness in the porous semiconductor layer, the thickness is generally 0.1 to 100 μm, more preferably 1 to 50 μm, and particularly preferably 3 to 30 μm. preferable. The porous semiconductor layer made of semiconductor fine particles is preferably baked in order to make the semiconductor fine particles electronically contact each other after being formed on the support and to improve the film strength and the adhesion to the support. Although there is no restriction | limiting in particular in the range of a calcination temperature, Since resistance of a support body will become high and it may fuse | melt if it raises temperature too much, Usually, it is 40-700 degreeC, More preferably, it is 40-650 degreeC. is there. The firing time is not particularly limited, but is usually about 10 minutes to 10 hours. For example, a titanium tetrachloride aqueous solution or a titanium oxide ultrafine particle sol having a diameter of 10 nm or less may be subjected to dip treatment for the purpose of increasing the surface area of the porous semiconductor layer or increasing necking between the semiconductor fine particles after firing. It is also possible to apply a paste containing a binder on the transparent conductive layer and to press the transparent conductive layer with a hot press.

半導体微粒子からなる多孔質半導体層の作製方法に特に制限はないが、物性、利便性、製造コストなどを考慮した場合には湿式製膜法が好ましく、半導体微粒子の粉末あるいはゾルを水などの溶媒に均一分散したペーストを調製し、管の内面に設けた透明導電層上に塗布する方法が好ましい。塗布は、その方法に特に制限はなく、公知の方法に従って行うことができ、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、また、湿式印刷方法としては、例えば、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷など様々な方法により行うことができる。半導体微粒子の材料として結晶酸化チタン(TiO2 )を用いる場合、その結晶型は、アナターゼ型が光触媒活性の点から好ましい。アナターゼ型酸化チタンは市販の粉末、ゾル、スラリーでもよいし、あるいは、酸化チタンアルコキシドを加水分解するなどの公知の方法によって所定の粒径のものを作ってもよい。市販の粉末を使用する際には粒子の二次凝集を解消することが好ましく、塗布液調製時に乳鉢やボールミルなどを使用して粒子の粉砕を行うことが好ましい。このとき、二次凝集が解かれた粒子が再度凝集するのを防ぐため、アセチルアセトン、塩酸、硝酸、界面活性剤、キレート剤などを添加することができる。また、増粘の目的でポリエチレンオキシドやポリビニルアルコールなどの高分子、セルロース系の増粘剤など、各種の増粘剤を添加することもできる。 There is no particular limitation on the method for producing a porous semiconductor layer comprising semiconductor fine particles, but in view of physical properties, convenience, production costs, etc., a wet film-forming method is preferred, and the semiconductor fine particle powder or sol is dissolved in a solvent such as water. A method of preparing a uniformly dispersed paste and applying it on a transparent conductive layer provided on the inner surface of the tube is preferred. Coating is not particularly limited in its method and can be performed according to a known method, for example, dipping method, spray method, wire bar method, spin coating method, roller coating method, blade coating method, gravure coating method, As the wet printing method, for example, various methods such as letterpress, offset, gravure, intaglio, rubber plate, and screen printing can be used. When crystalline titanium oxide (TiO 2 ) is used as the material for the semiconductor fine particles, the crystal type is preferably anatase type from the viewpoint of photocatalytic activity. The anatase type titanium oxide may be a commercially available powder, sol, or slurry, or may be made with a predetermined particle diameter by a known method such as hydrolysis of titanium oxide alkoxide. When using a commercially available powder, it is preferable to eliminate secondary aggregation of the particles, and it is preferable to pulverize the particles using a mortar, ball mill or the like when preparing the coating solution. At this time, acetylacetone, hydrochloric acid, nitric acid, a surfactant, a chelating agent, or the like can be added in order to prevent the particles after the secondary aggregation from being aggregated again. For the purpose of thickening, various thickeners such as polymers such as polyethylene oxide and polyvinyl alcohol, and cellulose-based thickeners can be added.

多孔質半導体層に担持させる色素としては、増感作用を示すものであれば特に制限はないが、具体的には、例えば、ローダミンB、ローズベンガル、エオシン、エリスロシンなどのキサンテン系色素、メロシアニン、キノシアニン、クリプトシアニンなどのシアニン系色素、フェノサフラニン、カブリブルー、チオシン、メチレンブルーなどの塩基性染料、クロロフィル、亜鉛ポルフィリン、マグネシウムポルフィリンなどのポルフィリン系化合物が挙げられ、その他のものとしてはアゾ色素、フタロシアニン化合物、クマリン系化合物、ルテニウム(Ru)ビピリジン錯化合物、アントラキノン系色素、多環キノン系色素などが挙げられる。これらの中でも、リガンド(配位子)がピリジン環またはイミダゾリウム環を含み、Ru、Os、Ir、Pt、Co、FeおよびCuからなる群より選ばれた少なくとも一種の金属の錯体の増感色素は量子収率が高く好ましい。特に、シス−ビス(イソチオシアナート)−N,N−ビス(2,2’−ジピリジル−4,4’−ジカルボン酸)−ルテニウム(II)またはトリス(イソチオシアナート)−ルテニウム(II)−2,2' :6' ,2" −ターピリジン−4,4' ,4" −トリカルボン酸を基本骨格とする増感色素分子は吸収波長域が広く好ましい。ただし、色素はこれらのものに限定されるものではなく、また、これらの色素を二種類以上混合して用いてもよい。   The dye supported on the porous semiconductor layer is not particularly limited as long as it exhibits a sensitizing action. Specifically, for example, xanthene dyes such as rhodamine B, rose bengal, eosin, erythrosine, merocyanine, Examples include cyanine dyes such as quinocyanine and cryptocyanine, basic dyes such as phenosafranine, fog blue, thiocin, and methylene blue, and porphyrin compounds such as chlorophyll, zinc porphyrin, and magnesium porphyrin. Others include azo dyes and phthalocyanines. Examples thereof include compounds, coumarin compounds, ruthenium (Ru) bipyridine complex compounds, anthraquinone dyes, and polycyclic quinone dyes. Among these, a sensitizing dye of a complex of at least one metal selected from the group consisting of Ru, Os, Ir, Pt, Co, Fe and Cu, wherein the ligand (ligand) includes a pyridine ring or an imidazolium ring Is preferable because of its high quantum yield. In particular, cis-bis (isothiocyanato) -N, N-bis (2,2′-dipyridyl-4,4′-dicarboxylic acid) -ruthenium (II) or tris (isothiocyanato) -ruthenium (II) — A sensitizing dye molecule having 2,2 ': 6', 2 "-terpyridine-4,4 ', 4" -tricarboxylic acid as a basic skeleton has a wide absorption wavelength range and is preferable. However, the dyes are not limited to these, and two or more of these dyes may be mixed and used.

ところで、色素増感太陽電池の色素としては、カルボン酸類を吸着基とした色素分子が一般的である。カルボン酸類は酸化物表面に吸着しやすく、特別な処理なしに、例えば色素溶液へ多孔質半導体層を浸漬させるだけで色素を担持させることができる。しかしながら、上記のようにカルボン酸類を吸着基とした色素分子を増感色素として用いる色素増感太陽電池においては、カルボン酸は会合体を作りやすいことから、色素が半導体表面で会合を起こした場合、それらの色素間の電子トラップによって半導体への電子注入が妨げられ、光電変換効率の低下が避けられないという欠点がある。そこで、この欠点を解消し、会合体を作りやすいカルボン酸などの酸官能基を吸着基とした色素を増感色素として用いた場合においても高い光電変換効率を得ることができるようにする方法について検討を行った。いま、一例として、増感色素の分子が酸官能基としてカルボキシ基(−COOH)を複数個有する場合を考える。図12Aに示すように、この色素の分子のカルボキシ基同士が水素結合(点線で示す)することにより会合が起きる。この会合を防止するために、増感色素の分子の酸官能基をアルカリ化合物、例えばNaOHで中和することを考えた。この中和により、増感色素分子のCOOHがCOO- となったものにNa+ が結合してCOO- Na+ となるが、溶液中では解離しているためCOO- の状態となっている。こうして中和され、解離したCOO- はアニオンであるため、増感色素分子同士はこのアニオンの負電荷間に働く斥力(電荷反発)により会合が起こりにくくなる(図12B)。このため、例えばこの色素溶液に多孔質半導体層を浸漬させて色素を担持させる場合、色素分子が半導体表面で会合を起こしにくくなり、それらの色素間の電子トラップを大幅に低減することができる。以上のことは、リン酸基などの他の酸官能基およびKOHなどの他のアルカリ化合物の場合にも基本的には成立し得るものである。すなわち、上記の欠点を解消するためには、色素の分子として多孔質半導体層に吸着するための酸官能基を複数個有するものを用い、これらの酸官能基の一部を、Li、Na、K、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、イミダゾリウム化合物およびピリジニウム化合物からなる群より選ばれた少なくとも一種の金属または化合物の水酸化物からなるアルカリ化合物により中和するようにする。これらの金属または化合物の中でも、Na、K、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、1−エチル−3−メチルイミダゾリウム化合物が好ましく、この中でも無機アルカリ(アルカリ金属)であるNa、Kが特に好ましい。これらの無機アルカリは、酸化チタンなどからなる多孔質半導体層の導電性を向上させる効果があるほか、イオン半径が小さいため、多孔質半導体層への色素の吸着密度を増加させることが可能になる。色素分子の中和方法に特に制限はないが、例えば、色素とアルカリ化合物とのモル数による規定量混合、pHによる滴定などにより行うことができる。色素の部分中和は色素溶液調製前に行っても構わないし、色素溶液中にアルカリを所定量混合して中和しても構わない。色素分子の中和を色素溶液中で行う場合は中和による水分が発生するため、別途水分除去の操作を行うようにしてもよい。色素分子は複数個の酸官能基を有し、その中の一部が中和されることになるが、色素分子の部分中和量が少なすぎる場合は色素分子間の会合抑制が不十分であり、逆に多すぎる場合は色素分子の吸着力の低下から十分な光電変換を行うことができなくなってしまうため、適当な中和量が存在することになる。具体的な中和量は、色素分子内の酸官能基数に対して0.25〜0.75であることが好ましく、0.35〜0.65であることが特に好ましい。この中和量は、色素分子全体の全酸官能基数に対する割合と言い換えることもできる。 By the way, as a dye of a dye-sensitized solar cell, a dye molecule having a carboxylic acid as an adsorption group is generally used. Carboxylic acids are easily adsorbed on the oxide surface, and the dye can be supported without any special treatment, for example, by immersing the porous semiconductor layer in the dye solution. However, in dye-sensitized solar cells that use dye molecules with adsorbing groups of carboxylic acids as sensitizing dyes as described above, carboxylic acids are likely to form aggregates, so that the dyes cause association on the semiconductor surface. However, the electron trap between these dyes hinders the injection of electrons into the semiconductor and has a disadvantage that a reduction in photoelectric conversion efficiency is unavoidable. Therefore, a method for solving this drawback and enabling high photoelectric conversion efficiency to be obtained even when a dye having an acid functional group such as a carboxylic acid that easily forms an aggregate is used as an sensitizing dye. Study was carried out. As an example, let us consider a case where a molecule of a sensitizing dye has a plurality of carboxy groups (—COOH) as acid functional groups. As shown in FIG. 12A, the association occurs when the carboxy groups of the molecules of the dye form hydrogen bonds (shown by dotted lines). In order to prevent this association, it was considered to neutralize the acid functional group of the molecule of the sensitizing dye with an alkali compound such as NaOH. This neutralization, COOH sensitizing dye molecules COO - and became things by bonding Na + COO - has a state - but the Na +, in solution COO because of the dissociation. Since the neutralized and dissociated COO is an anion, the sensitizing dye molecules are less likely to associate with each other due to repulsive force (charge repulsion) acting between the negative charges of the anion (FIG. 12B). Therefore, for example, when the porous semiconductor layer is immersed in this dye solution to support the dye, the dye molecules are less likely to associate on the semiconductor surface, and electron traps between these dyes can be greatly reduced. The above can basically be established also in the case of other acid functional groups such as phosphate groups and other alkaline compounds such as KOH. That is, in order to eliminate the above disadvantages, a dye molecule having a plurality of acid functional groups for adsorbing to the porous semiconductor layer is used, and a part of these acid functional groups is Li, Na, Neutralize with an alkali compound comprising at least one metal selected from the group consisting of K, tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, imidazolium compounds and pyridinium compounds or a hydroxide of a compound. To do. Among these metals or compounds, Na, K, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and 1-ethyl-3-methylimidazolium compounds are preferable, and among these, Na and K which are inorganic alkalis (alkali metals) are preferable. Particularly preferred. These inorganic alkalis have the effect of improving the conductivity of the porous semiconductor layer made of titanium oxide or the like, and since the ionic radius is small, the adsorption density of the dye to the porous semiconductor layer can be increased. . There is no particular limitation on the method of neutralizing the dye molecule, but for example, it can be carried out by mixing in a specified amount based on the number of moles of the dye and the alkali compound, or titration with pH. The partial neutralization of the dye may be performed before preparing the dye solution, or may be neutralized by mixing a predetermined amount of alkali in the dye solution. When neutralization of the dye molecules is performed in the dye solution, water is generated by the neutralization, and therefore, a water removal operation may be performed separately. The dye molecule has a plurality of acid functional groups, and some of them will be neutralized, but if the amount of partial neutralization of the dye molecule is too small, the association inhibition between the dye molecules is insufficient. On the other hand, if the amount is too large, sufficient photoelectric conversion cannot be performed due to a decrease in the adsorptive power of the dye molecules, so that an appropriate neutralization amount exists. The specific neutralization amount is preferably from 0.25 to 0.75, particularly preferably from 0.35 to 0.65, based on the number of acid functional groups in the dye molecule. This neutralization amount can be rephrased as a ratio to the total number of acid functional groups of the entire dye molecule.

多孔質半導体層への色素の担持(吸着)方法に特に制限はないが、上記の色素を例えばアルコール類、ニトリル類、ニトロメタン、ハロゲン化炭化水素、エーテル類、ジメチルスルホキシド、アミド類、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、エステル類、炭酸エステル類、ケトン類、炭化水素、水などの溶媒に溶解させ、これに多孔質半導体層を浸漬させたり、色素溶液を多孔質半導体層上に塗布したりすることができる。また、色素分子同士の会合を低減する目的でデオキシコール酸などを添加してもよい。さらには、紫外線吸収剤を併用してもよい。   Although there is no particular limitation on the method of supporting (adsorbing) the dye on the porous semiconductor layer, the above dye can be used, for example, alcohols, nitriles, nitromethane, halogenated hydrocarbons, ethers, dimethyl sulfoxide, amides, N-methyl. Dissolve in a solvent such as pyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, esters, carbonates, ketones, hydrocarbons, water, etc. Can be applied onto the porous semiconductor layer. Further, deoxycholic acid or the like may be added for the purpose of reducing association between the dye molecules. Furthermore, you may use a ultraviolet absorber together.

多孔質半導体層に色素を吸着させた後に、過剰に吸着した色素の除去を促進する目的で、アミン類を用いて多孔質半導体層の表面を処理してもよい。アミン類の例としてはピリジン、4−tert−ブチルピリジン、ポリビニルピリジンなどが挙げられ、これらが液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用いてもよい。   After the dye is adsorbed on the porous semiconductor layer, the surface of the porous semiconductor layer may be treated with amines for the purpose of promoting the removal of the excessively adsorbed dye. Examples of amines include pyridine, 4-tert-butylpyridine, polyvinylpyridine, and the like. When these are liquid, they may be used as they are, or may be used after being dissolved in an organic solvent.

ところで、色素増感太陽電池などの色素増感光電変換素子においては通常、電解液中の逆電子移動を防ぐために、色素増感多孔質半導体層と結合する物質からなる添加剤が加えられる。この添加剤としては、tert−ブチルピリジン、1−メトキシベンゾイミダゾール、長鎖アルキル基(C=13程度)を持つホスホン酸などが用いられる。これらの添加剤の特徴は電解液に均一に混合できること、色素増感多孔質半導体層に結合できる官能基を有することである。しかし、本発明者の知見によれば、従来の色素増感太陽電池においては、電解液封入後に多孔質半導体層の表面に予め吸着させていた色素が溶出してしまい、光電変換効率が急速に劣化してしまうことが確認された。そこで、逆電子移動反応を防止しつつ、多孔質半導体層に予め吸着させておく色素の溶出を防止し、光電変換効率の向上を図ることが必要である。このためには、電解液に添加剤を加えるのではなく、多孔質半導体層に予め色素および添加剤を吸着させ、このとき添加剤は色素の間の隙間の部分に吸着させ、しかも電解液には添加剤が含まれないようにすることが有効である。その方法としては、例えば、色素が吸着した多孔質半導体層を添加剤を含む溶液に浸漬することにより色素の間の隙間の部分の多孔質半導体層の表面に添加剤を吸着させた後、この色素および添加剤が吸着した多孔質半導体層と対極との間に添加剤を含まない電解液を封入する。こうすることで、色素増感多孔質半導体層に吸着した添加剤により逆電子移動反応を防止しつつ、電解液による色素の溶出を防止することができ、光電変換効率の経時劣化を効果的に防止することができる。添加剤としては、多孔質半導体層に結合する官能基(イミダゾリル基、カルボキシ基、ホスホン基など)を有し、結合の結果脱着を起こさず、かつ吸着の結果、多孔質半導体層の表面の露出を抑えることができる分子が用いられ、具体的には、例えば、tert−ブチルピリジン、1−メトキシベンゾイミダゾール、デカンリン酸などの長鎖アルキル基(C=13程度)を持つホスホン酸などが用いられる。   By the way, in a dye-sensitized photoelectric conversion element such as a dye-sensitized solar cell, an additive composed of a substance that binds to the dye-sensitized porous semiconductor layer is usually added in order to prevent reverse electron transfer in the electrolytic solution. As this additive, tert-butylpyridine, 1-methoxybenzimidazole, phosphonic acid having a long-chain alkyl group (about C = 13) or the like is used. The characteristics of these additives are that they can be mixed uniformly in the electrolyte and have functional groups that can be bonded to the dye-sensitized porous semiconductor layer. However, according to the knowledge of the present inventor, in the conventional dye-sensitized solar cell, the dye previously adsorbed on the surface of the porous semiconductor layer after the electrolytic solution is sealed is eluted, and the photoelectric conversion efficiency is rapidly increased. It was confirmed that it deteriorated. Therefore, it is necessary to prevent the elution of the dye previously adsorbed to the porous semiconductor layer while preventing the reverse electron transfer reaction, thereby improving the photoelectric conversion efficiency. For this purpose, instead of adding an additive to the electrolytic solution, a dye and an additive are adsorbed in advance on the porous semiconductor layer, and at this time, the additive is adsorbed in a gap portion between the dyes and is added to the electrolytic solution. It is effective not to contain any additives. As the method, for example, the porous semiconductor layer adsorbed with the dye is immersed in a solution containing the additive to adsorb the additive on the surface of the porous semiconductor layer in the gap between the dye, An electrolyte containing no additive is sealed between the porous semiconductor layer on which the dye and additive are adsorbed and the counter electrode. By doing so, the additive adsorbed on the dye-sensitized porous semiconductor layer can prevent the reverse electron transfer reaction and prevent the elution of the dye by the electrolyte, effectively reducing the deterioration of photoelectric conversion efficiency over time. Can be prevented. As an additive, it has a functional group (imidazolyl group, carboxy group, phosphone group, etc.) that binds to the porous semiconductor layer, does not cause desorption as a result of bonding, and is exposed to the surface of the porous semiconductor layer as a result of adsorption. Specifically, for example, phosphonic acid having a long-chain alkyl group (about C = 13) such as tert-butylpyridine, 1-methoxybenzimidazole, and decanephosphoric acid is used. .

対極は導電性物質であれば任意のものを用いることができるが、絶縁性の物質でも、色素増感多孔質半導体層に面している側に導電層が設置されていれば、これも使用可能である。ただし、対極の材料としては電気化学的に安定である材料を用いることが好ましく、具体的には、白金、金、カーボン、導電性ポリマーなどを用いることが望ましい。また、酸化還元の触媒効果を向上させる目的で、色素増感多孔質半導体層に面している側は微細構造で表面積が増大していることが好ましく、例えば、白金であれば白金黒状態に、カーボンであれば多孔質状態になっていることが望まれる。白金黒状態は白金の陽極酸化法、塩化白金酸処理などによって、また多孔質状態のカーボンは、カーボン微粒子の焼結や有機ポリマーの焼成などの方法により形成することができる。また、透明導電性基体上に白金など酸化還元触媒効果の高い金属を配線するか、表面を塩化白金酸処理することにより、透明な対極として使用することもできる。この対極の形状に制限はなく、棒状、管状、ワイヤー状などのいずれでもよいが、透明基材の内面に沿った形状であることが好ましい。   Any material can be used as the counter electrode as long as it is a conductive substance, but even an insulating substance can be used if a conductive layer is provided on the side facing the dye-sensitized porous semiconductor layer. Is possible. However, as the counter electrode material, an electrochemically stable material is preferably used, and specifically, platinum, gold, carbon, a conductive polymer, or the like is preferably used. For the purpose of improving the catalytic effect of redox, it is preferable that the side facing the dye-sensitized porous semiconductor layer has a fine structure and an increased surface area. If it is carbon, it is desirable that it is in a porous state. The platinum black state can be formed by anodization of platinum, chloroplatinic acid treatment, and the like, and the porous carbon can be formed by a method such as sintering of carbon fine particles or firing of an organic polymer. Moreover, it can also be used as a transparent counter electrode by wiring a metal having a high redox catalyst effect such as platinum on the transparent conductive substrate or treating the surface with chloroplatinic acid. There is no restriction | limiting in the shape of this counter electrode, Any of rod shape, tubular shape, wire shape, etc. may be sufficient, but it is preferable that it is a shape along the inner surface of a transparent base material.

電解質は、ヨウ素(I2 )と金属ヨウ化物もしくは有機ヨウ化物との組み合わせ、臭素(Br2 )と金属臭化物あるいは有機臭化物との組み合わせのほか、フェロシアン酸塩/フェリシアン酸塩やフェロセン/フェリシニウムイオンなどの金属錯体、ポリ硫化ナトリウム、アルキルチオール/アルキルジスルフィドなどのイオウ化合物、ビオロゲン色素、ヒドロキノン/キノンなどを用いることができる。上記金属化合物のカチオンとしてはLi、Na、K、Mg、Ca、Csなど、上記有機化合物のカチオンとしてはテトラアルキルアンモニウム類、ピリジニウム類、イミダゾリウム類などの4級アンモニウム化合物が好ましいが、これらに限定されるものではなく、また、これらを2種類以上混合して用いることもできる。この中でも、I2 とLiI、NaIやイミダゾリウムヨーダイドなどの4級アンモニウム化合物とを組み合わせた電解質が好ましい。電解質塩の濃度は溶媒に対して0.05〜10Mが好ましく、さらに好ましくは0.2〜3Mである。I2 やBr2 の濃度は0.0005〜1Mが好ましく、さらに好ましくは0.001〜0.1Mである。また、開放電圧、短絡電流を向上させる目的で4−tert−ブチルピリジンやカルボン酸などの各種添加剤を加えることもできる。 Electrolytes include combinations of iodine (I 2 ) and metal iodide or organic iodide, bromine (Br 2 ) and metal bromide or organic bromide, ferrocyanate / ferricyanate, ferrocene / ferri Metal complexes such as sinium ion, sodium polysulfide, sulfur compounds such as alkyl thiol / alkyl disulfide, viologen dye, hydroquinone / quinone, and the like can be used. Lithium, Na, K, Mg, Ca, Cs and the like are preferable as the cation of the metal compound, and quaternary ammonium compounds such as tetraalkylammonium, pyridinium, and imidazolium are preferable as the cation of the organic compound. It is not limited, and two or more of these can be mixed and used. Among these, an electrolyte obtained by combining I 2 and a quaternary ammonium compound such as LiI, NaI or imidazolium iodide is preferable. The concentration of the electrolyte salt is preferably 0.05 to 10M, more preferably 0.2 to 3M with respect to the solvent. The concentration of I 2 or Br 2 is preferably 0.0005 to 1M, more preferably 0.001 to 0.1M. Various additives such as 4-tert-butylpyridine and carboxylic acid can be added for the purpose of improving the open circuit voltage and the short circuit current.

上記電解質組成物を構成する溶媒として水、アルコール類、エーテル類、エステル類、炭酸エステル類、ラクトン類、カルボン酸エステル類、リン酸トリエステル類、複素環化合物類、ニトリル類、ケトン類、アミド類、ニトロメタン、ハロゲン化炭化水素、ジメチルスルホキシド、スルフォラン、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、炭化水素などが挙げられるが、これらに限定されるものではなく、また、これらを2種類以上混合して用いることもできる。さらに、溶媒としてテトラアルキル系、ピリジニウム系、イミダゾリウム系4級アンモニウム塩の室温イオン性液体を用いることも可能である。   Water, alcohols, ethers, esters, carbonate esters, lactones, carboxylic acid esters, phosphoric acid triesters, heterocyclic compounds, nitriles, ketones, amides as a solvent constituting the electrolyte composition Nitromethane, halogenated hydrocarbons, dimethyl sulfoxide, sulfolane, N-methylpyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, hydrocarbons and the like, but are not limited thereto, Moreover, these can also be used in mixture of 2 or more types. Furthermore, it is also possible to use a room temperature ionic liquid of a tetraalkyl, pyridinium, or imidazolium quaternary ammonium salt as a solvent.

光電変換素子の漏液、電解質の揮発を低減する目的で、上記電解質組成物へゲル化剤、ポリマー、架橋モノマーなどを溶解させ、ゲル状電解質として使用することも可能である。ゲルマトリクスと電解質組成物との比率は、電解質組成物が多ければイオン導電率は高くなるが、機械的強度は低下し、逆に電解質組成物が少なすぎると機械的強度は大きいがイオン導電率は低下するため、電解質組成物はゲル状電解質の50〜99wt%が望ましく、80〜97wt%がより好ましい。また、上記電解質と可塑剤とをポリマーに溶解させ、可塑剤を揮発除去することで全固体型の光電変換素子を実現することも可能である。   For the purpose of reducing leakage of the photoelectric conversion element and volatilization of the electrolyte, it is possible to dissolve the gelling agent, polymer, cross-linking monomer, etc. in the above electrolyte composition and use it as a gel electrolyte. The ratio of the gel matrix to the electrolyte composition is such that the more the electrolyte composition, the higher the ionic conductivity, but the mechanical strength decreases. Conversely, if the electrolyte composition is too small, the mechanical strength increases but the ionic conductivity. Therefore, the electrolyte composition is desirably 50 to 99 wt%, more preferably 80 to 97 wt% of the gel electrolyte. It is also possible to realize an all-solid photoelectric conversion element by dissolving the electrolyte and the plasticizer in a polymer and volatilizing and removing the plasticizer.

光電変換素子の製造方法は特に限定されないが、例えば電解質組成物が液状、もしくは光電変換素子内部でゲル化させることが可能であり、導入前は液状の電解質組成物の場合、色素を担持させた管状の色素増感多孔質半導体層の内部に棒状、管状、ワイヤー状などの対極を挿入し、これらの二つの電極が互いに接しないように、この色素増感多孔質半導体層が形成されていない部分を利用して封止する。このとき、色素増感多孔質半導体層と対極との隙間の大きさに特に制限はないが、通常1〜100μmであり、より好ましくは1〜50μmである。これらの電極間の距離が長すぎると、導電率の低下から光電流が減少してしまう。封止方法は特に制限されないが、耐光性、絶縁性、防湿性を備えた材料を用いることが好ましく、エポキシ樹脂、紫外線硬化樹脂、アクリル樹脂、EVA(エチレンビニルアセテート) 、アイオノマー樹脂、変性ポリエチレン(プロピレン)、セラミック、各種熱融着フィルムなどを用いることができ、また、種々の溶接法を用いることができる。また、電解質組成物の溶液を注液する注入口が必要であるが、色素増感多孔質半導体層およびそれに対向する部分の対極上でなければ、注入口の場所は特に限定されない。注液方法に特に制限はないが、予め封止され、溶液の注入口を開けられた素子の内部に注液を行う方法が好ましい。この場合、注入口に溶液を数滴垂らし、毛細管現象により注液する方法が簡便である。また、必要に応じて減圧もしくは加熱下で注液の操作を行うこともできる。完全に溶液が注入された後、注入口に残った溶液を除去し、注入口を封止する。この封止方法にも特に制限はないが、必要であればガラス板やプラスチック基板を封止剤で貼り付けて封止することもできる。また、ポリマーなどを用いたゲル状電解質、全固体型の電解質の場合、色素が吸着した多孔質半導体層上で電解質組成物と可塑剤とを含むポリマー溶液をキャスト法により揮発除去させる。可塑剤を完全に除去した後、上記方法と同様に封止を行う。この封止は真空シーラーなどを用いて、不活性ガス雰囲気下、もしくは減圧中で行うことが好ましい。封止を行った後、電解質を色素増感多孔質半導体層へ十分に含漬させるため、必要に応じて加熱、加圧の操作を行うことも可能である。   The method for producing the photoelectric conversion element is not particularly limited. For example, the electrolyte composition can be liquid or gelled inside the photoelectric conversion element, and in the case of a liquid electrolyte composition, a dye is supported before introduction. The dye-sensitized porous semiconductor layer is not formed so that a counter electrode such as a rod, tube or wire is inserted into the tubular dye-sensitized porous semiconductor layer so that these two electrodes do not contact each other. Seal using part. At this time, although there is no restriction | limiting in particular in the magnitude | size of the clearance gap between a dye-sensitized porous semiconductor layer and a counter electrode, Usually, it is 1-100 micrometers, More preferably, it is 1-50 micrometers. If the distance between these electrodes is too long, the photocurrent decreases due to the decrease in conductivity. The sealing method is not particularly limited, but it is preferable to use a material having light resistance, insulation, and moisture resistance. Epoxy resin, ultraviolet curable resin, acrylic resin, EVA (ethylene vinyl acetate), ionomer resin, modified polyethylene ( Propylene), ceramics, various heat-sealing films, and the like, and various welding methods can be used. Moreover, although the injection port which injects the solution of electrolyte composition is required, if it is not on the counter electrode of the dye-sensitized porous semiconductor layer and the part facing it, the location of an injection port will not be specifically limited. Although there is no restriction | limiting in particular in the liquid injection method, The method of injecting into the inside of the element sealed beforehand and opened the injection port of the solution is preferable. In this case, a method of dropping a few drops of the solution at the injection port and injecting the solution by capillary action is simple. In addition, the injection operation can be performed under reduced pressure or under heating as necessary. After the solution is completely injected, the solution remaining at the inlet is removed and the inlet is sealed. Although there is no restriction | limiting in particular also in this sealing method, If necessary, it can also seal by affixing a glass plate or a plastic substrate with a sealing agent. In the case of a gel electrolyte using a polymer or the like, or an all solid electrolyte, a polymer solution containing an electrolyte composition and a plasticizer is volatilized and removed by a casting method on a porous semiconductor layer on which a dye is adsorbed. After completely removing the plasticizer, sealing is performed in the same manner as in the above method. This sealing is preferably performed using a vacuum sealer or the like under an inert gas atmosphere or under reduced pressure. After sealing, in order to sufficiently immerse the electrolyte in the dye-sensitized porous semiconductor layer, it is possible to perform heating and pressurizing operations as necessary.

色素増感光電変換素子はその用途に応じて様々な形状で作製することが可能であり、その形状は特に限定されない。
色素増感光電変換素子は、最も典型的には色素増感太陽電池として構成される。この色素増感太陽電池は、およそ電力が必要なもの全てに用いることができ、大きさも問わないが、例えば、電子機器、移動体、動力装置、建設機械、工作機械、発電システムなどに用いることができ、用途などによって出力、大きさ、形状などが決められる。ただし、色素増感光電変換素子は、色素増感太陽電池以外のもの、例えば色素増感光センサーなどであってもよい。
The dye-sensitized photoelectric conversion element can be produced in various shapes depending on the application, and the shape is not particularly limited.
The dye-sensitized photoelectric conversion element is most typically configured as a dye-sensitized solar cell. This dye-sensitized solar cell can be used for anything that requires about electric power and can be of any size. For example, it can be used for electronic equipment, moving objects, power units, construction machines, machine tools, power generation systems, etc. The output, size, shape, etc. are determined depending on the application. However, the dye-sensitized photoelectric conversion element may be other than a dye-sensitized solar cell, for example, a dye-sensitized photosensor.

第2の発明は、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する色素増感光電変換素子の製造方法であって、
上記管の内面に湿式コーティング法により上記透明導電層を形成するようにした
ことを特徴とするものである。
第2の発明においては、その性質に反しない限り、第1の発明に関連して説明したことが成立する。
The second invention is
A method for producing a dye-sensitized photoelectric conversion element having a structure in which a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the central portion of the tube Because
The transparent conductive layer is formed on the inner surface of the tube by a wet coating method.
In the second invention, what has been described in relation to the first invention is valid as long as it is not against the nature thereof.

第3の発明は、
複数の光電変換素子を並べて配線した光電変換素子モジュールにおいて、
少なくとも一つの上記光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する色素増感光電変換素子である
ことを特徴とするものである。
The third invention is
In the photoelectric conversion element module in which a plurality of photoelectric conversion elements are arranged and wired,
At least one of the photoelectric conversion elements is
A dye-sensitized photoelectric conversion element having a structure in which a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the center of the tube. It is characterized by.

この場合、複数の光電変換素子は、その全てが上記の色素増感光電変換素子であってもよいし、上記の色素増感光電変換素子と他の光電変換素子、具体的には従来の一般的な平面構造の色素増感光電変換素子やシリコン系光電変換素子などとの組み合わせであってもよい。光の入射角度に対する発電量の変化を大幅に低減し、しかも太陽光スペクトルのより広い波長帯の光を有効に利用するために、好適には、互いに異なる波長帯の光を光電変換可能な少なくとも二種類の上記色素増感光電変換素子を含むようにする。
この光電変換素子モジュールの形態は特に制限されず、必要に応じて決めることができる。また、複数の光電変換素子の配置方法も特に制限されず、必要に応じて決めることができるが、具体的には、例えば、二次元的に並列配置したり、これを複数段積層して三次元的に配置したりすることができる。光電変換素子モジュールを形成するためには、具体的には、例えば、これらの複数の光電変換素子を配置し、これを二枚の透明基板(ガラス基板など)の間に挟み込み、これらの光電変換素子間を配線した後、素子間の隙間にシリコーン樹脂などを充填し、硬化させる。複数の光電変換素子間の配線の仕方は、直列、並列のいずれであってもよい。
第3の発明においては、上記以外のことについては、その性質に反しない限り、第1の発明に関連して説明したことが成立する。
In this case, all of the plurality of photoelectric conversion elements may be the above dye-sensitized photoelectric conversion elements, or the above-described dye-sensitized photoelectric conversion elements and other photoelectric conversion elements, specifically, conventional general-purpose photoelectric conversion elements. A combination with a dye-sensitized photoelectric conversion element or a silicon-based photoelectric conversion element having a typical planar structure may be used. In order to significantly reduce the change in the amount of power generation with respect to the incident angle of light and to effectively use light in a wider wavelength band of the sunlight spectrum, it is preferable that at least light in different wavelength bands can be photoelectrically converted. Two types of the above dye-sensitized photoelectric conversion elements are included.
The form of this photoelectric conversion element module is not particularly limited, and can be determined as necessary. In addition, the arrangement method of the plurality of photoelectric conversion elements is not particularly limited and can be determined as necessary. Specifically, for example, two-dimensionally arranging them in parallel or stacking a plurality of stages to form a tertiary It can be arranged originally. In order to form a photoelectric conversion element module, specifically, for example, a plurality of these photoelectric conversion elements are arranged and sandwiched between two transparent substrates (such as a glass substrate), and these photoelectric conversions are performed. After wiring between the elements, silicone resin or the like is filled in the gaps between the elements and cured. The wiring method between the plurality of photoelectric conversion elements may be either serial or parallel.
In the third aspect of the invention, what has been described in relation to the first aspect of the invention other than the above is valid as long as it is not contrary to the nature thereof.

第4の発明は、
色素増感光電変換素子を用いた電子機器において、
上記色素増感光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とするものである。
この電子機器は、基本的にはどのようなものであってもよく、携帯型のものと据え置き型のものとの双方を含むが、具体例を挙げると、携帯電話、モバイル機器、ロボット、パーソナルコンピュータ、ゲーム機器、車載機器、家庭電気製品、工業製品などである。
第4の発明においては、上記以外のことについては、その性質に反しない限り、第1の発明に関連して説明したことが成立する。
The fourth invention is:
In electronic equipment using dye-sensitized photoelectric conversion elements,
The dye-sensitized photoelectric conversion element is
A transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted into the central portion of the tube.
This electronic device may basically be any type, and includes both portable and stationary types. Specific examples include cell phones, mobile devices, robots, personal computers, and the like. Computers, game devices, in-vehicle devices, home appliances, industrial products, etc.
In the fourth invention, the matters other than the above are explained in relation to the first invention unless they are contrary to the nature.

第5の発明は、
色素増感光電変換素子を用いた移動体において、
上記色素増感光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とするものである。
この移動体は、基本的にはどのようなものであってもよく、具体例を挙げると、自動車、二輪車、航空機、ロケット、宇宙船などである。
第5の発明においては、上記以外のことについては、その性質に反しない限り、第1の発明に関連して説明したことが成立する。
The fifth invention is:
In a moving body using a dye-sensitized photoelectric conversion element,
The dye-sensitized photoelectric conversion element is
A transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted into the central portion of the tube.
This moving body may be basically any type, and specific examples include automobiles, two-wheeled vehicles, aircraft, rockets, and space ships.
In the fifth invention, what has been described in relation to the first invention holds true for matters other than those described above, unless they are contrary to the nature thereof.

第6の発明は、
色素増感光電変換素子を用いた発電システムにおいて、
上記色素増感光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とするものである。
この発電システムは、基本的にはどのようなものであってもよく、その規模も問わない。
第6の発明においては、上記以外のことについては、その性質に反しない限り、第1の発明に関連して説明したことが成立する。
The sixth invention is:
In a power generation system using a dye-sensitized photoelectric conversion element,
The dye-sensitized photoelectric conversion element is
A transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted into the central portion of the tube.
This power generation system may be basically any type, and its scale is not limited.
In the sixth aspect of the invention, what has been described in relation to the first aspect of the invention other than the above is valid as long as it is not contrary to the nature thereof.

上述のように構成されたこの発明においては、色素増感光電変換素子が、透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、この管の中央部に対極が挿入された構造を有することにより、色素増感多孔質半導体層自身がその内部の極微小な空隙に光を閉じ込めやすい構造であることに加えて、どの方向から管に入射する光も光電変換可能であるため、光の入射角度に対する発電量の変化を大幅に低減することができる。
また、この色素増感光電変換素子においては、電解質が外部に漏れるのを防止するためには、例えば、管の内部に対極を挿入し、管の両端部と対極との間を封止部材により封止すれば足りる。このため、従来の平面構造の色素増感光電変換素子のように、色素増感多孔質半導体層を形成した透明導電性基板と対極を形成した基板とを対向させ、その外周部を封止部材により封止する場合に比べて、封止部の面積を大幅に減少させることが可能である。これによって、色素増感光電変換素子の耐久性、特に屋外における耐久性を格段に向上させることができる。
In the present invention configured as described above, the dye-sensitized photoelectric conversion element has a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer sequentially provided on the inner surface of a tube made of a transparent material. By having a structure in which a counter electrode is inserted in the center, the dye-sensitized porous semiconductor layer itself has a structure in which light can be easily confined in a very small void inside, and from which direction the light enters the tube. Since light can also be photoelectrically converted, changes in the amount of power generation with respect to the incident angle of light can be greatly reduced.
Further, in this dye-sensitized photoelectric conversion element, in order to prevent the electrolyte from leaking to the outside, for example, a counter electrode is inserted into the tube, and a sealing member is used between the both ends of the tube and the counter electrode. Sealing is sufficient. Therefore, like a conventional planar structure dye-sensitized photoelectric conversion element, a transparent conductive substrate on which a dye-sensitized porous semiconductor layer is formed and a substrate on which a counter electrode is formed are opposed to each other, and the outer peripheral portion thereof is a sealing member. Compared with the case of sealing by, it is possible to significantly reduce the area of the sealing portion. Thereby, the durability of the dye-sensitized photoelectric conversion element, particularly the durability in the outdoors can be significantly improved.

この発明によれば、色素増感光電変換素子の構造の最適化により、光の入射角度に対する発電量の変化を大幅に低減することができ、しかも耐久性の向上を図ることができる。そして、このような優れた色素増感光電変換素子を用いることにより、高性能の光電変換素子モジュール、電子機器、移動体および発電システムを得ることができる。   According to the present invention, by optimizing the structure of the dye-sensitized photoelectric conversion element, a change in the amount of power generation with respect to the incident angle of light can be greatly reduced, and durability can be improved. By using such an excellent dye-sensitized photoelectric conversion element, it is possible to obtain a high-performance photoelectric conversion element module, an electronic device, a moving body, and a power generation system.

以下、この発明の実施形態について図面を参照しながら説明する。なお、実施形態の全図において、同一または対応する部分には同一の符号を付す。
図1〜図3はこの発明の第1の実施形態による色素増感光電変換素子を示し、図1は側面図、図2は縦断面図、図3は横断面図を示す。
図1〜図3に示すように、この色素増感光電変換素子は、透明材料からなる円形断面の管1の内面に、透明導電層2、色素を担持した半導体微粒子からなる色素増感多孔質半導体層3(色素増感半導体電極)および電解質層4が順次設けられ、この管1の中央部にこの管1の中心軸に沿って延在するように対極5が挿入された構造を有する。この対極5は、例えば棒状、管状あるいはワイヤー状の形状を有する。この場合、この対極5は管1よりも少し長く、その一端部5aは管1の一端部1aとほぼ一致しており、他端部5bは管1の他端部1bから少し突き出ている。管1の一端部1aと対極5の一端部5aとの間および管1の他端部1bと対極5の他端部5bとの間は封止部材6により封止されており、電解質層4が外部に洩れないようになっている。対極5および透明導電層2には、それぞれリード線7、8が接続されている。
管1を構成する透明材料、透明導電層2、色素増感多孔質半導体層3、電解質層4および対極5としては、すでに挙げたものの中から、必要に応じて選択することができる。
また、この色素増感光電変換素子の長さや直径に特に制限はなく、この色素増感光電変換素子の用途、出力などに応じて適宜決められる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings of the embodiments, the same or corresponding parts are denoted by the same reference numerals.
1 to 3 show a dye-sensitized photoelectric conversion element according to a first embodiment of the present invention, FIG. 1 is a side view, FIG. 2 is a longitudinal sectional view, and FIG. 3 is a transverse sectional view.
As shown in FIG. 1 to FIG. 3, this dye-sensitized photoelectric conversion element has a dye-sensitized porous layer made of semiconductor fine particles carrying a transparent conductive layer 2 and a dye on the inner surface of a circular cross-section tube 1 made of a transparent material. A semiconductor layer 3 (dye-sensitized semiconductor electrode) and an electrolyte layer 4 are sequentially provided, and a counter electrode 5 is inserted into the central portion of the tube 1 so as to extend along the central axis of the tube 1. The counter electrode 5 has, for example, a rod shape, a tubular shape, or a wire shape. In this case, the counter electrode 5 is slightly longer than the tube 1, one end portion 5 a thereof substantially coincides with the one end portion 1 a of the tube 1, and the other end portion 5 b projects slightly from the other end portion 1 b of the tube 1. Between the one end 1a of the tube 1 and one end 5a of the counter electrode 5 and between the other end 1b of the tube 1 and the other end 5b of the counter electrode 5 are sealed by a sealing member 6, and the electrolyte layer 4 Is not leaked to the outside. Lead wires 7 and 8 are connected to the counter electrode 5 and the transparent conductive layer 2, respectively.
The transparent material, the transparent conductive layer 2, the dye-sensitized porous semiconductor layer 3, the electrolyte layer 4 and the counter electrode 5 constituting the tube 1 can be selected from those already mentioned as necessary.
Moreover, there is no restriction | limiting in particular in the length and diameter of this dye-sensitized photoelectric conversion element, and it determines suitably according to the use, output, etc. of this dye-sensitized photoelectric conversion element.

次に、この色素増感光電変換素子の製造方法について説明する。
まず、透明材料からなり、所定の長さ、外径および内径を有する管1を用意する。次に、この管1の内面に透明導電層2を形成する。この透明導電層2の形成には、例えば湿式コーティング法、好適にはスプレー熱分解法が用いられる。次に、この透明導電層2の内面に、半導体微粒子が分散されたペーストを所定の厚さに塗布する。次に、管1および透明導電層2の全体を所定温度に加熱して半導体微粒子を焼結する。次に、この半導体微粒子が焼結された管1および透明導電層2の全体を色素溶液に浸漬するなどして半導体微粒子に色素を担持させる。こうして色素増感多孔質半導体層3が形成される。
Next, the manufacturing method of this dye-sensitized photoelectric conversion element is demonstrated.
First, a tube 1 made of a transparent material and having a predetermined length, outer diameter, and inner diameter is prepared. Next, the transparent conductive layer 2 is formed on the inner surface of the tube 1. For the formation of the transparent conductive layer 2, for example, a wet coating method, preferably a spray pyrolysis method is used. Next, a paste in which semiconductor fine particles are dispersed is applied to the inner surface of the transparent conductive layer 2 to a predetermined thickness. Next, the entire tube 1 and the transparent conductive layer 2 are heated to a predetermined temperature to sinter the semiconductor fine particles. Next, the semiconductor fine particles are supported on the dye by, for example, immersing the entire tube 1 and the transparent conductive layer 2 in which the semiconductor fine particles are sintered in a dye solution. Thus, the dye-sensitized porous semiconductor layer 3 is formed.

一方、所定の長さおよび直径を有する対極5を用意する。そして、この対極5を管1の中央部に挿入し、対極5と管1とを、この対極5と管1の内面に形成された色素増感多孔質半導体層3とが所定の間隔、例えば1〜100μm、好ましくは1〜50μmの間隔をおいて互いに対向するように保持するとともに、管1の一端部1aと対極5の一端部5aとの間および管1の他端部1bと対極5の他端部5bとの間を封止部材6により封止して電解質層4が封入される空間を作り、この空間に予め形成された注入口から電解質層4を注入する。その後、この注入口を塞ぐ。次に、対極5および透明導電層2にそれぞれリード線7、8を接続する。こうして、色素増感光電変換素子が製造される。   On the other hand, a counter electrode 5 having a predetermined length and diameter is prepared. Then, the counter electrode 5 is inserted into the central portion of the tube 1, and the counter electrode 5 and the tube 1 are separated from each other by a predetermined interval, for example, the counter electrode 5 and the dye-sensitized porous semiconductor layer 3 formed on the inner surface of the tube 1. 1 to 100 μm, preferably 1 to 50 μm, so as to be opposed to each other, and between the one end 1 a of the tube 1 and one end 5 a of the counter electrode 5 and between the other end 1 b of the tube 1 and the counter electrode 5. The other end portion 5b is sealed with a sealing member 6 to create a space in which the electrolyte layer 4 is enclosed, and the electrolyte layer 4 is injected into the space from an injection port formed in advance. Thereafter, the inlet is closed. Next, lead wires 7 and 8 are connected to the counter electrode 5 and the transparent conductive layer 2, respectively. In this way, a dye-sensitized photoelectric conversion element is manufactured.

次に、この色素増感光電変換素子の動作について説明する。
外部から管1に入射した光は、この管1および透明導電層2を透過して色素増感多孔質半導体層3に入射し、この色素増感多孔質半導体層3の色素を励起して電子を発生する。この電子は、速やかに色素から色素増感多孔質半導体層3の半導体微粒子に渡される。一方、電子を失った色素は電解質層4のイオンから電子を受け取り、電子を渡した分子は再び対極5の表面で電子を受け取る。この一連の反応により、色素増感多孔質半導体層3と電気的に接続された透明導電層2と対極5との間に起電力が発生する。こうして光電変換が行われる。
Next, the operation of this dye-sensitized photoelectric conversion element will be described.
Light incident on the tube 1 from the outside passes through the tube 1 and the transparent conductive layer 2 and enters the dye-sensitized porous semiconductor layer 3, and excites the dye of the dye-sensitized porous semiconductor layer 3 to generate electrons. Is generated. The electrons are quickly transferred from the dye to the semiconductor fine particles of the dye-sensitized porous semiconductor layer 3. On the other hand, the dye that has lost the electrons receives electrons from the ions of the electrolyte layer 4, and the molecule that has passed the electrons receives electrons again at the surface of the counter electrode 5. By this series of reactions, an electromotive force is generated between the transparent conductive layer 2 electrically connected to the dye-sensitized porous semiconductor layer 3 and the counter electrode 5. In this way, photoelectric conversion is performed.

以上のように、この第1の実施形態によれば、色素増感光電変換素子が、透明材料からなる管1の内面に透明導電層2、色素増感多孔質半導体層3および電解質層4が順次設けられ、この管1の中央部に対極5が挿入された構造を有することにより、管1の表面にどの方向から光が入射しても光電変換が可能であり、このため光の入射角度に対する発電量の変化を大幅に低減することができる。また、この色素増感光電変換素子は封止部の面積が極めて小さいため、屋外における耐久性も極めて優れている。   As described above, according to the first embodiment, the dye-sensitized photoelectric conversion element has the transparent conductive layer 2, the dye-sensitized porous semiconductor layer 3, and the electrolyte layer 4 on the inner surface of the tube 1 made of a transparent material. By having a structure in which the counter electrode 5 is inserted in the central portion of the tube 1 in order, photoelectric conversion is possible regardless of the direction of light incident on the surface of the tube 1. It is possible to greatly reduce the change in the amount of power generation with respect to. In addition, since this dye-sensitized photoelectric conversion element has a very small sealing area, it has excellent durability outdoors.

実施例1
半導体微粒子としてTiO2 微粒子を用いた。TiO2 微粒子が分散されたペーストを非特許文献2を参考にして以下のように作製した。125mlのチタンイソプロポキシドを750mlの0.1M硝酸水溶液に室温で撹拌しながらゆっくり滴下した。滴下が終了したら、この溶液を80℃の恒温槽に移し、8時間撹拌して、白濁した半透明のゾル溶液を得た。このゾル溶液を室温まで放冷し、ガラスフィルターでろ過した後、700mlにメスアップした。得られたゾル溶液をオートクレーブへ移し、220℃で12時間水熱処理を行った後、1時間超音波処理を行うことにより分散処理した。次に、この溶液をエバポレーターにより40℃で濃縮し、TiO2 の含有量が20wt%になるように調製した。この濃縮ゾル溶液に、ペースト中のTiO2 に対して20wt%のポリエチレングリコール(分子量50万)とペースト中のTiO2 に対して30wt%の粒径200nmのアナターゼ型TiO2 を添加し、これらを撹拌脱泡機で均一に混合し、増粘したTiO2 ペーストを得た。
Example 1
TiO 2 fine particles were used as the semiconductor fine particles. A paste in which TiO 2 fine particles were dispersed was prepared as follows with reference to Non-Patent Document 2. 125 ml of titanium isopropoxide was slowly added dropwise to 750 ml of 0.1 M nitric acid aqueous solution with stirring at room temperature. When the dropping was completed, this solution was transferred to a constant temperature bath at 80 ° C. and stirred for 8 hours to obtain a cloudy translucent sol solution. The sol solution was allowed to cool to room temperature, filtered through a glass filter, and then made up to 700 ml. The obtained sol solution was transferred to an autoclave, hydrothermally treated at 220 ° C. for 12 hours, and then subjected to dispersion treatment by performing ultrasonic treatment for 1 hour. Next, this solution was concentrated by an evaporator at 40 ° C. to prepare a TiO 2 content of 20 wt%. To the concentrate sol solution was added anatase TiO 2 of 30 wt% of the particle size 200nm TiO 2 with in the paste and 20 wt% polyethylene glycol (molecular weight 500,000) with respect to TiO 2 in the paste, these The mixture was uniformly mixed with a stirring deaerator to obtain a thickened TiO 2 paste.

透明材料からなる管1として石英管(内径2.5mmφ、長さ50mm)を用い、フッ化アンモニウムとジブチルスズジアセテートのエタノール溶液とを用いたスプレー熱分解法により、この石英管の内壁に透明導電層2としてフッ素ドープSnO2 膜を形成した。また、この石英管には電解液注入用の注入口として0.5mmφの穴を2箇所開けた。
次に、石英管の外周面をマスク材によりマスキングし、上記のように得られたTiO2 ペーストを、石英管の内面に形成された透明導電層2としてのフッ素ドープSnO2 膜上にディップコート法により塗布した後、450℃に30分間保持し、このフッ素ドープSnO2 膜上にTiO2 を焼結した。次に、こうしてTiO2 の焼結を行った石英管を0.05MのTiCl4 水溶液中に浸漬させ、70℃に30分間保持した後、洗浄を行い、その後再び450℃で30分間焼成を行った。
次に、こうして作製したTiO2 焼結体の不純物を除去し、活性を高める目的で、紫外線照射装置により30分間、紫外線露光を行った。
A quartz tube (inner diameter 2.5 mmφ, length 50 mm) is used as the tube 1 made of a transparent material, and transparent conductive material is formed on the inner wall of the quartz tube by spray pyrolysis using ammonium fluoride and ethanol solution of dibutyltin diacetate. As layer 2, a fluorine-doped SnO 2 film was formed. In addition, two holes of 0.5 mmφ were formed in this quartz tube as injection ports for electrolyte injection.
Next, the outer peripheral surface of the quartz tube is masked with a mask material, and the TiO 2 paste obtained as described above is dip-coated on the fluorine-doped SnO 2 film as the transparent conductive layer 2 formed on the inner surface of the quartz tube. After coating by the method, it was kept at 450 ° C. for 30 minutes, and TiO 2 was sintered on this fluorine-doped SnO 2 film. Next, the quartz tube thus sintered in TiO 2 is immersed in a 0.05 M TiCl 4 aqueous solution, kept at 70 ° C. for 30 minutes, washed, and then fired again at 450 ° C. for 30 minutes. It was.
Next, for the purpose of removing impurities and increasing the activity of the TiO 2 sintered body thus produced, ultraviolet exposure was performed for 30 minutes with an ultraviolet irradiation device.

次に、0.3mMのシス−ビス(イソチオシアナート)−N,N−ビス(2,2' −ジピリジル−4,4' −ジカルボン酸)−ルテニウム(II)ジテトラブチルアンモニウム塩(cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium salt) (N719色素)を溶解したtert−ブチルアルコール/アセトニトリル混合溶媒(体積比1:1)に上記のTiO2 焼結体を室温下、24時間浸漬させ、色素を担持させた。このTiO2 焼結体を4−tert−ブチルピリジンのアセトニトリル溶液、アセトニトリルの順で洗浄し、暗所で乾燥させた。 Next, 0.3 mM cis-bis (isothiocyanate) -N, N-bis (2,2′-dipyridyl-4,4′-dicarboxylic acid) -ruthenium (II) ditetrabutylammonium salt (cis- A tert-butyl alcohol / acetonitrile mixed solvent in which bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) -ruthenium (II) bis-tetrabutylammonium salt) (N719 dye) is dissolved (volume ratio 1: In 1), the above TiO 2 sintered body was immersed at room temperature for 24 hours to carry the dye. This TiO 2 sintered body was washed sequentially with an acetonitrile solution of 4-tert-butylpyridine and acetonitrile and dried in the dark.

対極5として、2.4mmφ、長さ60mmのTi棒にPtめっき(厚さ200nm)を施したものを用いた。
次に、上記のように準備された石英管の内部に上記のPtめっきTi棒を挿入し、石英管の端部を、封止部材6にアクリル系UV硬化樹脂を用いて封止した。
As the counter electrode 5, a Ti rod having a diameter of 2.4 mmφ and a length of 60 mm and subjected to Pt plating (thickness: 200 nm) was used.
Next, the Pt-plated Ti rod was inserted into the quartz tube prepared as described above, and the end of the quartz tube was sealed to the sealing member 6 using an acrylic UV curable resin.

一方、メトキシアセトニトリル3gにヨウ化ナトリウム(NaI)0.04g、1−プロピル−2,3−ジメチルイミダゾリウムヨーダイド0.479g、ヨウ素(I2 )0.0381g、4−tert−ブチルピリジン0.2gを溶解させ、電解質組成物を調製した。
上記混合溶液を予め石英管に形成した注入口から送液ポンプを用いて注入し、減圧することで素子内部の気泡を追い出した。次に、注入口にアクリル系UV硬化樹脂を滴下し、ガラス基板を被せて硬化させ、色素増感光電変換素子を得た。
この色素増感光電変換素子の有効面積は、光の入射方向に対して1cm2 (0.25cm(石英管の内径)×4cm(TiO2 焼結体の長さ)である。
Meanwhile, 3 g of methoxyacetonitrile, 0.04 g of sodium iodide (NaI), 0.479 g of 1-propyl-2,3-dimethylimidazolium iodide, 0.0381 g of iodine (I 2 ), 4-tert-butylpyridine 2 g was dissolved to prepare an electrolyte composition.
The mixed solution was injected from an injection port previously formed in the quartz tube using a liquid feed pump, and the bubbles inside the device were driven out by reducing the pressure. Next, an acrylic UV curable resin was dropped into the injection port, and the glass substrate was covered and cured to obtain a dye-sensitized photoelectric conversion element.
The effective area of the dye-sensitized photoelectric conversion element is 1 cm 2 (0.25 cm (inner diameter of the quartz tube) × 4 cm (length of the TiO 2 sintered body) with respect to the incident direction of light.

実施例2
図4および図5に示すように、実施例1で作製した色素増感光電変換素子10を用いて光電変換素子モジュールを作製した。ここで、図4および図5はそれぞれこの光電変換素子モジュールの平面図および横断面図である。
すなわち、図4および図5に示すように、実施例1で作製した色素増感光電変換素子10を10本直列に接続し、二枚の50mm角のガラス基板11、12の間へ並べて挟み込み、その隙間へ2液混合型シリコーンゴム13を充填し、硬化させ、光電変換素子モジュール20を得た。この光電変換素子モジュール20の有効面積は、光の入射方向に対して10cm2 (0.25cm×4cm×10セル) である。
Example 2
As shown in FIGS. 4 and 5, a photoelectric conversion element module was prepared using the dye-sensitized photoelectric conversion element 10 prepared in Example 1. Here, FIG. 4 and FIG. 5 are a plan view and a cross-sectional view of the photoelectric conversion element module, respectively.
That is, as shown in FIG. 4 and FIG. 5, ten dye-sensitized photoelectric conversion elements 10 prepared in Example 1 are connected in series, and are sandwiched between two 50 mm square glass substrates 11 and 12, The two-component mixed silicone rubber 13 was filled in the gap and cured to obtain a photoelectric conversion element module 20. The effective area of the photoelectric conversion element module 20 is 10 cm 2 (0.25 cm × 4 cm × 10 cells) with respect to the incident direction of light.

比較例1
透明基材として10mm×50mmの平坦な石英基板、対極としてPtめっき(厚さ200nm)を施した10mm×50mmの平坦なTi板を用いたこと以外は実施例1と同様に色素増感光電変換素子を作製した。この色素増感光電変換素子の有効面積は、光の入射方向に対して1cm2 (0.25cm×4cm)である。
比較例2
比較例1で作製した色素増感光電変換素子を10本直列に接続し、二枚の50mm角のガラス基板の間へ並べて挟み込み、その隙間へ2液混合型シリコーンゴムを充填し、硬化させ、光電変換素子モジュールを得た。この光電変換素子モジュールの有効面積は、光の入射方向に対して10cm2 (0.25cm×4cm×10セル) である。
Comparative Example 1
Dye-sensitized photoelectric conversion as in Example 1 except that a 10 mm × 50 mm flat quartz substrate was used as the transparent substrate and a 10 mm × 50 mm flat Ti plate plated with Pt (thickness 200 nm) was used as the counter electrode. An element was produced. The effective area of the dye-sensitized photoelectric conversion element is 1 cm 2 (0.25 cm × 4 cm) with respect to the incident direction of light.
Comparative Example 2
Ten dye-sensitized photoelectric conversion elements prepared in Comparative Example 1 were connected in series, sandwiched between two 50 mm square glass substrates, filled with a two-component mixed silicone rubber in the gap, cured, A photoelectric conversion element module was obtained. The effective area of the photoelectric conversion element module is 10 cm 2 (0.25 cm × 4 cm × 10 cells) with respect to the incident direction of light.

以上のように作製した実施例1および比較例1の色素増感光電変換素子ならびに実施例2および比較例2の光電変換素子モジュールにおいて、擬似太陽光(AM1.5,100mW/cm2 )照射時に光の入射角度を90°から0°まで変化させた場合の光電変換効率の維持率を図6に示す。
上記の光電変換素子および光電変換素子モジュールを屋外に暴露し、10日おきに90日まで光電変換効率を測定した。図7にこのときの光電変換効率の維持率を示す。
In the dye-sensitized photoelectric conversion element of Example 1 and Comparative Example 1 manufactured as described above and the photoelectric conversion element module of Example 2 and Comparative Example 2, irradiation with pseudo sunlight (AM1.5, 100 mW / cm 2 ) FIG. 6 shows the maintenance efficiency of photoelectric conversion efficiency when the incident angle of light is changed from 90 ° to 0 °.
The photoelectric conversion element and the photoelectric conversion element module were exposed to the outdoors, and the photoelectric conversion efficiency was measured up to 90 days every 10 days. FIG. 7 shows the maintenance rate of the photoelectric conversion efficiency at this time.

図6から、実施例1の色素増感光電変換素子の光電変換効率は、光の入射角度依存性が全くないことが分かる。また、実施例2の光電変換素子モジュールも、比較例2の光電変換素子モジュールと比較して、光電変換効率の光の入射角度依存性が少なく、より広角において光電変換可能となった。
また、図7から、実施例1の色素増感光電変換素子および実施例2の光電変換素子モジュールは屋外暴露における光電変換効率の維持率が高いことが分かる。
FIG. 6 shows that the photoelectric conversion efficiency of the dye-sensitized photoelectric conversion element of Example 1 has no dependency on the incident angle of light. In addition, the photoelectric conversion element module of Example 2 also has less dependency on the incident angle of light of photoelectric conversion efficiency than the photoelectric conversion element module of Comparative Example 2, and can perform photoelectric conversion at a wider angle.
Moreover, it can be seen from FIG. 7 that the dye-sensitized photoelectric conversion element of Example 1 and the photoelectric conversion element module of Example 2 have high photoelectric conversion efficiency maintenance rates in outdoor exposure.

実施例3
色素としてブラックダイ、すなわちトリス(イソチオシアナート)−ルテニウム(II)−2,2' :6' ,2''−ターピリジン−4,4' ,4''−トリカルボン酸、トリス−テトラブチルアンモニウム塩(tris(isothiocyanato)-ruthenium(II)-2,2':6',2''-terpyridine-4,4',4''-tricarboxylic acid,tris-tetrabutylammonium salt)を用いたこと以外は実施例1と同様に色素増感光電変換素子を作製した。この色素増感光電変換素子の有効面積は、光の入射方向に対して1cm2 (0.25cm×4cm)である。
Example 3
Black dye as a dye, that is, tris (isothiocyanate) -ruthenium (II) -2,2 ′: 6 ′, 2 ″ -terpyridine-4,4 ′, 4 ″ -tricarboxylic acid, tris-tetrabutylammonium salt Example except that (tris (isothiocyanato) -ruthenium (II) -2,2 ': 6', 2 ''-terpyridine-4,4 ', 4''-tricarboxylic acid, tris-tetrabutylammonium salt) was used As in Example 1, a dye-sensitized photoelectric conversion element was produced. The effective area of the dye-sensitized photoelectric conversion element is 1 cm 2 (0.25 cm × 4 cm) with respect to the incident direction of light.

図8に示すように、実施例1で作製した色素増感光電変換素子10を10本直列に接続したものと、実施例3で作製した色素増感光電変換素子30を10本直列に接続したものとを上下に積層し、これを二枚の50mm角のガラス基板11、12の間へ並べて挟み込み、その隙間へ2液混合型シリコーンゴム13を充填し、硬化させ、光電変換素子モジュール40を得た。この光電変換素子モジュール40の有効面積は、光の入射方向に対して10cm2 (0.25cm×4cm×10セル) である。 As shown in FIG. 8, 10 dye-sensitized photoelectric conversion elements 10 produced in Example 1 were connected in series and 10 dye-sensitized photoelectric conversion elements 30 produced in Example 3 were connected in series. Are stacked between two 50 mm square glass substrates 11 and 12, and the two-component mixed silicone rubber 13 is filled in the gap and cured, and the photoelectric conversion element module 40 is assembled. Obtained. The effective area of the photoelectric conversion element module 40 is 10 cm 2 (0.25 cm × 4 cm × 10 cells) with respect to the incident direction of light.

この光電変換素子モジュール40では、実施例1の色素増感光電変換素子10で色素として使用しているN719は波長500nm付近に吸収ピークを有し、実施例3の色素増感光電変換素子30で色素として使用しているブラックダイは波長650nm付近に吸収ピークを有し、吸収帯の波長域が互いに異なるため、色素増感光電変換素子10だけ、あるいは色素増感光電変換素子30だけを用いた光電変換素子モジュールに比べて、太陽光スペクトルのより広い波長帯の光を光電変換することができ、より高い量子効率を得ることができる。このため、発電量を増加させることができる。   In this photoelectric conversion element module 40, N719 used as a dye in the dye-sensitized photoelectric conversion element 10 of Example 1 has an absorption peak near a wavelength of 500 nm. In the dye-sensitized photoelectric conversion element 30 of Example 3, Since the black dye used as the dye has an absorption peak near the wavelength of 650 nm and the wavelength bands of the absorption bands are different from each other, only the dye-sensitized photoelectric conversion element 10 or only the dye-sensitized photoelectric conversion element 30 is used. Compared with the photoelectric conversion element module, light in a wider wavelength band of the sunlight spectrum can be photoelectrically converted, and higher quantum efficiency can be obtained. For this reason, power generation amount can be increased.

次に、この発明の第2の実施形態による色素増感光電変換素子について説明する。
この色素増感光電変換素子においては、色素増感多孔質半導体層3において、色素分子がその酸官能基により半導体微粒子に吸着しており、かつ、色素分子の一部の酸官能基が、Li、Na、K、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、イミダゾリウム化合物およびピリジニウム化合物からなる群より選ばれた少なくとも一種の金属または化合物の水酸化物からなるアルカリ化合物により中和されてアニオンとなっている。こうすることで、アニオン間に働く斥力により、色素分子同士の会合が抑制され、色素分子間の電子トラップの大幅な低減を図ることができる。その他のことは第1の実施形態による色素増感光電変換素子と同様である。
Next explained is a dye-sensitized photoelectric conversion element according to the second embodiment of the invention.
In this dye-sensitized photoelectric conversion element, in the dye-sensitized porous semiconductor layer 3, the dye molecule is adsorbed to the semiconductor fine particles by its acid functional group, and a part of the acid functional group of the dye molecule is Li , Na, K, tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, imidazolium compounds and neutralized with an alkali compound consisting of a hydroxide of a compound selected from the group consisting of pyridinium compounds Has become an anion. By doing so, association between the dye molecules is suppressed by the repulsive force acting between the anions, and an electron trap between the dye molecules can be greatly reduced. Others are the same as those of the dye-sensitized photoelectric conversion element according to the first embodiment.

この色素増感光電変換素子の製造方法は、色素溶液において、例えば、予め、色素分子の一部の酸官能基をLi、Na、K、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、イミダゾリウム化合物およびピリジニウム化合物からなる群より選ばれた少なくとも一種の金属または化合物の水酸化物からなるアルカリ化合物により中和してアニオンとしておくことを除いて、第1の実施形態による色素増感光電変換素子の製造方法と同様である。   The method for producing the dye-sensitized photoelectric conversion element is as follows. In the dye solution, for example, a part of the acid functional group of the dye molecule is previously Li, Na, K, tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium. The dye sensitization according to the first embodiment except that it is neutralized with an alkali compound comprising at least one metal selected from the group consisting of an imidazolium compound and a pyridinium compound or a hydroxide of a compound to form an anion. It is the same as the manufacturing method of a photoelectric conversion element.

この第2の実施形態によれば、第1の実施形態と同様な利点に加えて次のような利点を得ることができる。すなわち、色素の酸官能基の一部をアルカリ化合物により中和することでこの酸官能基はアニオンとなり、その負電荷間に働く斥力(電荷反発)により増感色素分子同士の会合が起こりにくくなるため、色素分子間の電子トラップの大幅な低減を図ることができ、これによって色素増感光電変換素子の電流、電圧を大きく増加させることができ、光電変換効率の向上を図ることができる。   According to the second embodiment, in addition to the same advantages as those of the first embodiment, the following advantages can be obtained. That is, by neutralizing a part of the acid functional group of the dye with an alkali compound, the acid functional group becomes an anion, and the repulsive force (charge repulsion) acting between the negative charges makes it difficult for the sensitizing dye molecules to associate with each other. Therefore, the electron traps between the dye molecules can be significantly reduced, whereby the current and voltage of the dye-sensitized photoelectric conversion element can be greatly increased, and the photoelectric conversion efficiency can be improved.

実施例4
TiO2 焼結体の不純物を除去し、さらに紫外線露光を行った後に色素を担持させる際に下記のプロセスを用いること以外は実施例1と同様にして色素増感光電変換素子を作製した。
すなわち、十分に精製したシス−ビス(イソチオシアナート)−N,N−ビス(2,2' −ジピリジル−4,4' −ジカルボン酸)−ルテニウム(II)2水和物を1mMの濃度でメタノールに溶解させた。次に、この溶液にNaOHをカルボン酸数の0.5倍量添加し十分に撹拌し、カルボキシ基の中和を行った後、エバポレーターで濃縮し、ジエチルエーテルにて再結晶させた。この沈殿物をろ別し、ジエチルエーテルで洗浄後、50℃で24時間真空乾燥で乾燥させた。
Example 4
A dye-sensitized photoelectric conversion element was produced in the same manner as in Example 1 except that the following process was used when the dye was supported after removing impurities from the TiO 2 sintered body and further subjected to ultraviolet exposure.
That is, fully purified cis-bis (isothiocyanate) -N, N-bis (2,2′-dipyridyl-4,4′-dicarboxylic acid) -ruthenium (II) dihydrate at a concentration of 1 mM. Dissolved in methanol. Next, 0.5 times the amount of carboxylic acid was added to this solution and stirred sufficiently to neutralize the carboxy group, and then concentrated with an evaporator and recrystallized with diethyl ether. The precipitate was separated by filtration, washed with diethyl ether, and dried by vacuum drying at 50 ° C. for 24 hours.

次に、こうして得られたシス−ビス(イソチオシアナート)−N,N−ビス(2,2'
−ジピリジル−4,4' −ジカルボン酸)−ルテニウム(II)2Na塩を0.3mMの濃度で溶解したtert−ブチルアルコール/アセトニトリル混合溶媒(体積比1:1)に上記のTiO2 焼結体を室温下、24時間浸漬させ、色素を担持させた。このTiO2 焼結体を4−tert−ブチルピリジンのアセトニトリル溶液、アセトニトリルの順で洗浄し、暗所で乾燥させた。
こうして作製した実施例4の色素増感光電変換素子では、部分中和なしの色素および完全中和の色素を用いたものと比較して、フィルファクターおよび開放電圧が飛躍的に向上し、光電変換効率に優れている。
Next, the cis-bis (isothiocyanate) -N, N-bis (2,2 ′) thus obtained is obtained.
- dipyridyl-4,4 '- dicarboxylic acid) - ruthenium (II) the 2Na salt was dissolved at a concentration of 0.3 mM tert-butyl alcohol / acetonitrile mixed solvent (volume ratio 1: 1) of the above TiO 2 sintered body Was immersed at room temperature for 24 hours to carry the dye. This TiO 2 sintered body was washed sequentially with an acetonitrile solution of 4-tert-butylpyridine and acetonitrile and dried in the dark.
In the dye-sensitized photoelectric conversion element of Example 4 thus prepared, the fill factor and the open-circuit voltage are dramatically improved as compared with those using a dye without partial neutralization and a dye with complete neutralization, and photoelectric conversion Excellent efficiency.

次に、この発明の第3の実施形態による色素増感光電変換素子について説明する。
図9に示すように、この色素増感光電変換素子においては、透明導電層2上に透明な金属酸化物層9が設けられ、その上に色素増感多孔質半導体層3が設けられている。具体的には、例えば、透明導電層2を形成した後、湿式コーティング法、例えばスプレー熱分解法により金属酸化物層9として厚さが20nmのNb2 5 層を形成する。その他のことは、第1の実施形態による色素増感光電変換素子と同様である。
Next explained is a dye-sensitized photoelectric conversion element according to the third embodiment of the invention.
As shown in FIG. 9, in this dye-sensitized photoelectric conversion element, a transparent metal oxide layer 9 is provided on the transparent conductive layer 2, and a dye-sensitized porous semiconductor layer 3 is provided thereon. . Specifically, for example, after forming the transparent conductive layer 2, an Nb 2 O 5 layer having a thickness of 20 nm is formed as the metal oxide layer 9 by a wet coating method, for example, a spray pyrolysis method. Others are the same as those of the dye-sensitized photoelectric conversion element according to the first embodiment.

この第3の実施形態によれば、第1の実施形態と同様な利点に加えて次のような利点を得ることができる。すなわち、金属酸化物層9により透明導電層2と電解質層4として用いられる電解液とが直接接することが防止されるため、逆電子移動反応による漏れ電流を大幅に低減することができ、それによってフィルファクターおよび開放電圧を高くすることができ、光電変換効率のより一層の向上を図ることができる。   According to the third embodiment, in addition to the same advantages as those of the first embodiment, the following advantages can be obtained. That is, since the metal oxide layer 9 prevents the transparent conductive layer 2 and the electrolytic solution used as the electrolyte layer 4 from being in direct contact with each other, the leakage current due to the reverse electron transfer reaction can be greatly reduced, thereby The fill factor and the open circuit voltage can be increased, and the photoelectric conversion efficiency can be further improved.

次に、この発明の第4の実施形態による色素増感光電変換素子について説明する。
図10に示すように、この色素増感光電変換素子においては、色素増感多孔質半導体層3には色素51が吸着しているだけでなく、この色素51の間の隙間の部分に添加剤52も吸着している。そして、この場合、電解質層4を構成する電解液中には、従来と異なり添加剤が加えられていない。色素51および添加剤52は、例えば、すでに挙げたものの中から必要に応じて選択することができる。その他の構成は第1の実施形態と同様であるので、説明を省略する。
Next explained is a dye-sensitized photoelectric conversion element according to the fourth embodiment of the invention.
As shown in FIG. 10, in this dye-sensitized photoelectric conversion element, not only the dye 51 is adsorbed to the dye-sensitized porous semiconductor layer 3, but also an additive in the gap portion between the dye 51. 52 is also adsorbed. In this case, no additive is added to the electrolytic solution constituting the electrolyte layer 4 unlike the conventional case. The pigment | dye 51 and the additive 52 can be selected as needed from what was already mentioned, for example. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

次に、この色素増感光電変換素子の製造方法について説明する。
まず、第1の実施形態と同様にして管1の内面に透明導電層2および色素増感多孔質半導体層3を順次形成する。この状態の色素増感多孔質半導体層3を図11Aに模式的に示す。この色素増感多孔質半導体層3は第1の実施形態と同様に形成する。
次に、図11Bに示すように、容器53内に、添加剤52を溶媒に溶かした溶液54を入れておき、この溶液54中に色素増感多孔質半導体層3が形成された管1を浸漬し、さらに容器54に蓋55をし、色素増感多孔質半導体層3に添加剤52を吸着させる。具体例を挙げると、溶液54として、NaI0.1M、1−プロピル−2,3ジメチルイミダゾリウムヨウ化物(DMP II)0.6M、I2 0.05M、添加剤であるtert−ブチルピリジン(TBP)0.5Mのメトキシアセトニトリル(MeACN)溶液からなる電解液を調製し、この電解液に、色素増感多孔質半導体層3を5〜10分間浸漬し、色素が吸着できなかったサイトの色素増感多孔質半導体層3の表面に添加剤52としてtert−ブチルピリジンを吸着させた。その後、メトキシアセトニトリルにより、色素増感多孔質半導体層3に付着した電解液をすすぎ落とし、風乾させる。
Next, the manufacturing method of this dye-sensitized photoelectric conversion element is demonstrated.
First, similarly to the first embodiment, the transparent conductive layer 2 and the dye-sensitized porous semiconductor layer 3 are sequentially formed on the inner surface of the tube 1. The dye-sensitized porous semiconductor layer 3 in this state is schematically shown in FIG. 11A. This dye-sensitized porous semiconductor layer 3 is formed in the same manner as in the first embodiment.
Next, as shown in FIG. 11B, a solution 54 in which an additive 52 is dissolved in a solvent is placed in a container 53, and the tube 1 in which the dye-sensitized porous semiconductor layer 3 is formed in the solution 54 is obtained. Immersion is performed, and the container 54 is further covered with a lid 55 to adsorb the additive 52 to the dye-sensitized porous semiconductor layer 3. Specific examples include NaI 0.1M, 1-propyl-2,3 dimethylimidazolium iodide (DMP II) 0.6M, I 2 0.05M, and tert-butylpyridine (TBP) as an additive. ) Prepare an electrolyte solution consisting of a 0.5M methoxyacetonitrile (MeACN) solution, immerse the dye-sensitized porous semiconductor layer 3 in this electrolyte solution for 5 to 10 minutes, and increase the dye concentration at the site where the dye could not be adsorbed. Tert-butylpyridine as an additive 52 was adsorbed on the surface of the porous semiconductor layer 3. Thereafter, the electrolytic solution adhering to the dye-sensitized porous semiconductor layer 3 is rinsed off with methoxyacetonitrile and air-dried.

こうして添加剤52を吸着させた後、色素増感多孔質半導体層3が形成された管1を容器53から取り出す。この後、色素増感多孔質半導体層3の表面を洗浄する。この状態の色素増感多孔質半導体層3を図11Cに模式的に示す。
この後、第1の実施形態と同様に、管1の中央部に対極5を挿入し、それらの間に電解質層4を封入し、図10に示す色素増感光電変換素子を製造する。
After adsorbing the additive 52 in this way, the tube 1 on which the dye-sensitized porous semiconductor layer 3 is formed is taken out from the container 53. Thereafter, the surface of the dye-sensitized porous semiconductor layer 3 is washed. The dye-sensitized porous semiconductor layer 3 in this state is schematically shown in FIG. 11C.
Thereafter, similarly to the first embodiment, the counter electrode 5 is inserted into the central portion of the tube 1, and the electrolyte layer 4 is sealed between them, thereby producing the dye-sensitized photoelectric conversion element shown in FIG.

この第4の実施形態によれば、第1の実施形態と同様な利点に加えて次のような利点を得ることができる。すなわち、色素増感多孔質半導体層3に添加剤52を予め吸着させておき、かつ電解質層4として添加剤52を加えていない電解液を用いているので、色素増感多孔質半導体層3の表面に予め吸着させた添加剤52により逆電子移動反応を防止しつつ、光電変換効率の経時劣化を防止することができ、寿命の向上を図ることができる。   According to the fourth embodiment, the following advantages can be obtained in addition to the advantages similar to those of the first embodiment. That is, since the additive 52 is adsorbed in advance on the dye-sensitized porous semiconductor layer 3 and the electrolyte solution to which the additive 52 is not added is used as the electrolyte layer 4, the dye-sensitized porous semiconductor layer 3 While the reverse electron transfer reaction is prevented by the additive 52 adsorbed on the surface in advance, the deterioration of photoelectric conversion efficiency with time can be prevented, and the lifetime can be improved.

以上、この発明の実施形態および実施例について具体的に説明したが、この発明は、上述の実施形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態および実施例において挙げた数値、構造、形状、材料、原料、プロセスなどはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料、原料、プロセスなどを用いてもよい。
また、例えば、第2〜第4の実施形態の二つ以上を組み合わせてもよい。
Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention are possible. It is.
For example, the numerical values, structures, shapes, materials, raw materials, processes, and the like given in the above-described embodiments and examples are merely examples, and numerical values, structures, shapes, materials, raw materials, processes, and the like that are different from these as necessary. May be used.
Further, for example, two or more of the second to fourth embodiments may be combined.

この発明の第1の実施形態による色素増感光電変換素子を示す側面図である。It is a side view which shows the dye-sensitized photoelectric conversion element by 1st Embodiment of this invention. この発明の第1の実施形態による色素増感光電変換素子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the dye-sensitized photoelectric conversion element by 1st Embodiment of this invention. この発明の第1の実施形態による色素増感光電変換素子を示す横断面図である。1 is a cross-sectional view showing a dye-sensitized photoelectric conversion element according to a first embodiment of the present invention. この発明の実施例2による光電変換素子モジュールを示す平面図である。It is a top view which shows the photoelectric conversion element module by Example 2 of this invention. この発明の実施例2による光電変換素子モジュールを示す断面図である。It is sectional drawing which shows the photoelectric conversion element module by Example 2 of this invention. この発明の実施例1および比較例1による色素増感光電変換素子ならびに実施例2および比較例2による光電変換素子モジュールの光電変換効率の維持率の光の入射角度依存性を示す略線図である。It is a basic diagram which shows the incident angle dependence of the light of the maintenance factor of the photoelectric conversion efficiency of the dye-sensitized photoelectric conversion element by Example 1 and Comparative Example 1 of this invention and the photoelectric conversion element module by Example 2 and Comparative Example 2 of FIG. is there. この発明の実施例1および比較例1による色素増感光電変換素子ならびに実施例2および比較例2による光電変換素子モジュールの光電変換効率の維持率の屋外暴露日数依存性を示す略線図である。It is a basic diagram which shows the outdoor exposure days dependence of the maintenance rate of the photoelectric conversion efficiency of the dye-sensitized photoelectric conversion element by Example 1 and Comparative Example 1 of this invention and the photoelectric conversion element module by Example 2 and Comparative Example 2 of this invention. . この発明の実施例3による光電変換素子モジュールを示す断面図である。It is sectional drawing which shows the photoelectric conversion element module by Example 3 of this invention. この発明の第3の実施形態による色素増感光電変換素子を示す断面図である。It is sectional drawing which shows the dye-sensitized photoelectric conversion element by 3rd Embodiment of this invention. この発明の第4の実施形態による色素増感光電変換素子を示す断面図である。It is sectional drawing which shows the dye-sensitized photoelectric conversion element by 4th Embodiment of this invention. この発明の第4の実施形態による色素増感光電変換素子の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the dye-sensitized photoelectric conversion element by 4th Embodiment of this invention. 従来の色素増感太陽電池の問題点およびこの問題点の解決方法を説明するための略線図である。It is a basic diagram for demonstrating the problem of the conventional dye-sensitized solar cell, and the solution of this problem.

符号の説明Explanation of symbols

1…管、2…透明導電層、3…色素増感多孔質半導体層、4…電解質層、5…対極、6…封止部材、7、8…リード線、9…金属酸化物層、51…色素、52…添加剤
DESCRIPTION OF SYMBOLS 1 ... Tube, 2 ... Transparent conductive layer, 3 ... Dye sensitized porous semiconductor layer, 4 ... Electrolyte layer, 5 ... Counter electrode, 6 ... Sealing member, 7, 8 ... Lead wire, 9 ... Metal oxide layer, 51 ... Dye, 52 ... Additive

Claims (9)

透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とする色素増感光電変換素子。
A dye-sensitized photoconductor having a structure in which a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the center of the tube. Conversion element.
上記透明導電層が、In−Sn複合酸化物、SnO2 およびIn−Zn複合酸化物からなる群より選ばれた少なくとも一種類の透明導電性酸化物を含むことを特徴とする請求項1記載の色素増感光電変換素子。 The transparent conductive layer, an In-Sn complex oxide, according to claim 1, characterized in that it comprises at least one transparent conductive oxide selected from the group consisting of SnO 2 and In-Zn composite oxide Dye-sensitized photoelectric conversion element. 透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する色素増感光電変換素子の製造方法であって、
上記管の内面に湿式コーティング法により上記透明導電層を形成するようにした
ことを特徴とする色素増感光電変換素子の製造方法。
A method for producing a dye-sensitized photoelectric conversion element having a structure in which a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the central portion of the tube Because
The method for producing a dye-sensitized photoelectric conversion element, wherein the transparent conductive layer is formed on the inner surface of the tube by a wet coating method.
上記湿式コーティング法としてスプレー熱分解法を用いることを特徴とする請求項3記載の色素増感光電変換素子の製造方法。   4. The method for producing a dye-sensitized photoelectric conversion element according to claim 3, wherein a spray pyrolysis method is used as the wet coating method. 複数の光電変換素子を並べて配線した光電変換素子モジュールにおいて、
少なくとも一つの上記光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する色素増感光電変換素子である
ことを特徴とする光電変換素子モジュール。
In the photoelectric conversion element module in which a plurality of photoelectric conversion elements are arranged and wired,
At least one of the photoelectric conversion elements is
A dye-sensitized photoelectric conversion element having a structure in which a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the center of the tube. A photoelectric conversion element module.
上記複数の光電変換素子が、互いに異なる波長帯の光を光電変換可能な少なくとも二種類の上記色素増感光電変換素子を含むことを特徴とする請求項5記載の光電変換素子モジュール。   6. The photoelectric conversion element module according to claim 5, wherein the plurality of photoelectric conversion elements include at least two types of the dye-sensitized photoelectric conversion elements capable of photoelectrically converting light in different wavelength bands. 色素増感光電変換素子を用いた電子機器において、
上記色素増感光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とする電子機器。
In electronic equipment using dye-sensitized photoelectric conversion elements,
The dye-sensitized photoelectric conversion element is
An electronic apparatus comprising a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer sequentially provided on the inner surface of a tube made of a transparent material, and having a counter electrode inserted in the central portion of the tube.
色素増感光電変換素子を用いた移動体において、
上記色素増感光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とする移動体。
In a moving body using a dye-sensitized photoelectric conversion element,
The dye-sensitized photoelectric conversion element is
A moving body having a structure in which a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the central portion of the tube.
色素増感光電変換素子を用いた発電システムにおいて、
上記色素増感光電変換素子が、
透明材料からなる管の内面に透明導電層、色素増感多孔質半導体層および電解質層が順次設けられ、上記管の中央部に対極が挿入された構造を有する
ことを特徴とする発電システム。
In a power generation system using a dye-sensitized photoelectric conversion element,
The dye-sensitized photoelectric conversion element is
A power generation system, characterized in that a transparent conductive layer, a dye-sensitized porous semiconductor layer, and an electrolyte layer are sequentially provided on the inner surface of a tube made of a transparent material, and a counter electrode is inserted in the central portion of the tube.
JP2005194768A 2005-07-04 2005-07-04 Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system Expired - Fee Related JP5066792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194768A JP5066792B2 (en) 2005-07-04 2005-07-04 Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194768A JP5066792B2 (en) 2005-07-04 2005-07-04 Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011123548A Division JP4877426B2 (en) 2011-06-01 2011-06-01 Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system
JP2011219812A Division JP2012015124A (en) 2011-10-04 2011-10-04 Dye-sensitized photoelectric conversion device, manufacturing method of dye-sensitized photoelectric conversion device, photoelectric conversion device module, electronic apparatus, movable body, and power generation system

Publications (2)

Publication Number Publication Date
JP2007012545A true JP2007012545A (en) 2007-01-18
JP5066792B2 JP5066792B2 (en) 2012-11-07

Family

ID=37750741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194768A Expired - Fee Related JP5066792B2 (en) 2005-07-04 2005-07-04 Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system

Country Status (1)

Country Link
JP (1) JP5066792B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192546A (en) * 2007-02-07 2008-08-21 National Institute Of Advanced Industrial & Technology Electrode for dye-sensitized solar cell
JP2009295395A (en) * 2008-06-04 2009-12-17 Fujikura Ltd Photoelectric conversion element
CN101996772A (en) * 2010-09-28 2011-03-30 彩虹集团公司 Preparation method of tubular dye-sensitized solar cell
WO2011002210A3 (en) * 2009-06-30 2011-04-21 엘지이노텍주식회사 Photovoltaic power-generating apparatus
WO2011068058A1 (en) * 2009-12-02 2011-06-09 ウシオ電機株式会社 Dye-sensitized solar cell
WO2011070911A1 (en) * 2009-12-07 2011-06-16 ウシオ電機株式会社 Dye-sensitized solar battery
WO2011111592A1 (en) * 2010-03-09 2011-09-15 ウシオ電機株式会社 Pigment-sensitized photovoltaic cell
JP2011243826A (en) * 2010-05-20 2011-12-01 Furukawa Electric Co Ltd:The Organic thin film solar cell device, solar cell module, and manufacturing method of organic thin film solar cell device
WO2012017610A1 (en) * 2010-08-03 2012-02-09 新日鐵化学株式会社 Sealing structure for photoelectric conversion element, photoelectric conversion element, and photoelectric conversion element module
KR101119042B1 (en) * 2011-06-16 2012-03-16 주식회사 티모테크놀로지 Cylindrical dye-sensitized solar cell module and manufacturing method for the same
KR101119041B1 (en) * 2011-06-16 2012-03-16 주식회사 티모테크놀로지 Cylindrical dye-sensitized solar cell module and manufacturing method for the same
JP2012221653A (en) * 2011-04-06 2012-11-12 Ricoh Co Ltd Photoelectric conversion element
WO2012169488A1 (en) * 2011-06-07 2012-12-13 ウシオ電機株式会社 Dye-sensitized solar cell
CN103310982A (en) * 2012-03-13 2013-09-18 优志旺电机株式会社 Pigment sensibilization type solar cell
JP2014146436A (en) * 2013-01-28 2014-08-14 Ushio Inc Dye-sensitized solar cell and manufacturing method therefor
JP2014154414A (en) * 2013-02-12 2014-08-25 Ushio Inc Dye-sensitized solar cell
JP2014232616A (en) * 2013-05-29 2014-12-11 ウシオ電機株式会社 Dye-sensitized solar cell module, plant growing greenhouse, and building
KR101514287B1 (en) * 2014-07-07 2015-04-22 한국전기연구원 dye-sensitized solar cell using woven electrode attached cloth
JP2015082449A (en) * 2013-10-23 2015-04-27 ウシオ電機株式会社 Solar cell module
JP2020133322A (en) * 2019-02-22 2020-08-31 京セラ株式会社 Solar cell device and solar cell system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077550A (en) * 2001-09-06 2003-03-14 Nec Corp Cylindrical and semi-cylindrical solar battery as well as its manufacturing method
WO2003065471A2 (en) * 2002-01-25 2003-08-07 Konarka Technologies, Inc. Photovoltaic fibers
WO2003085773A1 (en) * 2002-04-08 2003-10-16 Nippon Oil Corporation Photoelectric conversion element
JP2004193321A (en) * 2002-12-11 2004-07-08 Central Glass Co Ltd Substrate with semiconductor electrode film, coating agent, and dye-sensitized solar cell
JP2004234988A (en) * 2003-01-30 2004-08-19 Sony Corp Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
JP2005108807A (en) * 2003-06-30 2005-04-21 Ideal Star Inc Solid type dye-sensitized element and method of manufacturing the same
WO2005043632A1 (en) * 2003-11-03 2005-05-12 Sustainable Technologies International Pty Ltd Multilayered photovoltaic device on envelope surface
JP2006080396A (en) * 2004-09-10 2006-03-23 Sharp Corp Photoelectric conversion element
JP2006216562A (en) * 2005-02-05 2006-08-17 Samsung Electronics Co Ltd Flexible solar battery, and manufacturing method of same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077550A (en) * 2001-09-06 2003-03-14 Nec Corp Cylindrical and semi-cylindrical solar battery as well as its manufacturing method
WO2003065471A2 (en) * 2002-01-25 2003-08-07 Konarka Technologies, Inc. Photovoltaic fibers
WO2003085773A1 (en) * 2002-04-08 2003-10-16 Nippon Oil Corporation Photoelectric conversion element
JP2004193321A (en) * 2002-12-11 2004-07-08 Central Glass Co Ltd Substrate with semiconductor electrode film, coating agent, and dye-sensitized solar cell
JP2004234988A (en) * 2003-01-30 2004-08-19 Sony Corp Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
JP2005108807A (en) * 2003-06-30 2005-04-21 Ideal Star Inc Solid type dye-sensitized element and method of manufacturing the same
WO2005043632A1 (en) * 2003-11-03 2005-05-12 Sustainable Technologies International Pty Ltd Multilayered photovoltaic device on envelope surface
JP2006080396A (en) * 2004-09-10 2006-03-23 Sharp Corp Photoelectric conversion element
JP2006216562A (en) * 2005-02-05 2006-08-17 Samsung Electronics Co Ltd Flexible solar battery, and manufacturing method of same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192546A (en) * 2007-02-07 2008-08-21 National Institute Of Advanced Industrial & Technology Electrode for dye-sensitized solar cell
JP2009295395A (en) * 2008-06-04 2009-12-17 Fujikura Ltd Photoelectric conversion element
US8987582B2 (en) 2009-06-30 2015-03-24 Lg Innotek Co., Ltd. Solar cell apparatus
WO2011002210A3 (en) * 2009-06-30 2011-04-21 엘지이노텍주식회사 Photovoltaic power-generating apparatus
GB2488472B (en) * 2009-12-02 2016-06-29 Ushio Electric Inc Dye-sensitized solar cell
WO2011068058A1 (en) * 2009-12-02 2011-06-09 ウシオ電機株式会社 Dye-sensitized solar cell
CN102714340A (en) * 2009-12-02 2012-10-03 优志旺电机株式会社 Dye-sensitized solar cell
GB2488472A (en) * 2009-12-02 2012-08-29 Ushio Electric Inc Dye-sensitized solar cell
JP4840540B2 (en) * 2009-12-02 2011-12-21 ウシオ電機株式会社 Dye-sensitized solar cell
US9236195B2 (en) 2009-12-02 2016-01-12 Ushio Denki Kabushiki Kaisha Dye-sensitized solar cell
JP4788848B2 (en) * 2009-12-07 2011-10-05 ウシオ電機株式会社 Dye-sensitized solar cell
WO2011070911A1 (en) * 2009-12-07 2011-06-16 ウシオ電機株式会社 Dye-sensitized solar battery
JP4798318B1 (en) * 2010-03-09 2011-10-19 ウシオ電機株式会社 Dye-sensitized solar cell
WO2011111592A1 (en) * 2010-03-09 2011-09-15 ウシオ電機株式会社 Pigment-sensitized photovoltaic cell
JP2011243826A (en) * 2010-05-20 2011-12-01 Furukawa Electric Co Ltd:The Organic thin film solar cell device, solar cell module, and manufacturing method of organic thin film solar cell device
WO2012017610A1 (en) * 2010-08-03 2012-02-09 新日鐵化学株式会社 Sealing structure for photoelectric conversion element, photoelectric conversion element, and photoelectric conversion element module
JP5810085B2 (en) * 2010-08-03 2015-11-11 新日鉄住金化学株式会社 Photoelectric conversion element sealing structure, photoelectric conversion element and photoelectric conversion element module
CN101996772A (en) * 2010-09-28 2011-03-30 彩虹集团公司 Preparation method of tubular dye-sensitized solar cell
JP2012221653A (en) * 2011-04-06 2012-11-12 Ricoh Co Ltd Photoelectric conversion element
WO2012169488A1 (en) * 2011-06-07 2012-12-13 ウシオ電機株式会社 Dye-sensitized solar cell
JP5187466B2 (en) * 2011-06-07 2013-04-24 ウシオ電機株式会社 Dye-sensitized solar cell
US9230747B2 (en) 2011-06-07 2016-01-05 Ushio Denki Kabushiki Kaisha Dye-sensitized type solar cell
KR101119042B1 (en) * 2011-06-16 2012-03-16 주식회사 티모테크놀로지 Cylindrical dye-sensitized solar cell module and manufacturing method for the same
KR101119041B1 (en) * 2011-06-16 2012-03-16 주식회사 티모테크놀로지 Cylindrical dye-sensitized solar cell module and manufacturing method for the same
CN103310982A (en) * 2012-03-13 2013-09-18 优志旺电机株式会社 Pigment sensibilization type solar cell
JP2014146436A (en) * 2013-01-28 2014-08-14 Ushio Inc Dye-sensitized solar cell and manufacturing method therefor
JP2014154414A (en) * 2013-02-12 2014-08-25 Ushio Inc Dye-sensitized solar cell
JP2014232616A (en) * 2013-05-29 2014-12-11 ウシオ電機株式会社 Dye-sensitized solar cell module, plant growing greenhouse, and building
CN104579142A (en) * 2013-10-23 2015-04-29 优志旺电机株式会社 Solar cell module
JP2015082449A (en) * 2013-10-23 2015-04-27 ウシオ電機株式会社 Solar cell module
WO2016006843A1 (en) * 2014-07-07 2016-01-14 한국전기연구원 Dye-sensitised solar cell
KR101514287B1 (en) * 2014-07-07 2015-04-22 한국전기연구원 dye-sensitized solar cell using woven electrode attached cloth
JP2020133322A (en) * 2019-02-22 2020-08-31 京セラ株式会社 Solar cell device and solar cell system
JP7233956B2 (en) 2019-02-22 2023-03-07 京セラ株式会社 Solar cell device and solar cell system

Also Published As

Publication number Publication date
JP5066792B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5066792B2 (en) Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system
JP4591131B2 (en) Dye-sensitized photoelectric conversion element, manufacturing method thereof, electronic device, manufacturing method thereof, and electronic apparatus
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
JP5070704B2 (en) Photoelectric conversion device
JP5007784B2 (en) Photoelectric conversion device
JP4635473B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing semiconductor electrode
US8415558B2 (en) Dye sensitization photoelectric converter
JP4674435B2 (en) Photoelectric conversion element
JP2009110796A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP2009099476A (en) Dye-sensitized photoelectric conversion element and its manufacturing method
JP2004214129A (en) Photoelectric conversion element, its manufacturing method, electronic device, and its manufacturing method
JP4380779B2 (en) Dye-sensitized photoelectric conversion device
JP2004234988A (en) Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
JP2009110797A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP4929660B2 (en) Dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system
JP4877426B2 (en) Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, photoelectric conversion element module, electronic device, moving object, and power generation system
JP2013058424A (en) Photosensitizing dye, dye sensitized photoelectric conversion element, electronic apparatus and building
JP2009081074A (en) Dye-sensitized photoelectric transfer element, electrolyte composition, additive for electrolyte, and electronic equipment
JP2013161660A (en) Photoelectric conversion element, method for manufacturing photoelectric conversion element, electronic device, and building
JP2012015124A (en) Dye-sensitized photoelectric conversion device, manufacturing method of dye-sensitized photoelectric conversion device, photoelectric conversion device module, electronic apparatus, movable body, and power generation system
JP2013026082A (en) Photoelectric conversion device, electronic apparatus, and building
Pavithra et al. Advantages of Polymer Electrolytes Towards Dye‐sensitized Solar Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees