JP2014146436A - Dye-sensitized solar cell and manufacturing method therefor - Google Patents

Dye-sensitized solar cell and manufacturing method therefor Download PDF

Info

Publication number
JP2014146436A
JP2014146436A JP2013012890A JP2013012890A JP2014146436A JP 2014146436 A JP2014146436 A JP 2014146436A JP 2013012890 A JP2013012890 A JP 2013012890A JP 2013012890 A JP2013012890 A JP 2013012890A JP 2014146436 A JP2014146436 A JP 2014146436A
Authority
JP
Japan
Prior art keywords
tubular container
metal tube
dye
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013012890A
Other languages
Japanese (ja)
Other versions
JP5633585B2 (en
Inventor
Shigeki Fujisawa
繁樹 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2013012890A priority Critical patent/JP5633585B2/en
Publication of JP2014146436A publication Critical patent/JP2014146436A/en
Application granted granted Critical
Publication of JP5633585B2 publication Critical patent/JP5633585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure of excellent power generation efficiency by preventing bubbles, derived from air in the electrolyte in a tubular container, from remaining thereby preventing a sensitizing dye from desorbing from a photoelectrode, in a dye-sensitized solar cell where a photoelectrode, a collector electrode and a counter electrode are provided in a translucent tubular container having sealing portions at both ends, and an electrolytic solution is filled in the tubular container.SOLUTION: At both sealing portions, there are provided a first metal tube and a second metal tube, each extending from the inside to the outside of a tubular container. The first metal tube is connected electrically to a counter electrode, and the second metal tube is connected electrically to a collector electrode. The first and second metal tubes have sealed ends projecting from the tubular container, and bubbles of an inert gas are left in the electrolyte.

Description

この発明は、光エネルギーを電気エネルギーに変換する色素増感型太陽電池に関するものであり、特に、透光性の管状容器内に電解液が封入された色素増感型太陽電池に係わるものである。   The present invention relates to a dye-sensitized solar cell that converts light energy into electric energy, and more particularly to a dye-sensitized solar cell in which an electrolyte is enclosed in a translucent tubular container. .

従来から、太陽光エネルギーを電気エネルギーに変換する太陽電池は、環境にやさしく、クリーンなエネルギー源として積極的な研究開発が進められている。中でも、光電変換効率が高く、低コストの太陽電池として、色素増感型太陽電池が注目されて、各種の提案がなされている。   Conventionally, solar cells that convert solar energy into electrical energy have been actively researched and developed as environmentally friendly and clean energy sources. Among them, a dye-sensitized solar cell has attracted attention as a low-cost solar cell with high photoelectric conversion efficiency, and various proposals have been made.

その一例が特許第4840540号公報(特許文献1)であり、この色素増感型太陽電池では、透光性の管状容器内に電解液を封入し、該容器内に色素を吸着させた多孔質半導体からなる光電極と、これに対向する対向電極とを配設し、前記光電極に太陽光を入射させてこれを励起して電子を放出させることによって電気エネルギーとして取り出すものである。
この種の色素増感型太陽電池は、その製造のために高真空なチャンバーなどが不要であり、設備面での負担が少なく、安価に製造できるという利点あり、注目を集めている。
One example is Japanese Patent No. 4840540 (Patent Document 1). In this dye-sensitized solar cell, a porous material in which an electrolytic solution is sealed in a translucent tubular container and the dye is adsorbed in the container. A photoelectrode made of a semiconductor and a counter electrode facing the photoelectrode are arranged, and sunlight is made incident on the photoelectrode to excite it to emit electrons, thereby taking out it as electric energy.
This type of dye-sensitized solar cell is attracting attention because it does not require a high-vacuum chamber or the like for its manufacture, has a small burden on facilities, and can be manufactured at low cost.

図5にかかる構造の太陽電池の概略構造が示されていて、(A)は電解液の封入工程図、(B)は封止完成図である。
図において、色素増感型太陽電池は、透明なガラスよりなる管状容器1の本体部2の内面に、透明導電膜からなる集電極3と、増感色素が吸着された半導体層からなる光電極4とが積層形成され、前記管状容器1内で光電極4と離間してコイル状の対向電極5が配置されるとともに、前記管状容器1内に電解質物質を備えた電解液6が密封されて構成されている。
前記管状容器1の本体部2の両端は、管状容器1を構成するガラスを加熱・溶融してこれを圧潰することにより扁平な封止部21、22が形成されて密閉されている。そして、その一端側の封止部21内には金属箔31が埋設され、対向電極5からの内部リード11と、封止部21から外方に突出する外部リード13とが該金属箔31に接続されて導電状態がもたらされている。
また、同様に、他端側の封止部22内にも金属箔32が埋設されていて、該金属箔32には、前記対向電極5に絶縁部材15を介して接続された内部リード12と、封止部22から突出する外部リード14とが接続されている。そして、前記管状容器1の本体部2の内面に形成した集電極3が、この封止部22内にまで延在していて、前記内部リード12、金属箔32および外部リード14を覆うようにピンチシールされ、これらと電気的に接続されている。
The schematic structure of the solar cell of the structure concerning FIG. 5 is shown, (A) is the sealing process figure of electrolyte solution, (B) is a sealing completion figure.
In the figure, a dye-sensitized solar cell includes a collector electrode 3 made of a transparent conductive film and a photoelectrode made of a semiconductor layer in which a sensitizing dye is adsorbed on the inner surface of a main body 2 of a tubular container 1 made of transparent glass. 4 is laminated, and a coiled counter electrode 5 is disposed in the tubular container 1 so as to be separated from the photoelectrode 4, and an electrolytic solution 6 including an electrolyte substance is sealed in the tubular container 1. It is configured.
Both ends of the main body portion 2 of the tubular container 1 are sealed by forming flat sealing portions 21 and 22 by heating and melting glass constituting the tubular container 1 and crushing the glass. A metal foil 31 is embedded in the sealing portion 21 on one end side, and the internal lead 11 from the counter electrode 5 and the external lead 13 protruding outward from the sealing portion 21 are attached to the metal foil 31. Connected to provide a conductive state.
Similarly, a metal foil 32 is embedded in the sealing portion 22 on the other end side, and the internal lead 12 connected to the counter electrode 5 via the insulating member 15 is connected to the metal foil 32. The external lead 14 protruding from the sealing portion 22 is connected. And the collector electrode 3 formed in the inner surface of the main-body part 2 of the said tubular container 1 is extended in this sealing part 22, and covers the said internal lead 12, the metal foil 32, and the external lead 14 It is pinched and electrically connected to these.

このような構成により、一方の封止部31においては、対向電極5−内部リード11−金属箔31−外部リード13と電気的接続が形成され、他方の封止部32においては、光電極4−集電極3−内部リード12−金属箔32−外部リード14と電気的接続が形成されている。   With such a configuration, in one sealing part 31, electrical connection is formed with the counter electrode 5-internal lead 11-metal foil 31-external lead 13, and in the other sealing part 32, the photoelectrode 4 is formed. The collector electrode 3 -the internal lead 12 -the metal foil 32 -the external lead 14 and the electrical connection are formed.

こうして形成された管状容器1内に電解液6を封入する工程を説明する。
図5(A)に示されるように、管状容器1の円筒状本体部2において、内面に集電極3および光電極4が形成されていない端部領域に注入管23を溶着して管状容器1の内部と連通させる。
この注入管23から電解液6を管状容器1内に注入する。管状容器1内に電解液6が充填された後、当該注入管23を溶融して封管する。この溶融封管により、図5(B)に示されるように、管状容器1の本体部2には封止チップ残部23aが形成される。
A process of encapsulating the electrolytic solution 6 in the tubular container 1 formed in this way will be described.
As shown in FIG. 5 (A), in the cylindrical main body 2 of the tubular container 1, an injection tube 23 is welded to an end region where the collector electrode 3 and the photoelectrode 4 are not formed on the inner surface. Communicating with the inside.
The electrolytic solution 6 is injected into the tubular container 1 from the injection tube 23. After the electrolytic solution 6 is filled in the tubular container 1, the injection tube 23 is melted and sealed. With this melt-sealed tube, as shown in FIG. 5B, a sealing chip remaining portion 23 a is formed in the main body portion 2 of the tubular container 1.

ところで、上記従来技術によれば、注入管23の加熱溶融による封止時に、管状容器1内に大気に由来する酸素や水素などのガスが混入することが避けられず、管状容器1内の電解液6中に該大気由来のガスからなる気泡Yが残留してしまう。
前記光電極4に吸着された増感色素は、空気内の酸素や水と反応して加水分解し、光電極から脱離してしまうことがある。そのため、前述の大気由来のガスからなる気泡Yが管状容器1内の電解液6中に残留すると、前記光電極4から増感色素が脱離してしまって、発電効率を著しく悪化させてしまうという問題がある。
By the way, according to the above-described prior art, when the injection tube 23 is sealed by heating and melting, it is inevitable that gases such as oxygen and hydrogen derived from the atmosphere are mixed in the tubular container 1, and electrolysis in the tubular container 1 is avoided. Bubbles Y made of the atmosphere-derived gas remain in the liquid 6.
The sensitizing dye adsorbed on the photoelectrode 4 may react with oxygen or water in the air to hydrolyze and be detached from the photoelectrode. Therefore, if the bubbles Y made of the above-mentioned gas derived from the atmosphere remain in the electrolytic solution 6 in the tubular container 1, the sensitizing dye is detached from the photoelectrode 4 and the power generation efficiency is remarkably deteriorated. There's a problem.

特許第4840540号公報Japanese Patent No. 4840540

この発明が解決しようとする課題は、上記従来技術の問題点に鑑みて、両端に封止部を有する管状容器の内部に、増感色素を担持する半導体層よりなる光電極と、該光電極に接触して形成される集電極と、該集電極に対向する対向電極とを備え、前記管状容器の内部に電解液が充填されてなる色素増感型太陽電池において、管状容器内に封入された電解液中に大気由来の気泡が残留しないようにして、光電極から増感色素が脱離することを防止した色素増感型太陽電池およびその製造方法を提供するものである。   In view of the above-mentioned problems of the prior art, the problem to be solved by the present invention is a photoelectrode comprising a semiconductor layer carrying a sensitizing dye inside a tubular container having sealing portions at both ends, and the photoelectrode In a dye-sensitized solar cell comprising a collector electrode formed in contact with the collector electrode and a counter electrode facing the collector electrode, the tubular container being filled with an electrolyte solution, and enclosed in the tubular container The present invention provides a dye-sensitized solar cell and a method for producing the same, in which air-derived air bubbles do not remain in the electrolyte solution and the sensitizing dye is prevented from being detached from the photoelectrode.

上記課題を解決するために、この発明に係る色素増感型太陽電池では、管状容器の両端の封止部には、それぞれ該管状容器の内部から外部に延びる第1の金属管および第2の金属管が設けられていて、前記第1の金属管は前記対向電極と電気的に接続され、前記第2の金属管は前記集電極と電気的に接続されており、当該第1および第2の金属管は前記管状容器から突出した端部が密封されており、前記電解液中には、不活性ガスからなる気泡が残留されていることを特徴とする。
また、前記不活性ガスからなる気泡は、前記管状容器の内容積に占める体積比率が5%以下であることを特徴とする。
また、前記対向電極と前記第1の金属管は、同一の管部材で構成されていることを特徴とする。
In order to solve the above-described problems, in the dye-sensitized solar cell according to the present invention, the sealing portions at both ends of the tubular container each include a first metal tube and a second metal tube extending from the inside of the tubular container to the outside. A metal tube is provided, the first metal tube is electrically connected to the counter electrode, and the second metal tube is electrically connected to the collector electrode. The metal tube is sealed at the end protruding from the tubular container, and bubbles of an inert gas remain in the electrolyte.
In addition, the bubbles made of the inert gas have a volume ratio of 5% or less of the inner volume of the tubular container.
Further, the counter electrode and the first metal tube are formed of the same tube member.

更には、請求項1に記載の色素増感型太陽電池の製造方法では、一方の金属管の突出端部を密閉して、前記管状容器内部と外部との連通を遮断する第1の工程と、他方の金属管を介して前記管状容器の内部のガスを排気する第2の工程と、前記他方の金属管を介して、前記管状容器に負圧状態を維持して不活性ガスを封入する第3の工程と、前記他方の金属管の突出端部を圧接して密封する第4の工程と、前記一方の金属管を介して前記管状容器の内部に前記電解液を導入する第5の工程と、前記電解液が充填された後に、前記一方の金属管の突出端部を密封する第6の工程と、により、前記管状容器の内部に不活性ガスの気泡を残留させた状態で前記電解液を充填することを特徴とする。   Furthermore, in the method for producing a dye-sensitized solar cell according to claim 1, the first step of sealing the projecting end of one of the metal tubes to block communication between the inside and the outside of the tubular container; A second step of exhausting the gas inside the tubular container through the other metal tube, and an inert gas is sealed in the tubular container through the other metal tube while maintaining a negative pressure state. A third step, a fourth step of pressing and sealing the protruding end of the other metal tube, and a fifth step of introducing the electrolyte into the tubular container via the one metal tube. And a sixth step of sealing the projecting end of the one metal tube after the electrolyte solution is filled, and the inert gas bubbles are left inside the tubular container. It is characterized by filling with an electrolytic solution.

この発明の色素増感型太陽電池によれば、管状容器の両端の封止部に設けた金属管を介して、該管状容器内の排気、不活性ガスの封入および電解液の注入をすることにより、該充填された電解液中に不活性ガスからなる気泡が残留されているという構成としてので、電解液中には、大気に由来する気泡が残存することがなく、光電極から増感色素が脱離することを防ぎ、発電効率の良好な色素増感型太陽電池が得られるものである。   According to the dye-sensitized solar cell of the present invention, exhausting the inside of the tubular container, enclosing the inert gas, and injecting the electrolyte solution through the metal tubes provided at the sealing portions at both ends of the tubular container. Therefore, the air bubbles made of an inert gas remain in the filled electrolyte solution, so that bubbles originating from the atmosphere do not remain in the electrolyte solution, and the sensitizing dye is removed from the photoelectrode. Is prevented, and a dye-sensitized solar cell with good power generation efficiency can be obtained.

本発明の色素増感型太陽電池の断面図。Sectional drawing of the dye-sensitized solar cell of this invention. 本発明の他の実施例の断面図。Sectional drawing of the other Example of this invention. 本発明の色素増感型太陽電池の製造工程図。The manufacturing process figure of the dye-sensitized solar cell of this invention. 本発明における不活性ガス気泡と発電効率の関係を示すグラフ。The graph which shows the relationship between the inert gas bubble and power generation efficiency in this invention. 従来技術に係る色素増感型太陽電池の断面図。Sectional drawing of the dye-sensitized solar cell which concerns on a prior art.

図1は、本発明の色素増感型太陽電池の全体を示す断面図であり、(A)は側断面図、(B)はそのA−A断面図である。
管状容器1の本体部2の内面には透明導電膜からなる集電極3と、これに積層された光電極4とが設けられている。また、管状容器1の本体部2内には円筒状の対向電極5が、光電極4と当接することなく所定の間隔を保って配設されている。
そして、前記管状容器1内には電解液6が充填されている。
なお、対向電極5は円筒状体に限られず、棒状体、コイル状体など種々の形態を採用できる。
FIG. 1 is a cross-sectional view showing the entirety of the dye-sensitized solar cell of the present invention, in which (A) is a side cross-sectional view and (B) is an AA cross-sectional view thereof.
A collector electrode 3 made of a transparent conductive film and a photoelectrode 4 laminated thereon are provided on the inner surface of the main body 2 of the tubular container 1. A cylindrical counter electrode 5 is disposed in the main body portion 2 of the tubular container 1 at a predetermined interval without coming into contact with the photoelectrode 4.
The tubular container 1 is filled with an electrolytic solution 6.
The counter electrode 5 is not limited to a cylindrical body, and various forms such as a rod-shaped body and a coil-shaped body can be adopted.

前記管状容器1の一方の封止部21においては第1の金属管7が封止されており、他方の封止部22には第2の金属管8が封止されている。この金属管7、8の封止は、ランプ製造技術におけるシュリンクシール技術が採用されていて、封止部21、22を構成するガラスを加熱溶融し、金属管7、8に溶着することによって封止されている。
そして、前記対向電極5の一端部がこの第1の金属管7に接続され、前記集電極3が接続端子9により第2の金属管8に接続されて、それぞれ電気的導通が取られている。
前記金属管7、8は、それぞれ前記封止部21、22を貫通して外部に突出しており、その突出端部7a、8aが圧接などにより密封されている。
このように密封された管状容器1内には電解液6が充填されているが、その中には、不活性ガスからなる気泡Xが残留している。
The first metal tube 7 is sealed in one sealing portion 21 of the tubular container 1, and the second metal tube 8 is sealed in the other sealing portion 22. The metal pipes 7 and 8 are sealed by using a shrink seal technique in the lamp manufacturing technique. The glass constituting the sealing parts 21 and 22 is heated and melted and welded to the metal pipes 7 and 8. It has been stopped.
Then, one end of the counter electrode 5 is connected to the first metal tube 7, and the collector electrode 3 is connected to the second metal tube 8 through the connection terminal 9, thereby being electrically connected to each other. .
The metal tubes 7 and 8 project outside through the sealing portions 21 and 22, respectively, and the projecting end portions 7a and 8a are sealed by pressure contact or the like.
The tubular container 1 sealed in this way is filled with the electrolytic solution 6, and bubbles X made of an inert gas remain therein.

図2には、他の実施例が示されていて、管状容器1内の対向電極5と、第1の金属管7が同一の管部材からなるものである。なお、その他の構成については、図1に示す態様と同様である。   FIG. 2 shows another embodiment, in which the counter electrode 5 in the tubular container 1 and the first metal tube 7 are made of the same tube member. In addition, about another structure, it is the same as that of the aspect shown in FIG.

この色素増感型太陽電池の製造方法について図3に基づいて説明する。
まず、管状容器1内に配置された対向電極5と接続された第1の金属管7と、管状容器1の内面に光電極4とともに積層形成された集電極3に接続された第2の金属管8とが、ガラス製の管状容器1の封止部21、22を加熱溶融して金属管7、8に溶着する、いわゆるシュリンクシール手法により封止された太陽電池構造体Mを用意する。
次いで、図3(A)に示すように、第1の金属管7の端部に真空装置Vと、不活性ガスボンベGがそれぞれゲートバルブA、Bを介して接続される。一方、第2の金属管8の突出端部には電解液槽LがゲートバルブCを介して接続される(第1の工程)。
ここで、バルブBとバルブCを閉じて、管状容器1と、ガスボンベGおよび電解液槽Lとの連通を遮断して、バルブAを開き真空装置Vによって管状容器1内の空気など不純ガスを排気して真空状態にする(第2の工程)。なお、この場合、管状容器1の内壁に付着した不要物質(水を含む不純物)を蒸発させるため管状容器1を加熱して排気する、いわゆる温排気を行うことが好ましい。
次いで、バルブAを閉じ、バルブBを開くと不活性ガスボンベGから不活性ガスが管状容器1内に真空吸引されて導入される。このとき、不活性ガスは管状容器1内が負圧状態に維持される程度に導入される(第3の工程)。
A method for producing the dye-sensitized solar cell will be described with reference to FIG.
First, a first metal tube 7 connected to the counter electrode 5 disposed in the tubular container 1 and a second metal connected to the collector electrode 3 formed on the inner surface of the tubular container 1 together with the photoelectrode 4. A solar cell structure M sealed by a so-called shrink seal method is prepared in which the tube 8 is heated and melted by sealing the sealing portions 21 and 22 of the glass tubular container 1 and welded to the metal tubes 7 and 8.
Next, as shown in FIG. 3A, a vacuum device V and an inert gas cylinder G are connected to the end of the first metal tube 7 via gate valves A and B, respectively. On the other hand, the electrolytic solution tank L is connected to the protruding end portion of the second metal tube 8 via the gate valve C (first step).
Here, the valve B and the valve C are closed, the communication between the tubular container 1, the gas cylinder G and the electrolyte tank L is cut off, the valve A is opened, and the impure gas such as air in the tubular container 1 is removed by the vacuum device V. Evacuate to a vacuum state (second step). In this case, it is preferable to perform so-called warm evacuation, in which the tubular container 1 is heated and evacuated to evaporate unnecessary substances (impurities including water) attached to the inner wall of the tubular container 1.
Next, when the valve A is closed and the valve B is opened, the inert gas from the inert gas cylinder G is sucked into the tubular container 1 and introduced. At this time, the inert gas is introduced to such an extent that the inside of the tubular container 1 is maintained in a negative pressure state (third step).

次いで、図3(B)に示すように、第1の金属管7の突出端部7aをプレス加工機Pによって圧接して密封する(第4の工程)。
次いで、図3(C)に示すように、バルブCを開いて電解液槽Lから電解液6を管状容器1内の負圧状態を利用して導入する(第5の工程)。
そして、図3(D)に示すように、管状容器1内に不活性ガスの気泡Xが残留する程度に電解液6が充填された後に、プレス加工機Pにより、第2の金属管8の突出端部8aを圧接により密封する(第6の工程)。
以上の工程により、管状容器1内に不活性ガスの気泡Xが残留する状態で電解液6が充填された色素増感型太陽電池が完成する。
Next, as shown in FIG. 3B, the protruding end portion 7a of the first metal tube 7 is pressed and sealed by the press machine P (fourth step).
Next, as shown in FIG. 3C, the valve C is opened and the electrolytic solution 6 is introduced from the electrolytic solution tank L using the negative pressure state in the tubular container 1 (fifth step).
Then, as shown in FIG. 3D, after the electrolytic solution 6 is filled to such an extent that the inert gas bubbles X remain in the tubular container 1, the second metal tube 8 is pressed by the press machine P. The protruding end portion 8a is sealed by pressure contact (sixth step).
Through the above steps, the dye-sensitized solar cell filled with the electrolytic solution 6 with the inert gas bubbles X remaining in the tubular container 1 is completed.

なお、以上の説明では対向電極5に接続された第1の金属管7から排気して、不活性ガスを導入し、これを密封して、集電極3に接続された第2の金属管8から電解液6を導入するものとしたが、これとは逆に、第2の金属管8から排気し、不活性ガスを導入して、第1の金属管7から電解液6を導入するようにしてもよい。
また、太陽電池構造体Mを垂直に設置して、排気・不活性ガスの導入および電解液の導入をしてもよい。
In the above description, the second metal tube 8 connected to the collector electrode 3 is exhausted from the first metal tube 7 connected to the counter electrode 5, introduced with an inert gas, sealed. In contrast to this, the electrolyte solution 6 is introduced from the second metal tube 8, but the exhaust gas is exhausted from the second metal tube 8, an inert gas is introduced, and the electrolyte solution 6 is introduced from the first metal tube 7. It may be.
Further, the solar cell structure M may be installed vertically to introduce exhaust / inert gas and introduce electrolyte.

以上の構成において、管状容器1は透光性のガラス部材であり、金属管7、8に熱溶着により封止するので、ガラスと金属管とは線膨張率が近い材料であることが好ましい。具体的には、線膨張率αの差が±5×10−7/℃の範囲に収まる組み合わせであることが好ましい。そのような組合せの例を列挙すると以下の通りである。
(例1)
管状容器:アルミノシリケートガラス(線膨張率α=51×10−7/℃)
金属管:モリブデンパイプ(線膨張率α=55×10−7/℃)
(例2)
管状容器:コバールガラス(線膨張率α=55×10−7/℃)
金属管:コバールパイプ(線膨張率α=50×10−7/℃)
(例3)
管状容器:ソーダライムガラス(線膨張率α=90×10−7/℃)
金属管:チタンパイプ(線膨張率α=88×10−7/℃)
In the above configuration, the tubular container 1 is a translucent glass member and is sealed to the metal tubes 7 and 8 by thermal welding. Therefore, it is preferable that the glass and the metal tube are materials having a close linear expansion coefficient. Specifically, a combination in which the difference in linear expansion coefficient α is within a range of ± 5 × 10 −7 / ° C. is preferable. Examples of such combinations are listed below.
(Example 1)
Tubular container: aluminosilicate glass (linear expansion coefficient α = 51 × 10 −7 / ° C.)
Metal pipe: Molybdenum pipe (linear expansion coefficient α = 55 × 10 −7 / ° C.)
(Example 2)
Tubular container: Kovar glass (linear expansion coefficient α = 55 × 10 −7 / ° C.)
Metal tube: Kovar pipe (linear expansion coefficient α = 50 × 10 −7 / ° C.)
(Example 3)
Tubular container: soda lime glass (linear expansion coefficient α = 90 × 10 −7 / ° C.)
Metal pipe: Titanium pipe (linear expansion coefficient α = 88 × 10 −7 / ° C.)

また、金属管7、8は、電解液6に対する耐腐食性の高い材料が適している。例えば、電解液に金属との反応性が高いヨウ素が含まれているような場合、金属管にはチタン部材又は表面をチタンでコーティングした部材を用いることが好ましい。
つまり、上記の組合せ例でいえば、例1と例2の金属管はチタンコートされていることが好ましい。例えば、モリブデンパイプを用意し、その表面にスパッタリングで数十nm程度の膜厚でチタンコーティングを行うことが好適である。
The metal tubes 7 and 8 are suitably made of a material having high corrosion resistance against the electrolyte solution 6. For example, when the electrolyte contains iodine having high reactivity with a metal, it is preferable to use a titanium member or a member whose surface is coated with titanium for the metal tube.
That is, in the above combination example, it is preferable that the metal tubes of Examples 1 and 2 are titanium-coated. For example, it is preferable to prepare a molybdenum pipe and perform titanium coating on the surface with a film thickness of about several tens of nanometers by sputtering.

ところで、管状容器1内に残留する不活性ガスの気泡Xは、電解液6に占める割合が大き過ぎると、太陽電池の発電効率は悪化しやすい。これは、気泡Xが対向電極5から集電極4への電子の受け渡しを妨げるからである。しかしながら気泡Xの割合が小さい場合は、発電効率を著しく悪化させることがない。発明者により、管状容器1の内部体積(有効体積)に対して気泡の体積比が5%以下であれば発電効率の著しい悪化を防止できることが確認された。
このとき不活性ガス封入後の管状容器1の内圧と内容積、及び、大気圧下での電解液内の気泡体積はボイルの法則に従うため、導入する不活性ガスの分量によって気泡の割合を調整することができる。つまり、管状容器1の残留気泡Xを所望の体積比率に調整することが可能である。
By the way, if the ratio of the inert gas bubbles X remaining in the tubular container 1 to the electrolytic solution 6 is too large, the power generation efficiency of the solar cell tends to deteriorate. This is because the bubbles X hinder the transfer of electrons from the counter electrode 5 to the collector electrode 4. However, when the ratio of the bubbles X is small, the power generation efficiency is not significantly deteriorated. The inventor has confirmed that if the volume ratio of bubbles to the internal volume (effective volume) of the tubular container 1 is 5% or less, the power generation efficiency can be prevented from remarkably deteriorating.
At this time, since the internal pressure and internal volume of the tubular container 1 after filling with the inert gas and the bubble volume in the electrolytic solution under atmospheric pressure follow Boyle's law, the ratio of the bubbles is adjusted by the amount of the inert gas to be introduced. can do. That is, it is possible to adjust the residual bubbles X in the tubular container 1 to a desired volume ratio.

そこで、管状容器1に対する不活性ガスからなる残留気泡Xと、発電効率の相関関係を検証した。その結果が図4に示されている。
管状容器1の有効内容積に占める気泡の体積の割合に対する発電効率の変化をみたもので、気泡の体積は、前述したように、不活性ガスのガス分圧によって調整される。
また、発電効率(η)は、当該色素増感型太陽電池に光が照射された際の、電池内に発生する開放電圧(Voc)、短絡電流(Isc)および曲線因子(FF)の測定値から、以下の式で算出される。
η=Isc×Voc×FF
なお、図4で示される測定結果は、擬似太陽光としてキセノンランプ(AM1.5=100mW/cm)を用い、当該ランプの光を照射した際の発電効率を測定したものである。またこの測定は、太陽電池の管軸方向が地面に対して水平に配置した状態で、条件に応じて各3回実施し、それらの平均値を測定値として採用した。
Therefore, the correlation between the residual bubbles X made of an inert gas with respect to the tubular container 1 and the power generation efficiency was verified. The result is shown in FIG.
The change of the power generation efficiency with respect to the ratio of the volume of the bubbles to the effective internal volume of the tubular container 1 is seen. As described above, the volume of the bubbles is adjusted by the gas partial pressure of the inert gas.
The power generation efficiency (η) is a measured value of open circuit voltage (Voc), short circuit current (Isc) and fill factor (FF) generated in the battery when the dye-sensitized solar cell is irradiated with light. From this, it is calculated by the following formula.
η = Isc × Voc × FF
The measurement result shown in FIG. 4 is obtained by measuring the power generation efficiency when a xenon lamp (AM1.5 = 100 mW / cm 2 ) is used as pseudo-sunlight and the lamp is irradiated with light. Moreover, this measurement was implemented 3 times according to conditions in the state where the tube axis direction of the solar cell was arranged horizontally with respect to the ground, and an average value thereof was adopted as a measurement value.

図4で示されるように、管状容器の内容積に占める気泡の割合が増大すると発電効率は低下する。しかしながら、発電効率の低下の程度は気泡の割合に対して一定ではなく、特に気泡の割合が5%以下であれば、発電効率の低下率は非常に軽微であり、発電効率の観点からの残留気泡による不具合は実用上問題となるようなものではない。   As shown in FIG. 4, the power generation efficiency decreases as the ratio of bubbles in the inner volume of the tubular container increases. However, the degree of reduction in power generation efficiency is not constant with respect to the ratio of bubbles, and particularly when the ratio of bubbles is 5% or less, the rate of decrease in power generation efficiency is very slight and remains from the viewpoint of power generation efficiency. Problems caused by bubbles are not a practical problem.

以上説明したように、本発明に係る色素増感型太陽電池によれば、両端に封止部を有する透光性の管状容器の内部に、光電極と、集電極と、対向電極とを備え、前記管状容器の内部には電解液が充填されてなる色素増感型太陽電池において、前記両端の封止部には、それぞれ前記管状容器の内部から外部に延びる前記対向電極と電気的に接続された第1の金属管、および、前記集電極と電気的に接続された第2の金属管が設けられていて、当該第1および第2の金属管は前記管状容器から突出した端部が密封されており、前記電解液中には、不活性ガスからなる気泡が残留されている構成としたことにより、管状容器内に空気に由来する気泡が残留することがなく、光電極から増感色素が脱離することを防ぎ、発電効率の良好な色素増感型太陽電池が得られる。
更には、太陽電池は太陽光に長時間曝されるため高温になりやすく、管状容器の内部に充填される電解液が膨張し、容器内部の液圧が高くなって容器に負荷がかかりやすいが、電解液に気泡が含まれていることにより、当該気泡が前記液圧の緩衝領域となり、管状容器の負荷を緩和させる効果もある。
As described above, according to the dye-sensitized solar cell of the present invention, the light electrode, the collector electrode, and the counter electrode are provided inside the translucent tubular container having the sealing portions at both ends. In the dye-sensitized solar cell in which the inside of the tubular container is filled with an electrolytic solution, the sealing portions at both ends are electrically connected to the counter electrode extending from the inside of the tubular container to the outside, respectively. A first metal tube and a second metal tube electrically connected to the collector electrode, and the first and second metal tubes have end portions protruding from the tubular container. Air bubbles made of inert gas remain in the electrolyte solution so that bubbles derived from air do not remain in the tubular container and sensitize from the photoelectrode. Dye sensitized type that prevents dye from detaching and has good power generation efficiency The battery can be obtained.
Furthermore, since solar cells are exposed to sunlight for a long time, the temperature tends to increase, and the electrolyte filled in the tubular container expands, and the liquid pressure inside the container increases and the container is likely to be loaded. By including bubbles in the electrolytic solution, the bubbles serve as a buffer region for the hydraulic pressure, and there is an effect of reducing the load on the tubular container.

1 管状容器
2 本体部
21、22 封止部
3 集電極
4 光電極
5 対向電極
6 電解液
7、8 金属管
9 接続端子
M 太陽電池構造体
V 真空装置
G 不活性ガスボンベ
L 電解液槽
A、B、C ゲートバルブ


DESCRIPTION OF SYMBOLS 1 Tubular container 2 Main-body part 21 and 22 Sealing part 3 Collector electrode 4 Photoelectrode 5 Counter electrode 6 Electrolyte solution 7 and 8 Metal tube 9 Connection terminal M Solar cell structure V Vacuum apparatus G Inert gas cylinder L Electrolyte tank A, B, C Gate valve


Claims (4)

両端に封止部を有する透光性の管状容器と、該管状容器の内部には、増感色素を担持する半導体層よりなる光電極と、該光電極に接触して形成される集電極と、該集電極に対向する対向電極とを備え、前記管状容器の内部に電解液が充填されてなる色素増感型太陽電池において、
前記両端の封止部には、それぞれ前記管状容器の内部から外部に延びる第1の金属管および第2の金属管が設けられていて、
前記第1の金属管は前記対向電極と電気的に接続され、前記第2の金属管は前記集電極と電気的に接続されており、
当該第1および第2の金属管は前記管状容器から突出した端部が密封されており、
前記電解液中には、不活性ガスからなる気泡が残留されていることを特徴とする色素増感型太陽電池。
A translucent tubular container having sealing portions at both ends, a photoelectrode formed of a semiconductor layer carrying a sensitizing dye inside the tubular container, and a collecting electrode formed in contact with the photoelectrode A dye-sensitized solar cell comprising a counter electrode facing the collector electrode, and an electrolyte solution filled in the tubular container.
The sealing portions at both ends are provided with a first metal tube and a second metal tube respectively extending from the inside of the tubular container to the outside,
The first metal tube is electrically connected to the counter electrode, and the second metal tube is electrically connected to the collector electrode;
The first and second metal tubes are sealed at the ends protruding from the tubular container,
A dye-sensitized solar cell, wherein bubbles of an inert gas remain in the electrolytic solution.
前記不活性ガスからなる気泡は、前記管状容器の内容積に占める体積比率が5%以下であることを特徴とする請求項1に記載の色素増感型太陽電池。   2. The dye-sensitized solar cell according to claim 1, wherein the bubbles made of the inert gas have a volume ratio of 5% or less of the inner volume of the tubular container. 前記対向電極と前記第1の金属管は、同一の管部材で構成されていることを特徴とする請求項1または2に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 1 or 2, wherein the counter electrode and the first metal tube are made of the same tube member. 請求項1に記載の色素増感型太陽電池の製造方法であって、
前記一方の金属管の突出端部を密閉して、前記管状容器内部と外部との連通を遮断する第1の工程と、
前記他方の金属管を介して前記管状容器の内部のガスを排気する第2の工程と、
前記他方の金属管を介して、前記管状容器に負圧状態を維持して不活性ガスを封入する第3の工程と、
前記他方の金属管の突出端部を圧接して密封する第4の工程と、
前記一方の金属管を介して前記管状容器の内部に前記電解液を導入する第5の工程と、
前記電解液が充填された後に、前記一方の金属管の突出端部を密封する第6の工程と、
により、前記管状容器の内部に不活性ガスの気泡を残留させた状態で前記電解液を充填することを特徴とする色素増感型太陽電池の製造方法。


A method for producing a dye-sensitized solar cell according to claim 1,
A first step of sealing the projecting end of the one metal tube to block communication between the inside and outside of the tubular container;
A second step of exhausting the gas inside the tubular container through the other metal tube;
A third step of enclosing an inert gas while maintaining a negative pressure state in the tubular container via the other metal tube;
A fourth step of pressing and sealing the protruding end of the other metal tube;
A fifth step of introducing the electrolytic solution into the tubular container through the one metal tube;
A sixth step of sealing the protruding end of the one metal tube after the electrolyte is filled;
Thus, the method for producing a dye-sensitized solar cell is characterized in that the electrolytic solution is filled in a state where inert gas bubbles remain inside the tubular container.


JP2013012890A 2013-01-28 2013-01-28 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP5633585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013012890A JP5633585B2 (en) 2013-01-28 2013-01-28 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012890A JP5633585B2 (en) 2013-01-28 2013-01-28 Dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014146436A true JP2014146436A (en) 2014-08-14
JP5633585B2 JP5633585B2 (en) 2014-12-03

Family

ID=51426534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012890A Expired - Fee Related JP5633585B2 (en) 2013-01-28 2013-01-28 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5633585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185595A (en) * 2015-09-16 2015-12-23 南昌航空大学 Sensitized solar cell containing electrolyte layer with controllable thickness
WO2016031514A1 (en) * 2014-08-27 2016-03-03 ウシオ電機株式会社 Dye-sensitized solar cell module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174713A (en) * 2003-12-10 2005-06-30 Ngk Spark Plug Co Ltd Photoelectric conversion device structure
JP2006210316A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
JP2007012545A (en) * 2005-07-04 2007-01-18 Sony Corp Dye-sensitized photoelectric conversion element, its manufacturing method, photoelectric conversion element module, electronic apparatus, movable body, and power generation system
WO2011068058A1 (en) * 2009-12-02 2011-06-09 ウシオ電機株式会社 Dye-sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174713A (en) * 2003-12-10 2005-06-30 Ngk Spark Plug Co Ltd Photoelectric conversion device structure
JP2006210316A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
JP2007012545A (en) * 2005-07-04 2007-01-18 Sony Corp Dye-sensitized photoelectric conversion element, its manufacturing method, photoelectric conversion element module, electronic apparatus, movable body, and power generation system
WO2011068058A1 (en) * 2009-12-02 2011-06-09 ウシオ電機株式会社 Dye-sensitized solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031514A1 (en) * 2014-08-27 2016-03-03 ウシオ電機株式会社 Dye-sensitized solar cell module
JP2016046495A (en) * 2014-08-27 2016-04-04 ウシオ電機株式会社 Dye-sensitized solar cell module
CN105185595A (en) * 2015-09-16 2015-12-23 南昌航空大学 Sensitized solar cell containing electrolyte layer with controllable thickness

Also Published As

Publication number Publication date
JP5633585B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
Gao et al. An all-inorganic lead halide perovskite-based photocathode for stable water reduction
Sun et al. Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells
JP4840540B2 (en) Dye-sensitized solar cell
CN103915260A (en) Flexible-titanium-based dye sensitization solar cell module, manufacturing method and power supply
JP5633585B2 (en) Dye-sensitized solar cell and method for producing the same
JP2003077550A (en) Cylindrical and semi-cylindrical solar battery as well as its manufacturing method
CN101604931B (en) Alkali metal thermo-electric direct converter
JP4798318B1 (en) Dye-sensitized solar cell
JP2011165580A (en) Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
JP4788848B2 (en) Dye-sensitized solar cell
Kapil et al. Fabrication and characterization of coil type transparent conductive oxide-less cylindrical dye-sensitized solar cells
JP5382186B1 (en) Dye-sensitized solar cell
JP6036365B2 (en) Dye-sensitized solar cell
JP2015090729A (en) Dye-sensitized solar cell
Wu et al. Dimethylammonium Iodide: Boosting Photocurrent for Dye-sensitized Solar Cells with Perovskite Precursors Electrolyte
JP2016076633A (en) Dye-sensitized solar cell
CN101598454B (en) Necking reducer flat tube heat collection all-glass evacuated photovoltaic heat tube collector tube
CN101762100A (en) Glass evacuated heat collecting and accumulating tube with built-in photovoltaic cell components and condenser lenses
CN101598463B (en) All-glass evacuated photovoltaic heat tube collector tube
CN107146823A (en) A kind of method for packing of solar cell encapsulation structure and solar cell
CN100559547C (en) Power is ceramic metal helide lamp and the manufacture method thereof below 15 watts
CN101598456B (en) Flat tube heat collection all-glass evacuated photovoltaic heat tube collector tube
Zeng et al. Interface‐Engineered InAlN/Cu2O Photocathode with Accelerated Charge Separation for Boosting Photoelectrochemical Water Splitting
CN103715053B (en) A kind of ultraviolet phototube and manufacture method thereof
CN101598414B (en) Electrostatic antiscale flat tube heat collection all-glass evacuated photovoltaic collector tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees