JP2005108807A - Solid type dye-sensitized element and method of manufacturing the same - Google Patents

Solid type dye-sensitized element and method of manufacturing the same Download PDF

Info

Publication number
JP2005108807A
JP2005108807A JP2004185843A JP2004185843A JP2005108807A JP 2005108807 A JP2005108807 A JP 2005108807A JP 2004185843 A JP2004185843 A JP 2004185843A JP 2004185843 A JP2004185843 A JP 2004185843A JP 2005108807 A JP2005108807 A JP 2005108807A
Authority
JP
Japan
Prior art keywords
type semiconductor
film
dye
layer
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004185843A
Other languages
Japanese (ja)
Other versions
JP4875837B2 (en
Inventor
Yasuhiko Kasama
泰彦 笠間
Kenji Omote
研次 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ideal Star Inc
Original Assignee
Ideal Star Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc filed Critical Ideal Star Inc
Priority to JP2004185843A priority Critical patent/JP4875837B2/en
Publication of JP2005108807A publication Critical patent/JP2005108807A/en
Application granted granted Critical
Publication of JP4875837B2 publication Critical patent/JP4875837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that enegry conversion efficiency is low since there is a leakage current between a P-type layer and a negative layer because of bad denseness of a short circuit prevention film formed of a solid type dye-sensitized element, and plastic material with low thermal resistance is not usable for board material since rapid thermal anealing is required to form the short circuit prevention film. <P>SOLUTION: Energy conversion efficiency is improved by forming a short circuit prevention film of a solid type dye-sensitized element with N-type conductive polymer having preciseness and flexibility, fullerene, endocyst fullerene, or N-type conductive polymer in which fullerene and endocyst fullerene are scattered. The short circuit prevention film is formed using a pressurization process, an electrostatic electrodeposition process or laser irradiation process in order to carry out the process in low temperature, thereby enabling to use a plastic board so that the solid type dye-sensitized element has a broader applicable field. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体型色素増感素子、及びその製造方法に関する。   The present invention relates to a solid-type dye-sensitized element and a method for producing the same.

機能材料 2003年6月号 Vol.23 No.6 p.26〜33 CuIを用いる全固体型色素増感太陽電池 色素増感太陽電池は安価で高性能な次世代型太陽電池として期待を集めている。ヨウ素系の電解液を用いる湿式太陽電池はエネルギー変換効率が10%前後で、色素増感太陽電池の中では最もエネルギー変換効率が高いが、電解液および腐食性のあるヨウ素を用いることから安全性、耐久性の面で問題が指摘されている。この問題を解決するために、電解液部分の固体化の研究が進められているが、湿式にくらべ十分なエネルギー変換効率が得られていない。Functional Materials June 2003 Vol.23 No.6 p.26-33 All-solid-state dye-sensitized solar cells using CuI Dye-sensitized solar cells are expected to be inexpensive and high-performance next-generation solar cells Yes. Wet solar cells that use iodine-based electrolytes have an energy conversion efficiency of around 10%, the highest energy conversion efficiency among dye-sensitized solar cells, but they are safe because they use electrolytes and corrosive iodine. Problems with durability have been pointed out. In order to solve this problem, research on solidification of the electrolytic solution portion is underway, but sufficient energy conversion efficiency has not been obtained as compared with wet processing.

第5図は、従来の固体型色素増感太陽電池の断面図である。従来の固体型色素増感太陽電池は、支持基板101上に、負電極102、TiO2からなる短絡防止層103が積層され、短絡防止層103上に、Ru系の色素105を吸着した多孔質TiO2層104を堆積し、多孔質TiO2膜104の孔を埋めるようにCuI層106を堆積して、正電極107を重ねた構造をしている。透明な支持基板101を通して入射した光を、色素105が吸収し励起状態になる。色素からN型の半導体である多孔質TiO2層104に電子が注入され、負電極102から外部回路を経由して正電極107に電子が流れる。電子を放出した色素は酸化状態にあるが、正電極107からP型の半導体であるCuIに流れてきた電子により再び還元され、発電プロセスが繰り返される。多孔質TiO2層を使用しているため、色素が光を吸収する表面積が大きく、エネルギー変換効率を高めている。多孔質TiO2層104の孔は一部が、負電極102まで貫通しており、短絡防止層103がない場合には、P型半導体であるCuI層106と負電極102が短絡してしまい、太陽電池として機能しなくなる。そのため、従来、N型半導体であるTiO2薄膜を負電極102と多孔質TiO2層104の間に形成し短絡を防止していた(非特許文献1)。 FIG. 5 is a cross-sectional view of a conventional solid dye-sensitized solar cell. In the conventional solid dye-sensitized solar cell, a negative electrode 102 and a short-circuit prevention layer 103 made of TiO 2 are laminated on a support substrate 101, and a porous material in which a Ru-based dye 105 is adsorbed on the short-circuit prevention layer 103. A TiO 2 layer 104 is deposited, a CuI layer 106 is deposited so as to fill the pores of the porous TiO 2 film 104, and a positive electrode 107 is stacked. The light entering through the transparent support substrate 101 is absorbed by the dye 105 and becomes excited. Electrons are injected from the dye into the porous TiO 2 layer 104, which is an N-type semiconductor, and electrons flow from the negative electrode 102 to the positive electrode 107 via an external circuit. The dye that has released the electrons is in an oxidized state, but is reduced again by electrons flowing from the positive electrode 107 to CuI, which is a P-type semiconductor, and the power generation process is repeated. Since the porous TiO 2 layer is used, the surface area of the dye to absorb light is large, and the energy conversion efficiency is increased. Part of the pores of the porous TiO 2 layer 104 penetrates to the negative electrode 102, and when there is no short-circuit prevention layer 103, the CuI layer 106 and the negative electrode 102 which are P-type semiconductors are short-circuited, It will not function as a solar cell. Therefore, conventionally, a TiO 2 thin film, which is an N-type semiconductor, is formed between the negative electrode 102 and the porous TiO 2 layer 104 to prevent a short circuit (Non-Patent Document 1).

第6図 (a)ないし(f)は、いずれも従来の固体型色素増感太陽電池の製造方法を示す断面図である。ガラスからなる支持基板101上にITOなどからなる透明な負電極102を堆積する(第6図(a))。次に、Ti(OPr)4、アセチルアセトンのエタノール溶液からスプレー熱分解法によりTiO2膜からなる短絡防止層103を負電極102上に堆積する(第6図(b))。次に、TiO2微粒子を加えたTi(OPr)4を含むゲル状液を、短絡防止層103上に滴下し、かさぶた状のTiO2塊を成長させ、さらに450℃で焼成を行い、多孔質TiO2層104を形成する(第6図(c))。次に、Ru系の色素105を含む溶液に多孔質TiO2層104を浸し、多孔質TiO2層104に色素105を吸着させる(第6図(d))。加熱した支持基板101の多孔質TiO2層104上にCuI溶液を、多孔質TiO2層104が十分CuI層106に覆われるまで滴下する(第6図(e))。支持基板上に形成した短絡防止層、多孔質TiO2層、色素、 CuI層からなる多層膜を正電極で挟んで、太陽電池を完成する(第6図(f))。 FIGS. 6 (a) to 6 (f) are cross-sectional views showing a conventional method for producing a solid dye-sensitized solar cell. A transparent negative electrode 102 made of ITO or the like is deposited on a support substrate 101 made of glass (FIG. 6 (a)). Next, a short-circuit prevention layer 103 made of a TiO 2 film is deposited on the negative electrode 102 by spray pyrolysis from an ethanol solution of Ti (OPr) 4 and acetylacetone (FIG. 6 (b)). Next, a gel-like liquid containing Ti (OPr) 4 added with TiO 2 fine particles is dropped on the short-circuit prevention layer 103 to grow a scab-like TiO 2 lump, and further baked at 450 ° C. A TiO 2 layer 104 is formed (FIG. 6 (c)). Next, the porous TiO 2 layer 104 is immersed in a solution containing the Ru-based dye 105, and the dye 105 is adsorbed on the porous TiO 2 layer 104 (FIG. 6 (d)). A CuI solution is dropped on the heated porous TiO 2 layer 104 of the supporting substrate 101 until the porous TiO 2 layer 104 is sufficiently covered with the CuI layer 106 (FIG. 6 (e)). A solar cell is completed by sandwiching a multilayer film consisting of a short-circuit prevention layer, porous TiO 2 layer, dye, and CuI layer formed on the support substrate between the positive electrodes (Fig. 6 (f)).

従来の固体型色素増感太陽電池は、TiO2からなる短絡防止層を使用しているため、TiO2粒子間の電気的な導通パスを形成するには400℃以上の熱処理が必要になる。そのため、膜質がもろくなり、十分緻密な膜を形成することができなかった。短絡防止層にできた微細な孔部にCuIが滲み込み、CuI層と負電極の間に微小な電流が流れ、エネルギー変換効率の向上を妨げる要因になっていた。 Conventional solid-state dye-sensitized solar cells, due to the use of short-circuit preventing layer composed of TiO 2, to form an electrical conduction path between TiO 2 particles are required heat treatment above 400 ° C.. For this reason, the film quality is fragile, and a sufficiently dense film cannot be formed. CuI permeated into the fine holes formed in the short-circuit prevention layer, and a minute current flowed between the CuI layer and the negative electrode, which hindered improvement in energy conversion efficiency.

また、短絡防止層に孔部ができないように短絡防止層を厚くすると、短絡防止層が太陽電池の内部抵抗として機能し、やはりエネルギー変換効率を低下させる要因になっていた。   In addition, if the short-circuit prevention layer is made thick so that there is no hole in the short-circuit prevention layer, the short-circuit prevention layer functions as an internal resistance of the solar cell, which also causes a reduction in energy conversion efficiency.

また、400℃以上の熱処理が必要なため、プラスティックなどの耐熱性の低い支持基板上に太陽電池を作製することができなかった。柔軟性のない重量のあるガラスなどの基板上に太陽電池を作製しなければならないため、その用途が限定されていた。   Further, since a heat treatment at 400 ° C. or higher is necessary, a solar cell could not be manufactured on a support substrate having low heat resistance such as plastic. Since the solar cell has to be manufactured on a substrate such as glass having no flexibility and weight, its use has been limited.

本発明に係る固体型色素増感素子は、支持基板と、前記支持基板上に配置された第一電極層と、前記第一電極層上に配置されたN型導電性ポリマー、フラーレン、又は内包フラーレンからなる短絡防止層と、前記短絡防止層上に配置された多孔質の金属酸化層からなるN型半導体層と、前記N型半導体層の表面に吸着された色素と、前記N型半導体層の孔部を埋め込んで前記N型半導体層上に配置されたP型半導体層と、前記P型半導体層上に配置された第二電極層からなることを特徴とする。   A solid-type dye-sensitized element according to the present invention includes a support substrate, a first electrode layer disposed on the support substrate, an N-type conductive polymer, fullerene, or inclusion included on the first electrode layer. A short-circuit prevention layer made of fullerene, an N-type semiconductor layer made of a porous metal oxide layer disposed on the short-circuit prevention layer, a dye adsorbed on the surface of the N-type semiconductor layer, and the N-type semiconductor layer A P-type semiconductor layer disposed on the N-type semiconductor layer and a second electrode layer disposed on the P-type semiconductor layer.

(作用)
短絡防止層の材料として、抵抗率が小さく、膜質が緻密なN型導電性ポリマー膜を使用することにより、P型半導体層と負電極の短絡を防止でき、同時に太陽電池の内部抵抗を小さくできるので、エネルギー変換効率が向上する。
(Function)
Short-circuit between the P-type semiconductor layer and the negative electrode can be prevented and the internal resistance of the solar cell can be reduced at the same time by using an N-type conductive polymer film with low resistivity and dense film quality as the material for the short-circuit prevention layer Therefore, energy conversion efficiency is improved.

また、短絡防止層の材料として、N型導電性ポリマー膜のかわりに、フラーレン、内包フラーレンを蒸着した薄膜を使用することも可能である。フラーレン、又は、内包フラーレンは、N型の半導体として機能し、導電性ポリマー膜と同様に膜質が緻密で、より抵抗率が低いため、エネルギー変換効率がさらに向上する。   In addition, as a material for the short-circuit prevention layer, it is also possible to use a thin film in which fullerene and encapsulated fullerene are vapor-deposited instead of the N-type conductive polymer film. Fullerene or endohedral fullerene functions as an N-type semiconductor, has a dense film quality similar to the conductive polymer film, and has a lower resistivity, thereby further improving energy conversion efficiency.

本発明の固体型色素増感太陽電池によれば、以下の効果が得られる。
(1)固体型であるため、湿式の太陽電池に比べ、安全性、耐久性の点で優れている。
(2)薄くても緻密な抵抗率の小さい短絡防止層が形成できるので、太陽電池の短絡電流が従来の固体型色素増感太陽電池に比べ1.5〜3倍に増加し、太陽電池のエネルギー変換効率が向上する。
(3)常温あるいは100℃以下の低温で太陽電池を作製できるので、プラスティックなどの耐熱性の低い基板を使用できる。軽くて薄いフィルムタイプの太陽電池が製造できるので、住宅窓や携帯電話などへの応用が可能になる。また、ロール・ツー・ロールの製造工程が使用できるので、大幅な製造コストの低減が可能になる。
(4)プラスティック基板の材料として、ペットボトルなどに広く使用されているポリエチレンテレフタレート、ポリエーテルイミド、ポリエーテルサルフォンを使用することにより、原材料費の削減に効果がある。
(5)短絡防止層に柔軟性のある材料を使用することにより、繊維状の固体型色素増感太陽電池の作製が可能になる。
According to the solid dye-sensitized solar cell of the present invention, the following effects can be obtained.
(1) Since it is a solid type, it is superior in terms of safety and durability as compared with wet solar cells.
(2) Since a short-circuit prevention layer having a small and dense resistivity can be formed even if it is thin, the short-circuit current of the solar cell is increased by 1.5 to 3 times compared to the conventional solid-type dye-sensitized solar cell, and the energy conversion of the solar cell Efficiency is improved.
(3) Since a solar cell can be produced at room temperature or at a low temperature of 100 ° C. or lower, a substrate having low heat resistance such as plastic can be used. Light and thin film-type solar cells can be manufactured, enabling applications in residential windows and mobile phones. Further, since a roll-to-roll manufacturing process can be used, the manufacturing cost can be greatly reduced.
(4) The use of polyethylene terephthalate, polyetherimide, or polyethersulfone widely used for plastic bottles or the like as a material for the plastic substrate is effective in reducing raw material costs.
(5) By using a flexible material for the short-circuit prevention layer, a fibrous solid-type dye-sensitized solar cell can be produced.

本発明により繊維状の固体型色素増感太陽電池を作製すれば、さらに以下の効果が得られる。
(6)あらゆる角度からの光を受け入れて、電気エネルギーに変換できるので、エネルギー変換効率が高い。
(7)繊維状の太陽電池を加工して布状の太陽電池を作成できるため、製造設備の規模によらずに大面積の太陽電池を製造することができる。
(8)繊維状、あるいは布状の太陽電池は柔軟性があるため、太陽電池の機能を持つテント、傘、衣服などの多様な用途がある。
If a fibrous solid dye-sensitized solar cell is produced according to the present invention, the following effects can be further obtained.
(6) Since light from any angle can be received and converted into electrical energy, energy conversion efficiency is high.
(7) Since a fabric-like solar cell can be produced by processing a fibrous solar cell, a large-area solar cell can be produced regardless of the scale of the production facility.
(8) Since fiber or cloth solar cells are flexible, they have various uses such as tents, umbrellas and clothes having the functions of solar cells.

短絡防止層の材料として、N型導電性ポリマー膜のかわりに、フラーレン、又は内包フラーレンを内部に分散させたN型導電性ポリマーを使用することもできる。フラーレン、又は内包フラーレンをドープすることによりN型導電性ポリマーの抵抗率を下げることができる。   As a material for the short-circuit prevention layer, an N-type conductive polymer in which fullerene or encapsulated fullerene is dispersed can be used instead of the N-type conductive polymer film. The resistivity of the N-type conductive polymer can be lowered by doping fullerene or endohedral fullerene.

第1図は、本発明の第一の実施例に係る固体型色素増感太陽電池の断面図である。本発明の第一の実施例に係る固体型色素増感太陽電池は、支持基板1上に、負電極2、内包フラーレンを内部に分散したN型導電性ポリマーからなる短絡防止層3が積層され、短絡防止層3上に、Ru系の色素5を吸着した多孔質TiO2層4を堆積し、多孔質TiO2層4の孔を埋めるようにCuI層6を堆積して、正電極7を重ねた構造をしている。 FIG. 1 is a cross-sectional view of a solid dye-sensitized solar cell according to a first embodiment of the present invention. In the solid dye-sensitized solar cell according to the first embodiment of the present invention, a short-circuit preventing layer 3 made of an N-type conductive polymer in which a negative electrode 2 and an inclusion fullerene are dispersed is laminated on a support substrate 1. The porous TiO 2 layer 4 adsorbing the Ru-based dye 5 is deposited on the short-circuit prevention layer 3, the CuI layer 6 is deposited so as to fill the pores of the porous TiO 2 layer 4, and the positive electrode 7 is formed. It has a stacked structure.

第2図(a)ないし(f)は、本発明の第一の実施例に係る固体型色素増感太陽電池の製造方法を示す断面図である。支持基板1、及び負電極2として、透明電極となるFTO(フッ素ドープ酸化スズ)薄膜を堆積したガラス基板を用いる。透明電極としては、他にもITO(酸化インジウム-酸化スズ)、ATO(酸化スズ-酸化アンチモン)が使用できる(第2図(a))。次に、内包フラーレンを内部に分散させたN型導電性ポリマーからなる短絡防止層3を、ディッピング、蒸着、めっきなどによりコーティングする(第2図(b))。例えば、N型導電性ポリマーとして、Na、 K、 Ca、AsF5/AsF3、又はClO4 -をドーパントするポリパラフェニレン、ポリチオフェン、ポリ(3−メチルチオフェン)の中のいずれか一つの材料を使用する。次に、短絡防止層3上で、TiO2ナノ粒子を1×105Pa〜1×106Pa程度の圧力で加圧プレスして多孔質TiO2層を形成する(第2図(c))。次に、Ru系の色素5を含む溶液に多孔質TiO2層4を浸し、多孔質TiO2層4に色素105を吸着させる(第2図(d))。色素5として、高価なRu系色素のかわりに、クマリン系色素を使用することも可能である。加熱した支持基板1の多孔質TiO2層4上にCuI溶液を、多孔質TiO2層4が十分CuI層6に覆われるまで滴下する(第2図(e))。支持基板1上に形成した負電極2、短絡防止層3、多孔質TiO2層4、色素5、 CuI層6からなる多層膜を正電極7で挟んで、太陽電池を完成する(第2図(f))。 2 (a) to 2 (f) are cross-sectional views showing a method for producing a solid dye-sensitized solar cell according to the first embodiment of the present invention. As the support substrate 1 and the negative electrode 2, a glass substrate on which an FTO (fluorine-doped tin oxide) thin film to be a transparent electrode is deposited is used. In addition, ITO (indium oxide-tin oxide) and ATO (tin oxide-antimony oxide) can be used as the transparent electrode (FIG. 2 (a)). Next, the short-circuit prevention layer 3 made of an N-type conductive polymer in which the endohedral fullerene is dispersed is coated by dipping, vapor deposition, plating, etc. (FIG. 2 (b)). For example, as an N-type conductive polymer, any one of polyparaphenylene, polythiophene, and poly (3-methylthiophene) dopants of Na, K, Ca, AsF 5 / AsF 3 , or ClO 4 is used. use. Next, a porous TiO 2 layer is formed on the short-circuit prevention layer 3 by press-pressing TiO 2 nanoparticles at a pressure of about 1 × 10 5 Pa to 1 × 10 6 Pa (FIG. 2 (c)). ). Next, the porous TiO 2 layer 4 is immersed in a solution containing the Ru-based dye 5 and the dye 105 is adsorbed on the porous TiO 2 layer 4 (FIG. 2 (d)). As the dye 5, a coumarin dye can be used instead of an expensive Ru dye. A CuI solution is dropped on the porous TiO 2 layer 4 of the heated support substrate 1 until the porous TiO 2 layer 4 is sufficiently covered with the CuI layer 6 (FIG. 2 (e)). A solar cell is completed by sandwiching a multilayer film composed of a negative electrode 2, a short-circuit prevention layer 3, a porous TiO 2 layer 4, a dye 5 and a CuI layer 6 formed on the support substrate 1 between the positive electrodes 7 (FIG. 2). (F)).

多孔質TiO2層4を常温あるいは100℃以下の低温で堆積する方法としては、加圧プレス法の他に、静電的電着法、又はレーザー照射法を用いることも可能である。静電的電着法を用いる場合には、TiO2ナノ粒子懸濁液の中に被膜基板を浸し、被膜基板に電界をかけることによりTiO2ナノ粒子を被膜基板上に堆積させる。レーザー照射法を用いる場合には、TiO2ナノ粒子懸濁液を被膜基板上に塗布した後、レーザを照射してTiO2薄膜を緻密化する。 As a method for depositing the porous TiO 2 layer 4 at room temperature or at a low temperature of 100 ° C. or lower, an electrostatic electrodeposition method or a laser irradiation method can be used in addition to the pressure press method. In the case of using the electrostatic electrodeposition method, immersing the film substrate in the TiO 2 nanoparticle suspension of TiO 2 nanoparticles is deposited on the film substrate by applying an electric field to the film substrate. In the case of using the laser irradiation method, the TiO 2 nanoparticle suspension is applied on the coated substrate, and then the laser is irradiated to densify the TiO 2 thin film.

短絡防止層として、フラーレン、内包フラーレンを蒸着した薄膜を使用することも可能である。フラーレン、又は、内包フラーレンは、光を吸収すると電子を奪って、電子過多となり、ホッピングで電子を輸送する性質があり、N型の半導体として機能する。たとえば、Naを内包したC60からなる内包フラーレンを真空室内で500〜600℃に加熱して、昇華させ被膜基板上に蒸着する。被膜基板自体は100℃以上にはならないため、耐熱性の低い基板上に蒸着することが可能である。内包フラーレンの蒸着膜は、導電性ポリマー膜と同様に、緻密で、柔軟性があり、さらに、抵抗率が低いため、色素増感太陽電池の短絡防止層に適している。 As the short-circuit prevention layer, it is also possible to use a thin film in which fullerene or encapsulated fullerene is deposited. Fullerenes or endohedral fullerenes have the property of depriving electrons when absorbing light, resulting in excessive electrons, and transporting electrons by hopping, and function as N-type semiconductors. For example, an endohedral fullerene composed of C 60 encapsulating Na is heated to 500 to 600 ° C. in a vacuum chamber to be sublimated and deposited on a coated substrate. Since the coated substrate itself does not exceed 100 ° C., it can be deposited on a substrate having low heat resistance. The vapor deposition film of the endohedral fullerene is suitable for the short-circuit prevention layer of the dye-sensitized solar cell because it is dense and flexible, and has a low resistivity, like the conductive polymer film.

また、短絡防止層として、フラーレン、又は内包フラーレンを内部に分散させたN型導電性ポリマーからなる薄膜を使用することもできる。フラーレン、又は内包フラーレンをドープすることによりN型導電性ポリマーの抵抗率を下げることができる。   In addition, as the short-circuit prevention layer, a thin film made of an N-type conductive polymer in which fullerene or endohedral fullerene is dispersed can be used. The resistivity of the N-type conductive polymer can be lowered by doping fullerene or endohedral fullerene.

また、短絡防止層の厚さとしては、10nm以上、200nm以下とするのが好ましい。短絡防止層の厚さが10nm未満である場合には、短絡防止層自身がもろくなるため、P型半導体層と負電極の間にリーク電流が流れやすくなり、急激にエネルギー変換効率が低下するという問題が発生する。また、短絡防止層の厚さが200nmより厚くなると、短絡防止層がフィルターとして機能する。入射光が短絡防止層に吸収される割合が増加し、色素増感素子の色素に光が吸収される量が減少するため、この場合でも、色素増感素子のエネルギー変換効率が大幅に低下するという問題が発生する。短絡防止層の厚さを10nm以上、200nm以下とすることにより、短絡防止層の膜質を緻密なものとし、かつ、短絡防止層による入射光の吸収を最小限にすることができるので、従来の固体型色素増感素子に比べ、大幅なエネルギー変換効率の向上が可能になる。   In addition, the thickness of the short-circuit prevention layer is preferably 10 nm or more and 200 nm or less. When the thickness of the short-circuit prevention layer is less than 10 nm, the short-circuit prevention layer itself becomes brittle, so that a leak current easily flows between the P-type semiconductor layer and the negative electrode, and the energy conversion efficiency is drastically reduced. A problem occurs. Further, when the thickness of the short-circuit prevention layer is greater than 200 nm, the short-circuit prevention layer functions as a filter. Even in this case, the energy conversion efficiency of the dye-sensitized element is greatly reduced because the proportion of incident light absorbed by the short-circuit prevention layer increases and the amount of light absorbed by the dye-sensitized element decreases. The problem occurs. By setting the thickness of the short-circuit prevention layer to 10 nm or more and 200 nm or less, the film quality of the short-circuit prevention layer can be made dense, and absorption of incident light by the short-circuit prevention layer can be minimized. Compared with a solid-state dye-sensitized element, the energy conversion efficiency can be greatly improved.

本発明によれば、多孔質TiO2膜4の形成に加圧プレス法、静電的電着法、レーザー照射法などの低温プロセスを使用するため、支持基板1として、耐熱性の低いプラスティック基板を使用することができる。プラスティック基板として、ペットボトルなどに広く使用されているポリエチレンテレフタレート(PET)、ポリエーテルイミド(PEI)、ポリエーテルサルフォン(PES)などを使用すれば、原材料費の削減に効果がある。 According to the present invention, a plastic substrate having low heat resistance is used as the support substrate 1 because a low-temperature process such as pressure pressing, electrostatic electrodeposition, or laser irradiation is used to form the porous TiO 2 film 4. Can be used. The use of polyethylene terephthalate (PET), polyetherimide (PEI), polyethersulfone (PES), etc., which are widely used for plastic bottles and the like as a plastic substrate, is effective in reducing raw material costs.

第3図は、本発明の第二の実施例に係る固体型色素増感太陽電池の斜視図である。本発明の第二の実施例に係る固体型色素増感太陽電池は、導電性ポリマーからなる負電極線8に、内包フラーレンを内部に分散したN型導電性ポリマーからなる短絡防止膜9を被膜し、短絡防止膜9上に、Ru系の色素11を吸着した多孔質TiO2膜10を被膜し、多孔質TiO2膜10の孔を埋めるようにCuI膜12を被膜して、CuI膜12上に導電性ポリマーからなる正電極膜13を被膜した構造をしている。 FIG. 3 is a perspective view of a solid dye-sensitized solar cell according to the second embodiment of the present invention. The solid-type dye-sensitized solar cell according to the second embodiment of the present invention has a negative electrode wire 8 made of a conductive polymer and a short-circuit prevention film 9 made of an N-type conductive polymer in which encapsulated fullerene is dispersed. Then, the porous TiO 2 film 10 adsorbing the Ru-based dye 11 is coated on the short-circuit prevention film 9, and the CuI film 12 is coated so as to fill the pores of the porous TiO 2 film 10. The positive electrode film 13 made of a conductive polymer is coated thereon.

例えば、負電極線8、又は正電極膜13の材料としては、ポリアセチレン、ポリアセン、オリゴアセン、ポリチアジル、ポリチオフェン、ポリ(3−アルキルチオフェン)、オリゴチオフェン、ポリピロール、ポリアニリン、ポリフェニレンの中のいずれか一つの材料を使用する。短絡防止膜9のN型導電性ポリマー材料としては、Na、 K、 Ca、AsF5/AsF3、又はClO4 -をドープしたポリパラフェニレン、ポリチオフェン、ポリ(3−メチルチオフェン)の中のいずれか一つの材料を使用する。 For example, the material of the negative electrode line 8 or the positive electrode film 13 is any one of polyacetylene, polyacene, oligoacene, polythiazyl, polythiophene, poly (3-alkylthiophene), oligothiophene, polypyrrole, polyaniline, and polyphenylene. Use materials. The N-type conductive polymer material for the short-circuit prevention film 9 includes any one of Na, K, Ca, AsF 5 / AsF 3 , or polyparaphenylene doped with ClO 4 , polythiophene, or poly (3-methylthiophene). Use one material.

実施例では、負電極線8の材料として、導電性ポリマーを使用しているが、高導電グラファイト繊維、銅線、銀線、又はアルミニウム線などの導電性繊維を使用することも可能である。また、負電極線8となる導電性の繊維として中空領域を有する繊維を使用することも可能である。中空領域を有する繊維を使用した場合、線状の太陽電池を、より軽量にすることができる。さらに、導電膜で被膜した繊維を使用することも可能である。例えば、導電膜で被膜する繊維の材料としては、PET繊維、ポリエステル繊維、アクリル繊維、又はナイロン繊維を使用する。また、繊維の材料としては、絶縁体材料に限らず、半導体材料や導電体材料を使用することも可能である。繊維を被膜する導電膜としては、金属、合金、又は金属化合物からなる薄膜を使用する。また、線状太陽電池の中心となる導電性繊維の材料として、高分子有機材料を用いる場合には、導電体領域にフラーレン、又は内包フラーレンを混合することが好ましい。フラーレンとしては、Cn(n=60〜80)が好ましい。内包フラーレンの内包原子としては、Na、Li、H、N、Fが好ましい。   In the embodiment, a conductive polymer is used as the material of the negative electrode wire 8, but it is also possible to use a conductive fiber such as a highly conductive graphite fiber, a copper wire, a silver wire, or an aluminum wire. Moreover, it is also possible to use a fiber having a hollow region as the conductive fiber that becomes the negative electrode wire 8. When a fiber having a hollow region is used, the linear solar cell can be made lighter. Furthermore, it is also possible to use fibers coated with a conductive film. For example, PET fiber, polyester fiber, acrylic fiber, or nylon fiber is used as the fiber material coated with the conductive film. The fiber material is not limited to an insulator material, and a semiconductor material or a conductor material can also be used. As the conductive film for coating the fibers, a thin film made of a metal, an alloy, or a metal compound is used. Further, when a polymer organic material is used as the material of the conductive fiber that becomes the center of the linear solar cell, it is preferable to mix fullerene or encapsulated fullerene in the conductor region. As the fullerene, Cn (n = 60 to 80) is preferable. The endohedral atoms of the endohedral fullerene are preferably Na, Li, H, N, and F.

また、繊維上に導電膜を被膜する方法としては、次にあげる方法の中のいずれか一つの方法を使用する。
1)Cu、Ni、又はCuとNiの合金を、無電解メッキ法により繊維上に被膜する。
2)Al、又はAgを繊維上に蒸着する。
3)硫化銅を繊維上に化学結合させる。
In addition, as a method of coating the conductive film on the fiber, any one of the following methods is used.
1) Cu, Ni, or an alloy of Cu and Ni is coated on the fiber by an electroless plating method.
2) Al or Ag is vapor-deposited on the fiber.
3) Copper sulfide is chemically bonded onto the fiber.

第4図(a)ないし(f)は、本発明の第二の実施例に係る固体型色素増感太陽電池の製造方法を示す斜視図である。負電極線8を支持材として(第4図(a))、負電極線8上に、内包フラーレンを内部に分散させたN型導電性ポリマーからなる短絡防止膜9を、ディッピング、蒸着、めっきなどにより被膜する(第4図(b))。次に、短絡防止膜9上で、TiO2ナノ粒子を静電的電着法により電着し、多孔質TiO2膜10を形成する(第4図(c))。次に、Ru系の色素5を含む溶液に支持材を浸し、多孔質TiO2膜10に色素11を吸着させる(第4図(d))。さらに、多孔質TiO2膜10が十分CuI膜12に覆われるまで、CuI膜をディッピング、蒸着、めっきなどにより被膜する(第4図(e))。次に、正電極膜13をCuI膜12上にディッピング、蒸着、めっきなどにより被膜して太陽電池を完成する(第4図(f))。 4 (a) to 4 (f) are perspective views showing a method for manufacturing a solid dye-sensitized solar cell according to the second embodiment of the present invention. Using the negative electrode wire 8 as a supporting material (FIG. 4 (a)), a short-circuit prevention film 9 made of an N-type conductive polymer in which the endohedral fullerene is dispersed is dipped, vapor-deposited and plated on the negative electrode wire 8 (Fig. 4 (b)). Next, TiO 2 nanoparticles are electrodeposited on the short-circuit prevention film 9 by an electrostatic electrodeposition method to form a porous TiO 2 film 10 (FIG. 4 (c)). Next, the support material is immersed in a solution containing the Ru-based dye 5, and the dye 11 is adsorbed to the porous TiO 2 film 10 (FIG. 4 (d)). Further, the CuI film is coated by dipping, vapor deposition, plating, or the like until the porous TiO 2 film 10 is sufficiently covered with the CuI film 12 (FIG. 4 (e)). Next, the positive electrode film 13 is coated on the CuI film 12 by dipping, vapor deposition, plating or the like to complete the solar cell (FIG. 4 (f)).

(測定実施例1)
第7図は、従来の色素増感型太陽電池と本発明の色素増感型太陽電池の光電変換特性を測定したデータである。光電変換特性の測定に用いた太陽電池は以下に記載する方法で作成した。
(Measurement Example 1)
FIG. 7 shows data obtained by measuring photoelectric conversion characteristics of a conventional dye-sensitized solar cell and the dye-sensitized solar cell of the present invention. The solar cell used for the measurement of photoelectric conversion characteristics was prepared by the method described below.

従来の太陽電池の製造方法
(1)基板の用意、負電極の形成:厚さ0.5mmの透明な石英ガラス基板(30mm×30mm)を用意した。さらに、用意したガラス基板上に厚さ340ÅのITO膜をスパッター法により形成した。ガラス基板上のITO膜は、太陽電池の負電極として使用した。透明なガラス基板側は、太陽電池の受光部として用いた。
(2)短絡防止層の形成:Ti(OPr)4、アセチルアセトンのエタノール溶液からスプレー熱分解法により、短絡防止層となる酸化チタン膜をITO膜上に厚さ0.5mm堆積した。
(3)N型半導体層の形成:シーアイ化成製酸化チタン粉末(平均粒子径30nm)を用意し、Ti(OPr)4を含むゲル状液にチタン粉末を溶解した。次に、酸化チタン粉末を溶解したゲル状液を基板上の酸化チタン膜上に滴下し、かさぶた状の酸化チタン塊を成長させ、N型半導体層を堆積した。さらに、酸化チタンからなる短絡防止層の膜質を緻密なものとするために、加熱オーブン中で、窒素雰囲気で450℃30分の加熱処理を行った。
(4)色素の吸着:シグマ製Ru錯体をクロロフォルムに2.8×10-4mol/lの濃度で溶解し、Ru錯体溶液を用意した。N型半導体層を形成した基板を用意したRu錯体溶液に30時間浸した後、乾燥して、酸化チタン上にRu錯体を吸着させた。
(5)P型半導体層の形成:Ru錯体からなる色素(Ru系の色素)を吸着した基板上に、CuI溶液を滴下し、P型半導体層を形成した。
(6)正電極の形成:基板上に太陽電池の正電極となるITO電極(30mm×30mm)を載置して、固体型色素増感太陽電池を完成した。
Conventional Solar Cell Manufacturing Method (1) Preparation of Substrate, Formation of Negative Electrode: A transparent quartz glass substrate (30 mm × 30 mm) having a thickness of 0.5 mm was prepared. Further, an ITO film having a thickness of 340 mm was formed on the prepared glass substrate by sputtering. The ITO film on the glass substrate was used as the negative electrode of the solar cell. The transparent glass substrate side was used as a light receiving part of the solar cell.
(2) Formation of a short-circuit prevention layer: A titanium oxide film serving as a short-circuit prevention layer was deposited on the ITO film by a thickness of 0.5 mm from an ethanol solution of Ti (OPr) 4 and acetylacetone by spray pyrolysis.
(3) Formation of N-type semiconductor layer: Titanium conversion titanium oxide powder (average particle size 30 nm) was prepared, and titanium powder was dissolved in a gel-like liquid containing Ti (OPr) 4 . Next, a gel-like liquid in which titanium oxide powder was dissolved was dropped on the titanium oxide film on the substrate to grow a scab-like titanium oxide lump, and an N-type semiconductor layer was deposited. Further, in order to make the film quality of the short-circuit prevention layer made of titanium oxide dense, heat treatment was performed in a heating oven at 450 ° C. for 30 minutes.
(4) Dye adsorption: A Sigma Ru complex was dissolved in chloroform at a concentration of 2.8 × 10 −4 mol / l to prepare a Ru complex solution. The substrate on which the N-type semiconductor layer was formed was immersed in a prepared Ru complex solution for 30 hours and then dried to adsorb the Ru complex on titanium oxide.
(5) Formation of P-type semiconductor layer: A CuI solution was dropped onto a substrate adsorbing a dye (Ru-based dye) composed of a Ru complex to form a P-type semiconductor layer.
(6) Formation of positive electrode: An ITO electrode (30 mm × 30 mm) serving as the positive electrode of the solar cell was placed on the substrate to complete a solid dye-sensitized solar cell.

本発明の太陽電池の製造方法
(1)基板の用意、負電極の形成:厚さ125μmの王子トービ製ITO付きPETフィルム基板(30mm×30mm)を用意した。PETフィルム基板上のITO膜は、太陽電池の負電極として機能する。PETフィルム基板とITO膜は透明で、負電極側は太陽電池の受光部となる。
(2)短絡防止層の形成:抵抗加熱式蒸着装置の真空チャンバー内にPETフィルム基板を置いて、チャンバー内部を真空度2×10-6Torrに減圧した。蒸発源として、粉末状のNa内包フラーレン(Na@C60)を50mg用意した。蒸発源を約600℃に加熱し、PETフィルム基板上に太陽電池の短絡防止層として機能する内包フラーレン膜を堆積した。30秒の蒸着により、厚さ約50nmの内包フラーレン膜が堆積された。蒸着工程中、PETフィルム基板の温度は、20℃から50℃までの温度に保たれ、PETフィルム基板が変質、変形することはない。
(3)N型半導体層の形成:シーアイ化成製酸化チタン粉末(平均粒子径30nm)を用意し、Ti(OPr)4を含むゲル状液にチタン粉末を溶解した。次に、酸化チタン粉末を溶解したゲル状液を基板上の酸化チタン膜上に滴下し、かさぶた状の酸化チタン塊を成長させた。さらに、テフロンシート(登録商標)、シリコンゴム、金属板(真鋳製)を積層した加圧板を2枚用意した。2枚の加圧板により酸化チタンと短絡防止層をのせたPETフィルム基板を挟着し、ねじ締めにより圧力4.9×105Paに加圧した。加圧した状態で、基板を約90℃のオーブンで窒素雰囲気中60時間加熱し、基板上に酸化チタン粉末を密着させ、酸化チタンからなるN型半導体層を形成した。本発明の製造方法によれば、短絡防止層の緻密化の熱処理を含め、400℃以上の熱処理が不要なため、基板に耐熱性の低い基板を使用することが可能である。
(4)色素の吸着:シグマ製Ru錯体をクロロフォルムに2.8×10-4mol/lの濃度で溶解し、Ru錯体溶液を用意した。N型半導体層を形成した基板を用意したRu錯体溶液に30時間浸した後、乾燥して、酸化チタン上にRu錯体を吸着させた。
(5)P型半導体層の形成:Ru錯体からなる色素(Ru系の色素)を吸着した基板上に、CuI溶液を滴下し、P型半導体層を形成した。
(6)正電極の形成:基板上に太陽電池の正電極となるITO電極(30mm×30mm)を載置して、固体型色素増感太陽電池を完成した。
Manufacturing method of solar cell of the present invention (1) Preparation of substrate and formation of negative electrode: A PET film substrate (30 mm × 30 mm) with ITO having a thickness of 125 μm and made by Oji Tobi was prepared. The ITO film on the PET film substrate functions as the negative electrode of the solar cell. The PET film substrate and the ITO film are transparent, and the negative electrode side is the light receiving part of the solar cell.
(2) Formation of short-circuit prevention layer: A PET film substrate was placed in a vacuum chamber of a resistance heating type vapor deposition apparatus, and the inside of the chamber was depressurized to a vacuum degree of 2 × 10 −6 Torr. As an evaporation source, 50 mg of powdered Na-encapsulated fullerene (Na @ C 60 ) was prepared. The evaporation source was heated to about 600 ° C., and an inclusion fullerene film functioning as a short-circuit prevention layer of the solar cell was deposited on the PET film substrate. An endohedral fullerene film having a thickness of about 50 nm was deposited by vapor deposition for 30 seconds. During the vapor deposition process, the temperature of the PET film substrate is maintained at a temperature from 20 ° C. to 50 ° C., and the PET film substrate is not altered or deformed.
(3) Formation of N-type semiconductor layer: Titanium conversion titanium oxide powder (average particle size 30 nm) was prepared, and titanium powder was dissolved in a gel-like liquid containing Ti (OPr) 4 . Next, a gel-like liquid in which the titanium oxide powder was dissolved was dropped onto the titanium oxide film on the substrate to grow a scab-like titanium oxide lump. In addition, two pressure plates were prepared by laminating a Teflon sheet (registered trademark), silicon rubber, and a metal plate (made of brass). A PET film substrate on which titanium oxide and a short-circuit prevention layer were placed was sandwiched between two pressure plates, and the pressure was increased to 4.9 × 10 5 Pa by screwing. In a pressurized state, the substrate was heated in an oven at about 90 ° C. in a nitrogen atmosphere for 60 hours to adhere titanium oxide powder onto the substrate to form an N-type semiconductor layer made of titanium oxide. According to the manufacturing method of the present invention, since a heat treatment at 400 ° C. or higher including a heat treatment for densifying the short-circuit prevention layer is unnecessary, it is possible to use a substrate having low heat resistance.
(4) Dye adsorption: A Sigma Ru complex was dissolved in chloroform at a concentration of 2.8 × 10 −4 mol / l to prepare a Ru complex solution. The substrate on which the N-type semiconductor layer was formed was immersed in a prepared Ru complex solution for 30 hours and then dried to adsorb the Ru complex on titanium oxide.
(5) Formation of P-type semiconductor layer: A CuI solution was dropped onto a substrate adsorbing a dye (Ru-based dye) composed of a Ru complex to form a P-type semiconductor layer.
(6) Formation of positive electrode: An ITO electrode (30 mm × 30 mm) serving as the positive electrode of the solar cell was placed on the substrate to complete a solid dye-sensitized solar cell.

以上の方法で作成した太陽電池セルを、負電極側からハロゲンランプにより中心波長700nm、光強度3mWの光を照射し、太陽電池セルの正電極、及び、負電極間のI-V特性を半導体パラメータ測定装置(アジレント製4155)により測定した。光を照射する照射面積が、従来の太陽電池セル、本発明の太陽電池セルのいずれにおいても同一となるように、基板表面に一辺が1cmの正方形の孔を開けた黒い画用紙を貼り付けた。   The solar cell created by the above method is irradiated with light with a central wavelength of 700 nm and light intensity of 3 mW from the negative electrode side by a halogen lamp, and the IV characteristics between the positive electrode and the negative electrode of the solar cell are measured by semiconductor parameters. Measured with an instrument (Agilent 4155). A black drawing paper having a square hole with a side of 1 cm was pasted on the surface of the substrate so that the irradiation area irradiated with light was the same in both the conventional solar cell and the solar cell of the present invention.

図7の測定データに示すように、起電力に関しては、従来の太陽電池、本発明の太陽電池のいずれも約0.6Vと同程度であるが、短絡電流を比較すると、従来の太陽電池が-0.4mA/cm2、本発明の太陽電池が-0.65mA/cm2と本発明の太陽電池のほうが同一強度の光照射に対し、約1.6倍の電流が流すことができる。 As shown in the measurement data in FIG. 7, regarding the electromotive force, both the conventional solar cell and the solar cell of the present invention are about 0.6 V, but when comparing the short-circuit current, the conventional solar cell is − 0.4 mA / cm 2, to the light irradiation of the same intensity towards the solar cell of the solar cell of the present invention present invention as -0.65mA / cm 2, it can be about 1.6 times the current flow.

複数のセルに対して短絡電流を測定し、従来の太陽電池の測定データと比較した結果、測定実施例1に係る本発明の太陽電池は従来の太陽電池と比較して、1.5倍から3.0倍の短絡電流を流すことができることがわかった。   As a result of measuring the short-circuit current for a plurality of cells and comparing it with the measurement data of the conventional solar cell, the solar cell of the present invention according to measurement example 1 is 1.5 times to 3.0 times the conventional solar cell. It was found that a short-circuit current of.

(測定実施例2)
短絡防止層として、内包フラーレンの蒸着膜ではなく、N型導電性ポリマーに内包フラーレンを分散させた塗布膜を用いて、太陽電池セルを作成し測定実施例1と同様の測定方法で光電変換特性を測定した。基板の用意、負電極の形成、N型半導体層の形成、色素の吸着、P型半導体層の形成、正電極の形成については、測定実施例1に記載した本発明の太陽電池の製造方法と同じ方法により作成した。
(Measurement Example 2)
As a short-circuit prevention layer, a photovoltaic cell was prepared using a coating film in which an endohedral fullerene was dispersed in an N-type conductive polymer instead of a vapor deposition film of the endohedral fullerene, and was subjected to photoelectric conversion characteristics by the same measurement method as in Measurement Example 1. Was measured. Regarding the preparation of the substrate, the formation of the negative electrode, the formation of the N-type semiconductor layer, the adsorption of the dye, the formation of the P-type semiconductor layer, and the formation of the positive electrode, the manufacturing method of the solar cell of the present invention described in Measurement Example 1 Created by the same method.

測定実施例2における短絡防止層の作成方法は以下の通りである。
短絡防止層の形成:N型導電性ポリマーとして、アルドリッチ製ポリピロール(商品番号53,057-3)を用意した。粉末状のNa内包フラーレン(Na@C60)を10wt%の重量比でポリピロールからなる導電性ポリマーに分散させ、塗布法によりITO膜上に厚さ100nmの短絡防止層を形成した。
The method for creating the short-circuit prevention layer in Measurement Example 2 is as follows.
Formation of short-circuit preventing layer: Aldrich polypyrrole (product number 53,057-3) was prepared as an N-type conductive polymer. Powdered Na-encapsulated fullerene (Na @ C60) was dispersed in a conductive polymer composed of polypyrrole at a weight ratio of 10 wt%, and a short-circuit prevention layer having a thickness of 100 nm was formed on the ITO film by a coating method.

さらに、短絡防止層の上に、N型半導体層の形成、色素の吸着、P型半導体層、正電極の形成を行って、本発明の測定実施例2に係る太陽電池セルを完成した。   Further, an N-type semiconductor layer, dye adsorption, a P-type semiconductor layer, and a positive electrode were formed on the short-circuit prevention layer to complete a solar battery cell according to Measurement Example 2 of the present invention.

測定実施例2において、測定実施例1と同様の測定方法により、太陽電池の短絡電流を測定したところ、従来の太陽電池と比較して、測定実施例1と同様に、1.5倍から3.0倍の短絡電流を流すことができることがわかった。   In Measurement Example 2, the short-circuit current of the solar cell was measured by the same measurement method as in Measurement Example 1, and as compared with the conventional solar cell, 1.5 times to 3.0 times as in Measurement Example 1. It was found that a short-circuit current can flow.

本発明の第一の実施例に係る固体型色素増感太陽電池の断面図である。It is sectional drawing of the solid-type dye-sensitized solar cell which concerns on the 1st Example of this invention. (a)ないし(f)はいずれも本発明の第一の実施例に係る固体型色素増感太陽電池の製造方法を示す断面図である。(a) thru | or (f) is sectional drawing which shows the manufacturing method of the solid-type dye-sensitized solar cell which concerns on the 1st Example of this invention. 本発明の第二の実施例に係る固体型色素増感太陽電池の斜視図である。It is a perspective view of the solid-type dye-sensitized solar cell which concerns on the 2nd Example of this invention. (a)ないし(f)はいずれも本発明の第二の実施例に係る固体型色素増感太陽電池の製造方法を示す斜視図である。(a) thru | or (f) is a perspective view which shows the manufacturing method of the solid-type dye-sensitized solar cell which concerns on the 2nd Example of this invention. 従来の固体型色素増感太陽電池の断面図である。It is sectional drawing of the conventional solid type dye-sensitized solar cell. (a)ないし(f)はいずれも従来の固体型色素増感太陽電池の製造方法を示す断面図である。(a) thru | or (f) is sectional drawing which shows the manufacturing method of the conventional solid type dye-sensitized solar cell. 固体色素増感型太陽電池の光電変換特性の測定データである。It is measurement data of the photoelectric conversion characteristic of a solid dye-sensitized solar cell.

符号の説明Explanation of symbols

1、101 支持基板
2、102 負電極
3、103 短絡防止層
4、104 多孔質TiO2
5、105 Ru系色素
6、106 CuI層
7、107 正電極
8 負電極線
9 短絡防止膜
10 多孔質TiO2
11 Ru系色素
12 CuI膜
13 正電極膜
1, 101 Support substrate
2, 102 Negative electrode 3, 103 Short-circuit prevention layer 4, 104 Porous TiO 2 layer 5, 105 Ru-based dye 6, 106 CuI layer 7, 107 Positive electrode 8 Negative electrode wire
9 Short-circuit prevention film 10 Porous TiO 2 film 11 Ru-based dye 12 CuI film 13 Positive electrode film

Claims (15)

支持基板と、前記支持基板上に配置された第一電極層と、前記第一電極層上に配置されたN型導電性ポリマー、フラーレン、又は内包フラーレンからなる短絡防止層と、前記短絡防止層上に配置された多孔質の金属酸化層からなるN型半導体層と、前記N型半導体層の表面に吸着された色素と、前記N型半導体層の孔部を埋め込んで前記N型半導体層上に配置されたP型半導体層と、前記P型半導体層上に配置された第二電極層からなる固体型色素増感素子。 A support substrate, a first electrode layer disposed on the support substrate, an N-type conductive polymer, fullerene, or an endohedral fullerene disposed on the first electrode layer; and the short-circuit prevention layer. An N-type semiconductor layer composed of a porous metal oxide layer disposed on the surface, a dye adsorbed on the surface of the N-type semiconductor layer, and a hole portion of the N-type semiconductor layer embedded in the N-type semiconductor layer A solid-state dye-sensitized element comprising a P-type semiconductor layer disposed on the P-type semiconductor layer and a second electrode layer disposed on the P-type semiconductor layer. 前記短絡防止層が、フラーレン、又は内包フラーレンを内部に分散させたN型導電性ポリマーからなることを特徴とする請求項1記載の固体型色素増感素子。 The solid-state dye-sensitized element according to claim 1, wherein the short-circuit preventing layer is made of an N-type conductive polymer in which fullerene or encapsulated fullerene is dispersed. 前記N型半導体層がTiO2からなり、前記P型半導体層がCuIからなることを特徴とする請求項1ないし2のいずれか1項記載の固体型色素増感素子。 3. The solid-state dye-sensitized element according to claim 1, wherein the N-type semiconductor layer is made of TiO 2 and the P-type semiconductor layer is made of CuI. 前記支持基板がプラスティック材料からなることを特徴とする請求項1ないし3のいずれか1項記載の固体型色素増感素子。 4. The solid dye sensitizing element according to claim 1, wherein the supporting substrate is made of a plastic material. 前記支持基板がポリエチレンテレフタレート、ポリエーテルイミド、又はポリエーテルサルフォンからなることを特徴とする請求項4項記載の固体型色素増感素子。 5. The solid dye-sensitized element according to claim 4, wherein the support substrate is made of polyethylene terephthalate, polyetherimide, or polyethersulfone. 前記短絡防止層の厚さが、10nm以上、200nm以下であることを特徴とする請求項1乃至5のいずれか1項記載の固体型色素増感素子。 The solid-state dye-sensitized element according to any one of claims 1 to 5, wherein the short-circuit preventing layer has a thickness of 10 nm or more and 200 nm or less. 第一電極層を堆積した支持基板上に、蒸着法、塗布法、ディッピング、スピンコート、又はめっきにより短絡防止層を堆積する工程と、前記短絡防止層上に、加圧プレス法、静電的電着法、又はレーザー照射法によりN型半導体層を堆積する工程と、前記N型半導体層上に前記色素を吸着させる工程と、前記N型半導体層上に前記P型半導体層を堆積させる工程と、前記P型半導体層上に第二電極膜を置くことにより、前記第一電極層、前記短絡防止層、前記N型半導体層、前記P型半導体層からなる多層構造を前記支持基板と前記第二電極膜により挟持する工程とからなる固体型色素増感素子の製造方法。 A step of depositing a short-circuit prevention layer on the support substrate on which the first electrode layer is deposited by vapor deposition, coating, dipping, spin coating, or plating; A step of depositing an N-type semiconductor layer by an electrodeposition method or a laser irradiation method, a step of adsorbing the dye on the N-type semiconductor layer, and a step of depositing the P-type semiconductor layer on the N-type semiconductor layer And by placing a second electrode film on the P-type semiconductor layer, a multilayer structure comprising the first electrode layer, the short-circuit prevention layer, the N-type semiconductor layer, and the P-type semiconductor layer is formed on the support substrate and the P-type semiconductor layer. A method for producing a solid-state dye-sensitized element comprising a step of sandwiching by a second electrode film. 第一電極線と、前記第一電極線の周りに配置されたN型導電性ポリマー、フラーレン、又は内包フラーレンからなる短絡防止膜と、前記短絡防止膜の周りに配置された多孔質の金属酸化膜からなるN型半導体膜と、前記N型半導体膜の表面に吸着された色素と、前記N型半導体膜の孔部を埋め込んで前記N型半導体膜上に配置されたP型半導体膜と、前記P型半導体膜の周りに配置された第二電極膜からなる固体型色素増感素子。 A first electrode wire, a short-circuit prevention film made of an N-type conductive polymer, fullerene, or an inclusion fullerene disposed around the first electrode wire, and a porous metal oxide disposed around the short-circuit prevention film An N-type semiconductor film composed of a film, a dye adsorbed on the surface of the N-type semiconductor film, a P-type semiconductor film disposed on the N-type semiconductor film by filling a hole in the N-type semiconductor film, A solid-state dye-sensitized element comprising a second electrode film disposed around the P-type semiconductor film. 前記第一電極線が、導電膜で被膜した繊維、又は導電性繊維であることを特徴とする請求項8記載の固体型色素増感素子。 The solid dye-sensitized element according to claim 8, wherein the first electrode wire is a fiber coated with a conductive film or a conductive fiber. 前記第一電極線が、中空領域を有する導電性繊維であることを特徴とする請求項9記載の固体型色素増感素子。 The solid dye-sensitized element according to claim 9, wherein the first electrode wire is a conductive fiber having a hollow region. 導電膜で被膜した前記繊維が、導電体材料、半導体材料、あるいは絶縁体材料からなる繊維であることを特徴とする請求項9記載の固体型色素増感素子。 The solid-state dye-sensitized element according to claim 9, wherein the fiber coated with a conductive film is a fiber made of a conductor material, a semiconductor material, or an insulator material. 前記短絡防止膜が、フラーレン、又は内包フラーレンを内部に分散させたN型導電性ポリマーからなることを特徴とする請求項8ないし11のいずれか1項記載の固体型色素増感素子。 The solid-state dye-sensitized element according to any one of claims 8 to 11, wherein the short-circuit prevention film is made of an N-type conductive polymer in which fullerene or endohedral fullerene is dispersed. 前記N型半導体膜がTiO2からなり、前記P型半導体膜がCuIからなることを特徴とする請求項8ないし12のいずれか1項記載の固体型色素増感素子。 13. The solid type dye sensitizing element according to claim 8, wherein the N-type semiconductor film is made of TiO 2 and the P-type semiconductor film is made of CuI. 前記短絡防止層の厚さが、10nm以上、200nm以下であることを特徴とする請求項8乃至13のいずれか1項記載の固体型色素増感素子。 The solid-state dye-sensitized element according to any one of claims 8 to 13, wherein the short-circuit prevention layer has a thickness of 10 nm or more and 200 nm or less. 第一電極線を支持材として、前記第一電極線の周りに蒸着法、塗布法、ディッピング、スピンコート、又はめっきにより短絡防止膜を被膜する工程と、前記短絡防止膜上に、加圧プレス法、静電的電着法、又はレーザー照射法によりN型半導体膜を被膜する工程と、前記N型半導体膜上に前記色素を吸着させる工程と、前記N型半導体膜上にP型半導体膜を堆積させる工程と、前記P型半導体膜上に第二の電極膜を被膜する工程とからなる固体型色素増感素子の製造方法。 Using the first electrode wire as a support material, a step of coating a short-circuit prevention film around the first electrode line by vapor deposition, coating, dipping, spin coating, or plating, and a pressure press on the short-circuit prevention film A step of coating an N-type semiconductor film by a method, an electrostatic electrodeposition method, or a laser irradiation method, a step of adsorbing the dye on the N-type semiconductor film, and a P-type semiconductor film on the N-type semiconductor film A method for producing a solid-state dye-sensitized element, which comprises a step of depositing and a step of coating a second electrode film on the P-type semiconductor film.
JP2004185843A 2003-06-30 2004-06-24 Solid-type dye-sensitized element and method for producing the same Expired - Fee Related JP4875837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185843A JP4875837B2 (en) 2003-06-30 2004-06-24 Solid-type dye-sensitized element and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003189084 2003-06-30
JP2003189084 2003-06-30
JP2003321025 2003-09-12
JP2003321025 2003-09-12
JP2004185843A JP4875837B2 (en) 2003-06-30 2004-06-24 Solid-type dye-sensitized element and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005108807A true JP2005108807A (en) 2005-04-21
JP4875837B2 JP4875837B2 (en) 2012-02-15

Family

ID=34556977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185843A Expired - Fee Related JP4875837B2 (en) 2003-06-30 2004-06-24 Solid-type dye-sensitized element and method for producing the same

Country Status (1)

Country Link
JP (1) JP4875837B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012545A (en) * 2005-07-04 2007-01-18 Sony Corp Dye-sensitized photoelectric conversion element, its manufacturing method, photoelectric conversion element module, electronic apparatus, movable body, and power generation system
JP2007258079A (en) * 2006-03-24 2007-10-04 Kyushu Univ Photo-response electrode, and organic solar cell using it
JP2008059851A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306478A2 (en) 2009-09-30 2011-04-06 TDK Corporation Dye-sensitized solar cell, manufacturing method of the same and manufacturing method of working electrode for dye-sensitized solar cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2016025170A (en) * 2014-07-18 2016-02-08 学校法人桐蔭学園 Photoelectric conversion element consisting of organic-inorganic hybrid structure
JP2019186528A (en) * 2018-03-30 2019-10-24 株式会社リコー Photoelectric conversion element, photoelectric conversion element module, electronic apparatus, and power supply module
WO2020122019A1 (en) 2018-12-12 2020-06-18 Jfeスチール株式会社 Laminate production method, and dye-sensitized solar cell production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312541A (en) * 1998-04-30 1999-11-09 Minolta Co Ltd Solar cell
JP2000285979A (en) * 1999-03-31 2000-10-13 Toshiba Corp Photosensitized photovoltaic generation element
JP2001024253A (en) * 1999-07-09 2001-01-26 Fuji Photo Film Co Ltd Semiconductor fine particles as well as material and photoelectric conversion element
JP2001358347A (en) * 2000-06-16 2001-12-26 Canon Inc Photoelectric conversion device and its manufacturing method
JP2002270861A (en) * 2001-03-08 2002-09-20 Ricoh Co Ltd Light function film and light function element using the same
JP2002335004A (en) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd Photoelectric conversion material and photoelectric cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312541A (en) * 1998-04-30 1999-11-09 Minolta Co Ltd Solar cell
JP2000285979A (en) * 1999-03-31 2000-10-13 Toshiba Corp Photosensitized photovoltaic generation element
JP2001024253A (en) * 1999-07-09 2001-01-26 Fuji Photo Film Co Ltd Semiconductor fine particles as well as material and photoelectric conversion element
JP2001358347A (en) * 2000-06-16 2001-12-26 Canon Inc Photoelectric conversion device and its manufacturing method
JP2002335004A (en) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd Photoelectric conversion material and photoelectric cell
JP2002270861A (en) * 2001-03-08 2002-09-20 Ricoh Co Ltd Light function film and light function element using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012545A (en) * 2005-07-04 2007-01-18 Sony Corp Dye-sensitized photoelectric conversion element, its manufacturing method, photoelectric conversion element module, electronic apparatus, movable body, and power generation system
JP2007258079A (en) * 2006-03-24 2007-10-04 Kyushu Univ Photo-response electrode, and organic solar cell using it
JP2008059851A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306478A2 (en) 2009-09-30 2011-04-06 TDK Corporation Dye-sensitized solar cell, manufacturing method of the same and manufacturing method of working electrode for dye-sensitized solar cell
JP2016025170A (en) * 2014-07-18 2016-02-08 学校法人桐蔭学園 Photoelectric conversion element consisting of organic-inorganic hybrid structure
JP2019186528A (en) * 2018-03-30 2019-10-24 株式会社リコー Photoelectric conversion element, photoelectric conversion element module, electronic apparatus, and power supply module
JP7230524B2 (en) 2018-03-30 2023-03-01 株式会社リコー Photoelectric conversion element, photoelectric conversion element module, electronic device, and power supply module
WO2020122019A1 (en) 2018-12-12 2020-06-18 Jfeスチール株式会社 Laminate production method, and dye-sensitized solar cell production method
KR20210089708A (en) 2018-12-12 2021-07-16 제이에프이 스틸 가부시키가이샤 Manufacturing method of laminate and manufacturing method of dye-sensitized solar cell
US11594381B2 (en) 2018-12-12 2023-02-28 Jfe Steel Corporation Laminate production method, and dye-sensitized solar cell production method

Also Published As

Publication number Publication date
JP4875837B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US10971312B2 (en) Dye-sensitized solar cell and a method for manufacturing the solar cell
Hadadian et al. The role of carbon-based materials in enhancing the stability of perovskite solar cells
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
Ke et al. Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers
Luo et al. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells
Weerasinghe et al. Fabrication of flexible dye sensitized solar cells on plastic substrates
KR101061970B1 (en) Photoelectrode using conductive nonmetallic film and dye-sensitized solar cell comprising same
US10483104B2 (en) Method for producing stacked electrode and method for producing photoelectric conversion device
KR100658263B1 (en) Tandem structured photovoltaic cell and preparation method thereof
Al-Mamun et al. Pt and TCO free hybrid bilayer silver nanowire–graphene counter electrode for dye-sensitized solar cells
KR100964182B1 (en) Dye-sensitized solar cells and method of manufacturing the same
KR20110124239A (en) Dye-sensitized solar cell
KR20150049279A (en) Electrode and method of manufacturing the same
US20150325719A1 (en) An opto-electronic device and method for manufacturing the same
WO2014191708A1 (en) A laminated opto-electronic device and method for manufacturing the same
JP5585779B2 (en) Dye-sensitized solar cell
TWI394309B (en) Dye-sensitized solar cell and method forming the same
JP4875837B2 (en) Solid-type dye-sensitized element and method for producing the same
TW200915583A (en) Photoelectric electrodes capable of absorbing solar energy, fabrication methods, and applications thereof
WO2022190336A1 (en) Transparent electrode, method for producing same and electronic device using transparent electrode
Liu et al. Operating temperature and temperature gradient effects on the photovoltaic properties of dye sensitized solar cells assembled with thermoelectric–photoelectric coaxial nanofibers
JP4314764B2 (en) Method for producing dye-sensitized solar cell
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate
EP3828948A1 (en) A working electrode for a photovoltaic device, and a photovoltaic device including the working electrode
TWI484644B (en) Method for forming dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees