JP2007006658A - Field-effect type power semiconductor device and semiconductor circuit using same - Google Patents

Field-effect type power semiconductor device and semiconductor circuit using same Download PDF

Info

Publication number
JP2007006658A
JP2007006658A JP2005185898A JP2005185898A JP2007006658A JP 2007006658 A JP2007006658 A JP 2007006658A JP 2005185898 A JP2005185898 A JP 2005185898A JP 2005185898 A JP2005185898 A JP 2005185898A JP 2007006658 A JP2007006658 A JP 2007006658A
Authority
JP
Japan
Prior art keywords
voltage
terminal
power semiconductor
semiconductor element
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005185898A
Other languages
Japanese (ja)
Other versions
JP4600180B2 (en
Inventor
Mitsuzo Sakamoto
光造 坂本
Tokuo Watanabe
篤雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005185898A priority Critical patent/JP4600180B2/en
Publication of JP2007006658A publication Critical patent/JP2007006658A/en
Application granted granted Critical
Publication of JP4600180B2 publication Critical patent/JP4600180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor circuit which is preferable to a semiconductor device with a normally-on property or to a field-effect type power semiconductor device of a lower threshold, and to provide the field-effect type power semiconductor device. <P>SOLUTION: In the semiconductor circuit, a negative supply voltage generating circuit using a diode and a capacitor is provided. The semiconductor circuit heats the field-effect type power semiconductor device and rises a threshold voltage in a low-temperature state, before rising a voltage of a high-tension voltage terminal up to a target voltage, wherein the power semiconductor device is connected to the terminal, then high-voltage power supply is risen after suppressing a drain leakage current by applying a negative voltage between a gate and a source which exceeds a voltage range between the gate and the source at normal driving. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ノーマリオン特性またはしきい電圧が低いノーマリオフ特性を有する電界効果型パワー半導体素子または静電誘導型トランジスタに好適な半導体回路と、この半導体回路に好適な電界効果型パワー半導体素子とに関する。   The present invention relates to a field-effect power semiconductor element having a normally-on characteristic or a normally-off characteristic with a low threshold voltage or a semiconductor circuit suitable for an electrostatic induction transistor, and a field-effect power semiconductor element suitable for this semiconductor circuit. .

半導体基板にSiC(炭化珪素)やGaN(窒化ガリウム)やダイヤモンドのようなワイドバンドギャップ半導体素子はパワー半導体素子として優れた特性を有するものの、これらワイドバンドギャップ半導体素子を用いた代表的半導体素子であるJFET(接合型FET)やSIT(静電誘導型トランジスタ)やMESFET(金属−半導体FET:Metal−Semiconductor−Field−Effect−Transistor)やHFET(Heterojunction Field Effect Transistor)やHEMT(High Electron Mobility Transistor)や蓄積型FETなどは、ゲート電圧がゼロの時に電流が流れるノーマリオン特性を有する半導体素子、または、しきい電圧が低い半導体素子となるため、制御回路にパワー半導体素子を確実にオフさせるための負ゲート電圧用の電源回路が必要となっている。   Wide band gap semiconductor elements such as SiC (silicon carbide), GaN (gallium nitride), and diamond on semiconductor substrates have excellent characteristics as power semiconductor elements, but are typical semiconductor elements using these wide band gap semiconductor elements. Some JFETs (junction FETs), SITs (electrostatic induction transistors), MESFETs (Metal-Semiconductor-Field-Effect-Transistors), HFETs (Heterojunction Field Effect Transistors), and HEMTs (High Electron Mobility Transistors) And storage FETs, etc., are semiconductor elements having normally-on characteristics in which current flows when the gate voltage is zero, or semiconductor elements having a low threshold voltage, so that the power semiconductor element can be reliably turned off by the control circuit. A power supply circuit for negative gate voltage is required.

また、ゲート電圧によりチャネル部に形成される空乏層の広がりを制御することによりドレイン電流を制御する上記JFETなどの半導体素子では低温状態でゲート領域であるp型不純物半導体領域が特に活性化されにくくなるため、ゲート・ソース間に逆バイアス電圧を印加してもn型不純物半導体領域に空乏層が形成されにくくなる。このため、車載分野で要求される−20℃から−40℃以下の低温状態ではゲート・ソース間に逆バイアス電圧を印加してもドレイン電流を遮断しにくくなる。このため、−20℃から−40℃以下の低温状態では室温状態と同じ駆動方法を用いることができない。   Further, in a semiconductor element such as the above-described JFET that controls the drain current by controlling the spread of the depletion layer formed in the channel portion by the gate voltage, the p-type impurity semiconductor region that is the gate region is not particularly activated at a low temperature. Therefore, even if a reverse bias voltage is applied between the gate and the source, a depletion layer is hardly formed in the n-type impurity semiconductor region. For this reason, it is difficult to cut off the drain current even if a reverse bias voltage is applied between the gate and the source in a low temperature state of −20 ° C. to −40 ° C. required in the in-vehicle field. For this reason, in the low temperature state of −20 ° C. to −40 ° C. or lower, the same driving method as in the room temperature state cannot be used.

特許文献1にはゲート電圧がゼロボルトでもドレイン電流が流れるノーマリオンの高耐圧SiC JFETにゲート電圧がゼロボルトではドレイン電流が流れないノーマリオフの低耐圧MOSFETをカスコード接続させて、高耐圧で低損失なノーマリオフ型スイッチング素子を複合素子で実現する方法が開示されている。   Patent Document 1 discloses a normally-off high breakdown voltage SiC JFET in which drain current flows even when the gate voltage is zero volts, and a normally-off low breakdown voltage MOSFET in which drain current does not flow when the gate voltage is zero volts is cascode-connected to provide a high breakdown voltage and low loss normally-off. A method of realizing a type switching element with a composite element is disclosed.

特許文献2では、ノーマリオン型トランジスタであるSIT(静電誘導型トランジスタ)を安定に起動させるためにゲート電圧、ソース電圧の印加に時間差を設けたSIT起動回路が開示されている。   Patent Document 2 discloses a SIT activation circuit in which a time difference is applied to the application of a gate voltage and a source voltage in order to stably activate a normally-on transistor SIT (electrostatic induction transistor).

また、特許文献3にはノーマリオン型JFETを駆動する方法、特にゲート・ソース間ダイオードの耐圧が異なったJFETを使用してもゲート電流を低く抑えられる制御回路が開示されている。   Patent Document 3 discloses a method for driving a normally-on type JFET, particularly a control circuit that can keep the gate current low even when a JFET having a different gate-source diode withstand voltage is used.

特表平9−508492号公報(図5A、図5Bの記載。)Japanese translation of PCT publication No. 9-508492 (description of FIGS. 5A and 5B) 特開平7−23570号公報(図1、図2の記載。)Japanese Patent Laid-Open No. 7-23570 (description of FIGS. 1 and 2) 米国Patent Application Publication US2003/0179035A1(図3から図6の記載。)Patent Application Publication US2003 / 0179035A1 (described in FIGS. 3 to 6)

上記従来技術において、特許文献1に記載のものは、ノーマリオン特性のJFETを通常のノーマリオフ型パワー半導体素子用回路で制御できるようになるものの、ノーマリオフ特性のパワーMOSFETがノーマリオン特性のJFETの使用数だけ必要になるため複雑になるという問題がある。   In the above prior art, the one described in Patent Document 1 allows a normally-on characteristic JFET to be controlled by a normal normally-off type power semiconductor device circuit, but a normally-off characteristic power MOSFET is used as a normally-on characteristic JFET. There is a problem that it is complicated because only a number is required.

特許文献2に記載のものは、ノーマリオン型トランジスタであるSITを駆動するためにゲート電圧、ソース電圧の印加に時間差を設けたSIT用の起動回路が開示されているが、−20℃〜−40℃以下の低温で回路を起動する場合には通常のゲート・ソース間電圧範囲ではSITのドレイン電流を遮断できなくなるという問題の対策が考慮されてなかった。   Patent Document 2 discloses a start circuit for SIT in which a time difference is applied to the application of gate voltage and source voltage in order to drive SIT which is a normally-on transistor. In the case of starting the circuit at a low temperature of 40 ° C. or lower, a countermeasure for the problem that the drain current of the SIT cannot be cut off in the normal gate-source voltage range has not been considered.

特許文献3に記載のものは、変圧器を使用せずに負ゲート電圧を生成する制御回路に関しては考慮されてなかった。   The thing of patent document 3 was not considered regarding the control circuit which produces | generates a negative gate voltage, without using a transformer.

本発明の目的は、ノーマリオン特性を有するパワー半導体素子またはしきい電圧が低いパワー半導体素子を駆動するのに好適な半導体回路と、この半導体回路に好適なしきい電圧のばらつきが小さくゲート・ソース間電圧の耐圧が高い電界効果型パワー半導体素子を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor circuit suitable for driving a power semiconductor element having normally-on characteristics or a power semiconductor element having a low threshold voltage, and a variation in threshold voltage suitable for this semiconductor circuit is small. An object of the present invention is to provide a field effect power semiconductor element having a high voltage withstand voltage.

本発明は、フローティングバッテリや変圧器や通常のバッテリの数を低減するために整流素子であるダイオードとキャパシタを使用した負電源電圧発生回路を設けた。   In the present invention, a negative power supply voltage generation circuit using a diode and a capacitor as a rectifying element is provided in order to reduce the number of floating batteries, transformers and ordinary batteries.

さらに、本発明では、−20℃から−40℃以下の低温状態でパワー半導体回路を使用する場合も、負荷に大きな悪影響を与えることなくパワー半導体素子を制御するため、パワー半導体素子が接続されている高圧側電圧端子の電圧を目標電圧まで上昇する前に、電界効果型パワー半導体素子を発熱させてしきい電圧を上昇させたり、通常駆動時のゲート・ソース間電圧範囲を超える負のゲート・ソース間電圧(高い逆方向電圧)を印加してドレインリーク電流を抑制した後に高圧電源を上昇させる。   Furthermore, in the present invention, even when the power semiconductor circuit is used in a low temperature state of −20 ° C. to −40 ° C. or lower, the power semiconductor element is connected in order to control the power semiconductor element without greatly adversely affecting the load. Before raising the voltage of the high-voltage side voltage terminal to the target voltage, the field effect power semiconductor element is heated to increase the threshold voltage, or the negative gate that exceeds the gate-source voltage range during normal driving The source voltage (high reverse voltage) is applied to suppress the drain leakage current, and then the high voltage power source is raised.

さらに、本発明の半導体回路に使用する電界効果型パワー半導体素子は、ソース拡散層の形状を円形に近づけ、ゲート拡散層の濃度を低くした。   Further, in the field effect power semiconductor element used in the semiconductor circuit of the present invention, the shape of the source diffusion layer is made close to a circle, and the concentration of the gate diffusion layer is lowered.

本発明では、しきい電圧が負または低いパワー半導体素子の制御回路が簡単となり半導体回路が小型化やIC化しやすくなる。   In the present invention, the control circuit for the power semiconductor element having a negative or low threshold voltage is simplified, and the semiconductor circuit is easily downsized and integrated into an IC.

本発明の半導体回路では、第1電源電圧端子と基準電圧端子との間に少なくとも1つのパワー半導体素子を配線し、前記パワー半導体素子により電力を制御される負荷と、前記パワー半導体素子を制御する制御回路を設け、該制御回路は前記パワー半導体素子のソース電圧に対しあらかじめ定められた第1電圧離れた高圧側電圧端子と第2電圧負方向に離れた低圧側電圧端子との間で動作し、第1使用温度範囲では前記パワー半導体素子のしきい電圧は、前記第1電圧と前記第2電圧の間の電圧で、第2使用温度範囲では前記パワー半導体素子のしきい電圧は前記第1電圧と前記第2電圧の間の電圧範囲を越える電圧としてもよいようにした。これにより、パワー半導体素子の制御回路の低圧側電圧端子の電圧を−20℃〜−40℃以下でもパワー半導体素子を遮断できるような高い負電圧に設定したり、常に上記低圧側電圧端子の電圧を常に変動できるように制御するための複雑な回路を用意せずにすむ。なお、前記高圧側電圧端子は前記低圧側電圧端子より電圧が高い端子であり、前記ソース電圧に対し負方向に離れた電圧でもよい、また上記第1電圧はゼロボルトも含む電圧である。   In the semiconductor circuit of the present invention, at least one power semiconductor element is wired between the first power supply voltage terminal and the reference voltage terminal, the load whose power is controlled by the power semiconductor element, and the power semiconductor element are controlled. A control circuit is provided, and the control circuit operates between a high-voltage side voltage terminal separated from a source voltage of the power semiconductor element by a predetermined first voltage and a low-voltage side voltage terminal separated in a second negative voltage direction. In the first use temperature range, the threshold voltage of the power semiconductor element is a voltage between the first voltage and the second voltage, and in the second use temperature range, the threshold voltage of the power semiconductor element is the first voltage. The voltage may exceed the voltage range between the voltage and the second voltage. Thereby, the voltage of the low-voltage side voltage terminal of the control circuit of the power semiconductor element is set to a high negative voltage that can cut off the power semiconductor element even at −20 ° C. to −40 ° C. or less, or the voltage of the low-voltage side voltage terminal is always set. Therefore, it is not necessary to prepare a complicated circuit for controlling so that the frequency can be constantly changed. The high-voltage side voltage terminal is a terminal having a higher voltage than the low-voltage side voltage terminal, and may be a voltage that is separated in the negative direction with respect to the source voltage. The first voltage is a voltage including zero volts.

さらに、本発明の半導体回路では、基準電圧端子と前記基準電圧端子の電圧より電圧が高い第1電源電圧端子との間に少なくとも1つのパワー半導体素子と出力端子を配線し、前記パワー半導体素子を制御する制御回路を設け、前記制御回路は各々パワー半導体素子のソース電圧に対し予め定められた第1電圧離れた高圧側電圧と第2電圧負方向に離れた低圧側電圧との間で動作し、前記低圧側電圧は前記ソース電圧より低い電圧であり、前記出力端子と第2電源電圧端子との間に第1のキャパシタと第1の整流素子を直列接続させ、前記出力端子の電圧が上昇したときに前記第1のキャパシタを充電し、前記第1のキャパシタに充電して高めた電圧を前記低圧側電圧端子の電圧を負方向に増加させるように使用した。これにより、ノーマリオフ特性のパワーデバイスや、しきい電圧の低いパワーデバイスを駆動するための負電源電圧をフローティング電源や変圧器を用いずに発生させることができ、制御回路が簡単で小型にできる。   Furthermore, in the semiconductor circuit of the present invention, at least one power semiconductor element and an output terminal are wired between a reference voltage terminal and a first power supply voltage terminal whose voltage is higher than the voltage of the reference voltage terminal, and the power semiconductor element is A control circuit for controlling is provided, and each of the control circuits operates between a predetermined high voltage side voltage separated from a source voltage of the power semiconductor element and a low voltage side voltage separated in the second voltage negative direction. The low-voltage side voltage is lower than the source voltage, and a first capacitor and a first rectifying element are connected in series between the output terminal and the second power supply voltage terminal, and the voltage at the output terminal rises. In this case, the first capacitor was charged, and the voltage increased by charging the first capacitor was used to increase the voltage at the low-voltage side voltage terminal in the negative direction. As a result, a negative power supply voltage for driving a power device having a normally-off characteristic or a power device having a low threshold voltage can be generated without using a floating power supply or a transformer, and the control circuit can be made simple and compact.

さらに、本発明の半導体回路に使用するパワー半導体素子は、第1主面にトレンチで分離した第1導電型の高濃度ソース領域を設け、前記第1主面と反対側の面に第1導電型の高濃度ドレイン領域を設け、前記トレンチの底辺領域に第2導電型の高濃度ゲート領域を設け、前記トレンチの側面には前記第2導電型の高濃度ゲート領域より濃度の低い第2ゲート領域を設け、前記第2導電型の高濃度ゲート領域と前記第1導電型の高濃度ソース領域との間に印加する電圧で空乏層の広がりを制御し、前記第1導電型の高濃度ソース領域と前記第1導電型の高濃度ドレイン領域との間の抵抗を制御し、前記第1導電型の高濃度ソース領域の平面形状の横Xと縦Yの長さの比(X/Y)を1/10〜1/1にした。このため、しきい電圧のばらつきが小さく、ゲート・ソース間電圧の耐圧が高くなった。従って、通常の駆動状態のときにはゲート・ソース間電圧に印加する電圧範囲は一定でも良好なオン抵抗が得られ、ゲート・ソース間ダイオードが降伏することはない。また、しきい電圧が低下したときにはゲート・ソース間に上記ゲート電圧範囲以上に高い逆方向電圧を印加できるパワー半導体素子を実現できる。   Furthermore, the power semiconductor element used in the semiconductor circuit of the present invention is provided with a first conductivity type high-concentration source region separated by a trench on the first main surface, and the first conductive surface on the surface opposite to the first main surface. A high-concentration drain region of a type, a high-concentration gate region of a second conductivity type is provided in the bottom region of the trench, and a second gate having a lower concentration than the high-concentration gate region of the second conductivity type is provided on a side surface of the trench. Providing a region, and controlling the spread of the depletion layer with a voltage applied between the second conductivity type high concentration gate region and the first conductivity type high concentration source region; The resistance between the region and the high-concentration drain region of the first conductivity type is controlled, and the ratio of the horizontal X and vertical Y lengths of the planar shape of the high-concentration source region of the first conductivity type (X / Y) 1/10 to 1/1. For this reason, the variation in threshold voltage is small, and the withstand voltage of the gate-source voltage is high. Therefore, in a normal driving state, a good on-resistance can be obtained even if the voltage range applied to the gate-source voltage is constant, and the gate-source diode does not break down. Further, it is possible to realize a power semiconductor element capable of applying a reverse voltage higher than the gate voltage range between the gate and the source when the threshold voltage is lowered.

さらに、ゲート領域とオーミックコンタクトをとるための第1ゲート金属層より厚い第2のゲート金属層を用い、ゲートパッドと接続させて低い抵抗のゲート配線を形成できる。   Furthermore, a second gate metal layer thicker than the first gate metal layer for making ohmic contact with the gate region can be used and connected to the gate pad to form a low resistance gate wiring.

以下、本発明の詳細を図面を用いて説明する。   Hereinafter, details of the present invention will be described with reference to the drawings.

図1は、本実施例の回路図であり、図2は駆動タイミングチャートである。図3は、図1で使用されるレベルシフト回路である。パワー半導体素子101、102にはnチャネル型のJFETを使用した回路を示したが、JFET以外の他の電界効果型パワー半導体素子や静電誘導型トランジスタやHEMT(High Electron Mobility Transistor) や電流利得が高く、ベース電流が小さいバイポーラ型スイッチング素子を使用しても同様である。なお、本実施例では、パワー半導体素子101、102にノーマリオン型のSiCパワー半導体素子を用いた場合を説明する。   FIG. 1 is a circuit diagram of this embodiment, and FIG. 2 is a drive timing chart. FIG. 3 is a level shift circuit used in FIG. Although a circuit using an n-channel type JFET is shown as the power semiconductor elements 101 and 102, other field effect type power semiconductor elements other than JFET, electrostatic induction type transistors, HEMT (High Electron Mobility Transistor), and current gain This is the same even when a bipolar switching element having a high base current and a small base current is used. In this embodiment, a case where normally-on type SiC power semiconductor elements are used as the power semiconductor elements 101 and 102 will be described.

本実施例は、高圧電圧端子503と出力端子505との間には、ハイサイドスイッチ用のパワー半導体素子101を接続し、出力端子505と基準電圧端子504の間にはローサイドスイッチ用のパワー半導体素子102を配置し、前記ハイサイドスイッチ用のパワー半導体素子101と前記ローサイドスイッチ用パワー半導体素子102により電力を制御される負荷104を、出力端子505に接続したブリッジ回路である。前記ハイサイドスイッチ用のパワー半導体素子101を制御するために、ハイサイドスイッチ用の制御回路110、前記ローサイドスイッチ用のパワー半導体素子102を制御するために、ローサイドスイッチ用の制御回路111を設けてある。   In this embodiment, a high-side switch power semiconductor element 101 is connected between the high voltage terminal 503 and the output terminal 505, and a low-side switch power semiconductor is connected between the output terminal 505 and the reference voltage terminal 504. This is a bridge circuit in which an element 102 is arranged and a load 104 whose power is controlled by the power semiconductor element 101 for the high-side switch and the power semiconductor element 102 for the low-side switch is connected to an output terminal 505. A control circuit 110 for the high side switch is provided to control the power semiconductor element 101 for the high side switch, and a control circuit 111 for the low side switch is provided to control the power semiconductor element 102 for the low side switch. is there.

本実施例ではハイサイドスイッチ用の制御回路110の高圧側電圧端子は、パワー半導体素子101のソース端子と同じ電位であって、出力端子505に接続してある。なお、符号510は、ハイサイドスイッチ用の制御回路110の低圧側電圧端子である。また、ローサイドスイッチ用の制御回路111の高圧側電圧端子はパワー半導体素子102のソース端子と同じ電位であって基準電圧端子504に接続している。なお、符号509は、ローサイドスイッチ用の制御回路111の低圧側電圧端子である。   In this embodiment, the high voltage side voltage terminal of the control circuit 110 for the high side switch has the same potential as the source terminal of the power semiconductor element 101 and is connected to the output terminal 505. Reference numeral 510 denotes a low voltage side voltage terminal of the control circuit 110 for the high side switch. Further, the high voltage side voltage terminal of the control circuit 111 for the low side switch has the same potential as the source terminal of the power semiconductor element 102 and is connected to the reference voltage terminal 504. Reference numeral 509 denotes a low voltage side voltage terminal of the control circuit 111 for the low side switch.

本実施例では、電圧端子500、506、501、502、513の電圧は、バッテリ126、127、128、129により、例えば、各々100V、90V、3V、0V、−10Vに設定している。もちろん、バッテリに代えて、各電圧を発生する電源装置であってもよい。電圧端子506、501、502、513は各々電圧端子511、507、基準電圧端子504、低圧側電圧端子509とスイッチ115、116、117、118を介して接続してあるが回路の漏れ電流が無視できる場合にはスイッチ115、116、117、118を省いて常時接続しても構わない。なお、スイッチ115、116、117、118は機械式リレーを用いたスイッチでも半導体スイッチでも構わない。また、本実施例では例えば電圧端子500の電圧はバッテリ128、127、126を接続して、その合計の電圧で生成されるように図示してあるが、電圧端子500、506、501の電圧は各々別々のバッテリで独立に生成しても構わない。   In this embodiment, the voltages at the voltage terminals 500, 506, 501, 502, and 513 are set to, for example, 100V, 90V, 3V, 0V, and −10V by the batteries 126, 127, 128, and 129, respectively. Of course, it may replace with a battery and may be a power supply device which generates each voltage. The voltage terminals 506, 501, 502, and 513 are connected to the voltage terminals 511 and 507, the reference voltage terminal 504, and the low-voltage side voltage terminal 509 through the switches 115, 116, 117, and 118, respectively, but the circuit leakage current is ignored. If possible, the switches 115, 116, 117, and 118 may be omitted and always connected. The switches 115, 116, 117, and 118 may be switches using mechanical relays or semiconductor switches. Further, in this embodiment, for example, the voltage at the voltage terminal 500 is illustrated as being generated by connecting the batteries 128, 127, and 126, and the voltage at the voltage terminals 500, 506, and 501 is generated. You may produce | generate independently with each separate battery.

本実施例では、出力端子505と電圧端子511との間にキャパシタ114と整流素子であるダイオード113を接続し、出力端子505が高電位になったときにキャパシタ114に充電した電圧によりハイサイドスイッチ用の制御回路110の低圧側電圧端子510の電圧を生成することである。低圧側電圧端子510の電圧はパワー半導体素子101のソース端子である出力端子505の電圧より、{(高圧電圧端子503の電圧)−(電圧端子511の電圧)−(ダイオード113の順方向電圧)}だけ低い電圧になり、キャパシタ114に充電され、負電圧用のフローティング電源として使用される。すなわち、本実施例の場合にはパワー半導体101のソース電流により、キャパシタ114を充電し、このパワー半導体素子101を制動する回路110の低圧側電圧端子510の電圧がソース電圧よりも負の電圧となるように生成している。   In this embodiment, a capacitor 114 and a diode 113 as a rectifying element are connected between an output terminal 505 and a voltage terminal 511, and the high side switch is switched by the voltage charged in the capacitor 114 when the output terminal 505 becomes a high potential. Generating a voltage at the low-voltage side voltage terminal 510 of the control circuit 110 for use. The voltage of the low voltage side voltage terminal 510 is {(voltage of the high voltage terminal 503) − (voltage of the voltage terminal 511) − (forward voltage of the diode 113)] from the voltage of the output terminal 505 which is the source terminal of the power semiconductor element 101. }, The capacitor 114 is charged and used as a floating power supply for negative voltage. That is, in the case of the present embodiment, the capacitor 114 is charged by the source current of the power semiconductor 101, and the voltage at the low-voltage side voltage terminal 510 of the circuit 110 that brakes the power semiconductor element 101 is more negative than the source voltage. It is generated as follows.

このため、ハイサイドスイッチの制御回路のためにフローティングのバッテリを接続したり変圧器を用いてフローティングの電源を生成する必要がない。本実施例の場合には、パワー半導体素子101のしきい電圧は0Vと、−{(高圧電圧端子503の電圧)−(電圧端子511の電圧)−(ダイオード113の順方向電圧)}V、との間の値になっている。   For this reason, there is no need to connect a floating battery or generate a floating power supply using a transformer for the control circuit of the high side switch. In this embodiment, the threshold voltage of the power semiconductor element 101 is 0 V, − {(voltage of the high voltage terminal 503) − (voltage of the voltage terminal 511) − (forward voltage of the diode 113)} V, The value is between.

図2に駆動タイミングチャートを示す。Vddは高圧電圧端子503の電圧、Voutは出力端子505の電圧である。本実施例ではスイッチ117がオンするときとメインスイッチがオンするときが同時として示す。スイッチ116とスイッチ118をオンすると制御回路134、制御回路111の電源電圧が立ち上がり、キャパシタ114が充電されて制御回路110の電源電圧も立ち上がる。その後、スイッチ105、115をオンする。本実施例の半導体回路は、メインスイッチ投入後に高圧電圧端子503の電圧を最終目標電圧Vdd(100%)の80%の電圧であるVdd(80%)になるまで上昇させる間の、少なくとも一時期に、高圧電圧端子503からの供給電流Isupの半分以上がパワー半導体素子101のドレイン電流Ifetとなるように駆動する。この時、パワー半導体素子101に流すドレイン電流は、パワー半導体素子101に流す最大ドレイン電流の0.1% 以上のドレイン電流となる。また、このとき、出力電圧Voutは最終目標電圧Vdd(100%)の30%以下の電圧となるように高圧電圧端子503の昇圧速度を抑える。   FIG. 2 shows a drive timing chart. Vdd is the voltage at the high voltage terminal 503, and Vout is the voltage at the output terminal 505. In this embodiment, the time when the switch 117 is turned on and the time when the main switch is turned on are shown simultaneously. When the switches 116 and 118 are turned on, the power supply voltages of the control circuit 134 and the control circuit 111 rise, the capacitor 114 is charged, and the power supply voltage of the control circuit 110 also rises. Thereafter, the switches 105 and 115 are turned on. In the semiconductor circuit of this embodiment, at least at one time during the time when the voltage at the high voltage terminal 503 is raised to Vdd (80%) which is 80% of the final target voltage Vdd (100%) after the main switch is turned on. The driving is performed so that more than half of the supply current Isup from the high voltage terminal 503 becomes the drain current Ifet of the power semiconductor element 101. At this time, the drain current flowing through the power semiconductor element 101 is 0.1% or more of the maximum drain current flowing through the power semiconductor element 101. At this time, the boosting speed of the high voltage terminal 503 is suppressed so that the output voltage Vout becomes a voltage equal to or lower than 30% of the final target voltage Vdd (100%).

このため、本実施例ではインピーダンス108、109とスイッチ106、107を用いて、パワー半導体素子のドレイン電流が大きくなるときには、供給電流Isupの経路のインピーダンスを大きくして供給電流Isupを小さくする。このt2からt3の期間にパワー半導体素子に電流を流し自己発熱させ、パワー半導体素子の接合温度を上昇させて、パワー半導体素子のドレインリーク電流を低減させる。一度半導体チップが発熱すると、急速には温度が低下しないため、ドレインリーク電流を低い状態のままに保てる。ドレイン電流が減少したt3の時点でスイッチ106をオンさせることにより供給電流Isupの経路のインピーダンスを少し小さくし、キャパシタ103やパワー半導体素子の寄生容量の充電を行なう。高圧電圧端子503の電圧が目標電圧にほぼ達したt4の時点でスイッチ107をオンさせて、供給電流Isupの経路のインピーダンスをゼロにし、通常の駆動モードに移行する。   For this reason, in this embodiment, when the drain current of the power semiconductor element is increased by using the impedances 108 and 109 and the switches 106 and 107, the impedance of the path of the supply current Isup is increased to decrease the supply current Isup. During the period from t2 to t3, a current is passed through the power semiconductor element to cause self-heating, thereby increasing the junction temperature of the power semiconductor element and reducing the drain leakage current of the power semiconductor element. Once the semiconductor chip generates heat, the temperature does not drop rapidly, so the drain leakage current can be kept low. By turning on the switch 106 at the time t3 when the drain current decreases, the impedance of the path of the supply current Isup is slightly reduced, and the capacitor 103 and the parasitic capacitance of the power semiconductor element are charged. At time t4 when the voltage at the high voltage terminal 503 almost reaches the target voltage, the switch 107 is turned on, the impedance of the path of the supply current Isup is made zero, and the normal drive mode is entered.

なお、本実施例ではパワー半導体素子のしきい電圧を上げるためにパワー半導体素子の自己発熱を利用したが、ヒータによる加熱や誘導加熱などの手段を用いて高圧電圧端子503の電圧Vddを目標電圧まで上昇させる前にパワー半導体素子を加熱しても良い。なお、高圧電圧端子503の電圧を徐々に増加させる方法として、上記では、抵抗108、109とスイッチ素子105、106、107を使用して実現しているが、これら抵抗やスイッチを使用せずにチョッパ等を用いた昇圧回路を使用し、昇圧速度を制御して実現しても構わない。   In this embodiment, the self-heating of the power semiconductor element is used to increase the threshold voltage of the power semiconductor element. However, the voltage Vdd at the high voltage terminal 503 is set to the target voltage using means such as heating by a heater or induction heating. The power semiconductor element may be heated before being raised. Note that, as a method of gradually increasing the voltage of the high voltage terminal 503, the above is realized by using the resistors 108 and 109 and the switch elements 105, 106, and 107, but without using these resistors and switches. It may be realized by using a booster circuit using a chopper or the like and controlling the boosting speed.

従来技術の制御回路では高圧電圧端子503の電圧を上昇させるときには、パワー半導体素子はオフ駆動させ、そのときのドレイン電流はゼロからパワー半導体素子の最大電流の0.1%未満の電流にしていた。このため、−20℃〜−40℃の低温状態でしきい電圧が低下したパワー半導体素子を遮断できる条件で制御回路の低圧側電圧端子の電圧を決定しようとすると、室温状態でパワー半導体素子を遮断するために必要な低圧側電圧端子の電圧より低い電圧(高い負電圧)が必要となる。このため、ゲート駆動回路の電圧振幅を常に高くする必要があり、充放電電力が高くなる。また、常に低圧側電圧端子の電圧が最適値になるような制御回路を使用しようとすると制御回路が複雑になった。   In the control circuit of the prior art, when the voltage at the high voltage terminal 503 is increased, the power semiconductor element is driven off, and the drain current at that time is from zero to less than 0.1% of the maximum current of the power semiconductor element. . For this reason, if it is attempted to determine the voltage at the low voltage side voltage terminal of the control circuit under the condition that the power semiconductor element whose threshold voltage has decreased in a low temperature state of −20 ° C. to −40 ° C. can be determined, the power semiconductor element is A voltage (high negative voltage) lower than the voltage of the low-voltage side voltage terminal necessary for shutting off is required. For this reason, it is necessary to always increase the voltage amplitude of the gate drive circuit, and the charge / discharge power increases. Further, when trying to use a control circuit in which the voltage at the low-voltage side voltage terminal is always the optimum value, the control circuit becomes complicated.

また、従来技術の突入電流防止回路では高圧電圧端子503の電圧を上昇させるときにはパワー半導体素子はオフ駆動させるためにパワー半導体素子にはドレイン電流は流れず、供給電流Isupはキャパシタ103やパワー半導体素子101、102の寄生容量を充電させるためにのみ使われると想定してインピーダンス109等の値を選定していた。このため、従来技術の突入電流防止回路を用いてドレイン電流の遮断能力が低下したパワー半導体素子を駆動しようとするとドレインリーク電流が急に大きくなりすぎ、出力端子に印加される出力電圧Voutは最終目標電圧Vdd(100%)の30%以上の電圧となる。このため、パワー半導体素子が破壊したり負荷であるアクチュエータが誤動作する可能性があった。あるいは、過電流や過電圧の保護回路が動作し、回路の起動ができなくなるという場合があった。これに対し、本実施例ではこれらの問題を回避できる。   In the conventional inrush current prevention circuit, when the voltage at the high voltage terminal 503 is increased, the power semiconductor element is driven off, so that no drain current flows through the power semiconductor element, and the supply current Isup is the capacitor 103 or the power semiconductor element. A value such as impedance 109 is selected on the assumption that the parasitic capacitances 101 and 102 are used only for charging. For this reason, when trying to drive a power semiconductor device having a reduced drain current blocking capability using the conventional inrush current prevention circuit, the drain leakage current suddenly increases too much, and the output voltage Vout applied to the output terminal is the final value. The voltage is 30% or more of the target voltage Vdd (100%). For this reason, there is a possibility that the power semiconductor element is destroyed or the actuator as a load malfunctions. Alternatively, an overcurrent or overvoltage protection circuit may operate and the circuit may not be activated. On the other hand, in this embodiment, these problems can be avoided.

本実施例ではパワー半導体素子のドレイン電流遮断能力が低下する−20℃〜−40℃以下の低温状態で、パワー半導体素子を加熱してしきい電圧を上げるかあるいは、パワー半導体素子のゲート・ソース間に印加する逆電圧を一時的に増加することを同時に実施できる回路図になっているが、どちらか一つの方法だけを使用しても構わない。なお、ダイオード138は負荷から逆流する電流を防止するためのダイオードであり用途によっては不要である。すなわち、たとえばダイオード138をなくし、負荷から逆流する電流が過大となった場合には、スイッチ107、106をオフさせて抵抗108、109により負荷電流を抑制させ、負荷から逆流する電流が低下したら、まずスイッチ106をオンさせ、その後スイッチ107をオンさせるという駆動をしてもかまわない。   In this embodiment, the drain current blocking capability of the power semiconductor element is lowered. In the low temperature state of −20 ° C. to −40 ° C. or lower, the power semiconductor element is heated to increase the threshold voltage, or the gate / source of the power semiconductor element Although the circuit diagram is such that the reverse voltage applied between them can be temporarily increased at the same time, only one of the methods may be used. The diode 138 is a diode for preventing a current flowing backward from the load, and is not necessary depending on the application. That is, for example, when the diode 138 is eliminated and the current flowing back from the load becomes excessive, the switches 107 and 106 are turned off, the load current is suppressed by the resistors 108 and 109, and the current flowing back from the load decreases. First, the switch 106 may be turned on and then the switch 107 may be turned on.

図1の端子508は入力端子で、制御信号は、制御回路134、レベルシフト回路125を通ってローサイドスイッチ用の制御回路111を制御し、さらにレベルシフト回路112を介してハイサイドスイッチ用の制御回路110を制御する。図3にレベルシフト回路125とレベルシフト回路112の構成例を示す。レベルシフト回路125は電圧端子507/基準電圧端子504の信号レベルから基準電圧端子504/低圧側電圧端子509へ電圧レベルを下げる。「H」を伝達するためにはMOSFET307をオンし、MOSFET308をオフする。これにより、ラッチ回路313がセットされて出力Q1が「H」になる。「L」を伝達するためにはMOSFET308をオンし、MOSFET307をオフする。これにより、ラッチ回路313がリセットされて出力Q1が「L」になる。レベルシフト回路112は基準電圧端子504/低圧側電圧端子509の信号レベルから出力端子505/低圧側電圧端子510の信号レベルへ電圧レベルを上げる。「H」を伝達するためにはMOSFET300をオンし、MOSFET301をオフする。これにより、ラッチ回路306がセットされて出力Q2が「H」になる。「L」を伝達するためにはMOSFET300をオンし、MOSFET301をオフする。これにより、ラッチ回路306がリセットされて出力Q2が「L」になる。   A terminal 508 in FIG. 1 is an input terminal, and a control signal passes through the control circuit 134 and the level shift circuit 125 to control the control circuit 111 for the low side switch, and further controls the high side switch via the level shift circuit 112. The circuit 110 is controlled. FIG. 3 shows a configuration example of the level shift circuit 125 and the level shift circuit 112. The level shift circuit 125 lowers the voltage level from the signal level of the voltage terminal 507 / reference voltage terminal 504 to the reference voltage terminal 504 / low voltage side voltage terminal 509. In order to transmit “H”, the MOSFET 307 is turned on and the MOSFET 308 is turned off. As a result, the latch circuit 313 is set and the output Q1 becomes “H”. In order to transmit “L”, the MOSFET 308 is turned on and the MOSFET 307 is turned off. As a result, the latch circuit 313 is reset and the output Q1 becomes “L”. The level shift circuit 112 increases the voltage level from the signal level of the reference voltage terminal 504 / low voltage side voltage terminal 509 to the signal level of the output terminal 505 / low voltage side voltage terminal 510. In order to transmit “H”, the MOSFET 300 is turned on and the MOSFET 301 is turned off. As a result, the latch circuit 306 is set and the output Q2 becomes “H”. In order to transmit “L”, the MOSFET 300 is turned on and the MOSFET 301 is turned off. As a result, the latch circuit 306 is reset and the output Q2 becomes “L”.

もし、電圧端子507/基準電圧端子504の電圧レベルから出力端子505/低圧側電圧端子510の電圧レベルに直接レベルシフトしようとすると電圧範囲が出力端子505の電圧状態により高電位側にも低電位側にも電圧を伝達する必要が生じるため回路が複雑になる。これに対し、本実施例では入力端子からの信号はハイサイドスイッチを制御する信号も一旦負電圧側にレベルシフトし、その後高電圧側にレベルシフトしている。すなわち、本実施例では各レベルシフト回路においてレベルシフトさせる電圧範囲が高電位側方向または低電位側方向だけとなるため、制御回路が簡単になる。なお、図3において、MOSFET307とMOSFET311の間、MOSFET308とMOSFET309の間、MOSFET304とMOSFET301の間、MOSFET302とMOSFET300の間に各々キャパシタを設けて、容量結合を利用してレベルシフトしても構わない。あるいは、パワー半導体素子を制御する信号の伝達手段として、フォトカプラのような光学的手段を用いたり、変圧器で信号を伝達しても構わない。   If a voltage level is directly shifted from the voltage level of the voltage terminal 507 / reference voltage terminal 504 to the voltage level of the output terminal 505 / low voltage side voltage terminal 510, the voltage range is lowered to the high potential side depending on the voltage state of the output terminal 505. Since the voltage needs to be transmitted also to the side, the circuit becomes complicated. On the other hand, in this embodiment, the signal from the input terminal is also level-shifted once to the negative voltage side, and then level-shifted to the high voltage side. That is, in this embodiment, the voltage range to be level shifted in each level shift circuit is only in the high potential side direction or the low potential side direction, so that the control circuit is simplified. In FIG. 3, a capacitor may be provided between the MOSFET 307 and the MOSFET 311, between the MOSFET 308 and the MOSFET 309, between the MOSFET 304 and the MOSFET 301, and between the MOSFET 302 and the MOSFET 300, and the level shift may be performed using capacitive coupling. Alternatively, optical means such as a photocoupler may be used as a signal transmission means for controlling the power semiconductor element, or a signal may be transmitted by a transformer.

メインスイッチが投入された時にパワー半導体素子101のゲート・ソース間に逆バイアス電圧が印加されない場合、すなわち、キャパシタ114が充電されてない場合にはパワー半導体素子101をオフできなくなり、高圧電圧端子503を目標電圧まで上昇させようとすると出力端子505の電圧も同時に上がる。そこで、本実施例ではメインスイッチが投入されるときには低圧側電圧端子509に接続してあるスイッチ素子であるMOSFET123をオンさせてハイサイドスイッチ用制御回路をオフ駆動できるようにした。さらに、本実施例では−20℃から−40℃以下の低温状態でパワー半導体素子101をオフしにくくなったときに、MOSFET123をオンさせ続けることにより、パワー半導体素子101の制御回路の低圧側電圧端子510を低圧側電圧端子509の電圧にとどめることができる。このため、ソース端子でもある出力端子505の電圧が上昇するとパワー半導体素子101のゲート・ソース間に通常のゲート電圧範囲を超えた低い電圧(高い逆方向電圧)が印加できるため、出力端子(ソース端子)の電圧の上昇は最小限度に抑えられる。なお、MOSFET123を用いるとパワー半導体素子101がオフ状態のときにMOSFET123をオンさせて、MOSFET123のドレイン電流が規定電流以上になったらオフする駆動をすることにより、パワー半導体素子101のゲート・ソース間ダイオードが降伏電圧となるまで、または、パワー半導体素子101のゲート・ソース間に接続したツェナーダイオード142が降伏する電圧まで低圧側電圧端子510の電圧を下げることが可能である。これにより、パワー半導体素子101のしきい電圧が低くなったときにはいつでもパワー半導体素子101をオフさせために必要な高い負のゲート・ソース間電圧を印加でき、更に、不要な電流損失を抑制できる。なお、ここではスイッチ素子123の役割をパワー半導体素子が低温になりすぎて、オフしにくくなった場合で説明したが、高温時にしきい電圧が低下して、パワー半導体素子がオフしにくくなった場合に使用しても同様の効果がある。また、スイッチ素子123は負電圧端子504に接続することが望ましいが、基準電圧端子504に接続してもかまわない。   When the reverse bias voltage is not applied between the gate and the source of the power semiconductor element 101 when the main switch is turned on, that is, when the capacitor 114 is not charged, the power semiconductor element 101 cannot be turned off, and the high voltage terminal 503 When the voltage is increased to the target voltage, the voltage at the output terminal 505 also increases at the same time. Therefore, in this embodiment, when the main switch is turned on, the MOSFET 123 which is a switch element connected to the low voltage terminal 509 is turned on so that the high side switch control circuit can be driven off. Furthermore, in this embodiment, when it becomes difficult to turn off the power semiconductor element 101 in a low temperature state of −20 ° C. to −40 ° C. or lower, the MOSFET 123 is kept turned on, whereby the low voltage side voltage of the control circuit of the power semiconductor element 101 is increased. The terminal 510 can be kept at the voltage of the low-voltage side voltage terminal 509. For this reason, when the voltage of the output terminal 505, which is also the source terminal, rises, a low voltage (high reverse voltage) exceeding the normal gate voltage range can be applied between the gate and source of the power semiconductor element 101. Terminal) voltage rise is minimized. When the MOSFET 123 is used, the power semiconductor element 101 is turned on when the power semiconductor element 101 is in the off state, and is driven to turn off when the drain current of the MOSFET 123 becomes equal to or higher than the specified current. The voltage at the low-voltage side voltage terminal 510 can be lowered until the diode reaches the breakdown voltage or until the Zener diode 142 connected between the gate and the source of the power semiconductor element 101 breaks down. Thereby, whenever the threshold voltage of the power semiconductor element 101 becomes low, a high negative gate-source voltage necessary for turning off the power semiconductor element 101 can be applied, and unnecessary current loss can be suppressed. Here, the role of the switch element 123 has been described in the case where the power semiconductor element becomes too low temperature to be turned off, but the threshold voltage decreases at a high temperature and the power semiconductor element becomes difficult to turn off. Even if used in some cases, the same effect is obtained. The switch element 123 is preferably connected to the negative voltage terminal 504, but may be connected to the reference voltage terminal 504.

ツェナーダイオード142は制御回路110に使用されるMOSFET119、120などを過電圧から保護するために設けてあるが、過電圧の心配がない場合には不要である。また、抵抗100はMOSFET123の電流を抑制するために設けてあるがなくても構わない。または、MOSFET123をなくし、抵抗値の大きい抵抗100だけを設けた場合には抵抗100に常に電流が流れるが、高圧電圧端子503の電圧を立ち上げる前に負の低圧側電圧端子509によりキャパシタ114を簡単に充電できてパワー半導体素子101をオフ制御できる。また、制御回路134、110、111はキャパシタとダイオードの一部は外付けになるが、スイッチ素子であるMOSFET等はワンチップに集積回路化して小型化できる。   The Zener diode 142 is provided to protect the MOSFETs 119 and 120 used in the control circuit 110 from overvoltage, but is not necessary when there is no concern about overvoltage. The resistor 100 is not necessarily provided to suppress the current of the MOSFET 123. Alternatively, when the MOSFET 123 is eliminated and only the resistor 100 having a large resistance value is provided, a current always flows through the resistor 100. However, before the voltage at the high voltage terminal 503 is raised, the capacitor 114 is connected by the negative low voltage terminal 509. The power semiconductor element 101 can be off-controlled by being easily charged. The control circuits 134, 110, and 111 are partly connected with capacitors and diodes. However, MOSFETs or the like as switch elements can be miniaturized by integrating them on a single chip.

なお、本実施例ではパワー半導体素子としてノーマリオン型のJFETを用いて説明したが、本発明でノーマリオン型のパワーMOSFETも含む電界効果型パワー半導体素子を対象とした一般の制御回路に対して好適である。ただし、−20℃から−40℃以下の低温状態でドレイン電流を遮断する能力が低下するJFETやSITやMES・FETや蓄積型電界効果トランジスタを用いた場合に特に好適である。   In this embodiment, a normally-on type JFET is used as the power semiconductor element. However, in the present invention, a general control circuit for a field effect type power semiconductor element including a normally-on type power MOSFET is used. Is preferred. However, it is particularly suitable when a JFET, SIT, MES • FET, or a storage field effect transistor whose ability to cut off the drain current is lowered at a low temperature of −20 ° C. to −40 ° C. is used.

図4は、本実施例の回路図である。本実施例ではハイサイドスイッチ用のパワー半導体素子101を強制的にオフさせる手段としてMOSFET123をパワー半導体素子101のゲート端子に接続してあり、さらに、パワー半導体素子101のゲート端子と低圧側電圧端子510との間に整流素子であるダイオード130を設けたことが実施例1と異なるだけで、その他は実施例1と同じである。ダイオード130がない場合には、スイッチ素子であるMOSFET120のドレイン・ソース間に存在する寄生ダイオードによりパワー半導体素子101のゲート・ソース間に高い負の電圧が印加され、低圧側電圧端子510の電圧も下がるため、図1に示した実施例1と同様の動作となる。ダイオード130があるとパワー半導体素子101のゲート・ソース間に低圧側電圧端子510より低い電圧も印加できるため、制御回路110を構成する半導体スイッチング素子の耐圧を高くしなくてもパワー半導体素子101のゲート・ソース間に高い負電圧を印加できる。   FIG. 4 is a circuit diagram of this embodiment. In this embodiment, a MOSFET 123 is connected to the gate terminal of the power semiconductor element 101 as means for forcibly turning off the power semiconductor element 101 for the high-side switch, and further, the gate terminal and the low-voltage side voltage terminal of the power semiconductor element 101. The only difference from the first embodiment is that a diode 130 that is a rectifying element is provided between the first and second embodiments, and the rest is the same as the first embodiment. When the diode 130 is not provided, a high negative voltage is applied between the gate and the source of the power semiconductor element 101 by a parasitic diode existing between the drain and the source of the MOSFET 120 which is a switch element, and the voltage at the low voltage side voltage terminal 510 is also Therefore, the operation is the same as that of the first embodiment shown in FIG. When the diode 130 is present, a voltage lower than the low-voltage side voltage terminal 510 can be applied between the gate and the source of the power semiconductor element 101, so that the power semiconductor element 101 does not have to have a high breakdown voltage. A high negative voltage can be applied between the gate and the source.

図5は、本実施例の回路図である。本実施例では制御回路134を基準電圧端子504と低圧側電圧端子509の間で動作する回路にしたことが実施例1と異なる。本実施例の場合にはレベルシフト回路125がいらない利点がある。その他は実施例1と同じである。   FIG. 5 is a circuit diagram of the present embodiment. This embodiment is different from the first embodiment in that the control circuit 134 is a circuit that operates between the reference voltage terminal 504 and the low-voltage side voltage terminal 509. In this embodiment, there is an advantage that the level shift circuit 125 is not required. Others are the same as in the first embodiment.

図6は、本実施例の回路図である。図1に示した実施例1の回路図と比べると、本実施例では高圧側電圧端子は512で、パワー半導体素子101のソース端子505より高い電圧である場合の実施例であることが異なる。このため、ハイサイドスイッチ用パワー半導体素子101とローサイドスイッチ用パワー半導体素子102のゲート・ソース間電圧範囲を負方向のみならず正方向にも印加できる。このため、パワー半導体素子101のゲート・ソース間電圧を高くでき、オン抵抗を低くできる。またパワー半導体素子101、102がノーマリオフ型の素子の場合でも使用することができる。本実施例の回路構成は、キャパシタ131と整流素子であるダイオード132を設けてあり、ハイサイドスイッチ用パワー半導体素子の高圧側電圧端子は電圧端子512になる。出力端子505が低電位になったときに、キャパシタ131に電荷が充電され電圧が高められ、この電圧により電圧端子512の電圧はパワー半導体素子101のソース端子が接続されている出力端子505の電圧より{(電圧端子507の電圧)−(ダイオード132の順方向電圧)}だけ高い値になる。ハイサイドスイッチ用パワー半導体素子の低圧側電圧端子は図4と同じで低圧側電圧端子510である。本実施例の場合には、ハイサイドスイッチ用パワー半導体素子101のしきい電圧は、{(電圧端子507の電圧)−(ダイオード132の順方向電圧)}Vと−{(高圧電圧端子503の電圧)−(電圧端子511の電圧)−(ダイオード113の順方向電圧)}Vとの間の値になっている。   FIG. 6 is a circuit diagram of this embodiment. Compared with the circuit diagram of the first embodiment shown in FIG. 1, the present embodiment differs from the first embodiment in that the high-voltage side voltage terminal is 512 and the voltage is higher than the source terminal 505 of the power semiconductor element 101. Therefore, the gate-source voltage ranges of the high-side switch power semiconductor element 101 and the low-side switch power semiconductor element 102 can be applied not only in the negative direction but also in the positive direction. For this reason, the gate-source voltage of the power semiconductor element 101 can be increased, and the on-resistance can be decreased. Further, even when the power semiconductor elements 101 and 102 are normally-off elements, they can be used. The circuit configuration of this embodiment is provided with a capacitor 131 and a diode 132 that is a rectifying element, and the high-voltage side voltage terminal of the high-side switch power semiconductor element is a voltage terminal 512. When the output terminal 505 is at a low potential, the capacitor 131 is charged and the voltage is increased. This voltage causes the voltage at the voltage terminal 512 to be the voltage at the output terminal 505 to which the source terminal of the power semiconductor element 101 is connected. It becomes a value higher than {(voltage of the voltage terminal 507) − (forward voltage of the diode 132)}. The low-voltage side voltage terminal of the high-side switch power semiconductor element is the same as FIG. In this embodiment, the threshold voltage of the power semiconductor element 101 for the high side switch is {(voltage of the voltage terminal 507) − (forward voltage of the diode 132)} V and − {(high voltage voltage terminal 503). Voltage) − (voltage at voltage terminal 511) − (forward voltage of diode 113)} V.

ローサイドスイッチ用パワー半導体素子の高圧側電圧端子は電圧端子514になる。本実施例では、ローサイドスイッチ用パワー半導体素子の高圧側電圧端子は電圧端子507にしてもよいがハイサイドスイッチ用パワー半導体素子とローサイドスイッチ用パワー半導体素子の高圧側電圧端子の電圧を揃えるために整流素子であるダイオード133を設けた。JFETの場合ゲート・ソース間の順方向電圧は、Si基板の場合には0.7V 程度、SiC基板の場合でも2.5V 程度と低い。正の電圧を高くしすぎるとゲートからドレインに電流が流れてしまうため、電圧端子507の電圧制御は大切である。   The high voltage side voltage terminal of the power semiconductor element for the low side switch is the voltage terminal 514. In this embodiment, the high-side voltage terminal of the low-side switch power semiconductor element may be the voltage terminal 507, but in order to make the voltages of the high-side switch power semiconductor element and the high-side voltage terminal of the low-side switch power semiconductor element uniform. A diode 133 which is a rectifying element is provided. In the case of JFET, the forward voltage between the gate and the source is as low as about 0.7 V in the case of the Si substrate and about 2.5 V in the case of the SiC substrate. Since the current flows from the gate to the drain if the positive voltage is too high, voltage control of the voltage terminal 507 is important.

本回路の構成により電圧端子507の電圧を最適に制御することにより、ハイサイドスイッチ用パワー半導体素子101とローサイドスイッチ用パワー半導体素子102の両方のゲート・ソース間電圧の上限値をほぼ同じ値に設定できる。そのために、ハイサイドスイッチ用パワー半導体素子101とローサイドスイッチ用パワー半導体素子102を最適に制御できる。なお、整流素子であるダイオード133を設けた場合にはローサイドスイッチ用パワー半導体素子102のしきい電圧は{(電圧端子507の電圧)−(ダイオード133の順方向電圧)}Vと(低圧側電圧端子509の電圧)Vとの間の値にしている。   By optimally controlling the voltage at the voltage terminal 507 with the configuration of this circuit, the upper limit values of the gate-source voltages of both the high-side switch power semiconductor element 101 and the low-side switch power semiconductor element 102 are set to substantially the same value. Can be set. Therefore, the high-side switch power semiconductor element 101 and the low-side switch power semiconductor element 102 can be optimally controlled. When the diode 133 which is a rectifying element is provided, the threshold voltage of the power semiconductor element 102 for the low-side switch is {(voltage of the voltage terminal 507) − (forward voltage of the diode 133)} V and (low voltage side voltage) The voltage between the terminal 509 and the voltage V).

なお、本実施例では、パワー半導体素子としてはパワーMOSFETも含む電界効果型パワー半導体素子を対象とした一般の制御回路に対して好適である。特に、−20℃から−40℃以下の低温状態でドレイン電流を遮断する能力が低下するJFETやSITやMES・FETや蓄積型電界効果トランジスタを用いた場合に特に好適である。   In this embodiment, the power semiconductor element is suitable for a general control circuit intended for a field effect type power semiconductor element including a power MOSFET. In particular, it is particularly suitable when a JFET, SIT, MES • FET, or a storage field effect transistor whose ability to cut off the drain current is lowered in a low temperature state of −20 ° C. to −40 ° C. or lower is used.

ノーマリオフ型パワー半導体素子の場合にはゲート・ソース間電圧をゼロボルトにすればオフできるため、本実施例のように必ずしもゲート・ソース間に負電圧を印加する必要はないが、本実施例のようにパワー半導体素子のゲート・ソース間に負電圧を印加してオフさせる場合にはゲート端子に印加される雑音によりパワー半導体素子が誤ってオンすることを防止できる。その他は実施例1と同じである。   In the case of a normally-off type power semiconductor device, it can be turned off by setting the gate-source voltage to zero volt. Therefore, it is not always necessary to apply a negative voltage between the gate and the source as in this embodiment, but as in this embodiment. In addition, when a negative voltage is applied between the gate and source of the power semiconductor element to turn it off, it is possible to prevent the power semiconductor element from being turned on by mistake due to noise applied to the gate terminal. Others are the same as in the first embodiment.

図7は、本実施例の回路図である。図6に示した実施例4の回路図と比べると、本実施例では整流素子としてダイオード132の代わりにMOSFET124とコンパレータ135を使用していることが異なる。コンパレータ135は電圧端子512の電圧が電圧端子507の電圧より低くなったときにだけMOSFET124をオンさせ、電圧端子512の電圧が電圧端子507の電圧より高くなったときにだけMOSFET124をオフさせる。このため、回路は少し複雑になるが図6のダイオード132の順方向電圧降下分を低くできる。このため、本実施例では図6のダイオード133も削除できる。その他は実施例4と同じである。   FIG. 7 is a circuit diagram of this embodiment. Compared with the circuit diagram of the fourth embodiment shown in FIG. 6, the present embodiment is different in that the MOSFET 124 and the comparator 135 are used instead of the diode 132 as the rectifying element. The comparator 135 turns on the MOSFET 124 only when the voltage at the voltage terminal 512 becomes lower than the voltage at the voltage terminal 507, and turns off the MOSFET 124 only when the voltage at the voltage terminal 512 becomes higher than the voltage at the voltage terminal 507. Therefore, although the circuit is a little complicated, the forward voltage drop of the diode 132 in FIG. 6 can be lowered. For this reason, the diode 133 of FIG. 6 can also be deleted in this embodiment. Others are the same as the fourth embodiment.

図8は、本実施例の回路図である。図6に示した実施例4の回路図と比べると、本実施例ではキャパシタ114の代わりにキャパシタ136を使用していることが異なる。ハイサイドスイッチ用制御回路の低圧側電圧端子の電圧はキャパシタ136とキャパシタ131に充電される電圧の差で決まっている。本実施例の場合にはキャパシタ114はないがキャパシタ136とキャパシタ131があるため、実質的には図6と同じである。従って、本実施例の特徴とその効果は実施例4と同じである。   FIG. 8 is a circuit diagram of this embodiment. Compared to the circuit diagram of the fourth embodiment shown in FIG. 6, the present embodiment is different in that the capacitor 136 is used instead of the capacitor 114. The voltage at the low voltage side voltage terminal of the control circuit for the high side switch is determined by the difference between the voltages charged in the capacitor 136 and the capacitor 131. In the case of this embodiment, there is no capacitor 114, but there are a capacitor 136 and a capacitor 131, so that it is substantially the same as FIG. Therefore, the features and effects of the present embodiment are the same as those of the fourth embodiment.

図9は、本実施例の回路図である。図1に示した実施例1の回路図と比べると、本実施例では、ローサイドスイッチ用パワー半導体素子102の制御回路111の低圧側電圧端子509の負電圧をバッテリ129なしで生成していることが異なる。低圧側電圧端子509の電圧を生成するために、キャパシタ114とローサイドスイッチ用の低圧側電圧端子509との間に整流素子であるダイオード139を接続してある。   FIG. 9 is a circuit diagram of this embodiment. Compared with the circuit diagram of the first embodiment shown in FIG. 1, in this embodiment, the negative voltage of the low-voltage side voltage terminal 509 of the control circuit 111 of the power semiconductor element 102 for the low-side switch is generated without the battery 129. Is different. In order to generate a voltage at the low-voltage side voltage terminal 509, a diode 139 that is a rectifying element is connected between the capacitor 114 and the low-voltage side voltage terminal 509 for the low-side switch.

これにより出力端子505が高圧になったときにキャパシタ114を充電し、出力端子505が低電位になったときにキャパシタ114に充電していたエネルギーの一部をキャパシタ141を充電するために使用している。すなわち、キャパシタ141を図1に示したバッテリ129の代わりに使用している。さらに、メインスイッチが投入されて高圧電圧端子503の電圧が立ち上がる前にパワー半導体素子101、102をオフ駆動するため、図10で示されるようなチャージポンプ回路137により基準電圧端子504より負の電圧を低圧側電圧端子509に発生させて、キャパシタ141をあらかじめ充電する。図10において、MOSFET319〜323はダイオード(整流素子)として動作しており、ゲートが接続された端子がアノード、ゲートが接続されてない方の端子がカソードとして動作する。符号324から327はキャパシタで、クロックφ1とクロックφ2を逆位相で動作させて低圧側電圧端子509から基準電圧端子504に電荷を移動させることにより、低圧側電圧端子509を負電圧にする。クロック周波数は数百kHz程度から数十MHz程度にしている。また、制御回路134、110、111、チャージポンプ回路137はキャパシタとダイオードの一部は外付けになるがスイッチ素子であるMOSFET等はワンチップに集積回路化して小型化できる。その他は実施例1と同じである。   Thus, the capacitor 114 is charged when the output terminal 505 becomes high voltage, and a part of the energy charged in the capacitor 114 when the output terminal 505 becomes low potential is used to charge the capacitor 141. ing. That is, the capacitor 141 is used instead of the battery 129 shown in FIG. Further, since the power semiconductor elements 101 and 102 are driven off before the main switch is turned on and the voltage at the high voltage terminal 503 rises, a negative voltage is applied from the reference voltage terminal 504 by the charge pump circuit 137 as shown in FIG. Is generated at the low voltage side voltage terminal 509 to charge the capacitor 141 in advance. In FIG. 10, MOSFETs 319 to 323 operate as diodes (rectifying elements), and a terminal to which the gate is connected operates as an anode, and a terminal to which the gate is not connected operates as a cathode. Reference numerals 324 to 327 denote capacitors, which operate the clocks φ1 and φ2 in opposite phases to move charges from the low voltage side voltage terminal 509 to the reference voltage terminal 504, thereby making the low voltage side voltage terminal 509 negative voltage. The clock frequency is about several hundred kHz to several tens of MHz. The control circuits 134, 110, and 111 and the charge pump circuit 137 are externally provided with a capacitor and a part of the diode, but the MOSFET or the like that is a switching element can be integrated into a single chip and miniaturized. Others are the same as in the first embodiment.

図11は、本実施例の回路図である。図6に示した実施例4の回路図と比べると、図9に示した実施例7と同様に、ハイサイドスイッチ用制御回路の低圧側電圧端子509の負電圧をバッテリ129なしで生成していることだけが異なっている。その他は実施例4と同じである。なお、ローサイドスイッチ用パワー半導体素子102が、ノーマリオフ型素子の場合にはチャージポンプ回路137はなくてもよい。   FIG. 11 is a circuit diagram of this embodiment. Compared with the circuit diagram of the fourth embodiment shown in FIG. 6, as in the seventh embodiment shown in FIG. 9, the negative voltage of the low-voltage side voltage terminal 509 of the high-side switch control circuit is generated without the battery 129. The only difference is that Others are the same as the fourth embodiment. If the low-side switch power semiconductor element 102 is a normally-off type element, the charge pump circuit 137 may be omitted.

図12は、本実施例の回路図である。本実施例はパワー半導体素子101をハイサイドスイッチ回路に用いた場合である。本実施例は図9に示した実施例7においてローサイドスイッチ用のパワー半導体素子102関係の回路がないだけで、その他は実施例7と同じである。   FIG. 12 is a circuit diagram of this embodiment. In this embodiment, the power semiconductor element 101 is used for a high-side switch circuit. The present embodiment is the same as the seventh embodiment except that there is no circuit related to the power semiconductor element 102 for the low-side switch in the seventh embodiment shown in FIG.

図13は、本実施例の回路図である。本実施例はパワー半導体素子102をローサイドスイッチ回路に用いた。本実施例は図9に示した実施例7においてハイサイドスイッチ用のパワー半導体素子101関係の回路がないだけで、その他は実施例7と同じである。   FIG. 13 is a circuit diagram of this embodiment. In this embodiment, the power semiconductor element 102 is used for the low-side switch circuit. The present embodiment is the same as the seventh embodiment except that there is no circuit related to the power semiconductor element 101 for the high-side switch in the seventh embodiment shown in FIG.

図14は、本実施例の回路図である。図1に示した実施例1の回路図と比べると、本実施例では、図1に示したハイサイドスイッチ素子の低圧側電圧を供給する電圧端子506、511、スイッチ115をなくし、その代わり、キャパシタ143を追加してハイサイドスイッチ素子の低圧側で電圧端子510の電圧を生成していることが異なる。このため、図1の電圧端子511はなくして電圧端子507と共通に使用している。なお、バッテリ126、127はバッテリ144として集約して示す。なお、電圧端子507の電圧はバッテリ144を使用せずに電源装置で生成してもかまわない。   FIG. 14 is a circuit diagram of the present embodiment. Compared with the circuit diagram of the first embodiment shown in FIG. 1, in this embodiment, the voltage terminals 506 and 511 and the switch 115 for supplying the low-voltage side voltage of the high-side switch element shown in FIG. The difference is that the capacitor 143 is added to generate the voltage at the voltage terminal 510 on the low voltage side of the high side switch element. For this reason, the voltage terminal 511 in FIG. 1 is not used and is used in common with the voltage terminal 507. The batteries 126 and 127 are collectively shown as a battery 144. Note that the voltage at the voltage terminal 507 may be generated by the power supply device without using the battery 144.

本実施例では、高圧電圧端子503が例えば100V、電圧端子501が例えば3Vのときに出力端子505と低圧側電圧端子510との間の電圧を10Vにするには、ツェナーダイオード142はなくてもキャパシタ114とキャパシタ143の容量比を87:10とすればよい。なお、この容量比は、寄生容量やダイオードの順方向電圧降下やパワー半導体素子のオン電圧は無視したものである。降伏電圧が10Vのツェナーダイオード142を使用することにより、上記キャパシタの容量比がずれても出力端子505と低圧側電圧端子510との間の電圧を10Vにできる。本実施例では電圧端子506、511やスイッチ115をなくしたが、その他は実施例1と同じである。   In this embodiment, when the high voltage terminal 503 is 100 V and the voltage terminal 501 is 3 V, for example, the Zener diode 142 is not necessary to set the voltage between the output terminal 505 and the low voltage terminal 510 to 10 V. The capacitance ratio between the capacitor 114 and the capacitor 143 may be 87:10. Note that this capacitance ratio ignores the parasitic capacitance, the forward voltage drop of the diode, and the on-voltage of the power semiconductor element. By using the Zener diode 142 having a breakdown voltage of 10V, the voltage between the output terminal 505 and the low-voltage side voltage terminal 510 can be 10V even if the capacitance ratio of the capacitor is shifted. In the present embodiment, the voltage terminals 506 and 511 and the switch 115 are eliminated, but the rest is the same as the first embodiment.

図15は、本実施例の回路図である。図11に示した実施例8の回路図と比べると、本実施例では、図14に示した実施例11と同様にハイサイドスイッチ用制御回路の低圧側電圧端子509の負電圧をバッテリ129なしで生成していることが異なる。このため、本実施例では、図11の電圧端子506、511やスイッチ115をなくすことができる。本実施例では、電圧端子506、511やスイッチ115がない他は、実施例8と同じである。   FIG. 15 is a circuit diagram of this embodiment. Compared with the circuit diagram of the eighth embodiment shown in FIG. 11, in this embodiment, the negative voltage at the low-voltage side voltage terminal 509 of the high-side switch control circuit is set to the absence of the battery 129 as in the eleventh embodiment shown in FIG. 14. It is different that it is generated by. Therefore, in this embodiment, the voltage terminals 506 and 511 and the switch 115 in FIG. 11 can be eliminated. The present embodiment is the same as the eighth embodiment except that the voltage terminals 506 and 511 and the switch 115 are not provided.

図16は、本実施例の回路ブロック図である。本実施例では図15に示した実施例12を例にして、高圧電圧端子503、電圧端子507、低圧側電圧端子509の電圧を交流回路から生成する場合を示す。本実施例ではメインスイッチをオンさせるとスイッチ145、スイッチ146がオンし、変圧器152により電圧端子507、低圧側電圧端子509に電圧が生成される。さらに高圧電圧端子503用のスイッチ200は図2で説明したように高圧回路を起動する時に内部抵抗を徐々に低下するようになっており、ダイオード147からダイオード150で構成される整流回路156とキャパシタ151により脈流を低減させて、高圧電圧端子503の電圧を発生させている。本実施例では、図15に示した実施例12の回路で、スイッチ200が交流に対するスイッチ回路になっている。   FIG. 16 is a circuit block diagram of the present embodiment. In the present embodiment, the case where the voltages of the high voltage terminal 503, the voltage terminal 507, and the low voltage terminal 509 are generated from an AC circuit will be described by taking the embodiment 12 shown in FIG. 15 as an example. In this embodiment, when the main switch is turned on, the switch 145 and the switch 146 are turned on, and a voltage is generated at the voltage terminal 507 and the low-voltage side voltage terminal 509 by the transformer 152. Further, as described with reference to FIG. 2, the switch 200 for the high voltage terminal 503 gradually decreases the internal resistance when the high voltage circuit is activated, and the rectifier circuit 156 including the diode 147 to the diode 150 and the capacitor 151 reduces the pulsating flow to generate a voltage at the high voltage terminal 503. In the present embodiment, in the circuit of the twelfth embodiment shown in FIG. 15, the switch 200 is a switch circuit for alternating current.

図18は、本実施例のパワー半導体素子の平面図であり、図17は図18のA−A′部分の断面図である。本実施例の半導体素子はバンドギャップが2.0eV 以上のワイドバンドギャップ半導体であるSiCを半導体基板に用いたJFETまたはSITである。なお、ワイドバンドギャップ半導体基板には、SiCのほかにもGaN(窒化ガリウム)やダイアモンドがある。図17と図18で、符号1はドレイン電極、2は高濃度n型基板、3は低濃度n型ドレイン領域、4aは高濃度n型ソース領域、6aは高濃度p型ゲート領域、7aは低濃度p型ゲート領域、5aは高濃度n型ソース領域4aとオーミックコンタクトをとるために設けたソース電極、8aは高濃度p型ゲート領域6aとオーミックコンタクトをとるために設けたゲート電極、9aは第2のソース電極、9bは第2のゲート電極である。低濃度p型ゲート領域7aは、トレンチを形成後に斜めイオン打ち込みによりp型不純物層を形成する。符号10はゲートパッドが形成される領域である。また、ソースパッドの位置は図18には示してないが、ゲートパッドが形成される領域10と同じ平面上に形成する。   FIG. 18 is a plan view of the power semiconductor element of this example, and FIG. 17 is a cross-sectional view taken along the line AA ′ of FIG. The semiconductor element of this embodiment is a JFET or SIT using SiC, which is a wide band gap semiconductor having a band gap of 2.0 eV or more, as a semiconductor substrate. The wide band gap semiconductor substrate includes GaN (gallium nitride) and diamond in addition to SiC. 17 and 18, reference numeral 1 denotes a drain electrode, 2 denotes a high concentration n-type substrate, 3 denotes a low concentration n-type drain region, 4a denotes a high concentration n-type source region, 6a denotes a high concentration p-type gate region, and 7a denotes The low-concentration p-type gate region, 5a is a source electrode provided for making ohmic contact with the high-concentration n-type source region 4a, 8a is a gate electrode provided for making ohmic contact with the high-concentration p-type gate region 6a, 9a Is a second source electrode, and 9b is a second gate electrode. In the low-concentration p-type gate region 7a, a p-type impurity layer is formed by oblique ion implantation after forming a trench. Reference numeral 10 denotes a region where a gate pad is formed. Further, although the position of the source pad is not shown in FIG. 18, it is formed on the same plane as the region 10 where the gate pad is formed.

ゲート・ソース間に逆バイアスの電圧が印加されると、低濃度p型ゲート領域7a、ゲート電極8aと、低濃度n型ドレイン領域3との間の空乏層が広がり、高濃度n型ソース領域4a直下のトレンチで囲まれたチャネル領域に電流が流れなくなる。逆に、ゲート・ソース間の逆バイアス電圧を低くし、しきい電圧より高いゲート電圧が印加されたときには、ドレイン・ソース間に電流が流れる。   When a reverse bias voltage is applied between the gate and the source, a depletion layer between the low-concentration p-type gate region 7a, the gate electrode 8a, and the low-concentration n-type drain region 3 spreads, and the high-concentration n-type source region No current flows in the channel region surrounded by the trench immediately below 4a. Conversely, when the gate-source reverse bias voltage is lowered and a gate voltage higher than the threshold voltage is applied, a current flows between the drain-source.

従来技術のパワーMOSFETの場合には、単位面積当たりのゲートの長さを長くしてオン抵抗を下げるためにセルを円形や多角形にすることが行われていた。すなわち、図18の平面寸法XとYの比率を小さくしていた。また、従来技術のJFETの場合には、ドレイン電流はチャネルの平面図サイズに比例するため、従来技術ではオン抵抗を下げるために、高濃度n型ソース領域4aを細長く形成、すなわち、平面寸法XとYの比率X:Yはできるだけ大きく取っていた。   In the case of the power MOSFET of the prior art, the cells have been made circular or polygonal in order to increase the gate length per unit area and lower the on-resistance. That is, the ratio of the planar dimensions X and Y in FIG. 18 is reduced. In the case of the prior art JFET, the drain current is proportional to the plan view size of the channel. Therefore, in the prior art, in order to reduce the on-resistance, the high-concentration n-type source region 4a is elongated, that is, the planar dimension X The ratio X: Y between Y and Y was as large as possible.

しかしながら、本実施例のように、トレンチを利用してゲート半導体領域を形成しgmが高い接合型FETを作る場合には、平面寸法XとYの比率を大きくすると、しきい電圧がばらつきやすくなることが判明した。また、ドレイン・ソース間の破壊ポイントが細長く形成したチャネル領域の隅に集中するためドレインの耐圧特性が図19の(I)で示すグラフのように、ソフトブレークダウン特性となることが分かった。   However, in the case where a gate semiconductor region is formed using a trench to form a junction type FET having a high gm as in this embodiment, the threshold voltage is likely to vary if the ratio of the planar dimensions X and Y is increased. It has been found. In addition, since the breakdown points between the drain and the source are concentrated at the corners of the elongated channel region, the breakdown voltage characteristics of the drain are soft breakdown characteristics as shown in the graph shown in FIG.

本実施例のJFETでは高濃度n型ソース領域4aの平面寸法XとYの比X/Yを1/10から1/1、すなわち、平面寸法XがYの10%〜100%、さらに望ましくは平面寸法XとYの比X/Yを、1/5から1/1、すなわち、平面寸法XがYの20%〜100%とした。また、トレンチ領域で囲まれるソース領域である高濃度n型ソース領域4aならびに高濃度n型ソース領域4a直下のチャネル領域を縦方向と横方向に複数個配置して、オン抵抗を低くし、大電流化した。これにより、ドレイン・ソース間の破壊ポイントの数が増加し一様化するため、図19の(II)で示すグラフのように、ドレイン電流の立ち上がり部分が急峻になって、破壊特性をハードブレークダウン化し、破壊強度を高くした。さらに、本実施例では、低濃度p型ゲート領域7a、ゲート電極8aで囲まれるチャネル領域の形状が均一化しやすくなるため、しきい電圧のばらつきが小さくなる。なお、高濃度n型ソース領域4aの平面形状は四角ではなく多角形や楕円形や円形、半円と直線を組み合わせた競技トラック形状にするとさらによい。   In the JFET of this embodiment, the ratio X / Y of the planar dimension X to Y of the high-concentration n-type source region 4a is from 1/10 to 1/1, that is, the planar dimension X is 10% to 100% of Y, more preferably The ratio X / Y of the planar dimensions X and Y was set to 1/5 to 1/1, that is, the planar dimension X was 20% to 100% of Y. Further, a high concentration n-type source region 4a, which is a source region surrounded by the trench region, and a plurality of channel regions immediately below the high concentration n-type source region 4a are arranged in the vertical direction and the horizontal direction to reduce the on-resistance. It became current. As a result, the number of breakdown points between the drain and the source increases and becomes uniform, so that the rising portion of the drain current becomes steep as shown in the graph of FIG. Down and increased breaking strength. Further, in this embodiment, since the shape of the channel region surrounded by the low-concentration p-type gate region 7a and the gate electrode 8a can be easily made uniform, the variation in threshold voltage is reduced. Note that the planar shape of the high-concentration n-type source region 4a is more preferably a polygonal shape, an elliptical shape, a circular shape, or a competition track shape in which a semicircle and a straight line are combined instead of a square shape.

素子温度が−20℃から−40℃程度の低温では、特にp型不純物が活性化しなくなりチャネル部に空乏層を形成しにくくなることが分かった。このような低温状態でもJFETを遮断させやすくするためにはゲート・ソース間に高い逆方向電圧を印加する必要がある。ソース用半導体領域とゲート用半導体領域が高濃度で接触するとゲート・ソース間ダイオードの耐圧が低くなるため、本実施例では低濃度p型ゲート領域7aを設けてゲート・ソース間ダイオードの逆方向電圧に対する耐圧を高くしている。このため、本実施例のJFETでは、−20℃から−40℃以下の低温でオフできるような高い負ゲート電圧を印加しても、ゲート・ソース間のリーク電流を無視できる。また、本構造は、JFETが高温となり、しきい電圧が低くなった場合に、高い負ゲート電圧を印加する場合にも有効である。   It has been found that when the device temperature is as low as about −20 ° C. to −40 ° C., the p-type impurity is not activated and it is difficult to form a depletion layer in the channel portion. In order to easily shut off the JFET even in such a low temperature state, it is necessary to apply a high reverse voltage between the gate and the source. When the source semiconductor region and the gate semiconductor region are in contact with each other at a high concentration, the breakdown voltage of the gate-source diode is lowered. Therefore, in this embodiment, a low-concentration p-type gate region 7a is provided and the reverse voltage of the gate-source diode is provided. The pressure resistance against is increased. Therefore, in the JFET of this embodiment, even when a high negative gate voltage that can be turned off at a low temperature of −20 ° C. to −40 ° C. is applied, the leakage current between the gate and the source can be ignored. This structure is also effective when a high negative gate voltage is applied when the JFET becomes high temperature and the threshold voltage becomes low.

なお、トレンチを細く形成するために、トレンチの底のゲート用の高濃度p型ゲート領域6aにオーミックコンタクトを取るために用いるゲート電極8aは厚くできない。このため、ゲート電極8aをトレンチの上に延長させることは難しい。一方、トレンチの底の高濃度p型ゲート領域6aからゲートパッドが形成される領域10までの配線を形成するためには、トレンチの側壁に形成した低濃度p型ゲート領域7aを介してトレンチの底からトレンチの上まで接続すると簡単であるが、ゲート抵抗が高くなる。   In order to form a narrow trench, the gate electrode 8a used for making an ohmic contact with the high-concentration p-type gate region 6a for the gate at the bottom of the trench cannot be thickened. For this reason, it is difficult to extend the gate electrode 8a over the trench. On the other hand, in order to form a wiring from the high-concentration p-type gate region 6a at the bottom of the trench to the region 10 where the gate pad is formed, the trench is connected via the low-concentration p-type gate region 7a formed on the sidewall of the trench. Although it is easy to connect from the bottom to the top of the trench, the gate resistance increases.

そこで、本実施例の半導体素子では、ゲート電極8aからゲートパッドが形成される領域10までのゲート配線抵抗を低減するために、高濃度p型ゲート領域6aにオーミックコンタクトをとるためにゲート電極8aを設け、さらにゲート電極8aより膜厚が厚い第2のゲート電極9bと接続して、ゲートパッドが形成される領域10に接続した。さらに、ソース電極の抵抗を低減するために高濃度n型ソース電極4aより膜厚が厚い第2のソース電極9aを配置している。ここで、第2のソース電極9aと第2のゲート電極9bは同一工程で形成できる。   Therefore, in the semiconductor element of this embodiment, in order to reduce the gate wiring resistance from the gate electrode 8a to the region 10 where the gate pad is formed, the gate electrode 8a is used to make an ohmic contact with the high-concentration p-type gate region 6a. And connected to the second gate electrode 9b having a thickness larger than that of the gate electrode 8a, and connected to the region 10 where the gate pad is formed. Further, in order to reduce the resistance of the source electrode, a second source electrode 9a having a thickness greater than that of the high concentration n-type source electrode 4a is provided. Here, the second source electrode 9a and the second gate electrode 9b can be formed in the same process.

また、本実施例ではドレイン・ソース間の耐圧を高くするために、トレンチの底に形成した高濃度p型領域6b、6cと、トレンチの側壁に形成した低濃度p型領域7b、7cを、トレンチの上に形成した高濃度n型領域4b、4cで分離して、フローティングのフィールドリミティングリングを形成している。高濃度n型領域4bはソース用の高濃度n型ソース領域4aと同一工程にし、高濃度p型領域6b、6cと、低濃度p型領域7b、7cはゲート用の高濃度p型領域6a、ゲート用の低濃度p型ゲート領域7aと同一工程で形成できる。なお、高濃度n型領域4a、4b、4cをp型領域7a、7b、7cと高濃度不純物同士で接触しないように離して形成する場合には、トレンチ側壁のp型領域7a、7b、7cの不純物濃度は高くても耐圧確保できるためかまわない。   In this embodiment, in order to increase the breakdown voltage between the drain and the source, the high concentration p-type regions 6b and 6c formed at the bottom of the trench and the low concentration p-type regions 7b and 7c formed at the sidewall of the trench are A floating field limiting ring is formed by being separated by the high-concentration n-type regions 4b and 4c formed on the trench. The high-concentration n-type region 4b is formed in the same process as the high-concentration n-type source region 4a for the source, and the high-concentration p-type regions 6b and 6c and the low-concentration p-type regions 7b and 7c are the high-concentration p-type region 6a for the gate. It can be formed in the same process as the low concentration p-type gate region 7a for the gate. When the high-concentration n-type regions 4a, 4b, and 4c are formed apart from the p-type regions 7a, 7b, and 7c so as not to contact each other with the high-concentration impurities, the p-type regions 7a, 7b, and 7c on the trench sidewalls are formed. Even if the impurity concentration is high, the withstand voltage can be secured.

以上、本実施例では電界効果型パワー半導体素子はnチャネル型の場合を説明したが、pチャネル型のパワー半導体素子の場合には回路の極性や不純物層の導電型を逆にすることにより同様な構成が実現でき、同様の効果が得られることはいうまでもない。   As described above, in this embodiment, the field effect type power semiconductor element is described as being an n-channel type. However, in the case of a p-channel type power semiconductor element, the same is achieved by reversing the polarity of the circuit and the conductivity type of the impurity layer. Needless to say, a simple structure can be realized and the same effect can be obtained.

実施例1の回路図。1 is a circuit diagram of Embodiment 1. FIG. 実施例1の半導体回路図の駆動タイミングチャート。2 is a drive timing chart of the semiconductor circuit diagram of Embodiment 1. FIG. 実施例1の回路図のレベルシフト回路図。FIG. 3 is a level shift circuit diagram of the circuit diagram of the first embodiment. 実施例2の半導体回路図。FIG. 6 is a semiconductor circuit diagram of Example 2. 実施例3の半導体回路図。FIG. 6 is a semiconductor circuit diagram of Example 3. 実施例4の半導体回路図。FIG. 6 is a semiconductor circuit diagram of Example 4. 実施例5の半導体回路図。FIG. 10 is a semiconductor circuit diagram of Example 5. 実施例6の半導体回路図。FIG. 10 is a semiconductor circuit diagram of Example 6. 実施例7の半導体回路図。FIG. 10 is a semiconductor circuit diagram of Example 7. 実施例7のチャージポンプ回路図。FIG. 10 is a charge pump circuit diagram according to a seventh embodiment. 実施例8の半導体回路図。FIG. 10 is a semiconductor circuit diagram of Example 8. 実施例9の半導体回路図。FIG. 10 is a semiconductor circuit diagram of Example 9. 実施例10の半導体回路図。FIG. 10 is a semiconductor circuit diagram of Example 10. 実施例11の半導体回路図。FIG. 18 is a semiconductor circuit diagram of Example 11. 実施例12の半導体回路図。FIG. 20 is a semiconductor circuit diagram of Example 12. 実施例13の半導体回路図。FIG. 18 is a semiconductor circuit diagram of Example 13; 実施例14の接合型半導体素子の断面図。Sectional drawing of the junction type semiconductor element of Example 14. FIG. 実施例14の接合型半導体素子の平面図。The top view of the junction type semiconductor element of Example 14. FIG. 実施例14の接合型半導体素子の特性図。FIG. 20 is a characteristic diagram of the junction semiconductor element according to Example 14;

符号の説明Explanation of symbols

1…ドレイン電極、2…高濃度n型基板、3…低濃度n型ドレイン領域、4a…高濃度n型ソース領域、4b、4c、4d、4e…高濃度n型領域、5a…ソース電極、5b〜5e、8b、8c、8d…金属層、6a…高濃度p型ゲート領域、6b〜6d…高濃度p型領域、7a…低濃度p型ゲート領域、7b〜7d…低濃度p型領域、8a…第1ゲート金属層、9a…第2のソース電極、9b…第2のゲート電極、9c…フィールドプレート金属層、9d…ドレインフィールドプレート金属層、10…ゲートパッドが形成される領域、11…絶縁層、100…抵抗、101、102…パワー半導体素子、103、114、131、136、141、143、151、324〜327…キャパシタ、104…負荷、105〜107、115〜118、145、146、200…スイッチ、108、109…インピーダンス、110、111、134…制御回路、112、125…レベルシフト回路、113、130、132、133、138、139、147〜150…ダイオード、119〜124…MOSFET、126〜129、144…バッテリ、135…コンパレータ、137…チャージポンプ回路、142、157…ツェナーダイオード、152…変圧器、153…交流用プラグ、154、155…電源回路、156…整流回路、300〜305、307〜312、314〜323…MOSFET、306、313…ラッチ回路、500、501、502、506、507、511〜514…電圧端子、503…高圧電圧端子、504…基準電圧端子、505…出力端子、508…入力端子、509、510…低圧側電圧端子。

DESCRIPTION OF SYMBOLS 1 ... Drain electrode, 2 ... High concentration n type substrate, 3 ... Low concentration n type drain region, 4a ... High concentration n type source region, 4b, 4c, 4d, 4e ... High concentration n type region, 5a ... Source electrode, 5b to 5e, 8b, 8c, 8d ... metal layer, 6a ... high concentration p-type gate region, 6b-6d ... high concentration p-type region, 7a ... low concentration p-type gate region, 7b-7d ... low concentration p-type region 8a ... first gate metal layer, 9a ... second source electrode, 9b ... second gate electrode, 9c ... field plate metal layer, 9d ... drain field plate metal layer, 10 ... region where the gate pad is formed, DESCRIPTION OF SYMBOLS 11 ... Insulating layer, 100 ... Resistance, 101, 102 ... Power semiconductor element, 103, 114, 131, 136, 141, 143, 151, 324-327 ... Capacitor, 104 ... Load, 105-107, 115 18, 145, 146, 200 ... switch, 108, 109 ... impedance, 110, 111, 134 ... control circuit, 112, 125 ... level shift circuit, 113, 130, 132, 133, 138, 139, 147-150 ... diode DESCRIPTION OF SYMBOLS 119-124 ... MOSFET, 126-129, 144 ... Battery, 135 ... Comparator, 137 ... Charge pump circuit, 142, 157 ... Zener diode, 152 ... Transformer, 153 ... Plug for alternating current, 154, 155 ... Power supply circuit, 156: Rectifier circuit, 300-305, 307-312, 314-323 ... MOSFET, 306, 313 ... Latch circuit, 500, 501, 502, 506, 507, 511-514 ... Voltage terminal, 503 ... High voltage terminal, 504 ... Reference voltage terminal, 505 ... Output terminal 508 ... input terminal, 509, 510 ... the low-pressure side voltage terminal.

Claims (21)

第1電源電圧端子と基準電圧端子との間にパワー半導体素子を配線し、
前記パワー半導体素子により電力を制御される負荷と、
前記パワー半導体素子を制御する制御回路を設け、
該制御回路が、前記パワー半導体素子のソース端子の電圧に対して予め定めた第1電圧正方向または負方向に離れたまたは前記ソース端子の電圧と等しい高圧側電圧端子と、ソース端子の電圧に対して予め定めた第2電圧負方向に離れた低圧側電圧端子との間で動作し、
第1使用温度範囲では、前記パワー半導体素子のしきい電圧が、前記第1電圧と前記第2電圧の間の電圧であって、
第2使用温度範囲では、前記パワー半導体素子のしきい電圧が、前記第1使用温度範囲における前記第1電圧と第2電圧の間の電圧範囲を越える電圧であることを特徴とする半導体回路。
Wiring a power semiconductor element between the first power supply voltage terminal and the reference voltage terminal;
A load whose power is controlled by the power semiconductor element;
A control circuit for controlling the power semiconductor element;
The control circuit has a first voltage positive or negative direction that is predetermined with respect to the voltage of the source terminal of the power semiconductor element, or a high voltage terminal that is equal to the voltage of the source terminal, and a voltage of the source terminal. In contrast, it operates with a low-voltage side voltage terminal that is separated in the negative direction of the second voltage predetermined,
In the first operating temperature range, a threshold voltage of the power semiconductor element is a voltage between the first voltage and the second voltage,
In the second use temperature range, the threshold voltage of the power semiconductor element is a voltage exceeding the voltage range between the first voltage and the second voltage in the first use temperature range.
請求項1において、前記制御回路が前記パワー半導体素子を加熱して、前記パワー半導体素子のしきい電圧を前記第1使用温度範囲における前記第1電圧と前記第2電圧の間の電圧範囲を超える値から、前記第1使用温度範囲における前記第1電圧と前記第2電圧の間の値に変えることを特徴とする半導体回路。   2. The control circuit according to claim 1, wherein the control circuit heats the power semiconductor element, and a threshold voltage of the power semiconductor element exceeds a voltage range between the first voltage and the second voltage in the first use temperature range. A semiconductor circuit, wherein the value is changed to a value between the first voltage and the second voltage in the first operating temperature range. 請求項2において、前記パワー半導体素子のドレイン・ソース間に電圧を印加しドレイン電流を流して加熱することを特徴とする半導体回路。   3. The semiconductor circuit according to claim 2, wherein a voltage is applied between the drain and source of the power semiconductor element to heat the drain by flowing a drain current. 請求項3において、メインスイッチ投入後に第1電源電圧端子が目標電圧値の80%の電圧に達するまでの電圧上昇期間中に、前記第1電源電圧端子から供給される電流の半分以上を前記パワー半導体素子のドレイン電流として流し、かつ前記負荷に印加される出力電圧を最大出力電圧の30%以下に保持して前記パワー半導体素子を発熱させ、前記パワー半導体素子のしきい電圧を前記第1電位と前記第2電位の間の値に変えた後、前記第1電源電圧端子の電圧を上げて目標電圧に達するように制御することを特徴とする半導体回路。   4. The method according to claim 3, wherein during the voltage increase period until the first power supply voltage terminal reaches 80% of the target voltage value after the main switch is turned on, half or more of the current supplied from the first power supply voltage terminal is the power. A drain current of the semiconductor element is allowed to flow, and an output voltage applied to the load is maintained at 30% or less of a maximum output voltage to generate heat, and the threshold voltage of the power semiconductor element is set to the first potential. And changing the value to a value between the first potential and the second potential, and then increasing the voltage of the first power supply voltage terminal so as to reach a target voltage. 請求項1において、前記制御回路が前記第1使用温度範囲における前記第1電圧と前記第2電圧の間の電圧範囲を超えた電圧を、前記パワー半導体素子のゲート・ソース間に印加してから、前記第1電源電圧端子を最終目標電圧値の80%の値になるまで上昇させることを特徴とする半導体回路。   2. The device according to claim 1, wherein the control circuit applies a voltage exceeding a voltage range between the first voltage and the second voltage in the first operating temperature range between a gate and a source of the power semiconductor element. The semiconductor circuit, wherein the first power supply voltage terminal is raised to a value of 80% of the final target voltage value. 請求項1において、前記制御回路が、前記低圧側電圧端子と基準電圧端子より電圧が低い電圧端子との間または、前記低圧側電圧端子と前記基準電圧端子との間に半導体スイッチ素子を設け、前記第1使用温度範囲における前記第1電圧と前記第2電圧の間の電圧範囲を超えた電圧を前記パワー半導体素子のゲート・ソース間に印加することを特徴とする半導体回路。   In Claim 1, the control circuit provides a semiconductor switch element between the low voltage side voltage terminal and a voltage terminal whose voltage is lower than a reference voltage terminal, or between the low voltage side voltage terminal and the reference voltage terminal, A semiconductor circuit, wherein a voltage exceeding a voltage range between the first voltage and the second voltage in the first use temperature range is applied between a gate and a source of the power semiconductor element. 基準電圧端子と該基準電圧端子より電圧が高い第1電源電圧端子との間にパワー半導体素子と出力端子とを配線し、
該パワー半導体素子を制御する制御回路を備え、
該制御回路が前記パワー半導体素子のソース端子の電圧に対し予め定めた第1電圧正方向または負方向に離れたまたは前記ソース端子の電圧と等しい高圧側電圧端子と第2電圧負方向に離れた低圧側電圧端子との間で動作し、
前記低圧側電圧端子の電圧が、前記パワー半導体素子のソース端子の電圧より低い負電圧であり、
前記出力端子と第2電源電圧端子との間に第1のキャパシタと第1の整流素子とを直列接続し、前記出力端子の電圧が上昇したときに前記第1のキャパシタを充電し、前記第1のキャパシタの電圧を用いて前記低圧側電圧端子の電圧を負方向に増加させることを特徴とする半導体回路。
Wiring a power semiconductor element and an output terminal between a reference voltage terminal and a first power supply voltage terminal having a voltage higher than the reference voltage terminal;
A control circuit for controlling the power semiconductor element;
The control circuit is separated in the positive or negative direction of the first voltage predetermined with respect to the voltage of the source terminal of the power semiconductor element or separated in the negative direction of the high voltage side voltage terminal and the second voltage in the negative direction equal to the voltage of the source terminal. Operates with the low-voltage side voltage terminal,
The voltage of the low-voltage side voltage terminal is a negative voltage lower than the voltage of the source terminal of the power semiconductor element,
A first capacitor and a first rectifying element are connected in series between the output terminal and the second power supply voltage terminal, and the first capacitor is charged when the voltage at the output terminal rises, A semiconductor circuit, wherein the voltage of the low-voltage side voltage terminal is increased in the negative direction by using the voltage of one capacitor.
請求項7において、前記第1のキャパシタと前記第1の整流素子との間に第2のキャパシタを設けたことを特徴とする半導体回路。   8. The semiconductor circuit according to claim 7, wherein a second capacitor is provided between the first capacitor and the first rectifying element. 請求項7において、前記出力端子と前記パワー半導体素子の高圧電圧端子との間に第3のキャパシタを設け、前記パワー半導体素子の前記高圧電圧端子と第3の電源電圧端子との間に第2の整流素子を設け、出力端子が低電圧になったときに前記第3のキャパシタに充電される電圧で前記パワー半導体素子の高圧側電圧端子の電圧を正方向に増加させることを特徴とする半導体回路。   8. The third capacitor according to claim 7, wherein a third capacitor is provided between the output terminal and the high voltage terminal of the power semiconductor element, and a second capacitor is provided between the high voltage terminal and the third power supply voltage terminal of the power semiconductor element. And a voltage that is charged in the third capacitor when the output terminal becomes a low voltage, the voltage at the high-voltage side voltage terminal of the power semiconductor element is increased in the positive direction. circuit. 請求項7において、前記パワー半導体素子が前記基準電圧端子と前記出力端子との間に設けたローサイドスイッチ用パワー半導体素子であって、前記低圧電圧端子と前記第1キャパシタとの間に第2の整流素子を設けたことを特徴とする半導体回路。   The power semiconductor element according to claim 7, wherein the power semiconductor element is a low-side switch power semiconductor element provided between the reference voltage terminal and the output terminal, and a second semiconductor device is connected between the low voltage terminal and the first capacitor. A semiconductor circuit comprising a rectifying element. 請求項9において、前記パワー半導体素子が第1電源電圧端子と前記出力端子との間に設けたハイサイドスイッチ用パワー半導体素子と、前記出力端子と前記基準電圧端子との間にローサイドスイッチ用パワー半導体素子とであって、前記ローサイドスイッチ用パワー半導体素子のソース端子と前記第3の電源電圧端子との間に第3の整流素子を設けたことを特徴とする半導体回路。   The power semiconductor element for a high side switch according to claim 9, wherein the power semiconductor element is provided between a first power supply voltage terminal and the output terminal, and a power for a low side switch between the output terminal and the reference voltage terminal. A semiconductor circuit, wherein a third rectifier element is provided between a source terminal of the low-side switch power semiconductor element and the third power supply voltage terminal. 請求項9において、前記第2の電源電圧端子と前記第3の電源電圧端子を共通にしたことを特徴とする半導体回路。   10. The semiconductor circuit according to claim 9, wherein the second power supply voltage terminal and the third power supply voltage terminal are shared. 請求項7において、前記低圧側電圧端子の電圧を前記基準電圧端子より低くするためにチャージポンプ回路を用いることを特徴とする半導体回路。   8. The semiconductor circuit according to claim 7, wherein a charge pump circuit is used to make the voltage of the low-voltage side voltage terminal lower than that of the reference voltage terminal. 請求項7において、前記第1電源電圧端子と基準電圧端子の間の電圧が最終目標電圧の80%までを上昇させる前に、チャージポンプ回路により前記基準電圧端子より負電圧を発生することを特徴とする半導体回路。   8. The negative voltage is generated from the reference voltage terminal by a charge pump circuit before the voltage between the first power supply voltage terminal and the reference voltage terminal increases to 80% of the final target voltage. A semiconductor circuit. 請求項7において、前記制御回路が、前記第1電源電圧端子と基準電圧端子の間の電圧を最終目標電圧の80%までに上昇させる前に、前記第1のキャパシタの電圧を充電することを特徴とする半導体回路。   8. The control circuit according to claim 7, wherein the control circuit charges the voltage of the first capacitor before increasing the voltage between the first power supply voltage terminal and the reference voltage terminal to 80% of the final target voltage. A featured semiconductor circuit. 第1電源電圧端子と出力端子との間にハイサイドスイッチ用パワー半導体素子を接続し、出力端子と基準電圧端子との間にローサイドスイッチ用パワー半導体素子を配線し、前記出力端子に負荷を接続した半導体回路において、
前記ハイサイドスイッチ用パワー半導体素子と、ハイサイドスイッチ用制御回路が、前記ハイサイドスイッチ用パワー半導体素子のソース端子の電圧に対し予め定めた第1電圧正方向に離れた高圧側電圧端子と第2電圧負方向に離れた低圧側電圧端子との間で動作し、
前記ローサイドスイッチ用パワー半導体素子と、ローサイドスイッチ用制御回路が、前記ローサイドスイッチ用パワー半導体素子のソース端子の電圧に対し予め定めた第1電圧正方向または負方向に離れたまたは前記ソース端子の電圧と等しい高圧側電圧端子と第2電圧負方向に離れた低圧側電圧端子との間で動作し、
前記ハイサイドスイッチ用制御回路への駆動信号を、前記基準電圧端子と正の電圧端子との間の信号レベルから、前記ローサイドスイッチ用制御回路の制御信号レベルにレベルシフトして伝達することを特徴とする半導体回路。
A high-side switch power semiconductor element is connected between the first power supply voltage terminal and the output terminal, a low-side switch power semiconductor element is wired between the output terminal and the reference voltage terminal, and a load is connected to the output terminal. In the semiconductor circuit
The high-side switch power semiconductor element and the high-side switch control circuit are connected to a high-voltage side voltage terminal and a first high-voltage side voltage terminal that are separated in a positive first voltage positive direction with respect to the voltage of the source terminal of the high-side switch power semiconductor element. Operates between two low voltage terminals that are separated in the negative voltage direction,
The low-side switch power semiconductor element and the low-side switch control circuit are separated in the positive or negative direction of the first voltage predetermined with respect to the voltage of the source terminal of the low-side switch power semiconductor element, or the voltage of the source terminal Between the high voltage side voltage terminal equal to and the low voltage side voltage terminal separated in the second voltage negative direction,
A drive signal to the high-side switch control circuit is transmitted with a level shift from a signal level between the reference voltage terminal and a positive voltage terminal to a control signal level of the low-side switch control circuit. A semiconductor circuit.
請求項1から請求項16の何れかにおいて、前記パワー半導体素子がバンドギャップが2.0eV 以上の半導体基板を用いた電界効果トランジスタであることを特徴とする半導体回路。   17. The semiconductor circuit according to claim 1, wherein the power semiconductor element is a field effect transistor using a semiconductor substrate having a band gap of 2.0 eV or more. 半導体基板の第1主面に、トレンチで分離した第1導電型の高濃度ソース領域を縦方向と横方向とに複数個ずつ配列し、
前記半導体基板の第2主面に設けた第1導電型の高濃度ドレイン領域と、
前記トレンチの底辺領域に設けた第2導電型の高濃度ゲート領域と、
前記第2導電型の高濃度ゲート領域と前記第1導電型の高濃度ソース領域との間に印加する電圧で空乏層の広がりを制御し、前記第1導電型の高濃度ソース領域と前記第1導電型の高濃度ドレイン領域との間の抵抗を制御する電界効果型パワー半導体素子において、
前記第1導電型の高濃度ソース領域の平面形状の横の長さXと縦の長さYの比(X/Y)が1/10〜1/1であることを特徴とする電界効果型パワー半導体素子。
A plurality of first conductivity type high-concentration source regions separated by trenches are arranged in the vertical direction and the horizontal direction on the first main surface of the semiconductor substrate,
A high-concentration drain region of a first conductivity type provided on a second main surface of the semiconductor substrate;
A high-concentration gate region of a second conductivity type provided in a bottom region of the trench;
The spread of the depletion layer is controlled by a voltage applied between the second conductive type high concentration gate region and the first conductive type high concentration source region, and the first conductive type high concentration source region and the first conductive type In a field effect type power semiconductor device for controlling a resistance between a high conductivity drain region of one conductivity type,
A field effect type wherein the ratio (X / Y) of the horizontal length X to the vertical length Y of the planar shape of the high-concentration source region of the first conductivity type is 1/10 to 1/1. Power semiconductor element.
請求項18において、前記トレンチの底に前記第2導電型の高濃度ゲート領域とオーミックコンタクトする第1ゲート金属層を設け、前記第1主面に設けたゲートパッドと前記第1ゲート金属層とを接続する第2ゲート金属層を設けたことを特徴とする電界効果型パワー半導体素子。   19. The first gate metal layer in ohmic contact with the second conductivity type high-concentration gate region is provided at the bottom of the trench, and the gate pad provided on the first main surface, the first gate metal layer, A field effect power semiconductor device, characterized in that a second gate metal layer for connecting the two is provided. 請求項18において、前記トレンチの底に、前記第2導電型の高濃度ゲート領域と前記トレンチの側面に設けた前記第2導電型の低濃度領域からなる1個以上の第2導電型のフォローティング領域を前記第2導電型ゲート領域の周辺に設け、前記第2導電型のフォローティング領域同士の分離と前記第2導電型のフォローティング領域と前記高濃度ゲート領域との分離をトレンチの上部に配置した高濃度の第1導電型領域を用いることを特徴とする電界効果型パワー半導体素子。   19. The follow-up of one or more second conductivity types comprising the second conductivity type high concentration gate region and the second conductivity type low concentration region provided on a side surface of the trench at the bottom of the trench. And a second conductive type following region is separated from the second conductive type following region, and the second conductive type following region and the high concentration gate region are separated from each other at the upper part of the trench. A field effect type power semiconductor device characterized by using a high-concentration first conductivity type region disposed on the substrate. 請求項17において、前記半導体基板がバンドギャップが2.0eV 以上の半導体基板であることを特徴とする電界効果型パワー半導体素子。
18. The field effect power semiconductor device according to claim 17, wherein the semiconductor substrate is a semiconductor substrate having a band gap of 2.0 eV or more.
JP2005185898A 2005-06-27 2005-06-27 Semiconductor circuit using field effect type power semiconductor element Expired - Fee Related JP4600180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185898A JP4600180B2 (en) 2005-06-27 2005-06-27 Semiconductor circuit using field effect type power semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185898A JP4600180B2 (en) 2005-06-27 2005-06-27 Semiconductor circuit using field effect type power semiconductor element

Publications (2)

Publication Number Publication Date
JP2007006658A true JP2007006658A (en) 2007-01-11
JP4600180B2 JP4600180B2 (en) 2010-12-15

Family

ID=37691692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185898A Expired - Fee Related JP4600180B2 (en) 2005-06-27 2005-06-27 Semiconductor circuit using field effect type power semiconductor element

Country Status (1)

Country Link
JP (1) JP4600180B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182884A (en) * 2007-01-23 2008-08-07 Schneider Toshiba Inverter Europe Sas Control device of electronic switch for electric power and variable speed driver having same device
JP2008198735A (en) * 2007-02-09 2008-08-28 Sanken Electric Co Ltd Composite semiconductor device including rectifier element
JP2008288802A (en) * 2007-05-16 2008-11-27 Hitachi Ltd Semiconductor circuit
JP2009219294A (en) * 2008-03-12 2009-09-24 Hitachi Ltd Power converter
JP2010528578A (en) * 2007-05-22 2010-08-19 セミサウス ラボラトリーズ, インコーポレーテッド Half-bridge circuit employing always-on switch and method for preventing unintended current in this circuit
JP2010193596A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Switching circuit and power conversion circuit
JP2010259324A (en) * 2009-04-27 2010-11-11 General Electric Co <Ge> Gate drive circuitry for non-isolated gate semiconductor devices
JP2011049741A (en) * 2009-08-26 2011-03-10 Sharp Corp Semiconductor device, and electronic apparatus
JP2011509629A (en) * 2008-01-11 2011-03-24 インターナショナル レクティフィアー コーポレイション Integrated III-nitride power conversion circuit
JP2011119237A (en) * 2009-11-09 2011-06-16 Toshiba Lighting & Technology Corp Led lighting device and lighting system
JP2011165920A (en) * 2010-02-10 2011-08-25 Toshiba Lighting & Technology Corp Led lighting device and illuminating device
JP2011188682A (en) * 2010-03-10 2011-09-22 Toshiba Corp Power converter and control method for the same
JP2011199024A (en) * 2010-03-19 2011-10-06 Toshiba Lighting & Technology Corp Led lighting device
EP2400641A2 (en) 2010-06-28 2011-12-28 Toshiba Lighting & Technology Corporation Switching power supply device, switching power supply circuit, and electrical equipment
US8354804B2 (en) 2008-03-24 2013-01-15 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment
US8441204B2 (en) 2008-03-24 2013-05-14 Toshiba Lighting & Technology Corp. Power supply device and lighting equipment provided with power supply device
US8492992B2 (en) 2009-09-18 2013-07-23 Toshiba Lighting & Technology Corporation LED lighting device and illumination apparatus
JP2013192445A (en) * 2012-03-14 2013-09-26 Samsung Electronics Co Ltd Power management chips and power management devices including the same
JP2013220016A (en) * 2012-04-05 2013-10-24 Samsung Electronics Co Ltd High side gate driver, switching chip, and power device
US8593067B2 (en) 2010-01-27 2013-11-26 Toshiba Lighting & Technology Corporation Led lighting device and illumination apparatus
WO2013182867A1 (en) * 2012-06-05 2013-12-12 Freescale Semiconductor, Inc. Method and apparatus for charging a bootstrap charge storage device
US8638050B2 (en) 2010-05-14 2014-01-28 Toshiba Lighting And Technology Corporation DC power supply unit and LED lighting apparatus
US8653743B2 (en) 2011-03-28 2014-02-18 Toshiba Lighting & Technology Corporation Switching power supply device and lighting apparatus
US8659275B2 (en) 2008-01-11 2014-02-25 International Rectifier Corporation Highly efficient III-nitride power conversion circuit
JP2014093586A (en) * 2012-11-01 2014-05-19 Rohm Co Ltd Gate drive circuit, inverter circuit, power conversion device and electric apparatus
US8742681B2 (en) 2009-11-09 2014-06-03 Toshiba Lighting & Technology Corporation LED lighting device, illuminating device and power supply therefore having a normally-on type switching element
CN104079149A (en) * 2013-03-26 2014-10-01 精工爱普生株式会社 A control circuit for a switching regulator, an integrated circuit device and an electronic device
CN104080247A (en) * 2009-11-09 2014-10-01 东芝照明技术株式会社 Integrated circuit, power supply device and illuminating device
US8970127B2 (en) 2009-08-21 2015-03-03 Toshiba Lighting & Technology Corporation Lighting circuit and illumination device
WO2015182175A1 (en) * 2014-05-28 2015-12-03 シャープ株式会社 Driver circuit
US9231487B2 (en) 2011-05-10 2016-01-05 Mitsubishi Electric Corporation DC power source device and power conversion method using a single drive power supply
US10003331B2 (en) 2014-09-19 2018-06-19 Kabushiki Kaisha Toshiba Semiconductor device including normally-off type transistors and normally-on type transistor connected series
JP2021044415A (en) * 2019-09-12 2021-03-18 矢崎総業株式会社 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104778813A (en) * 2015-03-31 2015-07-15 苏州华徕光电仪器有限公司 High-voltage induction alarm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733104A (en) * 1985-12-06 1988-03-22 General Electric Company Integrated circuit for controlling power converter by frequency modulation and pulse width modulation
JPH04308475A (en) * 1991-04-05 1992-10-30 Hitachi Ltd Inverter unit and signal level converting circuit therefor
JP2001309645A (en) * 2000-04-24 2001-11-02 Texas Instr Japan Ltd Drive-signal providing circuit
JP2001345420A (en) * 2000-05-31 2001-12-14 Toshiba Corp Semiconductor device
WO2003048790A1 (en) * 2001-12-03 2003-06-12 Sanken Electric Co., Ltd. Current detecting circuit and actuator driving apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733104A (en) * 1985-12-06 1988-03-22 General Electric Company Integrated circuit for controlling power converter by frequency modulation and pulse width modulation
JPH04308475A (en) * 1991-04-05 1992-10-30 Hitachi Ltd Inverter unit and signal level converting circuit therefor
JP2001309645A (en) * 2000-04-24 2001-11-02 Texas Instr Japan Ltd Drive-signal providing circuit
JP2001345420A (en) * 2000-05-31 2001-12-14 Toshiba Corp Semiconductor device
WO2003048790A1 (en) * 2001-12-03 2003-06-12 Sanken Electric Co., Ltd. Current detecting circuit and actuator driving apparatus

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182884A (en) * 2007-01-23 2008-08-07 Schneider Toshiba Inverter Europe Sas Control device of electronic switch for electric power and variable speed driver having same device
JP2008198735A (en) * 2007-02-09 2008-08-28 Sanken Electric Co Ltd Composite semiconductor device including rectifier element
JP4531075B2 (en) * 2007-05-16 2010-08-25 株式会社日立製作所 Semiconductor circuit
JP2008288802A (en) * 2007-05-16 2008-11-27 Hitachi Ltd Semiconductor circuit
JP2010528578A (en) * 2007-05-22 2010-08-19 セミサウス ラボラトリーズ, インコーポレーテッド Half-bridge circuit employing always-on switch and method for preventing unintended current in this circuit
EP2229696A4 (en) * 2008-01-11 2017-05-24 International Rectifier Corporation Integrated iii-nitride power converter circuit
US8659275B2 (en) 2008-01-11 2014-02-25 International Rectifier Corporation Highly efficient III-nitride power conversion circuit
US8610413B2 (en) 2008-01-11 2013-12-17 International Rectifier Corporation III-nitride power converter circuit
JP2011509629A (en) * 2008-01-11 2011-03-24 インターナショナル レクティフィアー コーポレイション Integrated III-nitride power conversion circuit
JP2009219294A (en) * 2008-03-12 2009-09-24 Hitachi Ltd Power converter
JP4528841B2 (en) * 2008-03-12 2010-08-25 日立オートモティブシステムズ株式会社 Power converter
US9226357B2 (en) 2008-03-24 2015-12-29 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment provided with power supply device
US8896225B2 (en) 2008-03-24 2014-11-25 Toshiba Lighting Technology Corporation Power supply device and lighting equipment provided with power supply device
US8884540B2 (en) 2008-03-24 2014-11-11 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment provided with power supply device
US8354804B2 (en) 2008-03-24 2013-01-15 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment
US8441204B2 (en) 2008-03-24 2013-05-14 Toshiba Lighting & Technology Corp. Power supply device and lighting equipment provided with power supply device
JP2010193596A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Switching circuit and power conversion circuit
JP2010259324A (en) * 2009-04-27 2010-11-11 General Electric Co <Ge> Gate drive circuitry for non-isolated gate semiconductor devices
US8970127B2 (en) 2009-08-21 2015-03-03 Toshiba Lighting & Technology Corporation Lighting circuit and illumination device
JP2011049741A (en) * 2009-08-26 2011-03-10 Sharp Corp Semiconductor device, and electronic apparatus
US8492992B2 (en) 2009-09-18 2013-07-23 Toshiba Lighting & Technology Corporation LED lighting device and illumination apparatus
US9392655B2 (en) 2009-11-09 2016-07-12 Toshiba Lighting & Technology Corporation LED lighting device and illuminating device
US9155143B2 (en) 2009-11-09 2015-10-06 Toshiba Lighting & Technology Corporation LED lighting device and illuminating device
JP2015053285A (en) * 2009-11-09 2015-03-19 東芝ライテック株式会社 Lighting device
CN104080247A (en) * 2009-11-09 2014-10-01 东芝照明技术株式会社 Integrated circuit, power supply device and illuminating device
US8742681B2 (en) 2009-11-09 2014-06-03 Toshiba Lighting & Technology Corporation LED lighting device, illuminating device and power supply therefore having a normally-on type switching element
JP2011119237A (en) * 2009-11-09 2011-06-16 Toshiba Lighting & Technology Corp Led lighting device and lighting system
US8593067B2 (en) 2010-01-27 2013-11-26 Toshiba Lighting & Technology Corporation Led lighting device and illumination apparatus
JP2011165920A (en) * 2010-02-10 2011-08-25 Toshiba Lighting & Technology Corp Led lighting device and illuminating device
US8422255B2 (en) 2010-03-10 2013-04-16 Kabushiki Kaisha Toshiba Power converter with oscillation control part and method for controlling the same
JP2011188682A (en) * 2010-03-10 2011-09-22 Toshiba Corp Power converter and control method for the same
JP2011199024A (en) * 2010-03-19 2011-10-06 Toshiba Lighting & Technology Corp Led lighting device
US8638050B2 (en) 2010-05-14 2014-01-28 Toshiba Lighting And Technology Corporation DC power supply unit and LED lighting apparatus
CN102299621A (en) * 2010-06-28 2011-12-28 东芝照明技术株式会社 Switching power supply device, switching power supply circuit, and electrical equipment
EP2400641A2 (en) 2010-06-28 2011-12-28 Toshiba Lighting & Technology Corporation Switching power supply device, switching power supply circuit, and electrical equipment
US9071130B2 (en) 2010-06-28 2015-06-30 Toshiba Lighting & Technology Corporation Switching power supply device, switching power supply circuit, and electrical equipment
US8653743B2 (en) 2011-03-28 2014-02-18 Toshiba Lighting & Technology Corporation Switching power supply device and lighting apparatus
US9564822B2 (en) 2011-05-10 2017-02-07 Mitsubishi Electric Corporation DC power supply device and power conversion method for converting an AC power supply into a DC power supply
US9231487B2 (en) 2011-05-10 2016-01-05 Mitsubishi Electric Corporation DC power source device and power conversion method using a single drive power supply
JP2013192445A (en) * 2012-03-14 2013-09-26 Samsung Electronics Co Ltd Power management chips and power management devices including the same
JP2013220016A (en) * 2012-04-05 2013-10-24 Samsung Electronics Co Ltd High side gate driver, switching chip, and power device
WO2013182867A1 (en) * 2012-06-05 2013-12-12 Freescale Semiconductor, Inc. Method and apparatus for charging a bootstrap charge storage device
US9407192B2 (en) 2012-06-05 2016-08-02 Freescale Semiconductor, Inc. Method and apparatus for charging a bootstrap charge storage device
JP2014093586A (en) * 2012-11-01 2014-05-19 Rohm Co Ltd Gate drive circuit, inverter circuit, power conversion device and electric apparatus
JP2014192978A (en) * 2013-03-26 2014-10-06 Seiko Epson Corp Control circuit of switching regulator, integrated circuit device, switching regulator, and electronic apparatus
US9621035B2 (en) 2013-03-26 2017-04-11 Seiko Epson Corporation Control circuit for switching regulator, integrated circuit device, switching regulator, and electronic device
CN104079149A (en) * 2013-03-26 2014-10-01 精工爱普生株式会社 A control circuit for a switching regulator, an integrated circuit device and an electronic device
CN106464247A (en) * 2014-05-28 2017-02-22 夏普株式会社 Driver circuit
JPWO2015182175A1 (en) * 2014-05-28 2017-04-20 シャープ株式会社 Driver circuit
WO2015182175A1 (en) * 2014-05-28 2015-12-03 シャープ株式会社 Driver circuit
CN106464247B (en) * 2014-05-28 2019-07-23 夏普株式会社 Driving circuit
US10003331B2 (en) 2014-09-19 2018-06-19 Kabushiki Kaisha Toshiba Semiconductor device including normally-off type transistors and normally-on type transistor connected series
JP2021044415A (en) * 2019-09-12 2021-03-18 矢崎総業株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP4600180B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4600180B2 (en) Semiconductor circuit using field effect type power semiconductor element
US9496364B2 (en) Field effect semiconductor component and methods for operating and producing it
CN101978589B (en) Bridge circuits and their components
US7782099B2 (en) Switching circuit having low threshold voltage
TWI362169B (en)
US20080191679A1 (en) High-Frequency Buck Converter that Includes a Cascode MESFET-MOSFET Power Switch
US20080186004A1 (en) High-Frequency Power MESFET Boost Switching Power Supply
KR101438283B1 (en) Semiconductor switch and power conversion device
EP0650111A2 (en) Off-line bootstrap startup circuit
US9705489B2 (en) Cascode transistor circuit
US20110305054A1 (en) Bi-directional switch, alternating-current two-wire switch, switching power source circuit, and method of driving bi-directional switch
US9673319B2 (en) Power semiconductor transistor with improved gate charge
EP3605810B1 (en) System and method for a gan-based start-up circuit
US20070131938A1 (en) Merged and Isolated Power MESFET Devices
JP2007215389A (en) Power semiconductor element and semiconductor circuit using same
TW201042754A (en) A vertical DMOS device with an integrated low power leaker device and method of making thereof
JP2008294437A (en) Gate drive for wide bandgap semiconductor device
US4908551A (en) DC/AC bridge circuit
TWI658568B (en) High-voltage semiconductor device and synchronous-rectification controller
TW202015322A (en) Buck converter circuit and buck converting method
KR20050107460A (en) On chip power supply
US10340252B2 (en) High voltage device with multi-electrode control
CN108305872B (en) High-voltage semiconductor element and synchronous rectification controller
CN111969050A (en) Semiconductor device and method for driving the same
US11489521B2 (en) Power transistor module and controlling method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees