JP2007005546A - Ultrasonic flip-chip connector - Google Patents

Ultrasonic flip-chip connector Download PDF

Info

Publication number
JP2007005546A
JP2007005546A JP2005183503A JP2005183503A JP2007005546A JP 2007005546 A JP2007005546 A JP 2007005546A JP 2005183503 A JP2005183503 A JP 2005183503A JP 2005183503 A JP2005183503 A JP 2005183503A JP 2007005546 A JP2007005546 A JP 2007005546A
Authority
JP
Japan
Prior art keywords
ultrasonic
chip
horn
ultrasonic horn
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005183503A
Other languages
Japanese (ja)
Inventor
Naoki Sakota
直樹 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005183503A priority Critical patent/JP2007005546A/en
Publication of JP2007005546A publication Critical patent/JP2007005546A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flip-chip connector capable of surely connecting a semiconductor chip and a circuit board in a flip chip manner without damaging the semiconductor chip. <P>SOLUTION: An ultrasonic horn 22 is resonated in the ultrasonic vibrating direction A by the ultrasonic vibrations of an ultrasonic vibrator 25. A chip holder 27 is fitted to the ultrasonic horn 22. The chip holder 27 holds the semiconductor chip 23 in parallel with the ultrasonic vibrating direction A. A board holder 28 holds the circuit board 24 in parallel with the semiconductor chip 23. A pushing means 29 pushes the semiconductor chip 23 against the circuit board 24. The section of the web place of the ultrasonic horn 22 is supported by a supporting means 26 so as to be able to be vibrated in the ultrasonic vibrating direction A by such a connector 21. The ultrasonic vibrator 25 is arranged at the knot place of the ultrasonic horn 22, and both ends 25a and 25b in the ultrasonic vibrating direction A are mounted on the ultrasonic horn 22 under the state in which both ends are brought into contact with the ultrasonic horn 22. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体チップと回路基板とを超音波振動を利用してフリップチップ接合する超音波フリップチップ接合装置に関する。   The present invention relates to an ultrasonic flip chip bonding apparatus that performs flip chip bonding of a semiconductor chip and a circuit board using ultrasonic vibration.

半導体チップと回路基板とを接合する接合方式には、ワイヤボンディング方式およびフリップチップ接合方式がある。ワイヤボンディング方式は、半導体チップの電極と回路基板の電極とを、ワイヤを介して接合する方式である。フリップチップ接合方式は、半導体チップの電極と回路基板の電極とを、バンプを介して接合する方式である。   As a bonding method for bonding the semiconductor chip and the circuit board, there are a wire bonding method and a flip chip bonding method. The wire bonding method is a method in which an electrode of a semiconductor chip and an electrode of a circuit board are bonded through a wire. The flip chip bonding method is a method in which an electrode of a semiconductor chip and an electrode of a circuit board are bonded through bumps.

フリップチップ接合方式では、ワイヤボンディング方式に比べて、実装面積を小さくすることができ、また配線長を短くすることもできる。さらにフリップチップ接合方式では、半導体チップの電極群と回路基板の電極群とを一括して接合するので、このフリップチップ接合方式は、ワイヤボンディング方式に比べて生産性の点で優れている。このようなフリップチップ接合方式は、高密度実装、および高速半導体チップの実装に適している。   The flip chip bonding method can reduce the mounting area and the wiring length compared to the wire bonding method. Further, in the flip chip bonding method, the electrode group of the semiconductor chip and the electrode group of the circuit board are bonded together, and this flip chip bonding method is superior in productivity compared to the wire bonding method. Such a flip-chip bonding method is suitable for high-density mounting and high-speed semiconductor chip mounting.

フリップチップ接合方式には、熱圧着接合方式および超音波接合方式がある。特に、超音波接合方式では、150℃よりも低い温度での接合が可能であり、接合に要する接合時間が1秒前後と短い。このような超音波接合方式は、接合生産性の観点から、昨今、注目を浴びている。フリップチップ接合方式の中の超音波接合方式は、超音波フリップチップ接合方式とも呼ばれる。   The flip chip bonding method includes a thermocompression bonding method and an ultrasonic bonding method. In particular, in the ultrasonic bonding method, bonding at a temperature lower than 150 ° C. is possible, and the bonding time required for bonding is as short as about 1 second. Such an ultrasonic bonding method has recently attracted attention from the viewpoint of bonding productivity. The ultrasonic bonding method in the flip chip bonding method is also called an ultrasonic flip chip bonding method.

近年、超音波フリップチップ接合方式を実現するための超音波フリップチップ接合装置が、種々、開発されている。   In recent years, various ultrasonic flip chip bonding apparatuses for realizing an ultrasonic flip chip bonding method have been developed.

第1の従来技術は、特許文献1に開示される。この従来技術の超音波接合装置では、超音波ホーンは、超音波の1波長分の長さを有する。この超音波ホーンの中央には、被接合部材と係合する係合チップが設けられる。超音波ホーンの両端には、超音波ホーンと同軸上に、ブースタがそれぞれ連結される。各ブースタは、超音波の半波長の長さを有し、その両端が共振の腹となり、中央が共振の節となる。各ブースタの中央部は、一対の支持部材に、直接機械的に強靭にそれぞれクランプされている。一方のブースタには、このブースタと同軸上に、超音波振動子が連結される。加圧手段は、被接合部材を載置した受台と、各支持部材とを相対的に移動させて、前記係合用チップが被接合部材を加圧するように構成される。   The first prior art is disclosed in Patent Document 1. In this conventional ultrasonic bonding apparatus, the ultrasonic horn has a length corresponding to one wavelength of ultrasonic waves. At the center of the ultrasonic horn, an engagement tip that engages with the member to be joined is provided. A booster is connected to both ends of the ultrasonic horn coaxially with the ultrasonic horn. Each booster has a half-wavelength of ultrasonic waves, and both ends thereof are antinodes of resonance and the center is a node of resonance. The central part of each booster is directly and mechanically clamped by a pair of support members. One booster is connected to an ultrasonic transducer coaxially with the booster. The pressurizing means is configured such that the engaging tip pressurizes the member to be joined by relatively moving the cradle on which the member to be joined is placed and each support member.

図8は、第2の従来技術の超音波接合装置1の構成を簡略化して示す正面図である。第2の従来技術は、特許文献2に開示される。この従来技術の超音波接合装置1では、超音波ホーン2は、超音波の1波長分の長さに予め設定され、その両端および中央が共振の腹となる。超音波ホーン2の中央部には、接合作用部3が設けられる。超音波ホーン2の一端部には、同軸上に超音波振動子4が連結される。超音波振動子4は、超音波ホーン2を横振動させる。超音波ホーンの節となる2つの部分は、支持部材5a,5bによってそれぞれ固定される。加圧手段6は、受台7に載置されたプリント基板8と、接合作用部3によって保持されるベアチップ9とを接触させ、両者を加圧するように構成される。   FIG. 8 is a front view showing a simplified configuration of the ultrasonic bonding apparatus 1 of the second prior art. The second prior art is disclosed in Patent Document 2. In this conventional ultrasonic bonding apparatus 1, the ultrasonic horn 2 is preset to a length corresponding to one wavelength of the ultrasonic wave, and both ends and the center thereof are antinodes of resonance. In the central part of the ultrasonic horn 2, a bonding action part 3 is provided. An ultrasonic transducer 4 is connected to one end of the ultrasonic horn 2 on the same axis. The ultrasonic transducer 4 causes the ultrasonic horn 2 to vibrate laterally. The two portions that become the nodes of the ultrasonic horn are fixed by the support members 5a and 5b, respectively. The pressurizing means 6 is configured to bring the printed circuit board 8 placed on the cradle 7 into contact with the bare chip 9 held by the bonding operation section 3 and pressurize both.

特許第2583398号公報Japanese Patent No. 2583398 特開2004−330228号公報JP 2004-330228 A

前記第1の従来技術では、超音波振動子が超音波ホーンの外部に設けられるので、超音波振動子は、超音波振動方向の片側から支持される。したがって超音波振動のときに超音波振動子が変位してしまうので、共振の安定性が低く、被接合部材の安定した接合が得にくいという問題がある。   In the first prior art, since the ultrasonic transducer is provided outside the ultrasonic horn, the ultrasonic transducer is supported from one side in the ultrasonic vibration direction. Therefore, since the ultrasonic vibrator is displaced during ultrasonic vibration, there is a problem that the stability of resonance is low and it is difficult to obtain stable joining of the members to be joined.

また前記第1の従来技術では、各ブースタは、共振の節となる中央部で、各支持部材にそれぞれ固定されるので、超音波振動方向に垂直な方向の振動が発生する。したがって被接合部材が破損しやすいという問題がある。   In the first prior art, each booster is fixed to each support member at a central portion serving as a resonance node, so that vibration in a direction perpendicular to the ultrasonic vibration direction is generated. Therefore, there is a problem that the member to be joined is easily damaged.

詳細に述べると、各ブースタの共振の節となる部分は、振動しないけれども、圧力が最も変化する。各ブースタは、剛性の高い材質から成るので、非圧縮性を有し、圧力の変化に対して体積の変化がごく僅かである。このような各ブースタでは、共振の節において、圧力変化が、超音波振動方向に垂直な断面の面積の変化となって現れる。したがって各ブースタを共振の節で各支持部材に固定すると、超音波振動方向に垂直な方向の振動が発生する。これによって被接合部材が破損しやすい。   More specifically, the part that becomes the resonance node of each booster does not vibrate, but the pressure changes most. Since each booster is made of a highly rigid material, it has incompressibility and its volume changes with respect to changes in pressure are negligible. In each of these boosters, the pressure change appears as a change in the cross-sectional area perpendicular to the ultrasonic vibration direction at the resonance node. Therefore, when each booster is fixed to each support member at a resonance node, vibration in a direction perpendicular to the ultrasonic vibration direction is generated. As a result, the member to be joined is easily damaged.

前記第2の従来技術では、超音波振動子4が超音波ホーン2の外部に設けられるので、超音波振動子4は、超音波振動方向の片側から支持される。したがって第1の従来技術と類似の問題、すなわちプリント基板8とベアチップ9との安定した接合が得にくいという問題がある。   In the second prior art, since the ultrasonic transducer 4 is provided outside the ultrasonic horn 2, the ultrasonic transducer 4 is supported from one side in the ultrasonic vibration direction. Therefore, there is a problem similar to that of the first prior art, that is, it is difficult to obtain a stable joint between the printed circuit board 8 and the bare chip 9.

また前記第2の従来技術では、超音波ホーン2は、共振の節で、各支持部材5a,5bによって固定される。したがって第1の従来技術と類似の問題、すなわちベアチップ9が破損しやすいという問題がある。   In the second prior art, the ultrasonic horn 2 is fixed by the support members 5a and 5b at the node of resonance. Therefore, there is a problem similar to the first prior art, that is, there is a problem that the bare chip 9 is easily damaged.

詳細に述べると、超音波ホーン2の共振の節となる部分は、振動しないけれども、圧力が最も変化する。超音波ホーン2は、剛性の高い材質から成るので、非圧縮性を有し、圧力の変化に対して体積の変化がごく僅かである。このような超音波ホーン2では、共振の節において、圧力変化が、超音波振動方向に垂直な断面の面積の変化となって現れる。したがって超音波ホーン2を共振の節で各支持部材5a,5bに固定すると、超音波振動方向に垂直な方向の振動が発生する。これによってベアチップ9が破損しやすい。   More specifically, although the portion that becomes the resonance node of the ultrasonic horn 2 does not vibrate, the pressure changes most. Since the ultrasonic horn 2 is made of a highly rigid material, the ultrasonic horn 2 has incompressibility, and its volume changes with respect to changes in pressure are negligible. In such an ultrasonic horn 2, the pressure change appears as a change in the area of the cross section perpendicular to the ultrasonic vibration direction at the node of resonance. Therefore, when the ultrasonic horn 2 is fixed to the support members 5a and 5b at the resonance node, vibration in a direction perpendicular to the ultrasonic vibration direction is generated. As a result, the bare chip 9 is easily damaged.

したがって本発明の目的は、半導体チップを破損することなく、半導体チップと回路基板とを確実にフリップチップ接合することができ、これによって歩留まりを向上させることができる超音波フリップチップ接合装置を提供することである。   Accordingly, an object of the present invention is to provide an ultrasonic flip chip bonding apparatus that can reliably perform flip chip bonding between a semiconductor chip and a circuit board without damaging the semiconductor chip, thereby improving yield. That is.

また前記第1および第2の従来技術では、超音波振動子4が超音波ホーン2の外部に設けられるので、超音波振動子4は、超音波振動方向の片側から支持される。したがって超音波振動子4の超音波振動が片側だけ有効となるので、超音波振動の伝達効率が悪いという問題がある。   In the first and second prior arts, since the ultrasonic transducer 4 is provided outside the ultrasonic horn 2, the ultrasonic transducer 4 is supported from one side in the ultrasonic vibration direction. Accordingly, since the ultrasonic vibration of the ultrasonic transducer 4 is effective only on one side, there is a problem that the transmission efficiency of the ultrasonic vibration is poor.

したがって本発明の他の目的は、超音波振動の伝達効率を向上させることができる超音波フリップチップ接合装置を提供することである。   Accordingly, another object of the present invention is to provide an ultrasonic flip chip bonding apparatus capable of improving the transmission efficiency of ultrasonic vibration.

本発明は、半導体チップと回路基板とを超音波振動を利用してフリップチップ接合する超音波フリップチップ接合装置であって、
超音波振動する超音波振動子と、
超音波振動子による超音波振動によって超音波振動方向に共振する超音波ホーンと、
超音波ホーンを支持する支持手段と、
超音波ホーンに設けられ、半導体チップを、超音波振動方向に平行に保持するチップ保持体と、
回路基板を、チップ保持体によって保持される半導体チップに対して平行に保持する基板保持体と、
チップ保持体によって保持される半導体チップを、基板保持体によって保持される回路基板に押圧する押圧手段とを含み、
支持手段は、超音波ホーンにおける共振の腹位置の部分が超音波振動方向に振動可能となるように、超音波ホーンの前記腹位置の部分を支持し、
超音波振動子は、超音波ホーンにおける共振の節位置に配置され、超音波振動方向の両端部が超音波ホーンに接触した状態で超音波ホーンに設けられることを特徴とする超音波フリップチップ接合装置である。
The present invention is an ultrasonic flip chip bonding apparatus for flip chip bonding a semiconductor chip and a circuit board using ultrasonic vibration,
An ultrasonic vibrator that vibrates ultrasonically;
An ultrasonic horn that resonates in the direction of ultrasonic vibration by ultrasonic vibration by an ultrasonic vibrator;
Support means for supporting the ultrasonic horn;
A chip holder that is provided in the ultrasonic horn and holds the semiconductor chip in parallel with the ultrasonic vibration direction;
A substrate holder for holding the circuit board in parallel with the semiconductor chip held by the chip holder;
Pressing means for pressing the semiconductor chip held by the chip holder against the circuit board held by the substrate holder,
The support means supports the antinode portion of the ultrasonic horn so that the antinode portion of the ultrasonic horn can vibrate in the ultrasonic vibration direction.
The ultrasonic transducer is arranged at a resonance node position in the ultrasonic horn, and is provided in the ultrasonic horn with both ends in the ultrasonic vibration direction being in contact with the ultrasonic horn. Device.

また本発明は、超音波ホーンにおける共振の節位置が複数、存在する場合、
超音波振動子は、複数の節位置のうちチップ保持体から最も離れた節位置に配置されることを特徴とする。
In the present invention, when there are a plurality of resonance node positions in the ultrasonic horn,
The ultrasonic transducer is arranged at a node position farthest from the chip holder among the plurality of node positions.

また本発明は、支持手段は、超音波ホーンの超音波振動方向の両端部を支持することを特徴とする。   Further, the invention is characterized in that the supporting means supports both ends of the ultrasonic horn in the ultrasonic vibration direction.

また本発明は、超音波ホーンの慣性質量は、装置全体の慣性質量の1.0%以下に選ばれることを特徴とする。   The present invention is characterized in that the inertial mass of the ultrasonic horn is selected to be 1.0% or less of the inertial mass of the entire apparatus.

また本発明は、支持手段は、
超音波ホーンの前記腹位置の部分に連結されて半導体チップの押圧方向に延び、超音波振動方向に可撓性を有する支持部材と、
支持部材の超音波ホーンに連結される側とは反対側の端部に連結されるホルダとを含み、
基板保持体は、支持部材の超音波ホーンに連結される側とは反対側の端部よりも、半導体チップの押圧方向とは反対方向に退避した位置で、回路基板を保持することを特徴とする。
In the present invention, the supporting means is
A support member connected to the antinode portion of the ultrasonic horn and extending in the pressing direction of the semiconductor chip, and having flexibility in the ultrasonic vibration direction;
A holder connected to the end of the support member opposite to the side connected to the ultrasonic horn,
The substrate holder holds the circuit board at a position retracted in a direction opposite to the pressing direction of the semiconductor chip from an end of the support member opposite to the side connected to the ultrasonic horn. To do.

また本発明は、半導体チップと回路基板とを超音波振動を利用してフリップチップ接合する超音波フリップチップ接合装置であって、
超音波振動する超音波振動子と、
超音波振動子による超音波振動によって超音波振動方向に共振する超音波ホーンと、
超音波ホーンに設けられ、半導体チップを、超音波振動方向に平行に保持するチップ保持体と、
回路基板を、チップ保持体によって保持される半導体チップに対して平行に保持する基板保持体と、
チップ保持体によって保持される半導体チップを、基板保持体によって保持される回路基板に押圧する押圧手段とを含み、
超音波振動子は、超音波ホーンにおける共振の節位置に配置され、超音波振動方向の両端部が超音波ホーンに接触した状態で超音波ホーンに設けられることを特徴とする超音波フリップチップ接合装置である。
Further, the present invention is an ultrasonic flip chip bonding apparatus for flip chip bonding a semiconductor chip and a circuit board using ultrasonic vibration,
An ultrasonic vibrator that vibrates ultrasonically;
An ultrasonic horn that resonates in the direction of ultrasonic vibration by ultrasonic vibration by an ultrasonic vibrator;
A chip holder that is provided in the ultrasonic horn and holds the semiconductor chip in parallel with the ultrasonic vibration direction;
A substrate holder for holding the circuit board in parallel with the semiconductor chip held by the chip holder;
Pressing means for pressing the semiconductor chip held by the chip holder against the circuit board held by the substrate holder,
The ultrasonic transducer is arranged at a resonance node position in the ultrasonic horn, and is provided in the ultrasonic horn with both ends in the ultrasonic vibration direction being in contact with the ultrasonic horn. Device.

本発明によれば、超音波振動子が超音波振動する。この超音波振動子の超音波振動によって、超音波ホーンが超音波振動方向に共振する。超音波ホーンには、チップ保持体が設けられる。このチップ保持体は、超音波ホーンとともに共振する。   According to the present invention, the ultrasonic transducer vibrates ultrasonically. The ultrasonic horn resonates in the ultrasonic vibration direction by the ultrasonic vibration of the ultrasonic vibrator. A chip holder is provided in the ultrasonic horn. This chip holder resonates with the ultrasonic horn.

チップ保持体は、半導体チップを、超音波振動方向に平行に保持する。基板保持体は、回路基板を、チップ保持体によって保持される半導体チップに対して平行に保持する。押圧手段は、チップ保持体によって保持される半導体チップを、基板保持体によって保持される回路基板に押圧する。   The chip holder holds the semiconductor chip in parallel with the ultrasonic vibration direction. The substrate holder holds the circuit board in parallel with the semiconductor chip held by the chip holder. The pressing means presses the semiconductor chip held by the chip holder against the circuit board held by the substrate holder.

したがって半導体チップを回路基板に押圧した押圧状態で、前記半導体チップをこの半導体チップに対して平行な方向に振動させることができる。これによって半導体チップと回路基板とをフリップチップ接合することができる。   Therefore, the semiconductor chip can be vibrated in a direction parallel to the semiconductor chip in a pressed state in which the semiconductor chip is pressed against the circuit board. Thereby, the semiconductor chip and the circuit board can be flip-chip bonded.

超音波ホーンの腹位置の部分は、残余の部分に比べて、超音波振動方向に垂直な方向への振動が小さい。これを考慮して、前記腹位置の部分を支持手段によって支持する。これによって前記押圧状態で半導体チップがこの半導体チップに対して垂直な方向に振動してしまうという不具合を可及的に抑制することができる。したがって半導体チップの破損を防ぐことができる。   The antinode portion of the ultrasonic horn is less vibrated in the direction perpendicular to the ultrasonic vibration direction than the remaining portion. Considering this, the portion of the abdominal position is supported by the support means. As a result, the problem that the semiconductor chip vibrates in a direction perpendicular to the semiconductor chip in the pressed state can be suppressed as much as possible. Therefore, damage to the semiconductor chip can be prevented.

超音波ホーンの腹位置の部分は、超音波振動方向に振動する。これを考慮して、前記腹位置の部分が超音波振動方向に振動可能となるように、前記腹位置の部分を支持手段によって支持する。これによって超音波ホーンを支持する支持手段が超音波ホーンの共振に与える影響を抑えることができる。   The antinode portion of the ultrasonic horn vibrates in the ultrasonic vibration direction. Considering this, the antinode portion is supported by the support means so that the antinode portion can vibrate in the ultrasonic vibration direction. As a result, the influence of the support means for supporting the ultrasonic horn on the resonance of the ultrasonic horn can be suppressed.

超音波振動子は、超音波ホーンにおける共振の節位置に配置される。超音波ホーンの節位置の部分での微小な振動は、超音波ホーンの腹位置の部分で大きな振動になる。したがって超音波振動子の超音波振動を有効に利用することができ、超音波振動の伝達効率を向上させることができる。   The ultrasonic transducer is disposed at a resonance node position in the ultrasonic horn. The minute vibration at the node position of the ultrasonic horn becomes large vibration at the antinode position of the ultrasonic horn. Therefore, the ultrasonic vibration of the ultrasonic vibrator can be used effectively, and the transmission efficiency of the ultrasonic vibration can be improved.

しかも超音波振動子は、超音波振動方向の両端部が超音波ホーンに接触した状態で超音波ホーンに設けられる。このように超音波振動子が超音波振動方向の両側から支持されるので、超音波振動のときに超音波振動子が変位してしまうという不具合が防がれる。これによって共振の安定性を向上させることができ、半導体チップと回路基板とを確実にフリップチップ接合することができる。また前記不具合が防がれるので、超音波振動子の超音波振動をさらに有効に利用することができ、超音波振動の伝達効率をさらに向上させることができる。   Moreover, the ultrasonic vibrator is provided in the ultrasonic horn in a state where both ends in the ultrasonic vibration direction are in contact with the ultrasonic horn. As described above, since the ultrasonic vibrator is supported from both sides in the ultrasonic vibration direction, the problem that the ultrasonic vibrator is displaced during ultrasonic vibration can be prevented. Thereby, the stability of resonance can be improved, and the semiconductor chip and the circuit board can be reliably flip-chip bonded. In addition, since the above-mentioned problem is prevented, the ultrasonic vibration of the ultrasonic vibrator can be used more effectively, and the transmission efficiency of the ultrasonic vibration can be further improved.

このような本発明では、半導体チップを破損することなく、半導体チップと回路基板とを確実にフリップチップ接合することができる。したがって歩留まりを向上させ、生産コストを低減することができる。   In the present invention, the semiconductor chip and the circuit board can be reliably flip-chip bonded without damaging the semiconductor chip. Therefore, the yield can be improved and the production cost can be reduced.

また本発明によれば、超音波ホーンにおける共振の節位置が複数、存在する場合、複数の節位置のうちチップ保持体から最も離れた節位置に、超音波振動子が配置される。したがって超音波振動子がチップ保持体から受ける影響を抑えることができる。たとえば、チップ保持体が加熱される場合、超音波振動子までも加熱されてしまうという不具合が防がれる。前記不具合が防がれるので、耐熱性の低い圧電素子でも超音波振動子として用いることができる。   Further, according to the present invention, when there are a plurality of resonance node positions in the ultrasonic horn, the ultrasonic transducer is arranged at a node position farthest from the chip holder among the plurality of node positions. Therefore, it is possible to suppress the influence of the ultrasonic vibrator from the chip holder. For example, when the chip holder is heated, the problem that the ultrasonic vibrator is also heated is prevented. Since the above problems are prevented, a piezoelectric element having low heat resistance can be used as an ultrasonic vibrator.

また本発明によれば、超音波ホーンの超音波振動方向の両端部は、共振の腹位置の部分であり、支持手段によって支持するのは、前記超音波ホーンの超音波振動方向の両端部であるので、ボルト部材を用いた締結などによって、超音波ホーンと支持手段とを容易に連結することができる。   Further, according to the present invention, both ends of the ultrasonic horn in the ultrasonic vibration direction are portions at the antinode position of resonance, and the support means supports the both ends of the ultrasonic horn in the ultrasonic vibration direction. Therefore, the ultrasonic horn and the support means can be easily connected by fastening using a bolt member.

また本発明によれば、超音波ホーンの慣性質量は、装置全体の慣性質量の1.0%以下に選ばれる。超音波ホーンは、共振しているとき、重心が不変であるけれども、前記腹位置の部分は、超音波振動方向に振動する。したがって支持手段には、振動が伝達されることになる。この振動によって、装置全体のうち超音波ホーンを除く残余の部分が振動することがある。超音波ホーンの慣性質量が装置全体の慣性質量の1.0%を超えると、前記残余の部分が超音波ホーンの共振に伴って振動してしまう。超音波ホーンの慣性質量を装置全体の慣性質量の1.0%以下にすると、前記残余の部分が超音波ホーンの共振に伴って振動してしまうという不具合が防がれる。   According to the present invention, the inertial mass of the ultrasonic horn is selected to be 1.0% or less of the inertial mass of the entire apparatus. When the ultrasonic horn is resonating, the center of gravity remains unchanged, but the antinode portion vibrates in the ultrasonic vibration direction. Therefore, vibration is transmitted to the support means. Due to this vibration, the remaining part of the entire apparatus except the ultrasonic horn may vibrate. When the inertial mass of the ultrasonic horn exceeds 1.0% of the inertial mass of the entire apparatus, the remaining portion vibrates with the resonance of the ultrasonic horn. When the inertial mass of the ultrasonic horn is set to 1.0% or less of the inertial mass of the entire apparatus, a problem that the remaining portion vibrates with the resonance of the ultrasonic horn is prevented.

また本発明によれば、支持部材は、超音波ホーンの前記腹位置の部分に連結されて半導体チップの押圧方向に延びる。この支持部材の超音波ホーンに連結される側とは反対側の端部には、ホルダが連結される。基板保持体は、支持部材の超音波ホーンに連結される側とは反対側の端部よりも、半導体チップの押圧方向とは反対方向に退避した位置で、回路基板を保持する。したがって装置全体を大形化することなく、基板保持体を大きくして基板保持体の慣性質量を大きくすることができる。   According to the invention, the support member is connected to the antinode portion of the ultrasonic horn and extends in the pressing direction of the semiconductor chip. A holder is connected to the end of the support member opposite to the side connected to the ultrasonic horn. The substrate holder holds the circuit board at a position retracted in the direction opposite to the pressing direction of the semiconductor chip from the end of the support member opposite to the side connected to the ultrasonic horn. Accordingly, the substrate holding body can be enlarged and the inertial mass of the substrate holding body can be increased without increasing the size of the entire apparatus.

このように基板保持体の慣性質量を大きくすることによって、超音波フリップチップ接合時に発生する基板保持体の振動を抑えることができる。これによって半導体チップと回路基板との相対振動の低下を抑え、半導体チップと回路基板とを確実にフリップチップ接合することができる。したがって高い信頼性を有するモジュールを得ることができ、歩留まりを向上させることができる。   By increasing the inertial mass of the substrate holder in this way, it is possible to suppress the vibration of the substrate holder that occurs during ultrasonic flip chip bonding. As a result, a decrease in relative vibration between the semiconductor chip and the circuit board can be suppressed, and the semiconductor chip and the circuit board can be reliably flip-chip bonded. Therefore, a module having high reliability can be obtained, and the yield can be improved.

本発明によれば、超音波振動子が超音波振動する。この超音波振動子の超音波振動によって、超音波ホーンが超音波振動方向に共振する。超音波ホーンには、チップ保持体が設けられる。このチップ保持体は、超音波ホーンとともに共振する。   According to the present invention, the ultrasonic transducer vibrates ultrasonically. The ultrasonic horn resonates in the ultrasonic vibration direction by the ultrasonic vibration of the ultrasonic vibrator. A chip holder is provided in the ultrasonic horn. This chip holder resonates with the ultrasonic horn.

チップ保持体は、半導体チップを、超音波振動方向に平行に保持する。基板保持体は、回路基板を、チップ保持体によって保持される半導体チップに対して平行に保持する。押圧手段は、チップ保持体によって保持される半導体チップを、基板保持体によって保持される回路基板に押圧する。   The chip holder holds the semiconductor chip in parallel with the ultrasonic vibration direction. The substrate holder holds the circuit board in parallel with the semiconductor chip held by the chip holder. The pressing means presses the semiconductor chip held by the chip holder against the circuit board held by the substrate holder.

したがって半導体チップを回路基板に押圧した押圧状態で、前記半導体チップをこの半導体チップに対して平行な方向に振動させることができる。これによって半導体チップと回路基板とをフリップチップ接合することができる。   Therefore, the semiconductor chip can be vibrated in a direction parallel to the semiconductor chip in a pressed state in which the semiconductor chip is pressed against the circuit board. Thereby, the semiconductor chip and the circuit board can be flip-chip bonded.

超音波振動子は、超音波ホーンにおける共振の節位置に配置される。超音波ホーンの節位置の部分での微小な振動は、超音波ホーンの腹位置の部分で大きな振動になる。したがって超音波振動子の超音波振動を有効に利用することができ、超音波振動の伝達効率を向上させることができる。   The ultrasonic transducer is disposed at a resonance node position in the ultrasonic horn. The minute vibration at the node position of the ultrasonic horn becomes large vibration at the antinode position of the ultrasonic horn. Therefore, the ultrasonic vibration of the ultrasonic vibrator can be used effectively, and the transmission efficiency of the ultrasonic vibration can be improved.

しかも超音波振動子は、超音波振動方向の両端部が超音波ホーンに接触した状態で超音波ホーンに設けられる。このように超音波振動子が超音波振動方向の両側から支持されるので、超音波振動のときに超音波振動子が変位してしまうという不具合が防がれる。これによって、超音波振動子の超音波振動をさらに有効に利用することができ、超音波振動の伝達効率をさらに向上させることができる。また前記不具合が防がれるので、共振の安定性を向上させることができ、半導体チップと回路基板とを確実にフリップチップ接合することができる。   Moreover, the ultrasonic vibrator is provided in the ultrasonic horn in a state where both ends in the ultrasonic vibration direction are in contact with the ultrasonic horn. As described above, since the ultrasonic vibrator is supported from both sides in the ultrasonic vibration direction, the problem that the ultrasonic vibrator is displaced during ultrasonic vibration can be prevented. Accordingly, the ultrasonic vibration of the ultrasonic vibrator can be used more effectively, and the transmission efficiency of the ultrasonic vibration can be further improved. In addition, since the above-mentioned problems are prevented, the stability of resonance can be improved, and the semiconductor chip and the circuit board can be reliably flip-chip bonded.

図1は、本発明の実施の一形態の超音波フリップチップ接合装置21の構成を説明するための図であり、図1(1)は超音波ホーン22付近の正面図であり、図1(2)は超音波ホーン22に生じる定常波の波形を示す図である。本実施の形態の超音波フリップチップ接合装置(以下「接合装置」という)21は、半導体チップ23と回路基板24とをフリップチップ接合するために用いられる。   FIG. 1 is a diagram for explaining the configuration of an ultrasonic flip-chip bonding apparatus 21 according to an embodiment of the present invention. FIG. 1 (1) is a front view of the vicinity of an ultrasonic horn 22, and FIG. 2) is a diagram showing a waveform of a standing wave generated in the ultrasonic horn 22. FIG. An ultrasonic flip chip bonding apparatus (hereinafter referred to as “bonding apparatus”) 21 according to the present embodiment is used for flip chip bonding of a semiconductor chip 23 and a circuit board 24.

半導体チップ23は、たとえばシリコン基板に微細な電子回路パターンが形成されて構成される。この半導体チップ23の一表面には、複数の電極が形成される。回路基板24は、たとえば有機基板に配線パターンが形成されて構成される。この回路基板24の一表面には、複数の電極が形成される。半導体チップ23の各電極には、バンプがそれぞれ設けられる。バンプは、たとえばAuボールバンプである。Auボールバンプの径は、たとえば60μmである。フリップチップ接合では、半導体チップ23の各電極と回路基板24の各電極とが、各バンプを介してそれぞれ接合される。   The semiconductor chip 23 is configured, for example, by forming a fine electronic circuit pattern on a silicon substrate. A plurality of electrodes are formed on one surface of the semiconductor chip 23. The circuit board 24 is configured, for example, by forming a wiring pattern on an organic substrate. A plurality of electrodes are formed on one surface of the circuit board 24. Each electrode of the semiconductor chip 23 is provided with a bump. The bump is, for example, an Au ball bump. The diameter of the Au ball bump is, for example, 60 μm. In flip-chip bonding, each electrode of the semiconductor chip 23 and each electrode of the circuit board 24 are bonded via bumps.

本実施の形態の接合装置21は、半導体チップ23と回路基板24とをフリップチップ接合するにあたって、超音波振動を利用する。この接合装置21は、超音波振動する超音波振動子25と、超音波振動子25による超音波振動によって超音波振動方向Aに共振する超音波ホーン22と、超音波ホーン22を支持する支持手段26と、超音波ホーン22に設けられ、半導体チップ23を保持するチップ保持体27と、回路基板24を保持する基板保持体28と、チップ保持体27によって保持される半導体チップ23を、基板保持体28によって保持される回路基板24に押圧する押圧手段29とを含む。   The bonding apparatus 21 according to the present embodiment uses ultrasonic vibration when the semiconductor chip 23 and the circuit board 24 are flip-chip bonded. The bonding apparatus 21 includes an ultrasonic vibrator 25 that vibrates ultrasonically, an ultrasonic horn 22 that resonates in the ultrasonic vibration direction A by ultrasonic vibration generated by the ultrasonic vibrator 25, and a support unit that supports the ultrasonic horn 22. 26, a chip holder 27 that is provided in the ultrasonic horn 22 and holds the semiconductor chip 23, a substrate holder 28 that holds the circuit board 24, and a semiconductor chip 23 that is held by the chip holder 27 are held by the substrate. And pressing means 29 for pressing the circuit board 24 held by the body 28.

このような接合装置21では、各バンプを介して半導体チップ23の各電極を回路基板24の各電極に押圧した押圧状態で、前記半導体チップ23および各バンプを半導体チップ23に対して平行な方向に振動させることができる。これによって各バンプと回路基板24の各電極とが擦れ合い、各バンプの表面を覆っている汚染層と回路基板24の各電極の表面を覆っている汚染層とが除去され、各バンプと回路基板24の各電極とが接合される。このようにして半導体チップ23と回路基板24とが接合される。   In such a bonding apparatus 21, the semiconductor chip 23 and the bumps are parallel to the semiconductor chip 23 in a pressed state in which the electrodes of the semiconductor chip 23 are pressed against the electrodes of the circuit board 24 through the bumps. Can be vibrated. As a result, each bump and each electrode of the circuit board 24 rub against each other, and the contaminated layer covering the surface of each bump and the contaminated layer covering the surface of each electrode of the circuit board 24 are removed. Each electrode of the substrate 24 is bonded. In this way, the semiconductor chip 23 and the circuit board 24 are bonded.

前記超音波振動子25は、予め定める周波数で超音波振動する。予め定める周波数は、たとえば、50kHzに選ばれる。超音波振動子25は、圧電素子によって実現される。圧電素子は、ピエゾ素子とも呼ばれる。圧電素子は、電気エネルギーを機械エネルギーに変換するエネルギー変換器である。超音波振動子25は、たとえばジルコンチタン酸鉛の圧電素子によって実現される。   The ultrasonic transducer 25 vibrates ultrasonically at a predetermined frequency. The predetermined frequency is selected to be 50 kHz, for example. The ultrasonic transducer 25 is realized by a piezoelectric element. The piezoelectric element is also called a piezo element. Piezoelectric elements are energy converters that convert electrical energy into mechanical energy. The ultrasonic vibrator 25 is realized by, for example, a piezoelectric element made of lead zirconate titanate.

前記超音波ホーン22は、超音波振動子25の超音波振動方向Aに関して、超音波の1波長分の長さD1を有する。したがって超音波ホーン22は、超音波振動子25による超音波振動によって超音波振動方向Aに共振することができる。超音波ホーン22の長さの基準となる超音波の波長は、超音波振動子25の超音波振動によって超音波ホーン22を伝わる超音波の波長である。超音波ホーン22は、略円柱状であり、その軸線方向が超音波振動方向Aに一致する。超音波ホーン22は、たとえば鉄から成る。超音波ホーン22の慣性質量は、超音波ホール22の所要の剛性が得られる範囲内で、接合装置21全体の慣性質量の1.0%以下に選ばれる。   The ultrasonic horn 22 has a length D1 corresponding to one wavelength of the ultrasonic wave with respect to the ultrasonic vibration direction A of the ultrasonic vibrator 25. Therefore, the ultrasonic horn 22 can resonate in the ultrasonic vibration direction A by the ultrasonic vibration by the ultrasonic vibrator 25. The ultrasonic wavelength serving as a reference for the length of the ultrasonic horn 22 is the wavelength of the ultrasonic wave transmitted through the ultrasonic horn 22 by the ultrasonic vibration of the ultrasonic transducer 25. The ultrasonic horn 22 has a substantially cylindrical shape, and its axial direction coincides with the ultrasonic vibration direction A. The ultrasonic horn 22 is made of, for example, iron. The inertial mass of the ultrasonic horn 22 is selected to be 1.0% or less of the inertial mass of the entire joining device 21 within a range in which the required rigidity of the ultrasonic hole 22 can be obtained.

前記支持手段26は、超音波ホーン22の超音波振動方向Aの両端部22a,22bが超音波振動方向Aに振動可能となるように、超音波ホーン22の前記両端部22a,22bを支持する。したがって超音波ホーン22は、超音波振動子25による超音波振動によって、その超音波振動方向Aの両端を自由端として、超音波振動方向Aに共振することができる。   The support means 26 supports the both end portions 22a and 22b of the ultrasonic horn 22 so that both end portions 22a and 22b in the ultrasonic vibration direction A of the ultrasonic horn 22 can vibrate in the ultrasonic vibration direction A. . Accordingly, the ultrasonic horn 22 can resonate in the ultrasonic vibration direction A with both ends of the ultrasonic vibration direction A being free ends by ultrasonic vibration by the ultrasonic vibrator 25.

前記チップ保持体27は、超音波ホーン22の超音波振動方向Aの両端部22a,22b間の中央部22cに設けられる。チップ保持体27は、超音波振動方向Aに平行なチップ保持面27aが形成される。チップ保持面27aの面積は、半導体チップ23のチップ面積よりも大きい。チップ保持面27aには、半導体チップ23の他表面が当接する。したがってチップ保持体27は、半導体チップ23を、超音波振動方向Aに平行に保持することができる。本実施の形態では、チップ保持面27aは水平な一平面を成し、チップ保持体27は、半導体チップ23を水平に保持し、この半導体チップ23の一表面は下方に臨む。チップ保持体27は、たとえば鉄から成る。チップ保持体27は、前記超音波ホーン22と一体的に形成される。   The chip holder 27 is provided at the central portion 22 c between both end portions 22 a and 22 b in the ultrasonic vibration direction A of the ultrasonic horn 22. The chip holding body 27 is formed with a chip holding surface 27a parallel to the ultrasonic vibration direction A. The area of the chip holding surface 27 a is larger than the chip area of the semiconductor chip 23. The other surface of the semiconductor chip 23 abuts on the chip holding surface 27a. Therefore, the chip holder 27 can hold the semiconductor chip 23 in parallel with the ultrasonic vibration direction A. In the present embodiment, the chip holding surface 27a forms a horizontal plane, the chip holding body 27 holds the semiconductor chip 23 horizontally, and one surface of the semiconductor chip 23 faces downward. The chip holder 27 is made of, for example, iron. The chip holder 27 is formed integrally with the ultrasonic horn 22.

前記基板保持体28は、超音波振動方向Aに平行な基板保持面28aが形成される。基板保持面28aの面積は、回路基板24の基板面積よりも大きい。基板保持面28aには、回路基板24の他表面が当接する。したがって基板保持体28は、回路基板24を、チップ保持体27によって保持される半導体チップ23に対して平行に保持することができる。本実施の形態では、基板保持面28aは水平な一平面を成し、基板保持体28は、回路基板24を水平に保持し、この回路基板24の一表面は上方に臨む。基板保持体28は、たとえばステンレス鋼(SUS)から成る。基板保持体28は、ボンディグステージとも呼ばれる。   The substrate holder 28 is formed with a substrate holding surface 28a parallel to the ultrasonic vibration direction A. The area of the board holding surface 28 a is larger than the board area of the circuit board 24. The other surface of the circuit board 24 contacts the board holding surface 28a. Therefore, the substrate holder 28 can hold the circuit board 24 in parallel with the semiconductor chip 23 held by the chip holder 27. In the present embodiment, the substrate holding surface 28a forms a horizontal plane, and the substrate holder 28 holds the circuit board 24 horizontally, and one surface of the circuit board 24 faces upward. The substrate holder 28 is made of, for example, stainless steel (SUS). The substrate holder 28 is also called a bonding stage.

前記押圧手段29は、基準軸線L1に沿う押圧方向B1の押圧力を、支持手段26および超音波ホーン22を介して、チップ保持体27に与える。基準軸線L1は、前記チップ保持面27aに垂直であり、超音波ホーン22の超音波振動方向Aの中央で超音波ホーン22の軸線と交差する。このような押圧手段29によって、チップ保持体27に保持される半導体チップ23を、基板保持体28に保持される回路基板24に押圧することができる。   The pressing means 29 applies a pressing force in the pressing direction B1 along the reference axis L1 to the chip holder 27 via the support means 26 and the ultrasonic horn 22. The reference axis L1 is perpendicular to the chip holding surface 27a and intersects the axis of the ultrasonic horn 22 at the center in the ultrasonic vibration direction A of the ultrasonic horn 22. By such pressing means 29, the semiconductor chip 23 held by the chip holder 27 can be pressed against the circuit board 24 held by the substrate holder 28.

図2は、支持部材31aを示す斜視図である。図1をも参照して、前記支持手段26は、一対の支持部材31a,31bと、一対の連結部材32a,32bと、ホルダ33とを有する。本実施の形態では、支持手段26は、予め定める仮想一平面に関して面対称に構成される。予め定める仮想一平面は、基準軸線L1を含み、かつ超音波振動方向Aに垂直である。   FIG. 2 is a perspective view showing the support member 31a. Referring also to FIG. 1, the support means 26 includes a pair of support members 31 a and 31 b, a pair of connecting members 32 a and 32 b, and a holder 33. In the present embodiment, the support means 26 is configured to be plane-symmetric with respect to a predetermined virtual plane. The predetermined virtual plane includes the reference axis L1 and is perpendicular to the ultrasonic vibration direction A.

各支持部材31a,31bは、超音波ホーン22の超音波振動方向Aの両端部22a,22bにボルト部材によってそれぞれ連結されて、押圧方向B1にそれぞれ延びる。各連結部材32a,32bは、各支持部材31a,31bの超音波ホーン22に連結される側とは反対側の端部にボルト部材によってそれぞれ連結されて、互いに離反する方向にそれぞれ延びる。   The support members 31a and 31b are respectively connected to both end portions 22a and 22b in the ultrasonic vibration direction A of the ultrasonic horn 22 by bolt members and extend in the pressing direction B1. The connecting members 32a and 32b are connected to the ends of the support members 31a and 31b opposite to the side connected to the ultrasonic horn 22 by bolt members, respectively, and extend in directions away from each other.

ホルダ33は、大略的にC字状であり、超音波ホーン22を外囲するように設けられる。ホルダ33は、超音波振動方向Aに延びる天板34と、この天板34の超音波振動方向Aの両端部に屈曲して連なって押圧方向B1に延びる一対の側板35a,35bとを有する。各側板35a,35bの天板34に連なる側とは反対側の端部には、各連結部材32a,32bの各支持部材31a,31bに連結される側とは反対側の端部が、ボルト部材によってそれぞれ連結される。   The holder 33 is generally C-shaped and is provided so as to surround the ultrasonic horn 22. The holder 33 includes a top plate 34 that extends in the ultrasonic vibration direction A, and a pair of side plates 35a and 35b that are bent and connected to both end portions of the top plate 34 in the ultrasonic vibration direction A and extend in the pressing direction B1. At the end of each side plate 35a, 35b opposite to the side connected to the top plate 34, the end of each connecting member 32a, 32b opposite to the side connected to each support member 31a, 31b is a bolt. Each is connected by a member.

各支持部材31a,31bは、鉄から成る偏平な板状体である。一例として述べると、各支持部材31a,31bの厚さT1は、5〜15mmである。このような各支持部材31a,31bは、厚み方向Cには可撓性を有し、かつ厚み方向Cに垂直な方向には剛性を有する。   Each support member 31a, 31b is a flat plate-like body made of iron. As an example, the thickness T1 of each support member 31a, 31b is 5 to 15 mm. Each of such support members 31a and 31b has flexibility in the thickness direction C and rigidity in a direction perpendicular to the thickness direction C.

各支持部材31a,31bは、それらの厚み方向Cが超音波振動方向Aに一致した状態で、超音波ホーン22の超音波振動方向Aの両端部22a,22bにそれぞれ連結される。したがって各支持部材31a,31bは、超音波ホーン22の前記両端部22a,22bが超音波振動方向Aに振動可能となるように、超音波ホーン22の前記両端部22a,22bを支持することができる。   The support members 31a and 31b are respectively connected to both end portions 22a and 22b of the ultrasonic horn 22 in the ultrasonic vibration direction A in a state where the thickness direction C thereof coincides with the ultrasonic vibration direction A. Accordingly, the support members 31a and 31b support the both end portions 22a and 22b of the ultrasonic horn 22 so that the both end portions 22a and 22b of the ultrasonic horn 22 can vibrate in the ultrasonic vibration direction A. it can.

各支持部材31a,31bは、同一であるので、一方の支持部材31aについて詳細に説明し、他方の支持部材31bについては詳細な説明を省略する。支持部材31aの長手方向一端部36には、厚み方向Cに貫通する第1貫通孔37が形成される。この第1貫通孔37には、超音波ホーン22と支持部材31aとを連結するためのボルト部材のねじ部が緩やかに挿通される。支持部材31aの長手方向他端部38には、厚み方向Cに貫通する第2貫通孔39が形成される。この第2貫通孔39には、支持部材31aと連結部材32aとを連結するためのボルト部材のねじ部が緩やかに挿通される。   Since each support member 31a and 31b is the same, one support member 31a is demonstrated in detail, and detailed description is abbreviate | omitted about the other support member 31b. A first through hole 37 penetrating in the thickness direction C is formed at one end 36 in the longitudinal direction of the support member 31a. A threaded portion of a bolt member for connecting the ultrasonic horn 22 and the support member 31 a is gently inserted into the first through hole 37. A second through hole 39 penetrating in the thickness direction C is formed in the other longitudinal end portion 38 of the support member 31a. A threaded portion of a bolt member for connecting the support member 31a and the connecting member 32a is gently inserted into the second through hole 39.

図3は、超音波ホーン22の超音波振動方向Aの一端部22aを拡大して示す断面図である。超音波ホーン22は、挿入孔41が形成されるホーン本体42と、このホーン本体42の前記挿入孔41に挿し込まれるプラグ43とを有する。   FIG. 3 is an enlarged cross-sectional view showing one end 22 a of the ultrasonic horn 22 in the ultrasonic vibration direction A. The ultrasonic horn 22 has a horn body 42 in which an insertion hole 41 is formed, and a plug 43 that is inserted into the insertion hole 41 of the horn body 42.

ホーン本体42の超音波振動方向Aの一端面44には、開口45が形成される。開口45には、超音波振動方向Aに延びる挿入孔41が連通する。開口45から、予め定める退避量D2だけ、ホーン本体42の超音波振動方向Aの他端面に向かって退避した位置には、底面46が形成される。この底面46は、前記開口45および挿入孔41が形成される凹部47の底面である。底面46は、超音波振動方向Aに垂直な一平面を成す。   An opening 45 is formed in one end face 44 of the horn body 42 in the ultrasonic vibration direction A. An insertion hole 41 extending in the ultrasonic vibration direction A communicates with the opening 45. A bottom surface 46 is formed at a position retracted from the opening 45 toward the other end surface of the horn body 42 in the ultrasonic vibration direction A by a predetermined retraction amount D2. The bottom surface 46 is a bottom surface of the recess 47 in which the opening 45 and the insertion hole 41 are formed. The bottom surface 46 forms a plane perpendicular to the ultrasonic vibration direction A.

挿入孔41には、開口45を介して、超音波振動子25が挿入されて、さらにプラグ43が挿し込まれる。このプラグ43によって、超音波振動子25に予圧力を与えることができる。挿入孔41にプラグ43が挿し込まれた状態では、プラグ43の先端面48は、超音波振動方向Aに垂直な一平面を成す。   The ultrasonic transducer 25 is inserted into the insertion hole 41 through the opening 45, and the plug 43 is further inserted. The plug 43 can apply a pre-pressure to the ultrasonic transducer 25. In a state where the plug 43 is inserted into the insertion hole 41, the tip surface 48 of the plug 43 forms a single plane perpendicular to the ultrasonic vibration direction A.

超音波振動子25の超音波振動方向Aの一端部25aは、プラグ43の先端面48に接触する。超音波振動子25の超音波振動方向Aの他端部25bは、凹部47の底面46に接触する。したがって超音波振動子25は、その超音波振動方向Aの両端部25a,25bが超音波ホーン22に接触した状態で超音波ホーン22に内蔵される。   One end portion 25 a of the ultrasonic vibrator 25 in the ultrasonic vibration direction A is in contact with the tip surface 48 of the plug 43. The other end portion 25 b of the ultrasonic transducer 25 in the ultrasonic vibration direction A is in contact with the bottom surface 46 of the recess 47. Therefore, the ultrasonic transducer 25 is built in the ultrasonic horn 22 with both end portions 25 a and 25 b in the ultrasonic vibration direction A in contact with the ultrasonic horn 22.

前記予め定める退避量D2は、超音波の1/4波長分の長さD3に超音波振動子25の超音波振動方向Aの寸法の1/2の長さD4を加えた長さに選ばれる。したがって超音波振動子25の超音波振動方向Aの中央を、超音波ホーン22の超音波振動方向Aの一端から1/4波長分だけ他端に近寄った位置に配置することができる。   The predetermined retraction amount D2 is selected to be a length obtained by adding a length D3 that is ½ of the dimension in the ultrasonic vibration direction A of the ultrasonic transducer 25 to the length D3 of a quarter wavelength of the ultrasonic wave. . Therefore, the center of the ultrasonic vibration direction A of the ultrasonic transducer 25 can be disposed at a position that is closer to the other end by a quarter wavelength from one end of the ultrasonic horn 22 in the ultrasonic vibration direction A.

凹部47の底面46およびプラグ43の先端面48は、超音波ホーン22の超音波振動方向Aに垂直な断面上の中央に配置される。したがって超音波ホーン22を、前記断面上の中央に配置することができる。これによって、超音波ホーン22全体を安定して共振させることができる。   The bottom surface 46 of the recess 47 and the front end surface 48 of the plug 43 are arranged at the center on the cross section perpendicular to the ultrasonic vibration direction A of the ultrasonic horn 22. Therefore, the ultrasonic horn 22 can be disposed at the center on the cross section. Thereby, the whole ultrasonic horn 22 can be resonated stably.

ホーン本体42の挿入孔41の周囲には、前記挿入孔41に連通する引出孔49が形成される。引出孔49は、超音波振動方向Aに関して、超音波振動子25と同じ位置に配置される。ホーン本体42の引出孔49に臨む内周面には、電気絶縁性を有する樹脂層が形成される。   A lead-out hole 49 communicating with the insertion hole 41 is formed around the insertion hole 41 of the horn body 42. The extraction hole 49 is disposed at the same position as the ultrasonic transducer 25 with respect to the ultrasonic vibration direction A. A resin layer having electrical insulation is formed on the inner peripheral surface facing the extraction hole 49 of the horn body 42.

超音波振動子25には、ケーブル50が電気的に接続される。ケーブル50は、引出孔49を挿通して、ホーン本体42の外部に引き出される。ホーン本体42の外部に引き出されたケーブル50は、少し弛んだ状態で、高周波発生装置51まで導かれる。これによって超音波ホーン22の超音波振動方向Aに垂直な方向への振動を許容することができる。   A cable 50 is electrically connected to the ultrasonic transducer 25. The cable 50 is drawn out of the horn main body 42 through the lead-out hole 49. The cable 50 drawn out of the horn main body 42 is led to the high frequency generator 51 in a slightly slack state. As a result, the vibration of the ultrasonic horn 22 in the direction perpendicular to the ultrasonic vibration direction A can be allowed.

ケーブル50は、高周波発生装置51に電気的に接続される。高周波発生装置51は、ケーブル50を介して、高周波の電気信号を超音波振動子25に与える。超音波振動子25は、高周波発生装置51から与えられる高周波の電気信号に応じて機械振動、すなわち超音波振動する。   The cable 50 is electrically connected to the high frequency generator 51. The high frequency generator 51 provides a high frequency electrical signal to the ultrasonic transducer 25 via the cable 50. The ultrasonic transducer 25 vibrates mechanically, that is, ultrasonically vibrates in response to a high-frequency electric signal supplied from the high-frequency generator 51.

図4は、チップ保持体27の断面図である。前記図1をも参照して、チップ保持体27は、短四角柱状であり、超音波ホーン22の外周面から外方に突出する。チップ保持体27の先端面は、前記チップ保持面27aである。   FIG. 4 is a cross-sectional view of the chip holder 27. Referring also to FIG. 1, the chip holder 27 has a short quadrangular prism shape and protrudes outward from the outer peripheral surface of the ultrasonic horn 22. The tip surface of the chip holder 27 is the chip holding surface 27a.

チップ保持面27aには、開口61が形成される。開口61は、チップ保持面27aの中央に配置される。開口61には、基準軸線L1に沿って延びる第1吸着孔62が連通する。第1吸着孔62には、超音波振動方向Aに延びる第2吸着孔63が連通する。第2吸着孔63には、チップ保持面27aに平行かつ超音波振動方向Aに垂直な方向に延びる第3吸着孔64が連通する。第3吸着孔64には、管路65を介して真空源66が接続される。したがってチップ保持面27aに当接する半導体チップ23を真空吸着することができる。   An opening 61 is formed in the chip holding surface 27a. The opening 61 is disposed at the center of the chip holding surface 27a. A first suction hole 62 extending along the reference axis L1 communicates with the opening 61. A second suction hole 63 extending in the ultrasonic vibration direction A communicates with the first suction hole 62. The second suction hole 63 communicates with a third suction hole 64 extending in a direction parallel to the chip holding surface 27a and perpendicular to the ultrasonic vibration direction A. A vacuum source 66 is connected to the third suction hole 64 via a conduit 65. Therefore, the semiconductor chip 23 in contact with the chip holding surface 27a can be vacuum-sucked.

図5は、接合装置21の全体の構成を簡略化して示す正面図である。接合装置21は、テーブル71をさらに含む。テーブル71は、可動テーブルである。テーブル71には、基板保持体28が載置される。テーブル71は、基板保持体28を、X方向およびY方向に移動させる。X方向およびY方向は、基板保持面28aに平行な方向であり、直交する2軸方向である。このようなテーブル71によって、半導体チップ23と回路基板24とを位置合わせすることができる。   FIG. 5 is a front view showing the overall configuration of the bonding apparatus 21 in a simplified manner. The joining device 21 further includes a table 71. The table 71 is a movable table. The substrate holder 28 is placed on the table 71. The table 71 moves the substrate holder 28 in the X direction and the Y direction. The X direction and the Y direction are directions parallel to the substrate holding surface 28a and are orthogonal biaxial directions. By such a table 71, the semiconductor chip 23 and the circuit board 24 can be aligned.

前記押圧手段29は、基台72と、この基台72に基準軸線L1に沿って移動可能に設けられる可動体73と、可動体73を基台72に対して基準軸線L1に沿って変位させる変位駆動手段74とを有する。   The pressing means 29 includes a base 72, a movable body 73 provided on the base 72 so as to be movable along the reference axis L1, and a movable body 73 displaced with respect to the base 72 along the reference axis L1. Displacement driving means 74.

基台72は、固定基板75と、この固定基板75に連なって基準軸線L1に沿って押圧方向B1に延びる一対の案内部材76a,76bとを有する。可動体73には、各案内部材76a,76bが挿通する挿通孔77a,77bが形成される。可動体73は、各案内部材76a,76bによって案内される。可動体73には、ホルダ33の天板34が連結される。   The base 72 includes a fixed substrate 75 and a pair of guide members 76a and 76b that are connected to the fixed substrate 75 and extend in the pressing direction B1 along the reference axis L1. The movable body 73 is formed with insertion holes 77a and 77b through which the guide members 76a and 76b are inserted. The movable body 73 is guided by the guide members 76a and 76b. The top plate 34 of the holder 33 is connected to the movable body 73.

変位駆動手段74は、固定基板75に固定されるモータ78と、このモータ78の出力軸に連結されるおねじ部79と、おねじ部79が挿通して螺合するめねじ部80とを有する。おねじ部79は、基準軸線L1と同軸である。めねじ部80は、可動体73と一体的に形成される。このような変位駆動手段74によって、チップ保持体27を、基板保持体28に対して基準軸線L1に沿って前進および後退させることができる。また変位駆動手段74によって、半導体チップ23を回路基板24に押圧することができる。   The displacement drive means 74 has a motor 78 fixed to the fixed substrate 75, a male screw portion 79 connected to the output shaft of the motor 78, and a female screw portion 80 through which the male screw portion 79 is inserted and screwed. . The external thread 79 is coaxial with the reference axis L1. The female thread portion 80 is formed integrally with the movable body 73. With such a displacement driving means 74, the chip holder 27 can be moved forward and backward along the reference axis L1 with respect to the substrate holder 28. Further, the semiconductor chip 23 can be pressed against the circuit board 24 by the displacement driving means 74.

前記基板保持体28は、各支持部材31a,31bの超音波ホーン22に連結される側とは反対側の端部68,69よりも、押圧方向B1とは反対方向B2に退避した位置で、回路基板24を保持する。これによってチップ保持体27のチップ保持面27aと基板保持体28の基板保持面28aとの間の距離を小さくして、必要とされるチップ保持体27の移動量を小さくすることができる。   The substrate holder 28 is retracted in the direction B2 opposite to the pressing direction B1 from the ends 68, 69 opposite to the side connected to the ultrasonic horn 22 of the support members 31a, 31b. The circuit board 24 is held. As a result, the distance between the chip holding surface 27a of the chip holding body 27 and the substrate holding surface 28a of the substrate holding body 28 can be reduced, and the required amount of movement of the chip holding body 27 can be reduced.

図6は、接合装置21の電気的構成を示すブロック図である。接合装置21は、前記真空源66と、カメラ81と、カメラ移動装置82と、圧力センサ83と、前記高周波発生装置51と、制御手段84とをさらに含む。カメラ81は、半導体チップ23および回路基板24を撮像する。カメラ移動装置82は、カメラ81を、撮像位置と退避位置とにわたって移動させる。圧力センサ83は、回路基板24に対する半導体チップ23の押圧力を検出する。   FIG. 6 is a block diagram showing an electrical configuration of the joining device 21. The joining device 21 further includes the vacuum source 66, a camera 81, a camera moving device 82, a pressure sensor 83, the high frequency generator 51, and a control means 84. The camera 81 images the semiconductor chip 23 and the circuit board 24. The camera moving device 82 moves the camera 81 between the imaging position and the retracted position. The pressure sensor 83 detects the pressing force of the semiconductor chip 23 against the circuit board 24.

制御手段84は、中央演算処理装置(Central Processing Unit、略称CPU)などによって構成される。制御手段84は、カメラ81から撮像結果を与えられ、圧力センサ83から検出結果を与えられる。制御手段84は、真空源66、テーブル71、モータ78カメラ移動装置82および高周波発生装置51を制御する。制御手段84は、タイマ85を有する。   The control means 84 is configured by a central processing unit (abbreviated as CPU). The control means 84 is given an imaging result from the camera 81 and a detection result from the pressure sensor 83. The control means 84 controls the vacuum source 66, the table 71, the motor 78, the camera moving device 82, and the high frequency generator 51. The control means 84 has a timer 85.

図7は、接合装置21の接合動作を説明するためのフローチャートである。接合動作は、チップ保持体27によって半導体チップ23が保持され、基板保持体28によって回路基板24が保持された状態で、開始される。この状態では、半導体チップ23の一表面は下方に臨み、回路基板24の一表面は上方に臨み、半導体チップ23の一表面と回路基板24の一表面とは対向する。半導体チップ23の保持にあたっては、チップ保持体27のチップ保持面27aに半導体チップ23の他表面が当接された状態で、真空源66によって吸引する。   FIG. 7 is a flowchart for explaining the joining operation of the joining device 21. The bonding operation is started in a state where the semiconductor chip 23 is held by the chip holder 27 and the circuit board 24 is held by the substrate holder 28. In this state, one surface of the semiconductor chip 23 faces downward, one surface of the circuit board 24 faces upward, and one surface of the semiconductor chip 23 and one surface of the circuit board 24 face each other. When holding the semiconductor chip 23, suction is performed by the vacuum source 66 with the other surface of the semiconductor chip 23 being in contact with the chip holding surface 27 a of the chip holder 27.

接合動作を開始すると、ステップa1で、半導体チップ23と回路基板24とを位置合わせする。このステップa1では、まず、カメラ移動装置82によって、カメラ81を退避位置から撮像位置に移動させ、これによってカメラ81を、半導体チップ23と回路基板24との間の空間に非接触で侵入させる。次に、カメラ81によって、半導体チップ23と回路基板24とを撮像する。カメラ81から撮像結果を与えられると、撮像結果に基づいて、半導体チップ23と回路基板24との相対的な位置ずれを検出する。そして前記検出結果に基づいて、半導体チップ23を基準にして回路基板24の位置ずれを補正するように、テーブル71を制御する。位置合わせが終了すると、カメラ移動装置82によって、カメラ81を撮像位置から退避位置に移動させ、ステップa2に進む。   When the bonding operation is started, the semiconductor chip 23 and the circuit board 24 are aligned in step a1. In this step a1, first, the camera 81 is moved from the retracted position to the imaging position by the camera moving device 82, thereby causing the camera 81 to enter the space between the semiconductor chip 23 and the circuit board 24 without contact. Next, the semiconductor chip 23 and the circuit board 24 are imaged by the camera 81. When an imaging result is given from the camera 81, a relative positional deviation between the semiconductor chip 23 and the circuit board 24 is detected based on the imaging result. Based on the detection result, the table 71 is controlled so as to correct the positional deviation of the circuit board 24 with the semiconductor chip 23 as a reference. When the alignment is completed, the camera moving device 82 moves the camera 81 from the imaging position to the retracted position, and the process proceeds to step a2.

ステップa2では、モータ78によるチップ保持体27の前進を開始し、ステップa3に進む。ステップa3では、圧力センサ83から与えられる検出結果に基づいて、回路基板24に対する半導体チップ23の押圧力が予め定める押圧値を超えたか否かを判定する。前記予め定める押圧値を超えるまで、ステップa3の動作を繰り返し実行し、前記予め定める押圧値を超えたと判定すると、ステップa4に進む。ステップa4では、モータ78によるチップ保持体27の前進を終了し、ステップa5に進む。   In step a2, advancement of the chip holder 27 by the motor 78 is started, and the process proceeds to step a3. In step a3, based on the detection result given from the pressure sensor 83, it is determined whether or not the pressing force of the semiconductor chip 23 against the circuit board 24 exceeds a predetermined pressing value. The operation of step a3 is repeatedly executed until the predetermined pressing value is exceeded, and if it is determined that the predetermined pressing value has been exceeded, the process proceeds to step a4. In step a4, the advancement of the chip holder 27 by the motor 78 is terminated, and the process proceeds to step a5.

ステップa5では、高周波発生装置51による超音波振動子25の超音波振動を開始し、ステップa6に進む。ステップa6では、タイマ85によって計時し、超音波振動子25による超音波振動を開始してから予め定める接合時間を経過したか否かを判定する。前記予め定める接合時間を経過するまで、ステップa6の動作を繰り返し実行し、前記予め定める接合時間を経過したと判定すると、ステップa7に進む。ステップa7では、高周波発生装置51による超音波振動子25の超音波振動を終了し、ステップa8に進む。ステップa8では、モータ78によって、チップ保持体27を後退させ、接合動作を終了する。   In step a5, the ultrasonic vibration of the ultrasonic transducer 25 by the high frequency generator 51 is started, and the process proceeds to step a6. In step a6, it is timed by the timer 85, and it is determined whether or not a predetermined joining time has elapsed since the start of ultrasonic vibration by the ultrasonic transducer 25. The operation of step a6 is repeatedly executed until the predetermined joining time elapses. When it is determined that the predetermined joining time has elapsed, the process proceeds to step a7. In step a7, the ultrasonic vibration of the ultrasonic transducer 25 by the high frequency generator 51 is terminated, and the process proceeds to step a8. In Step a8, the tip 78 is moved backward by the motor 78, and the joining operation is completed.

このような接合動作では、前記ステップa3で前記予め定める押圧値を超えたと判定すると前記ステップa4でモータ78によるチップ保持体27の前進を終了するけれども、前記判定後も、前記予め定める押圧値よりも高い予め定める他の押圧値になるまで、チップ保持体27の前進を継続してもよい。   In such a joining operation, if it is determined in step a3 that the predetermined pressing value has been exceeded, the advancement of the tip holder 27 by the motor 78 is terminated in step a4. Further, the advancement of the tip holding body 27 may be continued until the other predetermined pressing value is high.

本実施の形態では、超音波ホーン22には、図1(2)に示すような定常波が生じる。図1(2)は、超音波ホーン22内の各点の変位を示す。図1(2)において、横軸は、各点の静止時の位置を示し、縦軸は、各点の、静止時の位置からの変位を示す。縦軸では、静止時の位置から超音波振動方向一方A1への変位を正とし、静止時の位置から超音波振動方向他方A2への変位を負とする。図1(2)では、各点の、静止時の位置からの変位が最大となる第1および第2時刻t1,t2における定常波の波形だけを示す。   In the present embodiment, a standing wave as shown in FIG. FIG. 1 (2) shows the displacement of each point in the ultrasonic horn 22. In FIG. 1 (2), the horizontal axis indicates the position of each point at rest, and the vertical axis indicates the displacement of each point from the position at rest. On the vertical axis, the displacement from the stationary position to the ultrasonic vibration direction A1 is positive, and the displacement from the stationary position to the ultrasonic vibration direction other A2 is negative. In FIG. 1 (2), only the waveforms of standing waves at the first and second times t1 and t2 at which the displacement of each point from the stationary position is maximum are shown.

第1時刻t1における定常波の波形は、実線91で示すような正弦曲線となり、第2時刻t2における定常波の波形は、仮想線92で示すような正弦曲線となる。第1時刻t1では、超音波ホーン22の超音波振動方向Aの両端で、超音波振動方向一方A1への変位が最大となり、前記両端間の中央で、超音波振動方向他方A2への変位が最大となる。第2時刻t2では、超音波ホーン22の超音波振動方向Aの両端で、超音波振動方向他方A2への変位が最大となり、前記両端間の中央で、超音波振動方向一方A1への変位が最大となる。   The waveform of the standing wave at the first time t1 is a sine curve as shown by a solid line 91, and the waveform of the standing wave at the second time t2 is a sine curve as shown by a virtual line 92. At the first time t1, the displacement of the ultrasonic horn 22 in the ultrasonic vibration direction A1 is the maximum at both ends in the ultrasonic vibration direction A, and the displacement in the ultrasonic vibration direction other A2 is the center between the both ends. Maximum. At the second time t2, the displacement of the ultrasonic horn 22 in the ultrasonic vibration direction A2 is maximized at both ends in the ultrasonic vibration direction A, and the displacement in the ultrasonic vibration direction one A1 is centered between the both ends. Maximum.

超音波ホーン22内の各点の中には、共振時に超音波振動方向Aに最も振動する点が存在する。前記最も振動する点の静止時の位置は、超音波ホーン22における共振の腹位置という。本実施の形態では、超音波ホーン22の超音波振動方向Aの両端P1,P2と、前記両端間の中央P3とが、腹位置となる。超音波ホーン22の腹位置の部分は、残余の部分に比べて、圧力変化が小さく、したがって圧力変化に起因する超音波振動方向Aに垂直な方向への振動が小さい。   Among the points in the ultrasonic horn 22, there is a point that vibrates most in the ultrasonic vibration direction A during resonance. The stationary position of the most vibrating point is referred to as a resonance antinode position in the ultrasonic horn 22. In the present embodiment, both ends P1, P2 in the ultrasonic vibration direction A of the ultrasonic horn 22 and the center P3 between the both ends are the antinode positions. The antinode portion of the ultrasonic horn 22 has a smaller pressure change than the remaining portion, and therefore vibration in a direction perpendicular to the ultrasonic vibration direction A due to the pressure change is small.

超音波ホーン22内の各点の中には、共振時に超音波振動方向Aに振動しない点が存在する。前記振動しない点の静止時の位置は、超音波ホーン22における共振の節位置という。本実施の形態では、超音波ホーン22の超音波振動方向Aの一端から1/4波長分だけ他端に近寄った位置P4と、超音波ホーン22の超音波振動方向Aの他端から1/4波長分だけ一端に近寄った位置P5とが、節位置となる。超音波ホーン22の節位置の部分は、圧力変化が最も大きく、したがって圧力変化に起因する超音波振動方向Aに垂直な方向への振動が最も大きい。   Among the points in the ultrasonic horn 22, there are points that do not vibrate in the ultrasonic vibration direction A during resonance. The stationary position of the point that does not vibrate is called a resonance node position in the ultrasonic horn 22. In the present embodiment, the position P4 that is closer to the other end by a quarter wavelength from one end of the ultrasonic horn 22 in the ultrasonic vibration direction A and the other end of the ultrasonic horn 22 in the ultrasonic vibration direction A 1 / A position P5 that is closer to one end by four wavelengths is a node position. The portion of the node position of the ultrasonic horn 22 has the largest pressure change, and therefore the vibration in the direction perpendicular to the ultrasonic vibration direction A caused by the pressure change is the largest.

以上のような本実施の形態によれば、超音波ホーン22の超音波振動方向Aの両端部22a,22bを、支持手段26によって支持する。超音波ホーン22の前記両端部22a,22bは、超音波ホーン22の腹位置の部分である。超音波ホーン22の腹位置の部分は、残余の部分に比べて、超音波振動方向Aに垂直な方向への振動が小さい。したがって押圧状態で半導体チップ23がこの半導体チップ23に対して垂直な方向に振動してしまうという不具合を可及的に抑制することができる。したがって半導体チップ23の破損を防ぐことができる。   According to the present embodiment as described above, both ends 22 a and 22 b of the ultrasonic horn 22 in the ultrasonic vibration direction A are supported by the support means 26. The both end portions 22 a and 22 b of the ultrasonic horn 22 are portions of the antinode position of the ultrasonic horn 22. The portion at the antinode position of the ultrasonic horn 22 has less vibration in the direction perpendicular to the ultrasonic vibration direction A than the remaining portion. Therefore, the problem that the semiconductor chip 23 vibrates in a direction perpendicular to the semiconductor chip 23 in the pressed state can be suppressed as much as possible. Therefore, damage to the semiconductor chip 23 can be prevented.

超音波ホーン22の前記両端部22a,22bは、超音波ホーン22の腹位置の部分であり、したがって超音波振動方向Aに振動する。これを考慮して、超音波ホーン22の前記両端部22a,22bが超音波振動方向Aに振動可能となるように、超音波ホーン22の前記両端部22a,22bを支持手段26によって支持する。これによって超音波ホーン22の前記両端部22a,22bの振動を許容し、超音波ホーン22を支持する支持手段26が超音波ホーン22の共振に与える影響を抑えることができる。   The both end portions 22a and 22b of the ultrasonic horn 22 are portions of the antinode of the ultrasonic horn 22, and therefore vibrate in the ultrasonic vibration direction A. Considering this, the both end portions 22a and 22b of the ultrasonic horn 22 are supported by the support means 26 so that the both end portions 22a and 22b of the ultrasonic horn 22 can vibrate in the ultrasonic vibration direction A. Thereby, the vibration of the both end portions 22a and 22b of the ultrasonic horn 22 is allowed, and the influence of the support means 26 that supports the ultrasonic horn 22 on the resonance of the ultrasonic horn 22 can be suppressed.

超音波振動子25は、超音波ホーン22の超音波振動方向Aの一端から1/4波長分だけ他端に近寄った位置に配置される。この位置は、超音波ホーン22の節位置である。超音波ホーン22の節位置の部分での微小な振動は、超音波ホーン22の腹位置の部分で大きな振動になる。したがって超音波振動子25の超音波振動を有効に利用することができ、超音波振動の伝達効率を向上させることができる。   The ultrasonic transducer 25 is arranged at a position closer to the other end by a quarter wavelength from one end in the ultrasonic vibration direction A of the ultrasonic horn 22. This position is a node position of the ultrasonic horn 22. The minute vibration at the node position of the ultrasonic horn 22 becomes large vibration at the antinode position of the ultrasonic horn 22. Therefore, the ultrasonic vibration of the ultrasonic vibrator 25 can be used effectively, and the transmission efficiency of the ultrasonic vibration can be improved.

しかも超音波振動子25は、その超音波振動方向Aの両端部25a,25bが超音波ホーン22に接触した状態で超音波ホーン22に内蔵される。このように超音波振動子25が超音波振動方向Aの両側から支持されるので、超音波振動のときに超音波振動子25が変位してしまうという不具合が防がれる。これによって共振の安定性を向上させることができ、半導体チップ23と回路基板24とを確実にフリップチップ接合することができる。また前記不具合が防がれるので、超音波振動子25の超音波振動をさらに有効に利用することができ、超音波振動の伝達効率をさらに向上させることができる。   Moreover, the ultrasonic transducer 25 is built in the ultrasonic horn 22 with both end portions 25 a and 25 b in the ultrasonic vibration direction A in contact with the ultrasonic horn 22. As described above, since the ultrasonic vibrator 25 is supported from both sides in the ultrasonic vibration direction A, it is possible to prevent a problem that the ultrasonic vibrator 25 is displaced during ultrasonic vibration. Thereby, the stability of resonance can be improved, and the semiconductor chip 23 and the circuit board 24 can be reliably flip-chip bonded. In addition, since the above-mentioned problem is prevented, the ultrasonic vibration of the ultrasonic vibrator 25 can be used more effectively, and the transmission efficiency of the ultrasonic vibration can be further improved.

このような本実施の形態では、半導体チップ23を破損することなく、半導体チップ23と回路基板24とを確実にフリップチップ接合することができる。したがって歩留まりを向上させ、生産コストを低減することができる。   In this embodiment, the semiconductor chip 23 and the circuit board 24 can be reliably flip-chip bonded without damaging the semiconductor chip 23. Therefore, the yield can be improved and the production cost can be reduced.

また本実施の形態によれば、超音波ホーン22の超音波振動方向Aの両端部22a,22bは、共振の腹位置の部分であり、支持手段26によって支持するのは、前記超音波ホーン22の超音波振動方向Aの両端部22a,22bであるので、ボルト部材を用いた締結によって、超音波ホーン22と支持手段26とを容易に連結することができる。   Further, according to the present embodiment, the both end portions 22a and 22b in the ultrasonic vibration direction A of the ultrasonic horn 22 are portions of the antinodes of resonance, and the ultrasonic horn 22 is supported by the support means 26. Therefore, the ultrasonic horn 22 and the support means 26 can be easily connected by fastening using a bolt member.

また本実施の形態によれば、超音波ホーン22の慣性質量は、接合装置21全体の慣性質量の1.0%以下に選ばれる。超音波ホーン22は、共振しているとき、重心が不変であるけれども、腹位置の部分は、超音波振動方向Aに振動する。したがって支持手段26には、振動が伝達されることになる。この振動によって、接合装置21全体のうち超音波ホーン22を除く残余の部分が振動することがある。   Further, according to the present embodiment, the inertial mass of the ultrasonic horn 22 is selected to be 1.0% or less of the inertial mass of the entire bonding apparatus 21. When the ultrasonic horn 22 resonates, the center of gravity does not change, but the antinode portion vibrates in the ultrasonic vibration direction A. Therefore, vibration is transmitted to the support means 26. Due to this vibration, the remaining part other than the ultrasonic horn 22 in the entire bonding apparatus 21 may vibrate.

特に、本実施の形態のように、各支持部材31a,31b間の距離が超音波の波長の自然数倍の長さに相当する場合、各支持部材31a,31bに連結される超音波ホーン22の超音波振動方向Aの両端部22a,22bは、同一方向に振動する。したがって前記残余の部分が振動することがある。   In particular, as in the present embodiment, when the distance between the support members 31a and 31b corresponds to a length that is a natural number times the wavelength of the ultrasonic wave, the ultrasonic horn 22 connected to the support members 31a and 31b. Both end portions 22a and 22b in the ultrasonic vibration direction A of the same vibrate in the same direction. Therefore, the remaining part may vibrate.

超音波ホーン22の慣性質量が接合装置21全体の慣性質量の1.0%を超えると、前記残余の部分が超音波ホーン22の共振に伴って振動してしまう。超音波ホーン22の慣性質量を接合装置21全体の慣性質量の1.0%以下すると、前記残余の部分が超音波ホーン22の共振に伴って振動してしまうという不具合が防がれる。   When the inertial mass of the ultrasonic horn 22 exceeds 1.0% of the inertial mass of the entire bonding apparatus 21, the remaining portion vibrates with the resonance of the ultrasonic horn 22. If the inertial mass of the ultrasonic horn 22 is 1.0% or less of the total inertial mass of the bonding apparatus 21, the problem that the remaining portion vibrates with the resonance of the ultrasonic horn 22 can be prevented.

さらに言えば、可動体73が基台72と剛な構造である場合、前記残余の部分の慣性質量は、可動体73と基台72とを合わせた慣性質量とみなすことができる。これに対して、可動体73が基台72に柔に取付けられる場合、前記残余の部分の慣性質量は、可動体73の慣性質量とみなすべきである。この場合は、超音波ホーン22の慣性質量は、可動体73の慣性質量よりも十分(2桁以上)小さくなるように選ばれる。具体的には、超音波ホーン22の慣性質量は、可動体73の慣性質量の1%以下に選ばれる。   Furthermore, when the movable body 73 has a rigid structure with the base 72, the inertial mass of the remaining portion can be regarded as an inertial mass combining the movable body 73 and the base 72. On the other hand, when the movable body 73 is flexibly attached to the base 72, the inertia mass of the remaining portion should be regarded as the inertia mass of the movable body 73. In this case, the inertial mass of the ultrasonic horn 22 is selected to be sufficiently smaller (two digits or more) than the inertial mass of the movable body 73. Specifically, the inertial mass of the ultrasonic horn 22 is selected to be 1% or less of the inertial mass of the movable body 73.

また本実施の形態によれば、各支持部材31a,31bは、超音波ホーン22の前記両端部22a,22bにそれぞれ連結されて半導体チップ23の押圧方向B1に延びる。この支持部材31a,31bの超音波ホーン22に連結される側とは反対側の端部には、各連結部材32a,32bを介してホルダ33が連結される。基板保持体28は、支持部材31a,31bの超音波ホーン22に連結される側とは反対側の端部68,69よりも、押圧方向B1とは反対方向B2に退避した位置で、回路基板24を保持する。接合装置21全体を大形化することなく、基板保持体28を大きくして基板保持体28の慣性質量を大きくすることができる。   Further, according to the present embodiment, the support members 31 a and 31 b are connected to the both end portions 22 a and 22 b of the ultrasonic horn 22 and extend in the pressing direction B <b> 1 of the semiconductor chip 23. A holder 33 is connected to the ends of the support members 31a and 31b opposite to the side connected to the ultrasonic horn 22 via the connection members 32a and 32b. The circuit board substrate 28 is located at a position retracted in the direction B2 opposite to the pressing direction B1 from the ends 68, 69 opposite to the side connected to the ultrasonic horn 22 of the support members 31a, 31b. 24 is held. The substrate holding body 28 can be enlarged and the inertial mass of the substrate holding body 28 can be increased without increasing the size of the entire bonding apparatus 21.

このように基板保持体28の慣性質量を大きくすることによって、超音波フリップチップ接合時に発生する基板保持体28の振動を抑えることができる。これによって半導体チップ23と回路基板24との相対振動の低下を抑え、半導体チップ23と回路基板24とを確実にフリップチップ接合することができる。したがって高い信頼性を有するモジュールを得ることができ、歩留まりを向上させることができる。   By increasing the inertial mass of the substrate holder 28 in this way, it is possible to suppress the vibration of the substrate holder 28 that occurs during ultrasonic flip chip bonding. As a result, a decrease in relative vibration between the semiconductor chip 23 and the circuit board 24 can be suppressed, and the semiconductor chip 23 and the circuit board 24 can be reliably flip-chip bonded. Therefore, a module having high reliability can be obtained, and the yield can be improved.

表1は、本実施の形態の接合装置21および従来の接合装置を用いてそれぞれ作成したサンプルについての、せん断強度と、半導体チップの破損発生率とを示す。本実施の形態の接合装置21を用いて、予め定める接合条件で、50個のサンプルを作成した。また比較のために、図8に示すような従来の接合装置を用いて、前記予め定める接合条件と同一の接合条件で、50個のサンプルを作成した。これらの各サンプルから、せん断強度と、半導体チップの破損発生率とを求めた。サンプルの作成には、以下のような半導体チップおよび回路基板を用いた。   Table 1 shows the shear strength and the rate of occurrence of breakage of the semiconductor chip for the samples prepared using the bonding apparatus 21 of the present embodiment and the conventional bonding apparatus, respectively. Using the bonding apparatus 21 of the present embodiment, 50 samples were created under predetermined bonding conditions. For comparison, 50 samples were prepared using the conventional joining apparatus as shown in FIG. 8 under the same joining conditions as the predetermined joining conditions. From each of these samples, the shear strength and the breakage rate of the semiconductor chip were determined. For the preparation of the sample, the following semiconductor chip and circuit board were used.

半導体チップの外形寸法は、10×10×0.1(mm)である。半導体チップの一表面には、350個の電極が形成される。各電極は、スパッタリングによって形成され、アルミニウムから成る。各電極は、90μm角であり、厚みが1μmである。各電極には、直径60μm、高さ30μmの金ボールバンプがそれぞれ設けられる。   The external dimensions of the semiconductor chip are 10 × 10 × 0.1 (mm). 350 electrodes are formed on one surface of the semiconductor chip. Each electrode is formed by sputtering and is made of aluminum. Each electrode is 90 μm square and has a thickness of 1 μm. Each electrode is provided with a gold ball bump having a diameter of 60 μm and a height of 30 μm.

回路基板の外形寸法は、14×14×0.1(mm)である。回路基板は、ガラスエポキシ基板などから成り、回路基板の一表面には、350個の電極が形成される。各電極は、回路基板の一表面に形成される銅配線上に、ニッケル(Ni)および金(Au)を順次、めっきすることによって形成される。最表層に形成される金は、たとえば無電解めっき法で0.5μm厚に形成される。   The external dimensions of the circuit board are 14 × 14 × 0.1 (mm). The circuit board is made of a glass epoxy board or the like, and 350 electrodes are formed on one surface of the circuit board. Each electrode is formed by sequentially plating nickel (Ni) and gold (Au) on a copper wiring formed on one surface of a circuit board. The gold formed on the outermost layer is formed to a thickness of 0.5 μm, for example, by electroless plating.

半導体チップと回路基板とを接合するにあたっては、半導体チップと回路基板とを位置合わせした後、半導体チップに設けられる各バンプへの加圧を開始し、バンプ1個あたりの加圧力が30MPaに達すると、超音波振動を開始した。超音波出力は1Wとし、この出力を500ms間、維持した。バンプ1個あたりの加圧力は、最終的に90MPaまで上昇させた。   In joining the semiconductor chip and the circuit board, after positioning the semiconductor chip and the circuit board, pressurization to each bump provided on the semiconductor chip is started, and the applied pressure per bump reaches 30 MPa. Then, ultrasonic vibration was started. The ultrasonic output was 1 W, and this output was maintained for 500 ms. The applied pressure per bump was finally increased to 90 MPa.

せん断強度を測定するにあたっては、半導体チップと回路基板とをフリップチップ接合した後、まず、半導体チップを、各バンプを残して除去した。そして各バンプと、回路基板の各電極との接合部のせん断強度を、シェアツールを用いて測定した。前記接合部のせん断強度は、接合強度に相当する。   In measuring the shear strength, after the semiconductor chip and the circuit board were flip-chip bonded, first, the semiconductor chip was removed leaving each bump. And the shear strength of the junction part of each bump and each electrode of a circuit board was measured using the shear tool. The shear strength of the joint corresponds to the joint strength.

Figure 2007005546
Figure 2007005546

表1に示すように、従来の接合装置を用いた場合は、せん断強度は充分高いけれども、50個のうち8個に、断線などの破損が散見された。これに対して、本実施の形態の接合装置21を用いた場合は、従来の接合装置を用いた場合よりも高いせん断強度が得られ、かつ半導体チップの破損は見られなかった。   As shown in Table 1, when the conventional joining apparatus was used, although the shear strength was sufficiently high, breakage such as disconnection was found in 8 out of 50 pieces. On the other hand, when the bonding apparatus 21 of the present embodiment was used, a higher shear strength was obtained than when the conventional bonding apparatus was used, and the semiconductor chip was not damaged.

表2は、超音波出力を下げた場合の、せん断強度と、半導体チップの破損発生率とを示す。本実施の形態の接合装置21を用いて、前記予め定める接合条件と類似の接合条件で、50個のサンプルを作成した。前記予め定める接合条件と異なるのは、超音波出力を、1Wの半分である500mWにした点である。前記作成した各サンプルから、せん断強度と、半導体チップの破損発生率とを求めた。   Table 2 shows the shear strength and the occurrence rate of breakage of the semiconductor chip when the ultrasonic output is lowered. Using the bonding apparatus 21 of the present embodiment, 50 samples were created under the bonding conditions similar to the predetermined bonding conditions. The difference from the predetermined joining condition is that the ultrasonic output is 500 mW, which is half of 1W. From each of the prepared samples, the shear strength and the breakage rate of the semiconductor chip were determined.

Figure 2007005546
Figure 2007005546

表2に示すように、超音波出力を500mWに下げた場合でも、表1の従来の接合装置を用いた場合と、同等のせん断強度が得られた。このことから、本実施の形態の接合装置21を用いた場合は、従来の接合装置に比べて、超音波振動の伝達効率が約2倍、向上され、低い超音波エネルギーにてフリップチップ接合が可能であることが判る。また超音波出力を500mWに下げた場合も、半導体チップの破損は見られなかった。   As shown in Table 2, even when the ultrasonic output was lowered to 500 mW, the same shear strength as that obtained when the conventional joining apparatus shown in Table 1 was used was obtained. Therefore, when the bonding apparatus 21 of the present embodiment is used, the transmission efficiency of ultrasonic vibration is improved by about twice as compared with the conventional bonding apparatus, and the flip chip bonding can be performed with low ultrasonic energy. It turns out that it is possible. Even when the ultrasonic output was lowered to 500 mW, the semiconductor chip was not damaged.

前述の実施の形態は、本発明の例示に過ぎず、本発明の範囲内において構成を変更することができる。超音波ホーン22と各支持部材31a,31bとの連結については、強固に固定することができればよく、超音波ホーン22と各支持部材31a,31bとは、たとえば溶接によって連結されてもよい。各支持部材31a,31bと各連結部材32a,32bとの連結、および各連結部材32a,32bとホルダ33との連結についても、同様である。   The above-described embodiment is merely an example of the present invention, and the configuration can be changed within the scope of the present invention. The connection between the ultrasonic horn 22 and the support members 31a and 31b only needs to be able to be firmly fixed, and the ultrasonic horn 22 and the support members 31a and 31b may be connected by welding, for example. The same applies to the connection between the support members 31 a and 31 b and the connection members 32 a and 32 b and the connection between the connection members 32 a and 32 b and the holder 33.

超音波振動子25は、圧電素子に限らず、たとえば磁歪素子であってもよい。超音波ホーン22の材質は、鉄に限らず、たとえばアルミニウム合金、黄銅、ステンレス鋼およびチタン合金であってもよい。   The ultrasonic transducer 25 is not limited to a piezoelectric element, and may be a magnetostrictive element, for example. The material of the ultrasonic horn 22 is not limited to iron, and may be, for example, an aluminum alloy, brass, stainless steel, or titanium alloy.

超音波ホーン22は、超音波振動方向Aに関して、超音波の波長の自然数倍の長さ、および超音波の波長の自然数倍に超音波の半波長を加えた長さのいずれか一方の長さを有していればよい。超音波ホーン22における共振の節位置が複数、存在する場合、複数の節位置のうちチップ保持体27から最も離れた節位置に、超音波振動子25が配置される。したがって超音波振動子25がチップ保持体27から受ける影響を抑えることができる。   The ultrasonic horn 22 has one of a length that is a natural number multiple of the ultrasonic wavelength and a length that is a natural multiple of the ultrasonic wavelength plus a half wavelength of the ultrasonic wave in the ultrasonic vibration direction A. What is necessary is just to have length. When there are a plurality of resonance node positions in the ultrasonic horn 22, the ultrasonic transducer 25 is arranged at a node position farthest from the chip holder 27 among the plurality of node positions. Accordingly, the influence of the ultrasonic transducer 25 from the chip holder 27 can be suppressed.

超音波フリップチップ接合時に、加熱手段によって回路基板24を加熱してもよい。この場合、回路基板24の温度を温度計によって計測し、制御手段84は、タイマによる計時結果と、温度計による計測結果とに基づいて、接合時間を決定してもよい。   The circuit board 24 may be heated by a heating means at the time of ultrasonic flip chip bonding. In this case, the temperature of the circuit board 24 may be measured by a thermometer, and the control unit 84 may determine the bonding time based on the timer measurement result and the thermometer measurement result.

回路基板24が加熱される場合、各バンプおよび半導体チップ23を介してチップ保持体27も加熱されてしまう。これを考慮して、前述のように、複数の節位置のうちチップ保持体27から最も離れた節位置に、超音波振動子25を配置することよって、超音波振動子25とチップ保持体27との間の距離を大きくする。   When the circuit board 24 is heated, the chip holder 27 is also heated via the bumps and the semiconductor chip 23. Considering this, as described above, the ultrasonic transducer 25 and the chip holder 27 are arranged at the node position farthest from the chip holder 27 among the plurality of node positions. Increase the distance between.

このように超音波振動子25とチップ保持体27との間の距離を大きくすることによって、超音波振動子25までも加熱されてしまうという不具合が防がれる。また超音波振動子25とチップ保持体27との間の距離を大きくし、冷却ファンなどの冷却手段を用いて、超音波ホーン22における超音波振動子25の周囲の部分に風を送ることによって、超音波振動子25までも加熱されてしまうという不具合がより確実に防がれる。前記冷却手段は、たとえばホルダ33に取付けられる。   Thus, by increasing the distance between the ultrasonic transducer 25 and the chip holder 27, the problem that the ultrasonic transducer 25 is also heated is prevented. Further, by increasing the distance between the ultrasonic transducer 25 and the chip holder 27 and using a cooling means such as a cooling fan, the wind is sent to the portion around the ultrasonic transducer 25 in the ultrasonic horn 22. In addition, the problem that even the ultrasonic transducer 25 is heated can be prevented more reliably. The cooling means is attached to the holder 33, for example.

前述のように、超音波振動子25までも加熱されてしまうという不具合が防がれるので、耐熱性の低い圧電素子でも超音波振動子25として用いることができる。   As described above, since the problem that even the ultrasonic transducer 25 is heated is prevented, a piezoelectric element having low heat resistance can be used as the ultrasonic transducer 25.

本発明の実施の一形態の超音波フリップチップ接合装置21の構成を説明するための図である。It is a figure for demonstrating the structure of the ultrasonic flip-chip bonding apparatus 21 of one Embodiment of this invention. 支持部材31aを示す斜視図である。It is a perspective view which shows the supporting member 31a. 超音波ホーン22の超音波振動方向Aの一端部22aを拡大して示す断面図である。4 is an enlarged cross-sectional view showing one end portion 22a of an ultrasonic horn 22 in an ultrasonic vibration direction A. FIG. チップ保持体27の断面図である。3 is a cross-sectional view of a chip holder 27. 接合装置21の全体の構成を簡略化して示す正面図である。1 is a front view showing a simplified overall configuration of a bonding apparatus 21. FIG. 接合装置21の電気的構成を示すブロック図である。3 is a block diagram showing an electrical configuration of a joining device 21. FIG. 接合装置21の接合動作を説明するためのフローチャートである。4 is a flowchart for explaining a joining operation of the joining device 21. 第2の従来技術の超音波接合装置1の構成を簡略化して示す正面図である。It is a front view which simplifies and shows the structure of the ultrasonic bonding apparatus 1 of the 2nd prior art.

符号の説明Explanation of symbols

21 超音波フリップチップ接合装置
22 超音波ホーン
23 半導体チップ
24 回路基板
25 超音波振動子
26 支持手段
27 チップ保持体
28 基板保持体
29 押圧手段
31a,31b 支持部材
32a,32b 連結部材
33 ホルダ
DESCRIPTION OF SYMBOLS 21 Ultrasonic flip chip bonding apparatus 22 Ultrasonic horn 23 Semiconductor chip 24 Circuit board 25 Ultrasonic transducer 26 Support means 27 Chip holder 28 Substrate holder 29 Press means 31a, 31b Support members 32a, 32b Connecting member 33 Holder

Claims (6)

半導体チップと回路基板とを超音波振動を利用してフリップチップ接合する超音波フリップチップ接合装置であって、
超音波振動する超音波振動子と、
超音波振動子による超音波振動によって超音波振動方向に共振する超音波ホーンと、
超音波ホーンを支持する支持手段と、
超音波ホーンに設けられ、半導体チップを、超音波振動方向に平行に保持するチップ保持体と、
回路基板を、チップ保持体によって保持される半導体チップに対して平行に保持する基板保持体と、
チップ保持体によって保持される半導体チップを、基板保持体によって保持される回路基板に押圧する押圧手段とを含み、
支持手段は、超音波ホーンにおける共振の腹位置の部分が超音波振動方向に振動可能となるように、超音波ホーンの前記腹位置の部分を支持し、
超音波振動子は、超音波ホーンにおける共振の節位置に配置され、超音波振動方向の両端部が超音波ホーンに接触した状態で超音波ホーンに設けられることを特徴とする超音波フリップチップ接合装置。
An ultrasonic flip chip bonding apparatus for flip chip bonding a semiconductor chip and a circuit board using ultrasonic vibration,
An ultrasonic vibrator that vibrates ultrasonically;
An ultrasonic horn that resonates in the direction of ultrasonic vibration by ultrasonic vibration by an ultrasonic vibrator;
Support means for supporting the ultrasonic horn;
A chip holder that is provided in the ultrasonic horn and holds the semiconductor chip in parallel with the ultrasonic vibration direction;
A substrate holder for holding the circuit board in parallel with the semiconductor chip held by the chip holder;
Pressing means for pressing the semiconductor chip held by the chip holder against the circuit board held by the substrate holder,
The support means supports the antinode portion of the ultrasonic horn so that the antinode portion of the resonance of the ultrasonic horn can vibrate in the ultrasonic vibration direction.
The ultrasonic vibrator is disposed at a resonance node position in the ultrasonic horn, and is provided in the ultrasonic horn with both ends in the ultrasonic vibration direction being in contact with the ultrasonic horn. apparatus.
超音波ホーンにおける共振の節位置が複数、存在する場合、
超音波振動子は、複数の節位置のうちチップ保持体から最も離れた節位置に配置されることを特徴とする請求項1記載の超音波フリップチップ接合装置。
When there are multiple resonance node positions in the ultrasonic horn,
2. The ultrasonic flip-chip bonding apparatus according to claim 1, wherein the ultrasonic transducer is disposed at a node position farthest from the chip holder among the plurality of node positions.
支持手段は、超音波ホーンの超音波振動方向の両端部を支持することを特徴とする請求項1または2記載の超音波フリップチップ接合装置。   3. The ultrasonic flip-chip bonding apparatus according to claim 1, wherein the supporting means supports both ends of the ultrasonic horn in the ultrasonic vibration direction. 超音波ホーンの慣性質量は、装置全体の慣性質量の1.0%以下に選ばれることを特徴とする請求項1〜3のいずれか1つに記載の超音波フリップチップ接合装置。   The ultrasonic flip-chip bonding apparatus according to any one of claims 1 to 3, wherein an inertial mass of the ultrasonic horn is selected to be 1.0% or less of an inertial mass of the entire apparatus. 支持手段は、
超音波ホーンの前記腹位置の部分に連結されて半導体チップの押圧方向に延び、超音波振動方向に可撓性を有する支持部材と、
支持部材の超音波ホーンに連結される側とは反対側の端部に連結されるホルダとを含み、
基板保持体は、支持部材の超音波ホーンに連結される側とは反対側の端部よりも、半導体チップの押圧方向とは反対方向に退避した位置で、回路基板を保持することを特徴とする請求項1〜4のいずれか1つに記載の超音波フリップチップ接合装置。
Support means are
A support member connected to the antinode portion of the ultrasonic horn and extending in the pressing direction of the semiconductor chip, and having flexibility in the ultrasonic vibration direction;
A holder connected to the end of the support member opposite to the side connected to the ultrasonic horn,
The substrate holder holds the circuit board at a position retracted in a direction opposite to the pressing direction of the semiconductor chip from an end of the support member opposite to the side connected to the ultrasonic horn. The ultrasonic flip chip bonding apparatus according to any one of claims 1 to 4.
半導体チップと回路基板とを超音波振動を利用してフリップチップ接合する超音波フリップチップ接合装置であって、
超音波振動する超音波振動子と、
超音波振動子による超音波振動によって超音波振動方向に共振する超音波ホーンと、
超音波ホーンに設けられ、半導体チップを、超音波振動方向に平行に保持するチップ保持体と、
回路基板を、チップ保持体によって保持される半導体チップに対して平行に保持する基板保持体と、
チップ保持体によって保持される半導体チップを、基板保持体によって保持される回路基板に押圧する押圧手段とを含み、
超音波振動子は、超音波ホーンにおける共振の節位置に配置され、超音波振動方向の両端部が超音波ホーンに接触した状態で超音波ホーンに設けられることを特徴とする超音波フリップチップ接合装置。
An ultrasonic flip chip bonding apparatus for flip chip bonding a semiconductor chip and a circuit board using ultrasonic vibration,
An ultrasonic vibrator that vibrates ultrasonically;
An ultrasonic horn that resonates in the direction of ultrasonic vibration by ultrasonic vibration by an ultrasonic vibrator;
A chip holder that is provided in the ultrasonic horn and holds the semiconductor chip in parallel with the ultrasonic vibration direction;
A substrate holder for holding the circuit board in parallel with the semiconductor chip held by the chip holder;
Pressing means for pressing the semiconductor chip held by the chip holder against the circuit board held by the substrate holder,
The ultrasonic transducer is arranged at a resonance node position in the ultrasonic horn, and is provided in the ultrasonic horn with both ends in the ultrasonic vibration direction being in contact with the ultrasonic horn. apparatus.
JP2005183503A 2005-06-23 2005-06-23 Ultrasonic flip-chip connector Pending JP2007005546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183503A JP2007005546A (en) 2005-06-23 2005-06-23 Ultrasonic flip-chip connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183503A JP2007005546A (en) 2005-06-23 2005-06-23 Ultrasonic flip-chip connector

Publications (1)

Publication Number Publication Date
JP2007005546A true JP2007005546A (en) 2007-01-11

Family

ID=37690865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183503A Pending JP2007005546A (en) 2005-06-23 2005-06-23 Ultrasonic flip-chip connector

Country Status (1)

Country Link
JP (1) JP2007005546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053177A (en) * 2005-08-17 2007-03-01 Murata Mfg Co Ltd Electronic part mounting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053177A (en) * 2005-08-17 2007-03-01 Murata Mfg Co Ltd Electronic part mounting device
JP4626810B2 (en) * 2005-08-17 2011-02-09 株式会社村田製作所 Electronic component mounting equipment

Similar Documents

Publication Publication Date Title
KR100571306B1 (en) Ultrasonic transducer assembly
KR101489706B1 (en) Apparatus for mounting a transducer in a wire bonder
US7757926B2 (en) Transducer assembly for a bonding apparatus
JP5275917B2 (en) Pressure ultrasonic vibration bonding method and pressure ultrasonic vibration bonding apparatus
KR20030040177A (en) Method and apparatus for bonding bump
JP4941268B2 (en) Wire bonding method and wire bonding apparatus
JP2007005546A (en) Ultrasonic flip-chip connector
CN110660692B (en) Ultrasonic bonding head, ultrasonic bonding apparatus, and ultrasonic bonding method
JP3745927B2 (en) Mounting device
JP4210269B2 (en) Ultrasonic flip chip mounting equipment
US20120037687A1 (en) Capillary and ultrasonic transducer for ultrasonic bonding
JP4213711B2 (en) Horn, horn unit, and bonding apparatus using the same
JP5648200B2 (en) Joining method
JP4606709B2 (en) Electronic component bonding method and electronic component bonding apparatus
JP4670620B2 (en) Electronic component mounting device
JP2005064149A (en) Ultrasonic flip chip bonding device and bonding method
JP2015056426A (en) Bonding tool, bonding device, and semiconductor device
JP4213713B2 (en) Method of using horn, method of using horn unit, and bonding apparatus
JP2005286049A (en) Ultrasonic wave flip-chip bonding method and bonding device
JP2003209142A (en) Bonding head and packaging unit
JP2005230845A (en) Ultrasonic joining apparatus, and method for producing electronic device
JP3996820B2 (en) Bonding method
JP4682225B2 (en) Electronic component bonding equipment
CN114469416A (en) Piezoelectric ceramic oral cavity cleaner
JP2019110155A (en) Electronic component bonding tool