JP2007003317A - Probe type step profiler for surface shape measurement and automatic calibration method - Google Patents

Probe type step profiler for surface shape measurement and automatic calibration method Download PDF

Info

Publication number
JP2007003317A
JP2007003317A JP2005182979A JP2005182979A JP2007003317A JP 2007003317 A JP2007003317 A JP 2007003317A JP 2005182979 A JP2005182979 A JP 2005182979A JP 2005182979 A JP2005182979 A JP 2005182979A JP 2007003317 A JP2007003317 A JP 2007003317A
Authority
JP
Japan
Prior art keywords
probe
needle pressure
coil
current
flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005182979A
Other languages
Japanese (ja)
Other versions
JP4659529B2 (en
Inventor
Naoki Mizutani
直樹 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005182979A priority Critical patent/JP4659529B2/en
Publication of JP2007003317A publication Critical patent/JP2007003317A/en
Application granted granted Critical
Publication of JP4659529B2 publication Critical patent/JP4659529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for calibration of force to be performed automatically in a short time after changing the probe for the probe type step profiler and a probe type step profiler provided with the automatic calibration function. <P>SOLUTION: The method obtains the relationship between the current flowing through the coil of the needle pressure generation device and the needle pressure of the probe, from this relationship, the fluctuation of the needle pressure of the probe is automatically calibrated. In the probe type step profiler provided with automatic calibration function is provided with a computer means for automatically calibrating the fluctuation of the needle pressure from the previously obtained relationship between the current flowing through the coil of the needle pressure generation device and the needle pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、試料の表面形状を測定する触針式段差計及びその自動較正方法に関するものである。   The present invention relates to a stylus profilometer for measuring the surface shape of a sample and an automatic calibration method thereof.

本明細書において、用語“試料の表面形状”は試料の段差、膜厚、表面粗さの概念を包含して意味するものとする。   In the present specification, the term “surface shape of the sample” is meant to include the concept of the step, film thickness, and surface roughness of the sample.

従来技術による触針式段差計の一例を添付図面の図8に示す。図8において、Aは探針で支点Bに揺動可能に取り付けられた支持体Cの一端に装着され、またこの一端に隣接して探針Aの垂直方向変位を検出する変位センサDが設けられている。変位センサDは探針Aの垂直方向変位に応じて電気信号を発生する差動トランスから成っている。一方、支持体Cの他端には探針Aに針圧を加える針圧発生装置Eが設けられている。針圧発生装置Eは、コイルFと、コイルFの中心から軸方向にずれた位置に配置された高透磁率材のコアGとを備え、コイルFに流す電流の大きさに応じて発生される、高透磁率材のコアGをコイルFの中心へ引き込む力より探針Aを試料に押し当てるように構成されている。そして試料または図8の検出系を走査することで探針Aは試料表面をなぞり、その表面形状に応じて、固定された支点Bのまわりに微小に回転運動し、その変位を差動トランスDで検出して試料の表面形状や段差が測定される。   An example of a stylus type step meter according to the prior art is shown in FIG. 8 of the accompanying drawings. In FIG. 8, A is attached to one end of a support C which is swingably attached to a fulcrum B by a probe, and a displacement sensor D for detecting the vertical displacement of the probe A is provided adjacent to the one end. It has been. The displacement sensor D is composed of a differential transformer that generates an electrical signal in accordance with the vertical displacement of the probe A. On the other hand, a needle pressure generator E that applies a needle pressure to the probe A is provided at the other end of the support C. The needle pressure generator E includes a coil F and a core G of a high permeability material arranged at a position shifted in the axial direction from the center of the coil F, and is generated according to the magnitude of the current flowing through the coil F. The probe A is configured to be pressed against the sample by a force that pulls the core G of the high permeability material into the center of the coil F. Then, by scanning the sample or the detection system of FIG. 8, the probe A traces the surface of the sample, and finely rotates around the fixed fulcrum B according to the surface shape. And the surface shape and level difference of the sample are measured.

また、測定試料の両面に、測定試料を挟んで二つの触針の先端を接触させ、二つの触針の先端を相互に直接接触させた場合との触針の移動距離の差により測定試料の膜厚を測定するようにした触針式膜厚測定技術は従来公知である(特許文献1参照)。   Also, the tip of the two styluses are brought into contact with both sides of the measurement sample with the measurement sample sandwiched between them, and the difference in the movement distance of the stylus from the case where the tips of the two styluses are in direct contact with each other is measured. A stylus type film thickness measurement technique for measuring a film thickness is conventionally known (see Patent Document 1).

さらに、軸受けを中心として揺動自在のアームの端部に被測定物と接触する触針本体を設け、触針本体と被測定物との接触によって生じるアームの位置を検出して触針本体の変位量を求めるように構成した形状測定装置も公知である(特許文献2参照)。また、弾性ヒンジを介してアームをフレームに回動可能に支持し、アームの一端に触針を設け、アームの他端に可動プレートを設け、可動プレートを二枚の平行プレート間で移動できるようにし、これらのプレートでブリッジ電極を形成し、可動アームの回動によりブリッジのへ平衡が失われ、これにより触針の先端の変位量を測定するように構成した形状測定装置も公知である(特許文献3参照)。
特開平9−229663号 特許第3401444号 特表平8−502357号
Furthermore, a stylus body that contacts the object to be measured is provided at the end of the arm that can swing around the bearing, and the position of the arm that is generated by the contact between the stylus body and the object to be measured is detected. A shape measuring device configured to obtain a displacement amount is also known (see Patent Document 2). In addition, the arm is supported rotatably on the frame via an elastic hinge, a stylus is provided at one end of the arm, a movable plate is provided at the other end of the arm, and the movable plate can be moved between two parallel plates. In addition, a shape measuring device is also known in which a bridge electrode is formed by these plates, and the balance to the bridge is lost by the rotation of the movable arm, thereby measuring the displacement of the tip of the stylus ( (See Patent Document 3).
JP-A-9-229663 Japanese Patent No. 3401444 Special table hei 8-502357

ところで、この種の段差計においては、探針での力すなわち針圧の測定は次のようにして行なわれる。針圧発生装置のコイルに流す電流が0のときは、支点上の可動部の重量バランスにより、針は上に上がった状態になり、ストッパーに当たり静止している。針圧発生装置のコイルに適当な電流を流すと、発生した力により探針は下がる。そのときの針先変位zの時間変化を測定し、時間で2階微分して加速度を求めることにより、針圧を求めることができる。力と加速度の関係は、例えば数10 mgfの領域では、電子天秤等で針先での力Fを測り、そのときのコイル電流Iと力Fの関係を得て、このコイル電流Iでの加速度αを測れば、Fとαの関係が得られる。力と加速度は比例関係なので、比例定数が得られたことになり、任意の加速度の値からそれに対応する力の値を算出できる。 By the way, in this type of step gauge, the force at the probe, that is, the needle pressure is measured as follows. When the current flowing through the coil of the needle pressure generator is 0, the needle is raised upward due to the weight balance of the movable part on the fulcrum and is stationary against the stopper. When an appropriate current is passed through the coil of the needle pressure generator, the probe is lowered by the generated force. The needle pressure can be obtained by measuring the time change of the needle tip displacement z at that time and obtaining the acceleration by second-order differentiation with respect to time. Relationship of the force and acceleration, in the region of, for example, several 10 mgf is measure the force F 1 at the needle tip in the electronic balance, etc., to obtain the relationship between the coil current I 1 and the force F 1 at that time, the coil current I If the acceleration α 1 at 1 is measured, the relationship between F 1 and α 1 is obtained. Since force and acceleration are in a proportional relationship, a proportionality constant is obtained, and a force value corresponding to the value can be calculated from an arbitrary acceleration value.

探針の針圧をF、探針の針先のz方向位置をz、支点のまわりの慣性モーメントをI、支点から針先までの距離をrとし、支点回りの運動方程式を回転角が小さいとして変形すると次式が得られる。

F = I/rz/dt

即ち、力Fが働く場での、質量I/r2の質点の運動とみなすことができる。つまり、前述の比例定数はI/r2 を意味する。
The needle pressure of the probe is F, the z-direction position of the probe tip is z, the moment of inertia around the fulcrum is I, the distance from the fulcrum to the tip is r, and the equation of motion around the fulcrum has a small rotation angle The following equation is obtained by transforming as

F = I / r 2 d 2 z / dt 2

That is, it can be regarded as the motion of the mass point of mass I / r 2 in the field where the force F is applied. In other words, the proportionality constant of the aforementioned means I / r 2.

なお、弱い力での測定が可能なものに原子間力顕微鏡があるが、変位の測定可能範囲は通常は数μmと狭く、制御系もカンチレバーのたわみ量、即ち力が一定になるように変位に対してフィードバックをかけるので測定、制御系が複雑、高価になる。   In addition, there is an atomic force microscope that can measure with weak force, but the measurable range of displacement is usually as narrow as several μm, and the control system is also displaced so that the deflection of the cantilever, that is, the force becomes constant. Since the feedback is applied, the measurement and control system becomes complicated and expensive.

この種の段差計においては、探針の先が摩耗したら針を交換するが、そうすると支点上の可動部の重量バランスが崩れるので、コイル電流と力の関係を改めて求め直す必要がある。表面形状測定時に一般に必要とされる力の範囲は0.05 mgfから20 mgf程度であり、0.05 mgfの弱い力を正確に安定して出せる必要がある。つまり、0.05 mgf程度の弱い力の領域では、コイル電流と力の関係を0.05 mgfより十分に小さい誤差で求め直す必要がある。また、0.05 mgfから20 mgf程度の広い範囲でもその関係を求め直す必要がある。しかし、これらを行うには多大な時間と労力を要する。また、求め直した関係をコンピュータのプログラムに改めて書き込むのに手間がかかることになる。   In this type of level gauge, the tip is replaced when the tip of the probe is worn. However, since the weight balance of the movable portion on the fulcrum is lost, the relationship between the coil current and the force needs to be obtained again. The range of force generally required for surface shape measurement is about 0.05 mgf to 20 mgf, and it is necessary to accurately and stably produce a weak force of 0.05 mgf. That is, in the weak force region of about 0.05 mgf, it is necessary to re-determine the relationship between the coil current and the force with an error sufficiently smaller than 0.05 mgf. In addition, it is necessary to recalculate the relationship even in a wide range of about 0.05 mgf to 20 mgf. However, doing this requires a great deal of time and effort. In addition, it takes time to write the calculated relationship again in the computer program.

本発明が対象としている触針式段差計は、数100μmから数mmまでの範囲の変位が測定可能であり、センサ、計測、制御系が非常に簡単な構造、構成であり安価という利点をもち、しかも変位分解能が測定時定数3msで0.3nmと高いものである。   The stylus profilometer to which the present invention is directed is capable of measuring displacements in the range of several hundreds of μm to several mm, and has the advantage that the sensor, measurement, and control system have a very simple structure and configuration and are inexpensive. Moreover, the displacement resolution is as high as 0.3 nm with a measurement time constant of 3 ms.

そこで、本発明は、触針式段差計において探針を交換した後に行う力の較正を自動的に短時間で正確に行う方法及び該自動較正機能を備えた触針式段差計を提供することを目的としている。   Accordingly, the present invention provides a method for automatically and accurately performing a force calibration performed after replacing a probe in a stylus profilometer and a stylus profilometer having the automatic calibration function. It is an object.

上記の目的を達成するために、本発明の第1の発明によれば、支点に揺動可能に取り付けられた支持体の一端に探針を取付け、この一端に隣接して探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、支持体の他端には探針に針圧を加える針圧発生装置の磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する触針式段差計の自動較正方法において、
針圧発生装置のコイルに流す電流と探針の針圧との関係を求め、求めた関係に基いて探針の針圧の変化を自動的に較正することを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a probe is attached to one end of a support that is swingably attached to a fulcrum, and the probe is perpendicular to the one end. A magnetic core of a displacement sensor that detects displacement is attached, and a magnetic core of a needle pressure generator that applies needle pressure to the probe is attached to the other end of the support, and the surface shape of the sample captured by the probe is supported. In the automatic calibration method of the stylus type step meter that measures with a displacement sensor by the rotational movement around the fulcrum of
It is characterized in that the relationship between the current flowing through the coil of the needle pressure generator and the probe needle pressure is obtained, and the change in the probe needle pressure is automatically calibrated based on the obtained relationship.

本発明の方法においては、探針の交換による重量バランスの崩れによって生じる支点上の探針、変位センサの磁性体コア及び針圧発生装置の磁性体コアを含む可動部の重心のずれが自動的に較正され得る。   In the method of the present invention, the shift of the center of gravity of the movable portion including the probe on the fulcrum, the magnetic core of the displacement sensor, and the magnetic core of the needle pressure generator caused by the loss of weight balance due to the replacement of the probe is automatically performed. Can be calibrated.

本発明の方法の一実施形態では、探針の針圧yを縦軸に、針圧発生装置のコイルに流す電流xを横軸とし、a、b、cを定数とするとき、コイルに流す電流xと探針の針圧yとの関係が、関数y=ax+bx+cで表され、y=0なるx=xを求め、y=ax +bx+c=0からcを求めて、上記関数を縦軸方向にシフトすることにより支点上の可動部の重心のずれが自動的に較正され得る。 In one embodiment of the method of the present invention, when the probe needle pressure y is the vertical axis, the current x flowing through the coil of the needle pressure generator is the horizontal axis, and a, b, and c are constants, the current flows through the coil. The relationship between the current x and the probe needle pressure y is expressed by the function y = ax 2 + bx + c, and x = x 0 where y = 0 is obtained, and c is obtained from y = ax 0 2 + bx 0 + c = 0. The shift of the center of gravity of the movable part on the fulcrum can be automatically calibrated by shifting the function in the vertical axis direction.

本発明の方法においては、探針の針圧yは、探針の変位の時間変化を変位センサで測定し、変位を時間で2階微分し加速度を求め、支点回りの予定の慣性モーメント及び支点と探針との間の距離を用いて求められ得る。  In the method of the present invention, the probe needle pressure y is determined by measuring the time variation of the probe displacement with a displacement sensor, obtaining the acceleration by second-order differentiation of the displacement with respect to time, and calculating the moment of inertia and fulcrum around the fulcrum. And the distance between the probe and the probe.

支点上の可動部の重心のずれの自動的較正はコンピュータ装置によって行なわれ、コイルに流す電流xを粗く変動させ、探針の針圧yが0付近となるコイルに流す電流xを求め、その付近でコイルに流す電流xを細かく変動させ、コイルに流す電流xと探針の針圧yとの関係を求め、狭い範囲にあるコイルに流す電流xと探針の針圧yの関係を一次式で近似し、最小2乗法で適合する一次式を求め、求めた一次式でy=0とおいてxを解き、xとし、そのグラフ上の点(x, 0)を関数y=ax+bx+cで表わされる2次曲線が通るように、cの値を求め、このcの値をコンピュータに記録することから成り得る。 The automatic calibration of the displacement of the center of gravity of the movable part on the fulcrum is performed by a computer device, and the current x flowing through the coil is roughly varied to obtain the current x flowing through the coil where the probe needle pressure y is near 0. The current x flowing through the coil in the vicinity is finely varied to determine the relationship between the current x flowing through the coil and the probe needle pressure y, and the relationship between the current x flowing through the coil in a narrow range and the probe needle pressure y is linear. Approximate with an equation, find a linear equation that fits with the least squares method, solve for x by setting y = 0 in the obtained linear equation, set x 0, and set the point (x 0 , 0) on the graph to the function y = ax It may consist of determining the value of c so that a quadratic curve represented by 2 + bx + c passes and recording this value of c in a computer.

本発明の第2の発明によれば、被測定試料の表面に対して垂直方向に移動可能でしかも被測定試料の表面に沿って相対的に移動可能である探針と;
探針に被測定試料の表面に対して垂直方向に向う針圧を作用させる針圧発生装置と;
探針の垂直方向の変位を検出する変位センサと;
針圧発生装置のコイルに流す電流と探針の針圧との関係を求め、求めた関係に基いて探針の針圧の変化を自動的に較正する制御手段と;
を有することを特徴とする試料の表面形状の測定する触針式段差計が提供される。
According to a second aspect of the present invention, the probe is movable in a direction perpendicular to the surface of the sample to be measured and is relatively movable along the surface of the sample to be measured;
A stylus pressure generator that applies stylus pressure in a direction perpendicular to the surface of the sample to be measured to the probe;
A displacement sensor for detecting the vertical displacement of the probe;
A control means for obtaining a relationship between a current passed through the coil of the needle pressure generator and the probe needle pressure, and automatically calibrating a change in the probe needle pressure based on the obtained relationship;
A stylus profilometer for measuring a surface shape of a sample is provided.

制御手段は、探針の針圧yを縦軸に、針圧発生装置のコイルに流す電流xを横軸とし、a、b、cを定数とするとき、コイルに流す電流xと探針の針圧yとの関係が、関数y=ax+bx+cで表され、表面形状の測定時に、探針の針圧yを設定した後、測定を開始させ、自動でcの値を読み込み、yになるx=xを上記関数から求め、xを出力して針圧発生装置のコイルに流す電流を制御するように構成され得る。 The control means uses the probe needle pressure y as the vertical axis, the current x flowing through the coil of the needle pressure generator as the horizontal axis, and a, b, and c as constants. The relationship with the needle pressure y is expressed by the function y = ax 2 + bx + c. When measuring the surface shape, after setting the probe needle pressure y 1 , the measurement is started and the value of c is automatically read. the x = x 1 comprising 1 determined from the function, may be configured to control the current flowing to output x 1 to the coil of the needle pressure generator.

上述のように、本発明の第1の発明の方法によれば、針圧発生装置のコイルに流す電流と探針の針圧との関係を求め、求めた関係に基いて探針の針圧の変化を自動的に較正するように構成したことにより、針交換の影響は力の一定の変化と考えることができ、コイル電流と力の関係を広範囲で取り直す必要がなく、探針の交換に伴う重量バランスの崩れに対する探針の針圧の較正を短時間で正確に行うことができる。   As described above, according to the method of the first aspect of the present invention, the relationship between the current flowing through the coil of the needle pressure generator and the needle pressure of the probe is obtained, and the needle pressure of the probe is obtained based on the obtained relationship. Since the change of the needle is automatically calibrated, the effect of changing the needle can be considered as a constant change of force, and it is not necessary to reexamine the relationship between the coil current and the force over a wide range. It is possible to accurately calibrate the probe needle pressure with respect to the accompanying loss of weight balance in a short time.

また、本発明の第1の発明の方法において、力が小さい領域での測定結果から、コイル電流と力の関係式を導出することにより、高精度が要求される弱い力の領域での関係式の精度を高くすることができ、その結果、針圧の較正を高精度で行うことができる。   In the method of the first invention of the present invention, the relational expression in the weak force area where high accuracy is required is derived by deriving the relational expression between the coil current and the force from the measurement result in the small force area. As a result, the needle pressure can be calibrated with high accuracy.

また、本発明の第2の発明による触針式段差計では、針圧発生装置のコイルに流す電流と探針の針圧との関係を求め、求めた関係に基いて探針の針圧の変化を自動的に較正する制御手段を設けたことにより、較正及び表面形状測定時での較正結果の使用がコンピュータ装置で自動的になされるので、時間と労力が削減される。  In the stylus profilometer according to the second aspect of the present invention, the relationship between the current flowing through the coil of the needle pressure generator and the needle pressure of the probe is obtained, and the needle pressure of the probe is calculated based on the obtained relationship. By providing a control means for automatically calibrating the changes, the use of the calibration results in the calibration and surface profile measurement is made automatically by the computer device, thus saving time and effort.

以下、添付図面の図1〜図7を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1には、本発明が適用される触針式段差計の一形態を示し、1は固定支持台で、その上に支点2を介して揺動支持棒3が設けられ、この揺動支持棒3の一端には探針4が下向きに取り付けられている。探針4はその先端はダイヤモンドで構成され、また先端の半径は一般的には2.5μmであるが、それより大きくても小さくてもよい。また、揺動支持棒3の他端には探針4に垂直下方の力すなわち針圧を加える力を発生する針圧発生装置5が設けられている。この針圧発生装置5は、揺動支持棒3の他端から上方へのびる磁性体コアから成る作動子5aと作動子5aを受ける穴をもつコイル5bとで構成されている。揺動支持棒3の一端における探針4より支点2側において、探針4の垂直方向の変位を検出する変位センサ6が設けられ、この変位センサ6は揺動支持棒3に一端を固定した磁性体コアから成る測定子6aと測定子6aの他端すなわち自由端を受けるコイル6bとを備えた差動トランスで構成されている。   FIG. 1 shows an embodiment of a stylus step meter to which the present invention is applied. Reference numeral 1 denotes a fixed support base, on which a swing support bar 3 is provided via a fulcrum 2, and this swing support is shown. A probe 4 is attached to one end of the rod 3 downward. The tip of the probe 4 is made of diamond, and the radius of the tip is generally 2.5 μm, but it may be larger or smaller. The other end of the swinging support bar 3 is provided with a needle pressure generating device 5 that generates a force that applies a vertically downward force to the probe 4, that is, a force that applies a needle pressure. This needle pressure generating device 5 is composed of an actuator 5a composed of a magnetic core extending upward from the other end of the swing support rod 3 and a coil 5b having a hole for receiving the actuator 5a. A displacement sensor 6 for detecting the displacement of the probe 4 in the vertical direction is provided on the fulcrum 2 side of the probe 4 at one end of the swing support rod 3. The displacement sensor 6 has one end fixed to the swing support rod 3. It is composed of a differential transformer including a measuring element 6a formed of a magnetic core and a coil 6b that receives the other end of the measuring element 6a, that is, a free end.

また、図1において7は試料ホルダーで、その上に走査ステージ8が探針4に対して予定の操作速度で移動できるように設けられ、この走査ステージ8上には被測定試料9が取り付けられ得る。   In FIG. 1, reference numeral 7 denotes a sample holder, on which a scanning stage 8 is provided so as to be movable at a predetermined operation speed with respect to the probe 4, and a sample 9 to be measured is attached on the scanning stage 8. obtain.

針圧発生装置5及び探針4の垂直方向の変位を検出する変位センサ6は制御手段10に接続され、この制御手段は検出手段6からの出力信号に基いて針圧発生装置5の動作を制御するように構成されている。なお、図1の装置において試料9を固定して探針側を走査するように構成することも可能である。   The displacement sensor 6 for detecting the vertical displacement of the needle pressure generating device 5 and the probe 4 is connected to the control means 10, which controls the operation of the needle pressure generating device 5 based on the output signal from the detection means 6. Configured to control. In the apparatus shown in FIG. 1, the sample 9 can be fixed and the probe side can be scanned.

図2には図1に示す制御手段10の構成の一例を示している。図2において、11はコンピュータ装置で、このコンピュータ装置11はアナログ入出力ボード12を介して、針圧発生装置5におけるコイル5bに接続された針圧発生装置用電源13及び走査ステージ8の駆動装置14にそれぞれ接続されている。また、コンピュータ装置11は、汎用インターフェースボード15を介してデジタルロックイン増幅器及び発振器を備えた検出回路16に接続され、この検出回路16は変位センサ6を成す差動トランスの一次コイル及び二次コイルに接続されている。   FIG. 2 shows an example of the configuration of the control means 10 shown in FIG. In FIG. 2, reference numeral 11 denotes a computer apparatus. This computer apparatus 11 is connected to a needle pressure generator power source 13 connected to a coil 5 b in the needle pressure generator 5 and a drive device for the scanning stage 8 via an analog input / output board 12. 14 respectively. Further, the computer device 11 is connected to a detection circuit 16 having a digital lock-in amplifier and an oscillator via a general-purpose interface board 15, and the detection circuit 16 is a primary coil and a secondary coil of a differential transformer constituting the displacement sensor 6. It is connected to the.

本発明においては、探針4の針圧yと針圧発生装置5におけるコイル5bに流すコイル電流xとの関係は y=ax+bx+c (a、b、cは定数)と表すことができ、探針の交換に伴う重量バランスの崩れの較正は定数cを求め直すことに帰結される。そのためには、y=0になるxの値xを求め、それからcを求め、コンピュータ装置11の記録装置に保存する。この較正操作はコンピュータ装置11により自動で行なわれる。 In the present invention, the relationship between the needle pressure y of the probe 4 and the coil current x flowing through the coil 5b in the needle pressure generator 5 can be expressed as y = ax 2 + bx + c (a, b, and c are constants), The calibration of the weight imbalance caused by the probe replacement results in recalculating the constant c. For this purpose, the value x 0 of x at which y = 0 is obtained, and then c is obtained and stored in the recording device of the computer device 11. This calibration operation is automatically performed by the computer device 11.

以下較正操作について詳細に説明する。上述のように、探針4の針圧yと針圧発生装置5におけるコイル5bに流すコイル電流xとの関係は y=ax+bx+cの二次関数で表すことができる。図3において丸印は測定データで、実線はフィットさせた二次式であり、下向きの力は負で表している。定数a、b、cは、この例ではそれぞれ−2058.3、14.924、0.23332であり、従って二次式はy = −2058.3x2 + 14.924x+ 0.23332である。測定データとフィッティング関数との一致の度合いを示す相関係数は0.99997と高く、非常によくフィットすることを示している。 The calibration operation will be described in detail below. As described above, the relationship between the needle pressure y of the probe 4 and the coil current x flowing through the coil 5b in the needle pressure generator 5 can be expressed by a quadratic function of y = ax 2 + bx + c. In FIG. 3, the circles are measured data, the solid line is a fitted quadratic equation, and the downward force is expressed as negative. The constants a, b and c are in this example −2058.3, 14.924 and 0.23332, respectively, so the quadratic expression is y = −2058.3x 2 + 14.924x + 0.233332. The correlation coefficient indicating the degree of coincidence between the measurement data and the fitting function is as high as 0.99997, which indicates a very good fit.

探針の交換が及ぼす影響は、支点2上の可動部すなわち探針4、変位センサ6の測定子6a及び及び針圧発生装置5の作動子5aの重心位置が変わることである。可動部の構造から重心のz方向への移動は、針圧発生装置5のコイル5bに流す電流xと力yの関係にはほとんど影響しない。支点2と重心位置のx成分の差が問題となる。その差によりコイル電流が0での力(針を上げる方向)が決まっている。つまり、重心位置のずれの影響は、一定の力の増加または減少であり、前述の関数y=ax+bx+cのcの値を変えることである。従って、cの値を正確に求めればよい。 The influence of the replacement of the probe is that the position of the center of gravity of the movable portion on the fulcrum 2, that is, the probe 4, the measuring element 6 a of the displacement sensor 6, and the operating element 5 a of the needle pressure generator 5 changes. The movement of the center of gravity in the z direction from the structure of the movable part has little influence on the relationship between the current x and the force y flowing through the coil 5b of the needle pressure generator 5. A difference between the x component of the fulcrum 2 and the center of gravity is a problem. The difference determines the force (the direction in which the needle is raised) when the coil current is zero. In other words, the influence of the deviation of the center of gravity position is an increase or decrease of a constant force, and is to change the value of c in the above-described function y = ax 2 + bx + c. Therefore, the value of c may be obtained accurately.

特に正確さを要求されるのは小さい力の領域なので、力yが0になる針圧発生装置5のコイル5bに流すコイル電流xを求め、y=ax +bx+c=0からcを求めればよい。針圧発生装置5のコイル5bに流すコイル電流xは、コンピュータ装置11にプログラムすることにより次のようにして自動的に求められる。
1.針圧発生装置5のコイル5bに流すコイル電流xを小さい値から粗く振り、力yが正から負になるxを求める。
2.そのx付近の狭い範囲で、xを細かく振り、xとyの関係を得る。
3.その狭い範囲での関係は1次式で近似でき、その式から針圧発生装置5のコイル5bに流すコイル電流xを求める。
こうして求めたcの値はコンピュータ装置11の記録装置に保存される。
In particular, since accuracy is required in a small force region, the coil current x 0 flowing through the coil 5b of the needle pressure generator 5 where the force y is zero is obtained, and y = ax 0 2 + bx 0 + c = 0 to c You can ask for. Coil current x 0 flowing through the coil 5b of the needle pressure generator 5 is automatically obtained as follows by programming the computer unit 11.
1. The coil current x flowing through the coil 5b of the needle pressure generator 5 is roughly swung from a small value to obtain x where the force y changes from positive to negative.
2. Finely shake x in a narrow range near x to obtain the relationship between x and y.
3. Its relationship to a narrow range can be approximated by a linear equation to determine the coil current x 0 flowing from the expression to the coil 5b of the needle pressure generator 5.
The value of c thus obtained is stored in the recording device of the computer device 11.

以下図4を参照して力の較正の手順について説明する。
計測器のデータメモリやパソコン用のアナログ電圧入力ボードのバッファを用いて10μsから1 ms間隔で変位を計測し、10点程度ごとの移動平均処理等を行えば、実際にはノイズがある変位計測値からでも精度よく加速度、力を求めることができる。
Hereinafter, the procedure of force calibration will be described with reference to FIG.
Measuring displacement at intervals of 10 μs to 1 ms using a data memory of a measuring instrument or a buffer of an analog voltage input board for a personal computer, and performing a moving average process for every 10 points, etc., actually displacement measurement with noise Acceleration and force can be obtained with high accuracy even from values.

このような測定を様々なコイル電流で行い、例えば図3のようなコイル電流と力の関係を得る。コイル電流xと力yの関係は2次式y=ax+bx+cでフィットできる。つまり、フィットするようにa、b、cを求める。そして、それらの値をコンピュータ装置11内に保存しておく。 Such measurement is performed with various coil currents, and for example, the relationship between the coil current and the force as shown in FIG. 3 is obtained. The relationship between the coil current x and the force y can be fitted by a quadratic expression y = ax 2 + bx + c. That is, a, b, and c are obtained so as to fit. These values are stored in the computer device 11.

探針4を交換しないで触針式段差計で表面形状を測定する場合には、それらの値と関係式を使って、指定した力yからそれを出すためのコイル電流xを逆算して求めて出力する。すなわち、コンピュータ装置11は、コンピュータ装置11のファイルに記憶された針圧発生装置5のコイル5bに流すコイル電流xと力yとの関係y=ax+bx+cにおける定数cをファイルから読み込み、指定した力yから針圧発生装置5のコイル5bに流すコイル電流xを計算する。計算したコイル電流xに基き、コンピュータ装置11はアナログ入出力ボード12を介して針圧発生装置用電源13に制御信号を出力する。それにより針圧発生装置用電源13から針圧発生装置5のコイル5bに設定された電流が流され、コイル5bは励磁され、探針4に針圧が加わり、表面形状の測定が行われる。 When measuring the surface shape with a stylus profilometer without replacing the probe 4, the value and relational expression are used to calculate the coil current x for obtaining it from the specified force y. Output. That is, the computer device 11 reads the constant c in the relationship y = ax 2 + bx + c between the coil current x and the force y flowing in the coil 5b of the needle pressure generator 5 stored in the file of the computer device 11 from the file and designates it. A coil current x flowing through the coil 5b of the needle pressure generator 5 is calculated from the force y. Based on the calculated coil current x, the computer device 11 outputs a control signal to the needle pressure generator power source 13 via the analog input / output board 12. As a result, a current set in the coil 5b of the needle pressure generating device 5 is supplied from the power source 13 for the needle pressure generating device, the coil 5b is excited, the needle pressure is applied to the probe 4, and the surface shape is measured.

一方、探針4を交換して触針式段差計で表面形状を測定する場合には、上記関係式において変化した定数cを求め直す。定数cを求め直すために、力yが小さい領域において、力yが0になる針圧発生装置5のコイル5bに流すコイル電流x=xが精密に求められる。すなわち、y=ax +bx+c=0からcを求める。針圧発生装置5のコイル5bに流すコイル電流xは、コンピュータ装置11にプログラムすることにより上述のようにして自動的に求められ、y=ax +bx+c=0からcが求められる。こうして求めた定数cはコンピュータ装置11のファイルに書き直され、交換した探針に合った較正が自動的に行われる。こうした状態で、表面形状を測定する際には、コンピュータ装置11のモニター上で力yを指定すると、cの値が読み込まれ y=ax +bx+cを満たすコイル電圧xが計算され、コンピュータ装置11からアナログ入出力ボード12を介して針圧発生装置用電源13に制御信号を出力する。それにより針圧発生装置用電源13から針圧発生装置5のコイル5bに設定された電流が流され、コイル5bは励磁され、探針4に適切な針圧が加わり、表面形状の測定が行われる。 On the other hand, when the probe 4 is replaced and the surface shape is measured with a stylus profilometer, the constant c changed in the above relational expression is obtained again. In order to re-determine the constant c, the coil current x = x 0 that flows through the coil 5b of the needle pressure generator 5 where the force y becomes 0 is precisely obtained in the region where the force y is small. That is, c is obtained from y = ax 0 2 + bx 0 + c = 0. The coil current x 0 flowing through the coil 5b of the needle pressure generator 5 is automatically obtained as described above by programming the computer device 11, and c is obtained from y = ax 0 2 + bx 0 + c = 0. . The constant c obtained in this way is rewritten in the file of the computer device 11, and calibration suitable for the replaced probe is automatically performed. In this state, when measuring the surface shape, if the force y 1 is specified on the monitor of the computer device 11, the value of c is read and the coil voltage x 1 satisfying y 1 = ax 1 2 + bx 1 + c is calculated. Then, a control signal is output from the computer device 11 to the power source 13 for the needle pressure generator via the analog input / output board 12. As a result, a current set in the coil 5b of the needle pressure generating device 5 is supplied from the power source 13 for the needle pressure generating device, the coil 5b is excited, an appropriate needle pressure is applied to the probe 4, and the surface shape is measured. Is called.

以下、本発明の実施例について例示する。
図5には、探針4の針先の変位の時間変化を測定した例を示す。時間0で針圧発生装置5のコイル5bに流すコイル電流を0から2.36×10−2Aにした後の針先の変位zの時間変化である。z=−1.3mmに下限ストッパーがあり、探針4の針先がこの下限ストッパーに達した後、跳ね返り、振動を繰り返す。
Examples of the present invention will be illustrated below.
In FIG. 5, the example which measured the time change of the displacement of the probe tip of the probe 4 is shown. This is a time change of the needle tip displacement z after the coil current flowing through the coil 5b of the needle pressure generating device 5 at time 0 is changed from 0 to 2.36 × 10 −2 A. There is a lower limit stopper at z = −1.3 mm. After the tip of the probe 4 reaches the lower limit stopper, it bounces and repeats vibration.

図6には、変位センサ6で使用するzの範囲が−0.15から+0.15mmなので、その間(時間は400から450ms)での速度v=dz/dtを求めた結果を示す。なお、図5の時間の原点には意味はなく、横軸の左端でz=+0.15mmであり、右端でz=−0.15mmである。このグラフの傾きから加速度α=dv/dtを求めている。この加速度αから前述のように既知の慣性モーメント、支点と探針との間の距離を用いて探針4の針先での力すなわち針圧が算出され、この例では力は約0.27 mgfである。   In FIG. 6, since the range of z used in the displacement sensor 6 is -0.15 to +0.15 mm, the speed v = dz / dt during that time (time is 400 to 450 ms) is shown. Note that the time origin in FIG. 5 has no meaning, and z = + 0.15 mm at the left end of the horizontal axis and z = −0.15 mm at the right end. The acceleration α = dv / dt is obtained from the slope of this graph. From this acceleration α, the force at the tip of the probe 4, that is, the needle pressure, is calculated using the known moment of inertia and the distance between the fulcrum and the probe as described above. In this example, the force is about 0.27. mgf.

探針4を交換した後には関係式y=ax+bx+cにおいて定数a、bは変化せず、cが変わるので、このcのみを求め直す。そのためには前述のように力yが0になるコイル電流xを求める。この値xを見つけるために、コイル電流xを例えば0Aから0.4×10−2A間隔で増やしながら、力yを測定していく。そうすると力が正から負に変わるx1が見つかる。 After the probe 4 is replaced, the constants a and b do not change and c changes in the relational expression y = ax 2 + bx + c, so only this c is obtained again. For this purpose, the coil current x 0 at which the force y becomes 0 is obtained as described above. This in order to find the values x 0, while increasing the coil current x for example, 0.4 × 10 -2 A distance from 0A, continue to measure the force y. Then you can find x 1 whose force changes from positive to negative.

精度よく値xを出すために、x1の辺りで例えば0.4×10−3A間隔でxを振り、力yを測定する。その結果の例を図7の丸印で示す。針圧発生装置用電源13は電圧ノイズが0.01Vよりも小さいものを用いており、0.05 mgfの弱い力が精度よく測定でき、また出力できることを示している。これら測定データに最小2乗法により1次式でフィットさせたのが図7における実線である。この1次式がx軸を横切るxをxとする。図7から対応する力の誤差が0.05mgfより十分小さくxが決まることが分かる。 In order to give high accuracy values x 0, waving x at around, for example, 0.4 × 10 -3 A distance x 1, to measure the force y. An example of the result is indicated by a circle in FIG. The stylus pressure generator power supply 13 uses a voltage noise of less than 0.01 V, indicating that a weak force of 0.05 mgf can be accurately measured and output. A solid line in FIG. 7 is obtained by fitting these measurement data with a linear equation using the least square method. The primary formula is x 0 to x across the x-axis. Error of corresponding force from 7 it can be seen that determined is sufficiently small x 0 than 0.05Mgf.

このxを用いてy=ax +bx+c=0 とおいて解けばcが求まる。こうして求め直した定数cはコンピュータ装置11のハードディスク内のその値が書かれたファイルを書き直し保存する。表面形状の測定時には、コンピュータ装置11のモニター上で力yを指定すると、そのファイルからcの値が読み込まれ y=ax +bx1+cを満たすコイル電圧xが計算され出力される。 C is obtained by solving at the y = ax 0 2 + bx 0 + c = 0 with the x 0. The constant c thus obtained is rewritten and saved in the file in which the value is written in the hard disk of the computer 11. When measuring the surface shape, if the force y 1 is specified on the monitor of the computer apparatus 11, the value of c is read from the file, and the coil voltage x 1 satisfying y 1 = ax 1 2 + bx1 + c is calculated and output.

ところで、上述の実施形態では、電流で制御しているが、代わりに電圧で制御することもでき、その場合にはコイルの抵抗値は約50Ωであるので、それから換算すれば電圧との関係も求まる。本発明では特に電流の関数とする必要はない。   By the way, in the above-described embodiment, the current is controlled by the current, but it can also be controlled by the voltage instead. In this case, the resistance value of the coil is about 50Ω. I want. In the present invention, it is not necessary to be a function of current.

本発明を実施している触針式段差計の構成を概略部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic partial cross-sectional view of a configuration of a stylus profilometer embodying the present invention. 図1における制御手段の構成の一例を示すブロック線図。The block diagram which shows an example of a structure of the control means in FIG. 針圧発生装置のコイルに流れるコイル電流と力の関係を例示するグラフ。The graph which illustrates the relationship between the coil current which flows into the coil of a needle pressure generator, and force. コンピュータ装置による力の較正の手順を示すフロー線図。The flow diagram which shows the procedure of the calibration of the force by a computer apparatus. 探針の針先変位の時間変化を例示するグラフ。The graph which illustrates the time change of the probe tip displacement of a probe. 探針の針先速度の時間変化を例示するグラフ。The graph which illustrates the time change of the probe tip speed of a probe. 力が0付近での力の測定例を示すグラフ。The graph which shows the example of a measurement of force in the vicinity of force 0. 探針式段差計の従来例を示す概略図。Schematic which shows the prior art example of a probe type level difference meter.

符号の説明Explanation of symbols

1:固定支持台
2:支点
3:揺動支持棒
4:探針
5:針圧発生装置
6:変位センサ
7:試料ホルダー
8:走査ステージ
9:被測定試料
10:制御手段
11:コンピュータ装置
12:アナログ入出力ボード
13:針圧発生装置用電源
14:駆動装置
15:汎用インターフェースボード
16:検出回路

1: Fixed support base 2: Supporting point 3: Swing support rod 4: Probe 5: Needle pressure generator 6: Displacement sensor 7: Sample holder 8: Scan stage 9: Sample to be measured 10: Control means 11: Computer device 12 : Analog I / O board 13: Power supply for needle pressure generator 14: Drive device 15: General-purpose interface board 16: Detection circuit

Claims (8)

支点に揺動可能に取り付けられた支持体の一端に探針を取付け、この一端に隣接して探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、支持体の他端には探針に針圧を加える針圧発生装置の磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する触針式段差計の自動較正方法において、
針圧発生装置のコイルに流す電流と探針の針圧との関係を求め、求めた関係に基いて探針の針圧の変化を自動的に較正することを特徴とする触針式段差計の自動較正方法。
A probe is attached to one end of a support that is swingably attached to a fulcrum, a magnetic core of a displacement sensor that detects the vertical displacement of the probe is attached adjacent to this end, and the other end of the support is attached to the other end of the support. A magnetic core of a needle pressure generator that applies needle pressure to the probe is attached, and automatic calibration of a stylus profilometer that measures the surface shape of the sample captured by the probe with a displacement sensor by rotational movement around the support point In the method
A stylus profilometer that obtains the relationship between the current flowing through the coil of the needle pressure generator and the probe needle pressure, and automatically calibrates the change in the probe needle pressure based on the obtained relationship. Automatic calibration method.
探針の交換による重量バランスの崩れによって生じる支点上の探針、変位センサの磁性体コア及び針圧発生装置の磁性体コアを含む可動部の重心のずれを自動的に較正することを特徴とする請求項1に記載の触針式段差計の自動較正方法。   It is characterized by automatically calibrating the deviation of the center of gravity of the movable part including the probe on the fulcrum caused by the loss of weight balance due to the replacement of the probe, the magnetic core of the displacement sensor, and the magnetic core of the needle pressure generator. The method for automatically calibrating a stylus profilometer according to claim 1. 探針の針圧yを縦軸に、針圧発生装置のコイルに流す電流xを横軸とし、a、b、cを定数とするとき、コイルに流す電流xと探針の針圧yとの関係が、関数y=ax+bx+cで表され、y=0なるx=xを求め、y=ax +bx+c=0からcを求めて、上記関数を縦軸方向にシフトすることにより支点上の可動部の重心のずれを自動的に較正することを特徴とする請求項1又は2に記載の触針式段差計の自動較正方法。 When the probe needle pressure y is the vertical axis, the current x flowing through the coil of the needle pressure generator is the horizontal axis, and a, b, and c are constants, the current x flowing through the coil and the probe needle pressure y Is expressed by a function y = ax 2 + bx + c, and x = x 0 where y = 0 is obtained, c is obtained from y = ax 0 2 + bx 0 + c = 0, and the function is shifted in the vertical axis direction. The automatic calibration method of the stylus type step meter according to claim 1 or 2, wherein the displacement of the center of gravity of the movable part on the fulcrum is automatically calibrated. 探針の針圧yが、探針の変位の時間変化を変位センサで測定し、変位を時間で2階微分し加速度を求め、支点回りの予定の慣性モーメント及び支点と探針との間の距離を用いて求められることを特徴とする請求項1に記載の触針式段差計の自動較正方法。  The probe needle pressure y is measured by measuring the time variation of the probe displacement with a displacement sensor, and the displacement is second-order differentiated with respect to time to obtain the acceleration. The moment of inertia around the fulcrum and the distance between the fulcrum and the probe The method for automatically calibrating a stylus step meter according to claim 1, wherein the method is obtained using a distance. 支点上の可動部の重心のずれの自動的較正がコンピュータ装置によって行なわれることを特徴とする請求項1に記載の触針式段差計の自動較正方法。   2. The method of automatically calibrating a stylus profilometer according to claim 1, wherein automatic calibration of the shift of the center of gravity of the movable portion on the fulcrum is performed by a computer device. コイルに流す電流xを粗く変動させ、探針の針圧yが0付近となるコイルに流す電流xを求め、その付近でコイルに流す電流xを細かく変動させ、コイルに流す電流xと探針の針圧yとの関係を求め、狭い範囲にあるコイルに流す電流xと探針の針圧yの関係を一次式で近似し、最小2乗法で適合する一次式を求め、求めた一次式でy=0とおいてxを解き、xとし、そのグラフ上の点(x, 0)を関数y=ax+bx+cで表わされる2次曲線が通るように、cの値を求め、このcの値をコンピュータ装置に記録することから成る請求項4に記載の触針式段差計の自動較正方法。 The current x flowing through the coil is roughly varied to obtain the current x flowing through the coil at which the probe needle pressure y is near 0, and the current x flowing through the coil is finely varied in the vicinity of the current x flowing through the coil. The relationship between the needle pressure y and the current x flowing through the coil in a narrow range and the probe needle pressure y are approximated by a linear equation, and a linear equation that is suitable for the least squares method is obtained. X is solved by setting y = 0 to x 0, and the value of c is obtained so that a quadratic curve represented by the function y = ax 2 + bx + c passes through the point (x 0 , 0) on the graph. 5. A method for automatically calibrating a stylus profilometer according to claim 4, comprising recording the value of c in a computer device. 被測定試料の表面に対して垂直方向に移動可能でしかも被測定試料の表面に沿って相対的に移動可能である探針と;
探針に被測定試料の表面に対して垂直方向に向う針圧を作用させる針圧発生装置と;
探針の垂直方向の変位を検出する変位センサと;
針圧発生装置のコイルに流す電流と探針の針圧との関係を求め、求めた関係に基いて探
針の針圧の変化を自動的に較正する制御手段と;
を有することを特徴とする試料の表面形状の測定する触針式段差計。
A probe that is movable in a direction perpendicular to the surface of the sample to be measured and is relatively movable along the surface of the sample to be measured;
A stylus pressure generator that applies a stylus pressure in a direction perpendicular to the surface of the sample to be measured to the probe;
A displacement sensor for detecting the vertical displacement of the probe;
A control means for obtaining a relationship between a current flowing through the coil of the needle pressure generator and the probe needle pressure and automatically calibrating a change in the probe needle pressure based on the obtained relationship;
A stylus profilometer for measuring the surface shape of a sample, characterized by comprising:
制御手段は、探針の針圧yを縦軸に、針圧発生装置のコイルに流す電流xを横軸とし、a、b、cを定数とするとき、コイルに流す電流xと探針の針圧yとの関係が、関数y=ax+bx+cで表され、表面形状の測定時に、探針の針圧yを設定した後、測定を開始させ、自動でcの値を読み込み、yになるx=xを上記関数から求め、xを出力して針圧発生装置のコイルに流す電流を制御するように構成されていることを特徴とする請求項7に記載の触針式段差計。
The control means uses the probe needle pressure y as the vertical axis, the current x flowing through the coil of the needle pressure generator as the horizontal axis, and a, b, and c as constants. The relationship with the needle pressure y is expressed by the function y = ax 2 + bx + c. When measuring the surface shape, after setting the probe needle pressure y 1 , the measurement is started and the value of c is automatically read. the x = x 1 comprising 1 determined from the function, stylus according to claim 7, characterized in that it is configured to control the current flowing to output x 1 to the coil of the needle pressure generator Type step gauge.
JP2005182979A 2005-06-23 2005-06-23 Stylus type step gauge for surface shape measurement and automatic calibration method thereof Expired - Fee Related JP4659529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182979A JP4659529B2 (en) 2005-06-23 2005-06-23 Stylus type step gauge for surface shape measurement and automatic calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182979A JP4659529B2 (en) 2005-06-23 2005-06-23 Stylus type step gauge for surface shape measurement and automatic calibration method thereof

Publications (2)

Publication Number Publication Date
JP2007003317A true JP2007003317A (en) 2007-01-11
JP4659529B2 JP4659529B2 (en) 2011-03-30

Family

ID=37689101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182979A Expired - Fee Related JP4659529B2 (en) 2005-06-23 2005-06-23 Stylus type step gauge for surface shape measurement and automatic calibration method thereof

Country Status (1)

Country Link
JP (1) JP4659529B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153503A (en) * 1980-04-23 1981-11-27 Hitachi Ltd Pickup device for recording player
JPS60225001A (en) * 1984-03-30 1985-11-09 スローン・テクノロジー・コーポレーシヨン Regulator for probe force of probe contour measuring device
JPS62110602A (en) * 1986-08-22 1987-05-21 Sony Corp Driving method for tone arm
JPH0410252A (en) * 1990-02-16 1992-01-14 Victor Co Of Japan Ltd Stylus pressure controller
JPH04230801A (en) * 1990-04-28 1992-08-19 Focus Messtechnik Gmbh & Co Kg Scanning head
JPH05126553A (en) * 1991-11-07 1993-05-21 Canon Inc Shape measuring probe and its manufacture
JPH06258004A (en) * 1993-03-04 1994-09-16 Tokyo Seimitsu Co Ltd Surface profile measuring machine
JPH072906U (en) * 1993-06-10 1995-01-17 株式会社東京精密 Surface shape measuring machine
JPH07260470A (en) * 1994-03-16 1995-10-13 Nikon Corp Measuring apparatus of surface shape
JP2003114117A (en) * 2001-10-04 2003-04-18 Mitsutoyo Corp Calibration method and calibration program for probe
JP2004077437A (en) * 2002-08-22 2004-03-11 Mitsutoyo Corp Detector for surface property measuring machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153503A (en) * 1980-04-23 1981-11-27 Hitachi Ltd Pickup device for recording player
JPS60225001A (en) * 1984-03-30 1985-11-09 スローン・テクノロジー・コーポレーシヨン Regulator for probe force of probe contour measuring device
JPS62110602A (en) * 1986-08-22 1987-05-21 Sony Corp Driving method for tone arm
JPH0410252A (en) * 1990-02-16 1992-01-14 Victor Co Of Japan Ltd Stylus pressure controller
JPH04230801A (en) * 1990-04-28 1992-08-19 Focus Messtechnik Gmbh & Co Kg Scanning head
JPH05126553A (en) * 1991-11-07 1993-05-21 Canon Inc Shape measuring probe and its manufacture
JPH06258004A (en) * 1993-03-04 1994-09-16 Tokyo Seimitsu Co Ltd Surface profile measuring machine
JPH072906U (en) * 1993-06-10 1995-01-17 株式会社東京精密 Surface shape measuring machine
JPH07260470A (en) * 1994-03-16 1995-10-13 Nikon Corp Measuring apparatus of surface shape
JP2003114117A (en) * 2001-10-04 2003-04-18 Mitsutoyo Corp Calibration method and calibration program for probe
JP2004077437A (en) * 2002-08-22 2004-03-11 Mitsutoyo Corp Detector for surface property measuring machine

Also Published As

Publication number Publication date
JP4659529B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP5095084B2 (en) Method and apparatus for measuring surface shape of sample
JP4852264B2 (en) Stylus type step gauge for surface shape measurement and its needle pressure correction method
JP2006226964A5 (en)
US7041963B2 (en) Height calibration of scanning probe microscope actuators
JP5124249B2 (en) Level difference measuring method and apparatus using stylus type level difference meter for surface shape measurement
Chetwynd et al. A controlled-force stylus displacement probe
JP4922583B2 (en) Friction force correction method of stylus type step gauge for surface shape measurement
JP5782863B2 (en) Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method
JP4659529B2 (en) Stylus type step gauge for surface shape measurement and automatic calibration method thereof
JP2003337094A (en) Microhardness tester
RU2442131C1 (en) Method for measuring surface texture properties and mechanical properties of the materials
JP2007327826A (en) Method of correcting force of stylus type step difference gage for measuring surface profile
JP4500156B2 (en) Material property evaluation system
JP4909562B2 (en) Surface texture measuring device
JP2005308406A (en) Scanning probe microscope
JP2009063417A (en) Profile measuring device and method for controlling profile measuring device
JP5009560B2 (en) Apparatus for measuring the shape of a thin object to be measured
JPH0989550A (en) High-accuracy surface configuration measuring method and device
JP5095255B2 (en) Air resistance correction method for stylus profilometer for surface shape measurement
WO2024190644A1 (en) Measurement device
JPH0387637A (en) Surface characteristic measuring instrument
JP4671045B2 (en) Material testing machine
JP4918427B2 (en) Method and apparatus for detecting measurement position of resonance sensor
JPS63223539A (en) Method and device for testing fine area strength
JP4761111B2 (en) Horizontal force detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4659529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees