JP5782863B2 - Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method - Google Patents

Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method Download PDF

Info

Publication number
JP5782863B2
JP5782863B2 JP2011140929A JP2011140929A JP5782863B2 JP 5782863 B2 JP5782863 B2 JP 5782863B2 JP 2011140929 A JP2011140929 A JP 2011140929A JP 2011140929 A JP2011140929 A JP 2011140929A JP 5782863 B2 JP5782863 B2 JP 5782863B2
Authority
JP
Japan
Prior art keywords
probe
fulcrum
tip
surface shape
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011140929A
Other languages
Japanese (ja)
Other versions
JP2013007670A (en
Inventor
直樹 水谷
直樹 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011140929A priority Critical patent/JP5782863B2/en
Publication of JP2013007670A publication Critical patent/JP2013007670A/en
Application granted granted Critical
Publication of JP5782863B2 publication Critical patent/JP5782863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、試料の表面形状を測定する触針式段差計の性能改善方法及び該方法を実施した表面形状測定用触針式段差計に関するものであり、特に、本発明は、支点上でバランスする探針と変位センサで構成される触針式段差計の感度と変位分解能を向上させる方法に関する。   The present invention relates to a method for improving the performance of a stylus type step meter for measuring the surface shape of a sample and a stylus type step meter for measuring the surface shape in which the method is carried out. The present invention relates to a method for improving the sensitivity and displacement resolution of a stylus type step meter composed of a probe and a displacement sensor.

本明細書において、用語“試料の表面形状”は試料の段差、膜厚、表面粗さの概念を包含して意味するものとする。   In the present specification, the term “surface shape of the sample” is meant to include the concept of the step, film thickness, and surface roughness of the sample.

本発明が適用される先に提案した触針式段差計の一例を添付図面の図1〜図5に示し、図示触針式段差計は、棒状の第1の支持部材1を有し、この第1の支持部材1はその中間部位に左右両横方向にのびる支点用針取付け部材2を備え、支点用針取付け部材2の両端には二つの支点用針3が取付けられている。これら二つの支点用針3は二つの支点受け部材4(図5)で支持され、それにより第1の支持部材1は支点受け部材4に支点用針3を介して揺動自在に支持される。第1の支持部材1の一端には、変位センサ5の測定子すなわちコア6が取付けられている。この変位センサ5は探針の垂直方向変位に応じて電気信号を発生する差動トランスから成り、コイル7を備えている。   An example of a stylus step meter proposed previously to which the present invention is applied is shown in FIGS. 1 to 5 of the accompanying drawings. The stylus step meter has a rod-shaped first support member 1, The first support member 1 includes a fulcrum needle attachment member 2 extending in the left and right lateral directions at an intermediate portion thereof, and two fulcrum needles 3 are attached to both ends of the fulcrum needle attachment member 2. These two fulcrum needles 3 are supported by two fulcrum receiving members 4 (FIG. 5), whereby the first support member 1 is supported by the fulcrum receiving member 4 so as to be swingable. . At one end of the first support member 1, a measuring element of the displacement sensor 5, that is, a core 6 is attached. The displacement sensor 5 comprises a differential transformer that generates an electrical signal in accordance with the vertical displacement of the probe, and includes a coil 7.

第1の支持部材1の他端には、探針に針圧を加える針圧発生装置8のコア9が設けられ、針圧発生装置8はコイル10を備えている。コア9は、コイル10の中心から軸方向にずれた位置に配置した高透磁率部材から成っている。第1の支持部材1における支点用針取付け部材2の両端の二つの支点用針3を結ぶ線上を中心として、第1の支持部材1の下面には、二つの磁石11を埋め込んだホルダー12が取付けられている。ホルダー12は図3に示すように断面台形の長手方向溝13を備え、この長手方向溝13の両側壁は下方へ向ってテーパー状に開いており、水平平面に対して傾斜面を構成している。ホルダー12に埋め込まれた二つの磁石11は、図1に示すように極性が互いに逆向きになるように配置されている。二つの磁石11を内蔵したホルダー12は軽くするためにカーボンで構成されている。  The other end of the first support member 1 is provided with a core 9 of a needle pressure generator 8 that applies a needle pressure to the probe, and the needle pressure generator 8 includes a coil 10. The core 9 is made of a high magnetic permeability member arranged at a position shifted in the axial direction from the center of the coil 10. A holder 12 having two magnets 11 embedded in the lower surface of the first support member 1 is centered on a line connecting the two fulcrum needles 3 at both ends of the fulcrum needle mounting member 2 of the first support member 1. Installed. As shown in FIG. 3, the holder 12 is provided with a longitudinal groove 13 having a trapezoidal cross section, and both side walls of the longitudinal groove 13 are tapered downward to form an inclined surface with respect to a horizontal plane. Yes. The two magnets 11 embedded in the holder 12 are arranged so that the polarities are opposite to each other as shown in FIG. The holder 12 containing the two magnets 11 is made of carbon in order to reduce the weight.

また図1、図2及び図4において、14は棒状の第2の支持部材でありその先端には探針15が下向きに取付けられ、他端は高透磁率部材16で構成されている。高透磁率部材16の長手方向の両端には上向きにのびるガイド突起17が形成され、これらガイド突起17の対向側面は上方に向って開いた傾斜面として形成される。この高透磁率部材16の傾斜面はホルダー12における長手方向溝13の両側壁の傾斜面と共に、第1の支持部材に第2の支持部材を取付ける際の互いの位置決めを確保すると共にガイドの役割を果たしている。第2の支持部材14の他端における高透磁率部材16は第1の支持部材1におけるホルダー12の溝13に嵌るようにされ、その際に第2の支持部材14の他端における高透磁率部材16はホルダー12の溝の底面に接触し、二つの磁石11には接触しないように構成されている。また溝と高透磁率材部品には図3に示したような傾斜面を設け、互いの位置決めの確保と取付け時のガイドの役割を果たしている。   1, 2, and 4, reference numeral 14 denotes a rod-like second support member. A probe 15 is attached to the tip of the second support member, and the other end is formed of a high permeability member 16. Guide protrusions 17 extending upward are formed at both ends in the longitudinal direction of the high magnetic permeability member 16, and opposing side surfaces of these guide protrusions 17 are formed as inclined surfaces that open upward. The inclined surfaces of the high permeability member 16 together with the inclined surfaces of the both side walls of the longitudinal groove 13 in the holder 12 ensure the mutual positioning when the second support member is attached to the first support member and also serve as a guide. Plays. The high permeability member 16 at the other end of the second support member 14 is fitted in the groove 13 of the holder 12 in the first support member 1, and at that time, the high permeability at the other end of the second support member 14. The member 16 is configured to contact the bottom surface of the groove of the holder 12 and not to contact the two magnets 11. Further, the groove and the high permeability member are provided with inclined surfaces as shown in FIG. 3 to ensure the mutual positioning and serve as a guide when mounting.

さらに図3に示すように、第2支持部材14における高透磁率部材16の下側には板状部材18が設けられ、この板状部材18は磁場遮蔽効果を高めるため、高透磁率の材料で構成され、この板状部材18により交換部品を第1の支持部材1におけるホルダー12の溝13に傾けて近づけても正しい位置に収まるようにしている。図5には、支点用針3を受ける支点受け部材4の構造を拡大して示している。支点受け部材4は図示したように支点用針3を受ける凹面4aを備え、この凹面は逆円錐形状に構成され、支点用針3を精度よく位置決めして受けるようにされている。   Further, as shown in FIG. 3, a plate-like member 18 is provided below the high-permeability member 16 in the second support member 14, and this plate-like member 18 has a high permeability material in order to enhance the magnetic field shielding effect. The plate-like member 18 allows the replacement part to be placed in the correct position even if it is tilted and brought close to the groove 13 of the holder 12 in the first support member 1. FIG. 5 shows an enlarged structure of the fulcrum receiving member 4 that receives the fulcrum needle 3. As shown in the drawing, the fulcrum receiving member 4 has a concave surface 4a for receiving the fulcrum needle 3. The concave surface is formed in an inverted conical shape so that the fulcrum needle 3 is positioned and received with high accuracy.

このように構成した図示触針式段差計においては、両端にそれぞれ変位センサ5及び針圧発生装置8を備え、二つの支点受け部材4に支点用針3を介して揺動自在に支持された第1の支持部材1のホルダー12に、両端にそれぞれ探針15及び高透磁率部材16を備えた第2の支持部材14を磁石の吸着力によって固定する。この場合、ホルダー12における長手方向溝13の両側壁の傾斜面と第2の支持部材14の高透磁率部材16におけるガイド突起17の対向傾斜面とにより、第2の支持部材14は第1の支持部材1のホルダー12に対して予定の位置に正確に位置決めして簡単に固定できる。そして、針圧発生装置8のコイル10に所定の電流を流すことにより、その電流の大きさに応じて力が発生され、この力により針圧発生装置8のコア9はコイル10の中心へ引き込まれる。それにより第1及び第2の支持部材1、14は支点用針3を介して揺動し、探針15を試料に押し当てる。試料又は検出系を走査することにより、探針15は試料表面をなぞり、その表面形状に応じて、固定された支点のまわりに第1及び第2の支持部材1、14が微小に回転運動し、差動トランス5のコア6の変位が検出され、このコア6の変位は例えば、デジタルシグナルプロセッサDSPを用いたデジタルロックインアンプにより低雑音で高精度に測定され、探針15の針先の変位に換算することにより試料の表面形状や段差が測定される。   The illustrated stylus profilometer constructed in this way is provided with a displacement sensor 5 and a needle pressure generating device 8 at both ends, and is supported by two fulcrum receiving members 4 via a fulcrum needle 3 so as to be swingable. A second support member 14 having a probe 15 and a high magnetic permeability member 16 at both ends is fixed to the holder 12 of the first support member 1 by the magnet's attracting force. In this case, the second support member 14 is formed by the inclined surfaces of both side walls of the longitudinal groove 13 in the holder 12 and the opposed inclined surfaces of the guide protrusions 17 in the high permeability member 16 of the second support member 14. The support member 1 can be easily positioned by being accurately positioned at a predetermined position with respect to the holder 12. Then, by applying a predetermined current to the coil 10 of the needle pressure generator 8, a force is generated according to the magnitude of the current, and the core 9 of the needle pressure generator 8 is drawn into the center of the coil 10 by this force. It is. As a result, the first and second support members 1 and 14 swing via the fulcrum needle 3 and press the probe 15 against the sample. By scanning the sample or the detection system, the probe 15 traces the surface of the sample, and the first and second support members 1 and 14 rotate slightly around the fixed fulcrum according to the surface shape. The displacement of the core 6 of the differential transformer 5 is detected, and the displacement of the core 6 is measured with high accuracy with low noise by a digital lock-in amplifier using a digital signal processor DSP, for example. The surface shape and level difference of the sample are measured by converting to displacement.

特開2006−226964JP 2006-226964 A 特開2009−20050JP2009-20050

先に提案した構造では、試料の段差部での針とびを小さくするために、支点と探針の間の距離は大きくされているが、かかる触針式段差計の感度は、変位センサの感度に「支点と変位センサのコアとの間の距離/支点と探針の間の距離」をかけたものなので、小さくなる。ここで感度とは、単位変位量当たりの出力電圧である。上記距離の比は例えば0.5で、感度は0.5倍になる。これは例えば0.03 mgfとこの種の段差計では非常に小さい力で、変形しやすい試料を測定する際でも針がとびにくくするための設計であり、感度よりも針とび抑制を優先している。  In the previously proposed structure, the distance between the fulcrum and the probe is increased in order to reduce the needle jump at the step portion of the sample, but the sensitivity of such a stylus type step gauge is the sensitivity of the displacement sensor. Is multiplied by “distance between fulcrum and displacement sensor core / distance between fulcrum and probe”. Here, the sensitivity is an output voltage per unit displacement. The ratio of the distance is 0.5, for example, and the sensitivity is 0.5 times. This is a design that, for example, 0.03 mgf is a very small force in this kind of step gauge, and makes it difficult for the needle to fly even when measuring easily deformable samples. Yes.

しかし、実際に多く使われる力の範囲は数mgfから10mgfと大きく、その場合は、探針はとびにくいので、支点と探針の間の距離を小さくしてもよいと考えられる。また、「触針式段差計の感度」と「探針のとびにくさ」は相反する関係であるが、触針式段差計の感度が同じでも針とびが小さくなる構造設計にもすべきである。  However, the force range that is frequently used in practice is as large as several mgf to 10 mgf. In this case, the probe is difficult to skip, so the distance between the fulcrum and the probe may be reduced. In addition, “sensitivity of the stylus type step meter” and “proneness of the probe” are contradictory, but it should be designed to reduce the needle jump even if the sensitivity of the stylus type step meter is the same. is there.

そこで、本発明の解決課題は、1mgf以上の実用的な力の領域で、針とびがないまま、段差計の感度と変位分解能をできるだけ向上させることにある。  Therefore, the problem to be solved by the present invention is to improve the sensitivity and displacement resolution of the step gauge as much as possible in the practical force region of 1 mgf or more without any needle jump.

上記の課題を解決するために、本発明の第一の発明に係る表面形状測定用触針式段差計の性能改善方法によれば、支点に揺動可能に取付けられた支持体の一端に探針を取付け、支持体の他端に探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計の性能改善方法において、
Fを探針に加える力、Iを支点回りの慣性モーメント、rを支点−探針間の距離、zを探針の先端の変位、tを時間としたときに成り立つ、探針の先端の運動方程式
F = I/rz/dt
に基づき、
少なくとも探針に加える力Fを1mgf以上として、探針に加える力に応じて支点−探針間の距離rを決め、
支持体を水平にした状態で支点と探針の先端とを結ぶ線が、支点−探針間の水平線より45度下方に傾くように探針の先端を支点に対して下方に下げること
を特徴としている。
In order to solve the above-described problems , according to the method for improving the surface shape measuring stylus profilometer according to the first aspect of the present invention , a probe is provided at one end of a support body swingably attached to a fulcrum. Mount the needle, attach the magnetic core of the displacement sensor that detects the vertical displacement of the probe to the other end of the support, and use the displacement sensor to change the surface shape of the sample captured by the probe by rotating around the support fulcrum. In the method for improving the performance of the stylus profilometer for measuring the surface profile,
F is the force applied to the probe, I is the moment of inertia about the fulcrum, r is the distance between the fulcrum and the probe, z is the displacement of the probe tip, and t is the time. Equation F = I / r 2 d 2 z / dt 2
Based on
At least the force F applied to the probe is set to 1 mgf or more, and the distance r between the fulcrum and the probe is determined according to the force applied to the probe,
The tip of the probe is lowered with respect to the fulcrum so that the line connecting the fulcrum and the tip of the probe is inclined 45 degrees below the horizontal line between the fulcrum and the probe while the support is horizontal. It is said.

また、本発明の第二の発明に係る表面形状測定用触針式段差計によれば、支点に揺動可能に取付けられた支持体の一端に探針を取付け、支持体の他端に探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計において、
Fを探針に加える力、Iを支点回りの慣性モーメント、rを支点−探針間の距離、zを探針の先端の変位、tを時間としたときに成り立つ、探針の先端の運動方程式
F = I/rz/dt
に基づき、
少なくとも探針に加える力Fを1mgf以上として、探針に加える力に応じて支点−探針間の距離rが決められ、さらに、
支持体を水平にした状態で支点と探針の先端とを結ぶ線が、支点−探針間の水平線より45度下方に傾くように探針の先端が支点に対して下方に下がるように構成したこと
を特徴としている。
Further , according to the stylus profilometer for surface shape measurement according to the second aspect of the present invention , a probe is attached to one end of a support that is swingably attached to a fulcrum, and a probe is attached to the other end of the support. A stylus profilometer for measuring the surface shape of a sample that is attached to a magnetic core of a displacement sensor that detects the displacement of the needle in the vertical direction and that measures the surface shape of the sample captured by the probe using a displacement sensor by means of a rotational movement around the fulcrum of the support. In
F is the force applied to the probe, I is the moment of inertia about the fulcrum, r is the distance between the fulcrum and the probe, z is the displacement of the probe tip, and t is the time. Equation F = I / r 2 d 2 z / dt 2
Based on
At least the force F applied to the probe is 1 mgf or more, and the distance r between the fulcrum and the probe is determined according to the force applied to the probe,
The tip of the probe is lowered with respect to the fulcrum so that the line connecting the fulcrum and the tip of the probe in a state where the support is level is inclined 45 degrees below the horizontal line between the fulcrum and the probe. It is characterized by that.

探針に加える力Fに関して、例えば、探針に加える力Fとして従来の16倍の力が用いられる場合には、支点−探針間の距離rは1/4倍にしてもよい(Iは変らないとしている)。そのとき上記運動方程式が変らない(両辺が16倍になるだけで、dz/dtは変らない)ので、探針の先端の運動z(t)は変らない。つまり、「探針のとびにくさ」、「針とびの大きさ」は変らない。具体的な例として、F=0.1mgfで用いるとすると、r=40mmとした段差計では、F=1.6mgfと大きくしてもよいならr=10mmとしても「針のとびにくさ」は同じである。そして、この場合rが1/4倍なので段差計としての感度は4倍になる。 Regarding the force F applied to the probe, for example, when a force 16 times the conventional force F is used as the force F applied to the probe, the distance r between the fulcrum and the probe may be ¼ (I is Is not going to change). At that time, the equation of motion does not change (both sides are 16 times larger and d 2 z / dt 2 does not change), so the motion z (t) of the tip of the probe does not change. That is, the “proneness of the probe” and the “size of the needle” do not change. As a specific example, if it is used at F = 0.1 mgf, if the step meter with r = 40 mm may be increased to F = 1.6 mgf, the “needle skipping difficulty” can be increased even if r = 10 mm. The same. In this case, since r is 1/4 times, the sensitivity as a step meter is 4 times.

また、支点と探針の先端とを結ぶ線を水平より45度傾けることに関して、支点−探針間の水平距離が同じなら、幾何学的考察から「支点と探針の先端を結ぶ線が水平の場合」と感度は同じである。しかし、支点からの探針の先端までの距離はルート2倍大きく、探針の先端の運動方程式をこの2つの場合について比べると、探針のとびの大きさがルート2の逆数の0.707倍になることが分かる。従って、段差計の感度が同じでも針とびが0.707倍に小さくなる。力が同じ場合に針とびの大きさが0.707倍になるのであって、とびの大きさが同じになる力は0.707倍と小さくて済むことが分かる。すなわち、力Fは0.707倍でよいことになり、先の例(『F=0.1mgf、r=40mm』⇒『F=1.6mgf、r=10mm、上記の結ぶ線が水平』)で、上記の線を水平から45度にすると、針とびに関して、力Fは16倍×0.707=11.3倍であり、水平距離を1/4倍にした分を相殺できる。従って『F=1.1mgf、水平距離10mm、45度』で「探針のとびにくさ」は先の例『F=1.6mgf、r=10mm、水平』と同じになる。そしてまた、支点と探針の先端を結ぶ線を水平より45度傾け、探針の先端を下げた場合には、走査時に段差部で探針が上昇する際に、探針が走査の進行方向とは逆方向に後退しながら上昇する。従って、その上昇速度は小さくなる。つまりz方向の初速度が小さくなる。これにより針とびの高さ、とびの時間が小さくなる。   If the horizontal distance between the fulcrum and the probe is the same when the line connecting the fulcrum and the tip of the probe is tilted 45 degrees from the horizontal, the geometrical considerations indicate that the line connecting the fulcrum and the tip of the probe is horizontal. The sensitivity is the same as in the case of. However, the distance from the fulcrum to the tip of the probe is twice as large as the route, and when the equations of motion of the tip of the probe are compared in these two cases, the size of the probe jump is 0.707, which is the reciprocal of route 2. You can see that it doubles. Therefore, even if the sensitivity of the level difference meter is the same, the needle jump is reduced to 0.707 times. It can be seen that when the force is the same, the needle jump size is 0.707 times, and the force at which the jump size is the same is 0.707 times smaller. That is, the force F may be 0.707 times, and the previous example (“F = 0.1 mgf, r = 40 mm” → “F = 1.6 mgf, r = 10 mm, the above connecting line is horizontal”) Thus, when the above line is set at 45 degrees from the horizontal, the force F is 16 times x 0.707 = 11.3 times with respect to the needle jump, and the horizontal distance can be offset by 1/4. Accordingly, “F = 1.1 mgf, horizontal distance 10 mm, 45 degrees” and “probing difficulty of the probe” are the same as the previous example “F = 1.6 mgf, r = 10 mm, horizontal”. In addition, when the line connecting the fulcrum and the tip of the probe is inclined 45 degrees from the horizontal and the tip of the probe is lowered, the probe moves in the scanning direction when the probe rises at the step portion during scanning. Ascends in the opposite direction. Therefore, the rising speed becomes small. That is, the initial velocity in the z direction is reduced. As a result, the needle jump height and jump time are reduced.

本発明によれば、実用的な力の範囲1mgf以上で、感度の大きい段差計を提供することができ、また、感度が同じままで針とびが小さくなる「支点と探針の配置」により、感度が従来の4倍で針とびがない段差計が提供できる。感度向上により変位雑音が低下し、実際の計測で雑音の「ピーク−ピーク」が0.16nmと原子レベルにまで小さくなり、変位分解能が向上する。従って、差動トランスを変位センサに用い、ごく簡単な構造の安価な段差計において、原子レベルの高い変位分解能が得られ、従来は雑音に埋もれて見えなかった表面形状を測定することができるようになる。   According to the present invention, it is possible to provide a step meter having a high sensitivity in a practical force range of 1 mgf or more, and “the arrangement of the fulcrum and the probe” that reduces the needle skip while maintaining the same sensitivity. It is possible to provide a level difference meter that has a sensitivity four times that of the prior art and has no needle skipping. Displacement noise is reduced by improving sensitivity, and the “peak-to-peak” noise is reduced to 0.16 nm at the atomic level in actual measurement, and displacement resolution is improved. Therefore, a differential transformer is used as a displacement sensor, and an inexpensive step gauge with a very simple structure can obtain a high displacement resolution at the atomic level and measure a surface shape that was previously hidden by noise and could not be seen. become.

実用的な探針の力の範囲である1mgf以上において、試料の段差部での探針のとびを起こさずに、感度を向上させ、変位分解能を0.16nmまで向上させることができる。また、支点−探針間の距離と支点−センサ間の距離の比を大きくすることにより、段差計としての感度を向上させることができる。さらに、支点と探針の先端を結ぶ線を水平より45度傾け、探針先を下げることにより、感度の向上率を落とさないまま、「探針がとばないための力」を0.707倍に低減させることができ、これにより、弱い力でも針とびを抑制できるようになると共に、段差部での探針の先端の垂直方向の上昇速度が小さくなり、針とびの大きさが抑制できるようになる。   At a practical probe force range of 1 mgf or more, the sensitivity can be improved and the displacement resolution can be improved to 0.16 nm without causing the probe to skip at the stepped portion of the sample. Further, by increasing the ratio of the distance between the fulcrum-probe and the distance between the fulcrum-sensor, the sensitivity as a step meter can be improved. Further, by tilting the line connecting the fulcrum and the tip of the probe 45 degrees from the horizontal and lowering the probe tip, the “force for preventing the probe from jumping” is reduced to 0.707 without decreasing the sensitivity improvement rate. As a result, the needle jump can be suppressed even with a weak force, and the vertical rising speed of the tip of the probe at the stepped portion can be reduced, thereby suppressing the size of the needle jump. It becomes like this.

本発明の方法を実施している触針式段差計の構成を概略図。The schematic of the structure of the stylus type level difference meter which is implementing the method of this invention. 図1における触針式段差計の要部を下から見た概略線図。The schematic diagram which looked at the principal part of the stylus type level difference meter in FIG. 1 from the bottom. 図1における触針式段差計のホルダー部分の構成を示すA−B線に沿った拡大部分断面図。The expanded partial sectional view along the AB line which shows the structure of the holder part of the stylus type level difference meter in FIG. 図1における触針式段差計のホルダー部分を下から見た図。The figure which looked at the holder part of the stylus type level difference meter in FIG. 1 from the bottom. 図1における触針式段差計の支点部の構造を示す拡大断面図。The expanded sectional view which shows the structure of the fulcrum part of the stylus type level difference meter in FIG. 探針、支点、変位センサコアの配置例を示す図。The figure which shows the example of arrangement | positioning of a probe, a fulcrum, and a displacement sensor core. 探針、支点、変位センサコアの別の配置例を示す図。The figure which shows another example of arrangement | positioning of a probe, a fulcrum, and a displacement sensor core. 探針が下にある場合の探針、支点、変位センサコアの配置例を示す図。The figure which shows the example of arrangement | positioning of a probe, a fulcrum, and a displacement sensor core when a probe is below. 探針が下にある場合の探針、支点、変位センサコアの別の配置例を示す図。The figure which shows another example of arrangement | positioning of a probe, a fulcrum, and a displacement sensor core in case a probe is below. 探針の配置と、支点を中心とした探針の動きを表わす線図。The diagram showing the arrangement of the probe and the movement of the probe around the fulcrum. 試料を走査しないときの変位雑音の測定例を示すグラフ。The graph which shows the example of a measurement of the displacement noise when not scanning a sample. 変位雑音を繰り返して測定した例を示す図。The figure which shows the example which measured displacement noise repeatedly. センサ出力の電圧雑音密度の測定例を示すグラフ。The graph which shows the measurement example of the voltage noise density of a sensor output. 測定可能範囲を16bitで分割した離散値に測定データを丸め込んだ例を示すグラフ。The graph which shows the example which rounded the measurement data to the discrete value which divided | segmented the measurable range by 16 bits. 試料の段差部を0.1mgfで走査した例を示すグラフ。The graph which shows the example which scanned the level | step-difference part of the sample by 0.1 mgf. 試料の段差部を2.1mgfで走査した例を示すグラフ。The graph which shows the example which scanned the level | step-difference part of the sample by 2.1 mgf. 試料上の同じ場所を1.6mgfで3回連続して走査した例を示すグラフ。The graph which shows the example which scanned the same place on a sample 3 times continuously by 1.6 mgf.

以下、本発明の実施の形態について説明する。
図1に示す触針式段差計の構造例において、探針の先端に加える力をF、探針の先端のz方向位置をz、支点の回りの慣性モーメントをI、支点から探針の先端までの距離をrとして、支点の回りの運動方程式を変形すると次式が得られる(例えば特許文献1参照)。

F=I/rz/dt (1)

これは、力Fが働く、質量がI/r の質点の運動とみなすことができる。探針がとんでいる間は、力発生コイルで一定の力が発生しているので、一定の重力場での質点の自由落下運動と同じとみなすことができ、Fが一定ならdz/dtも一定になる。このような場合、探針の先端のz方向の初速(探針の先端が試料表面から離れるときの速さ)をvとし、支点で支えられた可動部分の重心が支点に近いと仮定すると、とびの到達高さh、探針の先端がとんでいる時間(すなわち探針の先端が試料表面を離れた後、再び同じ高さの表面に戻るまでの時間)2tはそれぞれ次式で表わされる。

h=Iv / 2 r F (2)

2t=2 I v / r F (3)
Embodiments of the present invention will be described below.
In the structure example of the stylus profilometer shown in FIG. 1, F is the force applied to the tip of the probe, z is the z-direction position of the tip of the probe, I is the moment of inertia around the fulcrum, and the tip of the probe is from the fulcrum. If the equation of motion around the fulcrum is transformed with the distance up to r, the following equation is obtained (see, for example, Patent Document 1).

F = I / r 2 d 2 z / dt 2 (1)

This is because the force F works and the mass is I / r 2 It can be regarded as a movement of mass points. While the probe is stopped, a constant force is generated by the force generating coil, so it can be regarded as the free fall motion of the mass point in a constant gravitational field. If F is constant, d 2 z / dt 2 is also constant. In such a case, it is assumed that the initial velocity in the z direction of the tip of the probe (the speed at which the tip of the probe moves away from the sample surface) is v 0 and that the center of gravity of the movable part supported by the fulcrum is close to the fulcrum. The height h of the jump and the time when the tip of the probe is broken (that is, the time until the tip of the probe leaves the sample surface and then returns to the surface of the same height) 2t 0 are respectively expressed by the following equations: Represented.

h = Iv 0 2/2 r 2 F (2)

2t 0 = 2 I v 0 / r 2 F (3)

つまり、rが大きいほど針とびは小さい。しかし、図6から分かるように支点−探針間の距離が大きい(図中の数字は長さの比を表わす)と、探針の変位zの変化が小さくなって変位センサコアに伝わるので、段差計としての感度が低下する。0.03mgfまでの小さい力での測定を想定した設計では、rは例えば40mm、支点−変位センサコア間の距離は20mmである(Iは小さい方が、針とびが小さいので、変位センサコアは支点に近い方が針とびに関してはよい)。従って、段差計としての感度は、変位センサの感度の半分になっている。これは感度よりも針とび抑制を優先した設計のためである。   That is, the larger the r, the smaller the needle jump. However, as can be seen from FIG. 6, if the distance between the fulcrum and the probe is large (the number in the figure indicates the ratio of the length), the change in the probe displacement z is reduced and transmitted to the displacement sensor core. Sensitivity as a total is reduced. In a design that assumes measurement with a small force up to 0.03 mgf, r is, for example, 40 mm, and the distance between the fulcrum and the displacement sensor core is 20 mm (the smaller I is, the smaller the needle jump is, so the displacement sensor core is at the fulcrum. The closer one is better for needle skipping). Therefore, the sensitivity of the step gauge is half that of the displacement sensor. This is because of the design that prioritizes needle jump over sensitivity.

実用的な力である約1mgf以上での測定のみを想定するなら、式(1)‐(3)から分かるように、Fが大きい分、rを小さくできる。Iが変化しないとすると、rFが一定なら針とびの大きさは変らない。従って、r ∝ F−0.5の関係からrを決定できる。例えば、Fが16倍ならrは1/4倍でよいことになる(図7)。 Assuming only the measurement at a practical force of about 1 mgf or more, as can be seen from the equations (1) to (3), r can be reduced as F is larger. Assuming that I does not change, the needle jump size does not change if r 2 F is constant. Therefore, r can be determined from the relationship of r F F −0.5 . For example, if F is 16 times, r may be 1/4 times (FIG. 7).

支点の回りの慣性モーメントIが同じなら、「F=0.1mgf、r=40mm」と「F=1.6mgf、r=10mm」とは、針とびに関しては同じである。そして、段差計としての感度は4倍になる。   If the moment of inertia I around the fulcrum is the same, “F = 0.1 mgf, r = 40 mm” and “F = 1.6 mgf, r = 10 mm” are the same with respect to needle skipping. And the sensitivity as a level difference meter becomes 4 times.

試料の段差部で探針がとばないために必要な力Fに関しては、上記のr=40mmの段差計についてI/r=0.114gで、探針の先端の曲率半径2.5μmの場合、針がとばないために必要な力は走査速度100μm/sで0.1mgf程度(段差に依存して0.08mgfから0.18mgf)である。走査速度が半分の50μm/sでは、力Fはその1/4で済む。 Regarding the force F required for the probe not to stop at the step portion of the sample, I / r 2 = 0.114 g for the step meter of r = 40 mm, and the curvature radius of the tip of the probe is 2.5 μm. In this case, the force required for the needle not to stop is about 0.1 mgf (0.08 mgf to 0.18 mgf depending on the step) at a scanning speed of 100 μm / s. When the scanning speed is 50 μm / s, which is half, the force F is ¼.

この段差計において、支点から探針の先端までの距離rを1/4の10mmにするに設定した場合、上記の力Fを16倍にすれば針とびが起きない。つまり、1.6mgf程度以上なら針とびが起きない。これは、実際によく使われる実用的な力の範囲である。   In this step meter, when the distance r from the fulcrum to the tip of the probe is set to 1/4, 10 mm, the needle jump does not occur if the force F is increased 16 times. In other words, needle skipping does not occur at about 1.6 mgf or more. This is a practical power range that is often used in practice.

式(1)に基づいた以上の考察により、実用的な力の範囲1.6mgf程度以上で針とびが起きず、感度が従来の4倍となる段差計が設計できる。   Based on the above consideration based on the formula (1), a step gauge can be designed in which the needle skip does not occur at a practical force range of about 1.6 mgf or more and the sensitivity is four times that of the conventional one.

実際の段差計では、半導体素子用シリコンウエハーや液晶ディスプレイ用ガラス基板などの平坦で広範囲な試料上の、任意の場所で測定できるように、図8及び図9に示すように、探針15は段差計部品のうちで最も下に位置し、図8及び図9の段差計部品を納めて探針15の先端のみが下に突き出た箱型のセンサヘッドが試料上を動く。代わりにセンサヘッドは固定して試料が動くようにしてもよい。従って、支点と探針を結ぶ線は図8及び図9に示すように水平から傾く。図8に示す構造では、支点−探針間の水平距離が40mmであり、図9に示す構造では、水平距離が10mmである例である。図8中の数字2、4及び図9の中の数字1、2は長さの比を表わしている。   As shown in FIGS. 8 and 9, the probe 15 is provided in an actual step gauge so that measurement can be performed at an arbitrary place on a flat and wide sample such as a silicon wafer for a semiconductor element or a glass substrate for a liquid crystal display. A box-shaped sensor head, which is positioned at the bottom of the step meter components and accommodates the step meter components of FIGS. 8 and 9, and only the tip of the probe 15 protrudes downward, moves on the sample. Alternatively, the sensor head may be fixed so that the sample moves. Therefore, the line connecting the fulcrum and the probe is inclined from the horizontal as shown in FIGS. In the structure shown in FIG. 8, the horizontal distance between the fulcrum and the probe is 40 mm, and in the structure shown in FIG. 9, the horizontal distance is 10 mm. The numbers 2 and 4 in FIG. 8 and the numbers 1 and 2 in FIG. 9 represent the length ratio.

図8では、「支点‐探針間の水平距離」は、「支点‐探針の先端間の距離r」の0.97倍で、後述のΔzはΔlの0.97倍であり、ΔzとΔlはほぼ等しいので、探針15の運動は「支点と探針15を結ぶ線」が水平の場合とほぼ同じである。   In FIG. 8, the “horizontal distance between the fulcrum and the probe” is 0.97 times the “distance r between the fulcrum and the tip of the probe”, Δz described later is 0.97 times Δl, and Δz and Δl are Since they are substantially equal, the movement of the probe 15 is substantially the same as when the “line connecting the fulcrum and the probe 15” is horizontal.

図10には支点の回りの探針の動きを示す。探針の先端が点A、B、Cにある場合をそれぞれ考える。θを回転角として探針先の、支点回りの運動方程式は次式で与えられる(θとFは図10で時計回りを正として)。

r F=I dθ/dt (4)

lを接線上の変位として、Δθ=Δl/rより
F=I/rl/dt (5)

探針の先端が点Aでは Δl=Δzより
F=I/rz/dt (6)

探針の先端が点Bでは Δl=1.414 Δzより
F=1.414 I/rz/dt (7)

探針の先端が点Cでは、Iは同じとして、支点までの距離がr、そこでの力がFのときは
F=I/r z/dt
=r/1.414より
F=2I/rz/dt (8)

となる。式(7)と式(8)の比較から、点Bでは点Cより0.707倍の力で同じzの加速度が得られる。よって、針とびを抑える効果としては、点Bでは点Cに比べ0.707倍の弱い力で同じ効果を持つことが分かる。
FIG. 10 shows the movement of the probe around the fulcrum. Consider the case where the tip of the probe is at points A, B, and C, respectively. The equation of motion around the fulcrum of the probe tip is given by the following equation with θ as the rotation angle (θ and F are clockwise in FIG. 10).

r F = I d 2 θ / dt 2 (4)

From Δθ = Δl / r, where l is the tangential displacement, F = I / r 2 d 2 l / dt 2 (5)

When the tip of the probe is point A, from Δl = Δz, F = I / r 2 d 2 z / dt 2 (6)

At the point B of the probe, Δl = 1.414 Δz F = 1.414 I / r 2 d 2 z / dt 2 (7)

When the tip of the probe is point C, I is the same, and when the distance to the fulcrum is r c and the force there is F
F = I / r c 2 d 2 z / dt 2
From r c = r / 1.414 F = 2I / r 2 d 2 z / dt 2 (8)

It becomes. From the comparison between Equation (7) and Equation (8), at point B, the same z acceleration is obtained with a force 0.707 times that at point C. Therefore, it can be seen that the point B has the same effect with a weak force 0.707 times that of the point C as an effect of suppressing the needle jump.

試料表面の高さの変化Δzに対する回転角度、或いはΔlの幾何学的考察から、感度は点Bと点Cで等しいことが分かる。試料表面の高さの変化に伴う、探針の先端のz方向の変化は点Bでも点Cでも当然同じである。つまり、感度は等しいまま、0.707倍の弱い力で針とびを抑えられるので、点Bの方が点Cよりも有利である。なお、点Bでは45度傾いて力が試料にかかるが、特に問題はない。   From the angle of rotation with respect to the change Δz in the height of the sample surface or the geometrical consideration of Δl, it can be seen that the sensitivity is the same at points B and C. The change in the z direction of the tip of the probe accompanying the change in the height of the sample surface is naturally the same at point B and point C. That is, the point B is more advantageous than the point C because the needle jump can be suppressed with 0.707 times weaker force while maintaining the same sensitivity. In addition, at point B, the force is applied to the sample with an inclination of 45 degrees, but there is no particular problem.

以上のことから図9に示す支点と探針15の配置では、図7に示すものに比べて、感度は同じままで、0.707倍の弱い力でも、同じだけの針とび抑制効果がある。先の考察においては、図7では1.6mgf以上で針とびが起きないとしたが、この配置なら1.6mgf×0.707=1.1mgf以上で針とびが起きない。   From the above, in the arrangement of the fulcrum and the probe 15 shown in FIG. 9, the sensitivity remains the same as that shown in FIG. 7, and the same amount of needle jump suppression effect can be obtained even with 0.707 times weaker force. . In the above discussion, in FIG. 7, it is assumed that needle skip does not occur at 1.6 mgf or more. However, in this arrangement, needle jump does not occur at 1.6 mgf × 0.707 = 1.1 mgf or more.

センサヘッドを図10の右方向へ走査する場合に、探針の先端が試料の段差部の下段から上段へ上がるときを考えると、探針の先端は点Bでは、点Aや点Cに比べて図10の左側に動きながらzが増すので、試料の段差部での上昇完了までの時間が長くなる。よってΔz/Δtが小さくなり、上昇速度が小さくなる。それによりz方向の初速度が小さくなり、式(2)、(3)から分かるように針とびは小さくなる。このように「支点と探針を結ぶ線」を水平から例えば45度下げると、探針が段差を上昇する時のz方向の初速度を小さくして、針とびを小さくする効果がある。   When scanning the sensor head to the right in FIG. 10, considering that the tip of the probe rises from the lower stage to the upper stage of the stepped portion of the sample, the tip of the probe is at point B compared to point A or point C. Since z increases while moving to the left in FIG. 10, the time until completion of the rise at the step portion of the sample becomes longer. Therefore, Δz / Δt becomes small and the rising speed becomes small. As a result, the initial velocity in the z direction is reduced, and the needle jump is reduced as can be seen from equations (2) and (3). Thus, when the “line connecting the fulcrum and the probe” is lowered by 45 degrees from the horizontal, for example, the initial velocity in the z direction when the probe moves up the step is reduced, and the needle jump is reduced.

探針が段差を上昇する際には走査方向と逆に探針が動くので、測定データの段差部での立ち上がりが少し鈍くなるが、例えば1μmの段差なら立ち上がりに要する走査距離が1μm長くなるだけなので、実用上は特に問題はない。   When the probe moves up the step, the probe moves in the direction opposite to the scanning direction, so that the rise at the step portion of the measurement data is slightly dull. For example, if the step is 1 μm, the scan distance required for the rise is only 1 μm longer. So there is no problem in practical use.

図9に示す配置で測定した変位雑音の例を図11に示す。支点‐探針間の水平距離は10mmであり、支点‐変位センサコア間の距離は20mmであり、また支点と探針を結ぶ線は水平から45度である。探針を試料上に下ろし、探針に加える力が1.7mgfで、走査はせず静止状態で探針の変位zを1msごとに4秒間測定した結果である。差動トランスの1次電圧は5kHzで、デジタルシグナルプロセッサ(DSP)を用いて構成したデジタルロックインアンプにより2次電圧を測定して変位センサコアの変位を計測し、探針先の変位を算出している。測定データには遮断周波数fc=15Hzの低域通過フィルターLPF(有限インパルス応答FIR、次数90次、ブラックマン窓関数使用)がかけられている。   An example of displacement noise measured with the arrangement shown in FIG. 9 is shown in FIG. The horizontal distance between the fulcrum and the probe is 10 mm, the distance between the fulcrum and the displacement sensor core is 20 mm, and the line connecting the fulcrum and the probe is 45 degrees from the horizontal. The probe is lowered onto the sample, the force applied to the probe is 1.7 mgf, and the probe displacement z is measured for 4 seconds every 1 ms in a stationary state without scanning. The primary voltage of the differential transformer is 5 kHz, the secondary voltage is measured by a digital lock-in amplifier configured using a digital signal processor (DSP), the displacement of the displacement sensor core is measured, and the displacement of the probe tip is calculated. ing. The measured data is subjected to a low-pass filter LPF (finite impulse response FIR, order 90, using Blackman window function) having a cutoff frequency fc = 15 Hz.

探針の感度は図8の構成に比べて3.93倍に増大した。それにより変位雑音も1/4程度(詳細は後述する)に減少し、図11に示す例のように雑音の「ピーク‐ピーク」は0.2nmを下回り非常に小さくなった。図11には、測定データに含まれる0.5Hz以下のうねり相当も合わせて示す。このようなうねり相当分を除去した後の1秒間での「ピーク‐ピーク」を、6秒ごとに100回余り測定した結果を図12に示す。これは探針に加える力が0.18mgfでの測定結果であり、平均値は0.163nmであり、1秒間でのデータの標準偏差は0.034nmであり、2秒間での算術平均粗さRa相当は0.028nmといずれも非常に小さい値であった。なお、探針に加える力が0.85mgfでは、上記の1秒間での「ピーク‐ピーク」は0.162nmであり、また探針に加える力が1.50mgfでは、上記の1秒間での「ピーク‐ピーク」は0.160nmであった。   The probe sensitivity increased 3.93 times compared to the configuration of FIG. As a result, the displacement noise was reduced to about ¼ (details will be described later), and the “peak-peak” of the noise was much smaller than 0.2 nm as in the example shown in FIG. FIG. 11 also shows the swell equivalent of 0.5 Hz or less included in the measurement data. FIG. 12 shows the result of measuring “peak-peak” in 1 second after removing such a corrugated portion more than 100 times every 6 seconds. This is the measurement result when the force applied to the probe is 0.18 mgf, the average value is 0.163 nm, the standard deviation of the data in 1 second is 0.034 nm, and the arithmetic average roughness in 2 seconds The Ra equivalent was 0.028 nm, which was a very small value. When the force applied to the probe is 0.85 mgf, the “peak-peak” in 1 second is 0.162 nm, and when the force applied to the probe is 1.50 mgf, The “peak-peak” was 0.160 nm.

図8の構成では、雑音の1秒間での「ピーク‐ピーク」は0.62nmであったが、0.62nm/3.93=0.158nmであるので、感度増大の効果がほぼそのまま変位雑音の減少として表れていることが分かる。   In the configuration of FIG. 8, the “peak-peak” of noise for 1 second was 0.62 nm, but it was 0.62 nm / 3.93 = 0.158 nm. It can be seen that this appears as a decrease in.

通常のシリコン基板やガラス基板上の薄膜プロセスでの段差を測るための触針式段差計では、上記のような雑音の1秒間での「ピーク‐ピーク」は1〜2nm程度なので、図11及び図12の測定結果は通常よりも1桁程度、変位雑音が小さいと言える。従って、変位分解能は1桁程度高い。   In a stylus type step meter for measuring a level difference in a thin film process on a normal silicon substrate or glass substrate, the “peak-peak” in 1 second of noise as described above is about 1 to 2 nm. It can be said that the measurement result in FIG. Therefore, the displacement resolution is about one digit higher.

図13には、図9の配置構成を用いて探針を試料上に下ろした静止状態で、プリアンプへの入力換算の電圧雑音密度を測定した結果を示す(パワースペクトル密度PSDのルートで、ハニング窓使用)。変位センサの出力電圧の雑音密度である。f=15HzのLPFの手前の測定データからの換算であるが、230Hz分の移動平均処理がなされたデータに関するものである。変位センサと計測器の間のプリアンプには入力換算電圧雑音密度1nV/Hz0.5 の計装アンプを用いている。2次コイルの抵抗の熱雑音や変位センサコアのバルクハウゼン雑音が主な雑音源である。電圧雑音密度の大きさは、変位センサ単体の場合と同程度であり、「支点‐変位センサコア間の距離」/「支点‐探針間の距離」の比で感度が増して、その逆数で変位雑音が低減していることが分かる。 FIG. 13 shows the result of measuring the voltage noise density in terms of input to the preamplifier in a stationary state where the probe is lowered on the sample using the arrangement configuration of FIG. 9 (Hanning in the route of the power spectral density PSD). Use windows). This is the noise density of the output voltage of the displacement sensor. Although it is conversion from the measurement data before LPF of f c = 15 Hz, it relates to the data that has been subjected to the moving average processing for 230 Hz. An instrumentation amplifier having an input conversion voltage noise density of 1 nV / Hz 0.5 is used as a preamplifier between the displacement sensor and the measuring instrument. The main noise sources are the thermal noise of the resistance of the secondary coil and the Barkhausen noise of the displacement sensor core. The magnitude of the voltage noise density is the same as that of the displacement sensor alone. The sensitivity increases with the ratio of “distance between fulcrum-displacement sensor core” / “distance between fulcrum-probe”, and the displacement is the reciprocal thereof. It can be seen that the noise is reduced.

図14は、図11と同様に針を下ろした静止状態での針先変位の時間変化であるが、測定可能範囲を16bit(65536)で分割して、測定データをその離散値に丸め込み、RS‐232CでコンピュータPCへ転送した例を示す。この例では、測定可能範囲が‐833.8nmから+833.8nmを16bitで分割し、0.0254nmごとの離散値になっている。なお、このような単に表示上の分解能でしかない「離散値の間隔」を分解能と呼ぶ場合があるが、それは変位測定装置の測定性能を表わしておらず、本来の変位分解能ではない。   FIG. 14 shows the time change of the needle tip displacement in a stationary state with the needle lowered as in FIG. 11, but the measurable range is divided by 16 bits (65536), and the measurement data is rounded to its discrete value. -An example of transfer to a computer PC at 232C is shown. In this example, the measurable range is divided from −833.8 nm to +833.8 nm by 16 bits, and becomes a discrete value every 0.0254 nm. Note that such a “discrete value interval” that is merely a resolution on display may be referred to as resolution, but it does not represent the measurement performance of the displacement measuring apparatus, and is not the original displacement resolution.

図15には針がとぶ例を示す。図9の配置構成を用いて、探針に加える力0.1mgf、約2μmの段差試料を100μm/sで走査した測定結果を示す。前述のように、この探針の配置及び慣性モーメントIの値、そしてその走査速度では1mgfより小さいと、針がとぶことが計算から分かっている。そのとばないための力よりも、1桁小さい力なので、針が大きくとんでいる。   FIG. 15 shows an example in which a needle jumps. FIG. 10 shows a measurement result obtained by scanning a step sample having a force of 0.1 mgf applied to the probe and about 2 μm at 100 μm / s using the arrangement configuration of FIG. As described above, it is known from the calculation that the needle jumps when the probe arrangement, the value of the moment of inertia I, and the scanning speed are less than 1 mgf. Since the force is an order of magnitude less than the force to stop it, the needle is sharply broken.

図16には、同じ段差を2.1mgfで測定した結果を示す。1.4mgfでも同様の結果であり、針はとばなかった。つまり、前述の考察のとおりの結果が、実際の測定で確認された。   In FIG. 16, the result of having measured the same level | step difference by 2.1 mgf is shown. The same result was obtained with 1.4 mgf, and the needle was not skipped. That is, the result as the above-mentioned consideration was confirmed by actual measurement.

実用的に多く使われる1mgf以上の力の範囲では、針とびがなく、感度が従来の4倍であり、変位分解能(雑音の1秒間でのピーク−ピーク)が0.16nmと原子レベルの段差計が製作できた。   In the force range of 1 mgf or more, which is often used practically, there is no needle skipping, the sensitivity is 4 times that of the conventional one, and the displacement resolution (peak-to-peak in 1 second of noise) is 0.16 nm and the level difference at the atomic level A total was made.

図17には、図9の配置構成を用いて、探針に加える力1.6mgfで、試料上の同じ場所を3回、71μm/sで走査した測定結果を示す。LPFはf=15Hzでベッセル特性1次で処理している。1回目の測定データからその最小二乗回帰曲線4次多項式を引いたのが太線で、2回目の測定データから同じ多項式を引き定数を加えたのが細線、3回目の測定データから同じ多項式を引き別の定数を加えたのが点線である。 FIG. 17 shows the measurement results of scanning the same place on the sample three times at 71 μm / s with the force of 1.6 mgf applied to the probe using the arrangement configuration of FIG. The LPF is processed with a Bessel characteristic first order at f c = 15 Hz. The least square regression curve quartic polynomial is subtracted from the first measurement data, and the same polynomial is subtracted from the second measurement data and the constant is added. The thin line is the same polynomial from the third measurement data. The dotted line adds another constant.

測定結果の再現性を調べるために、測定値から上記の一定値を引いた。図17の縦軸の値が一致するように上記の定数を決めている。図17から定数分は別として0.1〜0.2nm程度の範囲で測定結果が再現していることが分かる。このことから0.1〜0.2nm程度の原子レベルの変位分解能でz方向の表面形状が測定できることが確認できた。   In order to examine the reproducibility of the measurement result, the above-mentioned constant value was subtracted from the measurement value. The above constants are determined so that the values on the vertical axis in FIG. FIG. 17 shows that the measurement results are reproduced in the range of about 0.1 to 0.2 nm, apart from the constants. From this, it was confirmed that the surface shape in the z direction can be measured with an atomic level displacement resolution of about 0.1 to 0.2 nm.

1:第1の支持部材
2:支点用針取付け部材
3 :支点用針
4 :支点受け部材
5 :変位センサ
6 :コア
7 :コイル
8 :針圧発生装置
9 :コア
10:針圧発生装置8のコイル
15:探針
1: first support member 2: fulcrum needle mounting member 3: fulcrum needle 4: fulcrum receiving member 5: displacement sensor 6: core 7: coil 8: needle pressure generator 9: core 10: needle pressure generator 8 Coil 15: probe

Claims (2)

支点に揺動可能に取付けられた支持体の一端に探針を取付け、
支持体の他端に探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、
探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計の性能改善方法において、
Fを探針に加える力、Iを支点回りの慣性モーメント、rを支点−探針間の距離、zを探針の先端の変位、tを時間としたときに成り立つ、探針の先端の運動方程式
F = I/rz/dt
に基づき、
少なくとも探針に加える力Fを1mgf以上として、
探針に加える力に応じて支点−探針間の距離rを決め、
支持体を水平にした状態で支点と探針の先端とを結ぶ線が、支点−探針間の水平線より45度下方に傾くように探針の先端を支点に対して下方に下げること
を特徴とする表面形状測定用触針式段差計の性能改善方法。
Attach a probe to one end of a support that is swingably attached to a fulcrum,
Attach the magnetic core of the displacement sensor that detects the vertical displacement of the probe to the other end of the support,
In the method for improving the performance of a stylus-type step gauge for measuring the surface shape, which measures the surface shape of the sample captured by the probe with a displacement sensor by the rotational movement around the support point of
F is the force applied to the probe, I is the moment of inertia about the fulcrum, r is the distance between the fulcrum and the probe, z is the displacement of the probe tip, and t is the time. Equation F = I / r 2 d 2 z / dt 2
Based on
At least force F applied to the probe is 1 mgf or more,
The distance r between the fulcrum and the probe is determined according to the force applied to the probe,
Lowering the tip of the probe downward with respect to the fulcrum so that the line connecting the fulcrum and the tip of the probe with the support level is inclined 45 degrees below the horizontal line between the fulcrum and the probe <br> A method for improving the performance of a stylus profilometer for measuring the surface shape.
支点に揺動可能に取付けられた支持体の一端に探針を取付け、支持体の他端に探針の垂直方向変位を検出する変位センサの磁性体コアを取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する表面形状測定用触針式段差計において、
Fを探針に加える力、Iを支点回りの慣性モーメント、rを支点−探針間の距離、zを探針の先端の変位、tを時間としたときに成り立つ、探針の先端の運動方程式
F = I/rz/dt
に基づき、
少なくとも探針に加える力Fを1mgf以上として、探針に加える力に応じて支点−探針間の距離rが決められ、さらに、
支持体を水平にした状態で支点と探針の先端とを結ぶ線が、支点−探針間の水平線より45度下方に傾くように探針の先端が支点に対して下方に下がるように構成したこと
を特徴とする表面形状測定用触針式段差計。
A probe is attached to one end of a support that is swingably attached to a fulcrum, and a magnetic core of a displacement sensor that detects the vertical displacement of the probe is attached to the other end of the support. In a stylus type step meter for measuring the surface shape, which measures the surface shape with a displacement sensor by rotational movement around the fulcrum of the support,
F is the force applied to the probe, I is the moment of inertia about the fulcrum, r is the distance between the fulcrum and the probe, z is the displacement of the probe tip, and t is the time. Equation F = I / r 2 d 2 z / dt 2
Based on
At least the force F applied to the probe is 1 mgf or more, and the distance r between the fulcrum and the probe is determined according to the force applied to the probe,
The tip of the probe is lowered with respect to the fulcrum so that the line connecting the fulcrum and the tip of the probe in a state where the support is level is inclined 45 degrees below the horizontal line between the fulcrum and the probe. A stylus-type step gauge for measuring surface shape.
JP2011140929A 2011-06-24 2011-06-24 Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method Active JP5782863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140929A JP5782863B2 (en) 2011-06-24 2011-06-24 Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140929A JP5782863B2 (en) 2011-06-24 2011-06-24 Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method

Publications (2)

Publication Number Publication Date
JP2013007670A JP2013007670A (en) 2013-01-10
JP5782863B2 true JP5782863B2 (en) 2015-09-24

Family

ID=47675134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140929A Active JP5782863B2 (en) 2011-06-24 2011-06-24 Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method

Country Status (1)

Country Link
JP (1) JP5782863B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157637A (en) * 2015-06-06 2015-12-16 合肥铭锋模具铸造有限公司 Tester
KR101944080B1 (en) * 2018-07-24 2019-01-30 황재은 Shape measurement apparatus
EP3842731B1 (en) * 2018-08-23 2024-03-06 Big Daishowa Co., Ltd. Misalignment determining device
CN109141334A (en) * 2018-08-31 2019-01-04 北京万高众业科技股份有限公司 A kind of radian detecting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511331A (en) * 1994-03-18 1997-11-11 ランク・テイラー・ホブソン・リミテッド Measuring probe assembly
JP2000065508A (en) * 1998-08-17 2000-03-03 Sanko:Kk Strain/displacement detecting apparatus
JP3967274B2 (en) * 2003-02-27 2007-08-29 株式会社ミツトヨ measuring device
JP5095084B2 (en) * 2005-02-21 2012-12-12 株式会社アルバック Method and apparatus for measuring surface shape of sample
JP4852264B2 (en) * 2005-06-23 2012-01-11 株式会社アルバック Stylus type step gauge for surface shape measurement and its needle pressure correction method
JP5173292B2 (en) * 2007-07-13 2013-04-03 株式会社アルバック Measuring method of surface shape of sample

Also Published As

Publication number Publication date
JP2013007670A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
Palacio et al. Normal and lateral force calibration techniques for AFM cantilevers
KR102126069B1 (en) Microelectromechanical system and methods of use
JP5095084B2 (en) Method and apparatus for measuring surface shape of sample
JP5782863B2 (en) Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method
JP2006226964A5 (en)
JP4852264B2 (en) Stylus type step gauge for surface shape measurement and its needle pressure correction method
JP5124249B2 (en) Level difference measuring method and apparatus using stylus type level difference meter for surface shape measurement
JP2012185037A (en) Friction force microscope
JP2006170971A (en) Driving head, and personal atomic microscope provided therewith
JP5164743B2 (en) Cantilever, cantilever system, probe microscope and adsorption mass sensor
Chetwynd et al. A controlled-force stylus displacement probe
JP4922583B2 (en) Friction force correction method of stylus type step gauge for surface shape measurement
JP5009564B2 (en) Surface following type measuring instrument
RU2442131C1 (en) Method for measuring surface texture properties and mechanical properties of the materials
KR100634213B1 (en) Driving head and personal atomic force microscope having the same
JP2007327826A (en) Method of correcting force of stylus type step difference gage for measuring surface profile
CN1275026C (en) Ultra micro quantity detecting device and detecting method
JP2013007666A (en) Stylus type step profiler for surface shape measurement and measurement accuracy improvement method in the same
JP2001264373A (en) Apparatus and method for measurement of piezoelectric constant of piezoelectric thin film
JP4659529B2 (en) Stylus type step gauge for surface shape measurement and automatic calibration method thereof
RU108842U1 (en) DEVICE FOR RESEARCH OF MICROMECHANICAL CHARACTERISTICS OF SOLID BODIES INdentation
JP2001235304A (en) Method of measuring accuracy of straight motion using straightness measuring apparatus
JP2013007667A (en) Measurement accuracy improvement method in stylus type step profiler for surface shape measurement and device
JP4761111B2 (en) Horizontal force detector
JP5095255B2 (en) Air resistance correction method for stylus profilometer for surface shape measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5782863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250