JP2007327826A - Method of correcting force of stylus type step difference gage for measuring surface profile - Google Patents

Method of correcting force of stylus type step difference gage for measuring surface profile Download PDF

Info

Publication number
JP2007327826A
JP2007327826A JP2006158606A JP2006158606A JP2007327826A JP 2007327826 A JP2007327826 A JP 2007327826A JP 2006158606 A JP2006158606 A JP 2006158606A JP 2006158606 A JP2006158606 A JP 2006158606A JP 2007327826 A JP2007327826 A JP 2007327826A
Authority
JP
Japan
Prior art keywords
probe
force
fulcrum
displacement
stylus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006158606A
Other languages
Japanese (ja)
Inventor
Naoki Mizutani
直樹 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006158606A priority Critical patent/JP2007327826A/en
Publication of JP2007327826A publication Critical patent/JP2007327826A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of correcting force of a stylus type step difference gage for measuring a surface profile, capable of compensating dependency of the force to a probe position and a dispersion of a component dimension, in the stylus type step difference gage for measuring the surface profile. <P>SOLUTION: In this method of correcting the force of the stylus type step difference gage, the probe is provided in one end of a support body attached swingably to a fulcrum, a magnetic substance core of a displacement sensor is provided to detect a vertical directional displacement of the probe, and a magnetic substance core of a stylus pressure generator is attached to the support body to apply stylus pressure to the probe, and the surface profile of a sample captured by the probe is measured by the displacement sensor, based on a rotational motion around the fulcrum of the support body. In the method, a relation between a displacement component z of a stylus tip of the probe and the force in the stylus tip of the probe is measured preliminarily to find a relational expression so as to be programmed in a computer, the displacement component z of the stylus tip of the probe is monitored in real time when measuring the surface profile, and a change of the displacement component z of the stylus tip of the probe is compensated by controlling a current flowing in a force generating coil by the computer, using the relational expression. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、試料の表面形状を測定する触針式段差計の力の補正方法に関するものである。   The present invention relates to a method for correcting the force of a stylus type step gauge for measuring the surface shape of a sample.

本明細書において、用語“試料の表面形状”は試料の段差、膜厚、表面粗さの概念を包含して意味するものとする。   In the present specification, the term “surface shape of the sample” is meant to include the concept of the step, film thickness, and surface roughness of the sample.

この種の段差計としては従来、先端が試料表面に接触する探針と、探針を試料表面に一定の負荷で接触させる針圧発生装置と、その負荷方向と直交する方向に振動して探針を試料表面に対して平行運動で往復動させる装置と、振動付加時の探針の試料に対する摩擦力に対応する振動の大きさを検出する検出装置とを備えた構造のものが知られている(特許文献1参照)。
特開平3−87637号
Conventionally, this type of step gauge has a probe whose tip contacts the sample surface, a needle pressure generator that contacts the sample surface with a constant load, and a probe that vibrates in a direction perpendicular to the load direction. Known to have a structure with a device that reciprocates the needle in parallel with the sample surface and a detection device that detects the magnitude of vibration corresponding to the frictional force of the probe against the sample when vibration is applied. (See Patent Document 1).
JP-A-3-87737

本発明者は、先に、特願2005−199337において、表面形状測定用触針式段差計を提案した。この触針式段差計は、添付図面の図1〜図6に示すように、棒状の第1の支持部材1を有し、この第1の支持部材1はその中間部位に左右両横方向にのびる支点用針取付け部材2を備え、支点用針取付け部材2の両端には二つの支点用針3が取付けられている。これら二つの支点用針3は二つの支点受け部材4(図6)で支持され、それにより第1の支持部材1は支点受け部材4に支点用針3を介して揺動自在に支持される。第1の支持部材1の一端には、変位センサ5の測定子すなわちコア6が取付けられている。この変位センサ5は探針の垂直方向変位に応じて電気信号を発生する差動トランスから成り、コイル7を備えている。   The present inventor previously proposed a stylus-type step gauge for surface shape measurement in Japanese Patent Application No. 2005-199337. As shown in FIGS. 1 to 6 of the accompanying drawings, this stylus type step gauge has a rod-shaped first support member 1, and this first support member 1 is located in the left and right lateral directions at an intermediate portion thereof. A fulcrum needle attachment member 2 is provided, and two fulcrum needles 3 are attached to both ends of the fulcrum needle attachment member 2. These two fulcrum needles 3 are supported by two fulcrum receiving members 4 (FIG. 6), whereby the first support member 1 is supported by the fulcrum receiving member 4 in a freely swingable manner. . At one end of the first support member 1, a measuring element of the displacement sensor 5, that is, a core 6 is attached. The displacement sensor 5 comprises a differential transformer that generates an electrical signal in accordance with the vertical displacement of the probe, and includes a coil 7.

また、第1の支持部材1の他端には、探針に針圧を加える針圧発生装置8のコア9が設けられ、針圧発生装置8はコイル10を備えている。コア9は、コイル10の中心から軸方向にずれた位置に配置した高透磁率部材から成っている。   The other end of the first support member 1 is provided with a core 9 of a needle pressure generator 8 that applies a needle pressure to the probe, and the needle pressure generator 8 includes a coil 10. The core 9 is made of a high magnetic permeability member arranged at a position shifted in the axial direction from the center of the coil 10.

また、第1の支持部材1における支点用針取付け部材2の両端の二つの支点用針3を結ぶ線上を中心として、第1の支持部材1の下面には、二つの磁石11を埋め込んだホルダー12が取付けられている。ホルダー12は図3に示すように断面台形の長手方向溝13を備え、この長手方向溝13の両側壁は下方へ向ってテーパー状に開いており、水平平面に対して傾斜面を構成している。ホルダー12に埋め込まれた二つの磁石11は、図1に示すように極性が互いに逆向きになるように配置されている。二つの磁石11を内蔵したホルダー12は軽くするためにカーボンで構成されている。   A holder in which two magnets 11 are embedded in the lower surface of the first support member 1 around the line connecting the two fulcrum needles 3 at both ends of the fulcrum needle mounting member 2 of the first support member 1. 12 is attached. As shown in FIG. 3, the holder 12 is provided with a longitudinal groove 13 having a trapezoidal cross section, and both side walls of the longitudinal groove 13 are tapered downward to form an inclined surface with respect to a horizontal plane. Yes. The two magnets 11 embedded in the holder 12 are arranged so that the polarities are opposite to each other as shown in FIG. The holder 12 containing the two magnets 11 is made of carbon in order to reduce the weight.

また図1、図2、図4及び図6において、14は棒状の第2の支持部材でありその先端には探針15が下向きに取付けられ、他端は高透磁率部材16で構成されている。高透磁率部材16の長手方向の両端には上向きにのびるガイド突起17が形成され、これらガイド突起17の対向側面は上方に向って開いた傾斜面として形成される。この高透磁率部材16の傾斜面はホルダー12における長手方向溝13の両側壁の傾斜面と共に、第1の支持部材1に第2の支持部材14を取付ける際の互いの位置決めを確保すると共にガイドの役割を果たしている。第2の支持部材14の他端における高透磁率部材16は第1の支持部材1におけるホルダー12の溝13に嵌るようにされ、その際に第2の支持部材14の他端における高透磁率部材16はホルダー12の溝の底面に接触し、二つの磁石11には接触しないように構成されている。   In FIG. 1, FIG. 2, FIG. 4 and FIG. 6, reference numeral 14 denotes a rod-like second support member. A probe 15 is attached to the tip of the second support member, and the other end is formed of a high permeability member 16. Yes. Guide protrusions 17 extending upward are formed at both ends in the longitudinal direction of the high magnetic permeability member 16, and opposing side surfaces of these guide protrusions 17 are formed as inclined surfaces that open upward. The inclined surface of the high magnetic permeability member 16 and the inclined surfaces of both side walls of the longitudinal groove 13 in the holder 12 ensure the mutual positioning when the second support member 14 is attached to the first support member 1 and guide. Plays the role of The high permeability member 16 at the other end of the second support member 14 is fitted in the groove 13 of the holder 12 in the first support member 1, and at that time, the high permeability at the other end of the second support member 14. The member 16 is configured to contact the bottom surface of the groove of the holder 12 and not to contact the two magnets 11.

また、第1の支持部材1及び第2支持部材14は慣性モーメントを小さくするために軽いカーボンで構成されている。一方、密度が高く質量が大きい第2支持部材14における高透磁率部材16及び第1の支持部材1におけるホルダー12内の磁石11は、支点まわりの慣性モーメントを小さくするために、支点の近くに配置している。  The first support member 1 and the second support member 14 are made of light carbon in order to reduce the moment of inertia. On the other hand, the high permeability member 16 in the second support member 14 having a high density and a large mass and the magnet 11 in the holder 12 in the first support member 1 are close to the fulcrum in order to reduce the moment of inertia around the fulcrum. It is arranged.

さらに図3に示すように、第2支持部材14における高透磁率部材16の下側には板状部材18が設けられ、この板状部材18は磁場遮蔽効果を高めるため、高透磁率の材料で構成され、この板状部材18により交換部品を第1の支持部材1におけるホルダー12の溝13に傾けて近づけても正しい位置に収まるようにしている。   Further, as shown in FIG. 3, a plate-like member 18 is provided below the high-permeability member 16 in the second support member 14, and this plate-like member 18 has a high permeability material in order to enhance the magnetic field shielding effect. The plate-like member 18 allows the replacement part to be placed in the correct position even if it is tilted and brought close to the groove 13 of the holder 12 in the first support member 1.

上述のように第1の支持部材1におけるホルダー12に埋め込まれた磁石11は極性が逆になるように配置したことにより、磁気双極子が離れた場所に作る磁場が小さくなるので、差動トランス5、針圧発生装置8及び試料での磁場を小さくできる。また、この配置により磁石11の下部では磁力線が第2の支持部材14における高透磁率部材16の中を通るので、その下方及び探針位置の試料での磁場が小さくなる。  As described above, the magnet 11 embedded in the holder 12 in the first support member 1 is arranged so that the polarity is reversed, so that the magnetic field created in the place where the magnetic dipole is separated becomes small. 5. The magnetic field in the needle pressure generator 8 and the sample can be reduced. Further, due to this arrangement, the magnetic lines of force pass through the high permeability member 16 in the second support member 14 below the magnet 11, so that the magnetic field in the sample below and at the probe position is reduced.

図5には、支点用針3を受ける支点受け部材4の構造を拡大して示している。支点受け部材4は図示したように支点用針3を受ける凹面4aを備え、この凹面は逆円錐形状に構成され、支点用針3を精度よく位置決めして受けるようにされている。   FIG. 5 shows an enlarged structure of the fulcrum receiving member 4 that receives the fulcrum needle 3. As shown in the drawing, the fulcrum receiving member 4 has a concave surface 4a for receiving the fulcrum needle 3. The concave surface is formed in an inverted conical shape so that the fulcrum needle 3 is positioned and received with high accuracy.

図6には図1に示す触針式表面形状測定器を枠体19に組込んだ状態を示し、二つの支点受け部材4は枠体19の下部枠部材19a、19bに固定されている。支点上の可動部は枠体19の中に収められ、枠体19の外側にはパネル(図示していない)が取付けられ、風による揺れや温度変化を防ぐようにしている。変位センサ5のコイル、支点受け部材4、針圧発生装置8のコイル10は、この枠体19内で枠体19に対して固定されている。図6では見やすくするために変位センサ5のコイル及び針圧発生装置8のコイル10は省略されている。これら2種のコイルは上方からそれぞれのコイルに被さり、枠体19にねじ等で固定される。図6の枠体19を含めた変位センサ5、針圧発生装置、及び支点上のその他の可動部から成る部分をセンサヘッドと呼ぶ。斜め上方からカメラで探針15をモニターするために、探針15は枠体19から突き出す構造にし、探針15を支える棒状体すなわち第2の支持部材14に沿った形の細い風除けカバー(図示していない)が枠体19の前部に取付けられる。第2の支持部材14の先端付近の上下にはストッパー(図示していない)が設けられ、探針15の動く範囲が制限される。   FIG. 6 shows a state in which the stylus type surface shape measuring instrument shown in FIG. 1 is incorporated in the frame body 19, and the two fulcrum receiving members 4 are fixed to the lower frame members 19 a and 19 b of the frame body 19. The movable part on the fulcrum is housed in the frame body 19 and a panel (not shown) is attached to the outside of the frame body 19 so as to prevent the vibration and temperature change caused by the wind. The coil of the displacement sensor 5, the fulcrum receiving member 4, and the coil 10 of the needle pressure generator 8 are fixed to the frame body 19 in the frame body 19. In FIG. 6, the coil of the displacement sensor 5 and the coil 10 of the needle pressure generator 8 are omitted for easy viewing. These two types of coils are covered with the coils from above and fixed to the frame 19 with screws or the like. A portion including the displacement sensor 5 including the frame body 19 of FIG. 6, the needle pressure generator, and other movable parts on the fulcrum is referred to as a sensor head. In order to monitor the probe 15 obliquely from above with a camera, the probe 15 protrudes from the frame 19 and is a rod-shaped body that supports the probe 15, that is, a thin windbreak cover that is shaped along the second support member 14 (see FIG. (Not shown) is attached to the front of the frame 19. Stoppers (not shown) are provided above and below the tip of the second support member 14 to limit the range in which the probe 15 moves.

このように構成した図示触針式表面形状測定器においては、両端にそれぞれ変位センサ5及び針圧発生装置8を備え、二つの支点受け部材4に支点用針3を介して揺動自在に支持された第1の支持部材1のホルダー12に、両端にそれぞれ探針15及び高透磁率部材16を備えた第2の支持部材14を磁石の吸着力によって固定する。この場合、ホルダー12における長手方向溝13の両側壁の傾斜面と第2の支持部材14の高透磁率部材16におけるガイド突起17の対向傾斜面とにより、第2の支持部材14は第1の支持部材1のホルダー12に対して予定の位置に正確に位置決めして簡単に固定できる。   The illustrated stylus type surface shape measuring instrument configured as described above includes a displacement sensor 5 and a needle pressure generating device 8 at both ends, and is supported by two fulcrum receiving members 4 via a fulcrum needle 3 so as to be swingable. The second support member 14 provided with the probe 15 and the high magnetic permeability member 16 at both ends is fixed to the holder 12 of the first support member 1 by magnet attracting force. In this case, the second support member 14 is formed by the inclined surfaces of both side walls of the longitudinal groove 13 in the holder 12 and the opposed inclined surfaces of the guide protrusions 17 in the high permeability member 16 of the second support member 14. The support member 1 can be easily positioned by being accurately positioned at a predetermined position with respect to the holder 12.

そして、針圧発生装置8のコイル10に所定の電流を流すことにより、その電流の大きさに応じて力が発生され、この力により針圧発生装置8のコア9はコイル10の中心へ引き込まれる。それにより第1及び第2の支持部材1、14は支点用針3を介して揺動し、探針15を試料に押し当てる。試料又は検出系を走査することにより、探針15は試料表面をなぞり、その表面形状に応じて、固定された支点のまわりに第1及び第2の支持部材1、14が微小に回転運動し、差動トランス5のコア6の変位が検出され、このコア6の変位を探針15の針先の変位に換算することにより試料の表面形状や段差が測定される。   Then, by applying a predetermined current to the coil 10 of the needle pressure generator 8, a force is generated according to the magnitude of the current, and the core 9 of the needle pressure generator 8 is drawn into the center of the coil 10 by this force. It is. As a result, the first and second support members 1 and 14 swing via the fulcrum needle 3 and press the probe 15 against the sample. By scanning the sample or the detection system, the probe 15 traces the surface of the sample, and the first and second support members 1 and 14 rotate slightly around the fixed fulcrum according to the surface shape. Then, the displacement of the core 6 of the differential transformer 5 is detected, and the displacement of the core 6 is converted into the displacement of the probe tip of the probe 15 to measure the surface shape and level difference of the sample.

図7には、支点上の可動部の重心と支点(支点用針3を受ける支点受け部材4)の位置関係の例を示す。支点を×、重心を●で示し、右端が探針15である。図7の(a)は支点と重心のz成分が一致している場合で、図7の(b)は重心が支点より下にある場合である。探針が上がると支点まわりの回転運動により、図7の(b)に示すように重心のx成分に変化Δxが生じる。これにより支点と重心のx成分の差が変化し、探針15を上げる力が変化する。探針15を下げようとする針圧発生装置8(コイル電流とコア9)による力の探針位置への依存は小さいので、トー夕ルの力において重心のx成分の変化が問題となる。探針15の位置(z成分)によって力が変化するようでは、表面形状(探針15のz成分が変化する)を一定の力で測定できないことになる。   FIG. 7 shows an example of the positional relationship between the center of gravity of the movable part on the fulcrum and the fulcrum (fulcrum receiving member 4 that receives the fulcrum needle 3). The fulcrum is indicated by x, the center of gravity is indicated by ●, and the right end is the probe 15. FIG. 7A shows a case where the fulcrum and the z component of the center of gravity coincide, and FIG. 7B shows a case where the center of gravity is below the fulcrum. When the probe moves up, a change Δx occurs in the x component of the center of gravity as shown in FIG. As a result, the difference between the x component of the fulcrum and the center of gravity changes, and the force to raise the probe 15 changes. Since the dependence of the force on the probe position by the needle pressure generator 8 (coil current and core 9) trying to lower the probe 15 is small, a change in the x component of the center of gravity becomes a problem in the torque of the torque. If the force changes depending on the position of the probe 15 (z component), the surface shape (the z component of the probe 15 changes) cannot be measured with a constant force.

この重心のx成分の変化は図7から分かるように、支点と重心のz成分の差が小さいほど小さい。従って、力の探針位置への依存を小さくするために、可動部の設計、組立において、支点と重心のz成分の差を小さくする必要がある。   As can be seen from FIG. 7, the change in the x component of the center of gravity is smaller as the difference between the fulcrum and the z component of the center of gravity is smaller. Therefore, in order to reduce the dependence of the force on the probe position, it is necessary to reduce the difference between the z component of the fulcrum and the center of gravity in the design and assembly of the movable part.

上記の重心位置の問題の他に、支点を構成する支点用針3の針先の曲率半径の問題もある。針先の曲率半径は0ではなく有限なので、図7に示した回転に伴い、支点用針3の針先と支点受け部材4との間の接触位置が移動すると考えられる。それにより支点と重心間の距離Rが変わるので、探針15での力が変化する。図7でみると、探針15が上がると、接触点である支点は左に移動し、「重心に働く重力が探針を上げる力」が減り、針圧発生装置8を加えたトータルでは探針15を下げる力が増す。この支点の移動を小さくするために支点用針3の針先の曲率半径は小さく作られる。しかし、使用するにつれ、支点用針3の針先は摩耗、変形するので、その曲率半径には自ずと限界がある。   In addition to the above-described problem of the center of gravity, there is also a problem of the radius of curvature of the needle tip of the fulcrum needle 3 constituting the fulcrum. Since the radius of curvature of the needle tip is not zero but limited, it is considered that the contact position between the needle tip of the fulcrum needle 3 and the fulcrum receiving member 4 moves with the rotation shown in FIG. As a result, the distance R between the fulcrum and the center of gravity changes, so that the force at the probe 15 changes. As shown in FIG. 7, when the probe 15 is raised, the fulcrum, which is the contact point, moves to the left, and the "force that the gravity acting on the center of gravity raises the probe" is reduced. The force to lower the needle 15 is increased. In order to reduce the movement of the fulcrum, the radius of curvature of the tip of the fulcrum needle 3 is made small. However, as the needle tip of the fulcrum needle 3 is worn and deformed as it is used, its radius of curvature is naturally limited.

図8には探針15での力の探針位置zへの依存性の測定例を示し、上向きの力を正としている。力発生コイル10に25.4mAの電流を流し、探針15が上部ストッパーの位置から降り、下部ストッパーで眺ね返り振動する際のzの時間変化を測定し、時間で2階微分し加速度を求め、それから力を算出して、探針15のzに対してプロットした例である。図9はそのときの探針15のzの時間変化、図10は2階微分して得た加速度から求めた力の時間変化である。なお、加速度と力の間の比例定数は予め電子天秤で実際の力を測定して求めた。   FIG. 8 shows a measurement example of the dependency of the force at the probe 15 on the probe position z, and the upward force is positive. A current of 25.4 mA is passed through the force generating coil 10, the time change of z is measured when the probe 15 descends from the position of the upper stopper, looks back and vibrates at the lower stopper, and the acceleration is obtained by second-order differentiation with time. In this example, the force is calculated and the force is calculated and plotted against z of the probe 15. FIG. 9 shows the time change of z of the probe 15 at that time, and FIG. 10 shows the time change of the force obtained from the acceleration obtained by second-order differentiation. The proportional constant between acceleration and force was obtained in advance by measuring the actual force with an electronic balance.

この例では重心のzを支点のそれに近づけるための特別な微調整(バランス用重りの位置、質量の微調整)は行っていない。このセンサヘッドのzの使用範囲は±0.15mmを想定しており、その範囲では、−0.275mgf/mmの力のzへの依存がある(図8の破線参照)。つまり、使用範囲の0.3mmでは、0.275×0.3=0.0825mgfだけ力が変化するため、想定している0.05mgfの一定の力での表面形状測定ができないことになる。   In this example, no special fine adjustment (position of balance weight, fine adjustment of mass) for making z of the center of gravity close to that of the fulcrum is performed. The use range of z of this sensor head is assumed to be ± 0.15 mm, and in this range, there is a dependence of the force of −0.275 mgf / mm on z (see the broken line in FIG. 8). That is, in the use range of 0.3 mm, the force changes by 0.275 × 0.3 = 0.0825 mgf, and thus the surface shape cannot be measured with a constant force of 0.05 mgf.

長時間の手間をかけた試行錯誤により、バランス用重りの位置、質量の微調整を行っても、実際には−0.15mgf/mm程度が限界であり、使用範囲の0.3mmでは、0.15×0.3=0.045mgfだけ力が変化し、必ずしも0.05mgfで一定にはならない。或いは、0.05mgfで一定であると言えるzの範囲が狭い。   Even if the position and mass of the balance weight are finely adjusted by trial and error with a long time and effort, the actual limit is about -0.15 mgf / mm. The force changes by .15 × 0.3 = 0.045 mgf and is not always constant at 0.05 mgf. Alternatively, the range of z that can be said to be constant at 0.05 mgf is narrow.

なお、上記の「zに対する力の傾き」が負でないと、表面形状測定時に探針15が段差部分で上にとんだときに、上がったまま下りてこないことも考えられる。そのことも、上記傾きを0に近づけきれない理由の一つである。   If the above-mentioned “slope of force with respect to z” is not negative, it may be considered that the probe 15 does not come down while it is raised when the probe 15 stops at the step portion during surface shape measurement. This is also one of the reasons why the inclination cannot be brought close to zero.

支点用針3は1φの棒の先を研磨により尖らせているために、その部品の全長の誤差として0.1mm程度は避けられない。つまり、同じ設計のもとに製作しても、支点と重心のzの差が0.1mm程度ばらつき、センサヘッドごとにバランス用重りの位置、質量の長時間を要する微調整が必要になる。   Since the fulcrum needle 3 sharpens the tip of a 1φ rod by polishing, an error of about 0.1 mm is inevitable as an error in the total length of the part. In other words, even if manufactured under the same design, the difference between the fulcrum and the center of gravity z varies by about 0.1 mm, and fine adjustment that requires a long time for the position of the balance weight and mass for each sensor head is required.

図7を参照して例を挙げて説明する。可動部の質量4.3g、支点と探針15との間の距離r=60mmとする。コイル電流を0にしたときに探針15が上部ストッパーに戻る速さを考え、そのときは探針15での力が上向きに2.5mgfとすると、支点と重心のz成分の差はR=35μmとなる。このとき、支点と重心z成分の差Zが0.1mmとすると、探針15の針先のz成分が+0.15mmと−0.15mmでは、0.036mgf力が異なることが幾何学的考察から分かる。つまり、支点用針部品の全長寸法の0.1mmの誤差は無規できず、部品ごとにバランス調整が必要となる。なお、支点用針部品の組立においては、その上部で位置決めをせざるを得ないので、全長の誤差は下端、即ち支点部に反映される。しかし、仮に微調整を終えたとしても、その後の使用に伴う支点用針3の針先の摩耗により、「探針位置と力の関係」は変化してしまう。   An example will be described with reference to FIG. The mass of the movable part is 4.3 g, and the distance r between the fulcrum and the probe 15 is 60 mm. Considering the speed at which the probe 15 returns to the upper stopper when the coil current is set to 0, if the force at the probe 15 is 2.5 mgf upward, the difference between the z component of the fulcrum and the center of gravity is R = 35 μm. At this time, if the difference Z between the fulcrum and the center of gravity z component is 0.1 mm, the geometrical consideration is that the 0.036 mgf force is different when the z component of the tip of the probe 15 is +0.15 mm and −0.15 mm. I understand. That is, an error of 0.1 mm in the overall length of the fulcrum needle part cannot be ruled out, and balance adjustment is required for each part. In the assembly of the fulcrum needle part, positioning must be performed at the upper part thereof, so that the error in the total length is reflected at the lower end, that is, the fulcrum part. However, even if fine adjustment is finished, the “relationship between the probe position and the force” changes due to wear of the tip of the fulcrum needle 3 that accompanies subsequent use.

上記バランス調整(図7のZを小さくする調整)においては、支点用針3の針先の曲率半径が十分に小さければ、支点上の可動部を実体振り子とみなして、その周期から支点と重心のz成分の差Zを判断できる。この周期が長くなるようにバランス用重りを配置した後、コイル電流0で探針15が上がるように、その重りを−x方向(図7で左方向)にずらせばよい。質量M=4.30g、回転軸(支点)周りの慣性モーメントI=740gmmの例では、周期T=2π(I/MgoL)0.5 が1秒では、回転軸と重心の距離Lは0.68mm、T=2秒では、L=0.17mmと計算される。前述の−0.15mgf/mmの微調整結果の例では、その依存性の傾きの値から幾何学的考察により図7のZは0.125mmと見積もられ、その場合のバランス時(L=0.125mm)の周期は2.33秒と計算される。これは、このときの周期の測定値2.3秒に一致する。コイル10に電流を流してバランスさせ、周期を測定してもよい。 In the balance adjustment (adjustment for reducing Z in FIG. 7), if the radius of curvature of the needle tip of the fulcrum needle 3 is sufficiently small, the movable part on the fulcrum is regarded as an actual pendulum, and the fulcrum and the center of gravity are determined from the cycle. The difference Z between the z components can be determined. After arranging the balance weight so that this period becomes longer, the weight may be shifted in the −x direction (left direction in FIG. 7) so that the probe 15 is raised by the coil current 0. In the example of the mass M = 4.30 g and the moment of inertia I = 740 gmm 2 around the rotation axis (fulcrum), when the period T = 2π (I / MgoL) 0.5 is 1 second, the distance L between the rotation axis and the center of gravity is 0. For .68 mm and T = 2 seconds, L = 0.17 mm is calculated. In the example of the fine adjustment result of −0.15 mgf / mm described above, Z in FIG. 7 is estimated to be 0.125 mm by geometrical consideration from the value of the slope of the dependency, and in that case at the time of balance (L = The period of 0.125 mm is calculated as 2.33 seconds. This coincides with the measurement value of 2.3 seconds at this time. The current may be passed through the coil 10 to be balanced, and the period may be measured.

上記で説明したように、この種の表面形状測定用触針式段差計においては、支点と重心のz成分の僅かなずれは避けられず、また、支点用針の針先の曲率半径は有限であり、それらにより探針のzが変化すると探針での力が変化し、表面形状を一定の力で測定することができない。また、支点と重心のz成分の差、及び、支点用針の針先の曲率半径は、支点用針の針先の摩耗により大きくなり、使用するにつれ、探針での力の探針位置zへの依存が大きくなる。   As described above, in this type of surface shape measuring stylus type step gauge, a slight shift of the z component between the fulcrum and the center of gravity is inevitable, and the radius of curvature of the needle point of the fulcrum needle is finite. When the z of the probe changes due to them, the force at the probe changes, and the surface shape cannot be measured with a constant force. Further, the difference between the z component of the fulcrum and the center of gravity, and the radius of curvature of the stylus tip of the fulcrum needle become larger due to wear of the stylus tip of the fulcrum needle, and the probe probe position z of the force at the probe is used as it is used. Dependence on becomes larger.

そこで、本発明は、この種の表面形状測定用触針式段差計に伴う問題点を解決して力の探針位置への依存性及び部品寸法のばらつきを補償できる表面形状測定用触針式段差計の力の補正方法を提供することを目的としている。  Therefore, the present invention solves the problems associated with this type of surface shape measurement stylus profilometer and compensates for the dependency of the force on the probe position and the variation in component dimensions. It aims at providing the correction method of the power of a level difference meter.

上記の目的を達成するために、本発明によれば、支点に揺動可能に取付けられた支持体の一端に探針を設け、探針の垂直方向変位を検出する変位センサの磁性体コアを設け、探針に針圧を加える針圧発生装置の磁性体コアを支持体に取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する触針式段差計の力の補正方法において、
探針の針先の変位成分zと探針の針先での力の関係を予め測定して関係式を求めてコンピュータにプログラムしておき、表面形状測定時には探針の針先の変位成分zをリアルタイムでモニターし、その関係式を用いて力発生用コイルに流す電流をコンピュータで制御することにより、探針の針先の変位成分zの変化を補償することを特徴としている。
In order to achieve the above object, according to the present invention, a probe is provided at one end of a support that is swingably attached to a fulcrum, and a magnetic core of a displacement sensor that detects vertical displacement of the probe is provided. A stylus type that provides a magnetic core of a needle pressure generator that applies needle pressure to the probe and attaches it to the support, and measures the surface shape of the sample captured by the probe with a displacement sensor by rotational movement around the fulcrum of the support In the method of correcting the force of the step meter,
The relationship between the displacement component z of the probe tip and the force at the probe tip is measured in advance and a relational expression is obtained and programmed in a computer, and when the surface shape is measured, the displacement component z of the probe tip is measured. Is monitored in real time, and the current flowing through the force generating coil is controlled by a computer using the relational expression to compensate for the change in the displacement component z of the probe tip.

本発明による触針式段差計の力の補正方法においては、探針の針先の変位成分zをリアルタイムでモニターし、力の補正量f(z)を計算し、探針の針先の変位成分zと探針の針先での力の関係を予め測定して求めた関係式により出力すべきコイル電流を求める。   In the method for correcting the force of the stylus step meter according to the present invention, the displacement component z of the probe tip is monitored in real time, the force correction amount f (z) is calculated, and the probe tip displacement is calculated. The coil current to be output is obtained by a relational expression obtained by measuring in advance the relationship between the component z and the force at the probe tip.

また、長期間の使用に伴う支点用針先の摩耗時には、探針の針先の変位成分zと探針の針先での力との関係式を求め直してコンピュータにおけるプログラムを変更することにより探針位置と力の関係の変化を補償して力を一定にする。   In addition, when the fulcrum needle tip is worn due to long-term use, the relationship between the displacement component z of the probe tip and the force at the probe tip is recalculated and the computer program is changed. The force is made constant by compensating for the change in the relationship between the probe position and the force.

本発明による触針式段差計の力の補正方法においては、リアルタイムでモニターする探針位置から、出力すべき力発生用コイル電流値を、予め測定しておいた「探針位置と力の関係」を基にして出力するので、従来避けられなかった「力の探針位置への依存」を簡単かつ確実に小さくできる。その結果、従来行われていた、部品寸法のばらつきに応じてバランス用重りの位置(x、z成分)、質量を試行錯誤で探るという大きな手間を省くことができるようになる。   In the method of correcting the force of the stylus profilometer according to the present invention, the coil current value for generating the force to be output is measured in advance from the probe position monitored in real time. Since the output is based on "", the "dependence of force on the probe position", which has been unavoidable in the past, can be easily and reliably reduced. As a result, it is possible to save a large amount of time and effort to search for the position (x, z component) and mass of the balance weight according to the variation of the component dimensions, which has been conventionally performed.

また、探針を交換して重心のz成分が変化しても、「探針位置と力の関係」を求め直してプログラムを書き換えれば、簡単に「力の探針位置への依存」を小さくできる。   In addition, even if the z component of the center of gravity changes after the probe is changed, if the program is rewritten by recalculating the “relationship between the probe position and force”, the “dependence of force on the probe position” can be easily reduced. it can.

さらに、長期使用により支点用針先が摩耗して、「力の探針位置への依存」が変化しても、上記同様、プログラムの変更だけで「力の探針位置への依存」の変化を簡単に補償できる。   Furthermore, even if the stylus tip is worn by long-term use and the “dependence of force on the probe position” changes, the change in “dependence of force on the probe position” can be changed just by changing the program as described above. Can be easily compensated.

以下、添付図面の図11〜図15を参照して本発明の実施形態について説明する。なお、触針式段差計としては先に提案した図1〜図6に示す構成のものを使用する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 11 to 15 of the accompanying drawings. In addition, as a stylus type level difference meter, the thing of the structure shown previously in FIGS. 1-6 is used.

図11には測定及び制御系の構成の一例を示している。図11において、21はコンピュータ装置で、このコンピュータ装置21はアナログ入出力ボード22を介して、針圧発生装置8におけるコイル10に接続された針圧発生装置用電源23及び走査ステージ24の駆動装置25にそれぞれ接続されている。また、コンピュータ装置21は、汎用インターフェースボード26を介してデジタルロックイン増幅器及び発振器を備えた検出回路27に接続され、この検出回路27は変位センサ5を成す差動トランス28の一次コイル及び二次コイルに接続されている。   FIG. 11 shows an example of the configuration of the measurement and control system. In FIG. 11, reference numeral 21 denotes a computer device. The computer device 21 is a drive device for a needle pressure generator power source 23 and a scanning stage 24 connected to the coil 10 in the needle pressure generator 8 via an analog input / output board 22. 25, respectively. The computer device 21 is connected to a detection circuit 27 having a digital lock-in amplifier and an oscillator via a general-purpose interface board 26. The detection circuit 27 is a primary coil and a secondary coil of a differential transformer 28 constituting the displacement sensor 5. Connected to the coil.

本発明においては、差動トランス28の出力電圧を検出回路27のロックイン増幅器で計測し、そのアナログ出力をコンピュータ装置21で読み、変位zに換算する。この変位zの値から針圧発生装置8におけるコイル10に流すべき電流を計算し、針圧発生装置用電源23を制御する。この制御を変位zの読込みごとに行う。   In the present invention, the output voltage of the differential transformer 28 is measured by the lock-in amplifier of the detection circuit 27, and the analog output is read by the computer device 21 and converted into the displacement z. A current to be passed through the coil 10 in the needle pressure generator 8 is calculated from the value of the displacement z, and the power source 23 for the needle pressure generator is controlled. This control is performed every time the displacement z is read.

図12に計測、制御の時間的流れを示す。針圧発生装置8におけるコイル10に流すコイル電流Xと探針15での力Fの関係はF=aX+bX+c(a、b、cは定数)でよくフィットし、a、b、cを予め求めておき、指定した力に対応するコイル電流をこの式から計算し、出力する。 FIG. 12 shows the time flow of measurement and control. The relationship between the coil current X flowing through the coil 10 in the needle pressure generator 8 and the force F at the probe 15 fits well with F = aX 2 + bX + c (a, b, c are constants), and a, b, c are set in advance. The coil current corresponding to the specified force is calculated from this formula and output.

まず探針15での力F0を指定し、この力F0で測定したいときは、F0=aX0+bX0+cを満たすXOを求め出力する。しかし、この関係式は例えば変位z=0での関係式であり、変位zが0から変化すると、コイル電流がX0のままでは、探針15での力はF0とは異なる値に変化する。 First, when the force F0 at the probe 15 is designated and measurement is desired with this force F0, XO satisfying F0 = aX0 2 + bX0 + c is obtained and output. However, this relational expression is a relational expression when the displacement z = 0, for example. When the displacement z changes from 0, the force at the probe 15 changes to a value different from F0 if the coil current remains X0.

そこで、本発明の方法では、変位zを読み、力の補正量f(z)を計算し、出力すべきコイル電流を、F0+f(z)=aX1+bX1+c を解いてX1を求め出力する。これを数ms間隔で繰り返す。つまり、変位zを読むたびに力を補正するので、変位zに依存しない力の発生が可能になる。 Therefore, in the method of the present invention, the displacement z is read, the force correction amount f (z) is calculated, and the coil current to be output is obtained by solving for F0 + f (z) = aX1 2 + bX1 + c and outputting X1. This is repeated at intervals of several ms. That is, since the force is corrected every time the displacement z is read, it is possible to generate a force that does not depend on the displacement z.

力Fの補正量f(z)の関数形は予め決めておく。図8の結果を補正する場合には、破線がF=−0.275z−0.075 なので、補正量はf(z)=0.275zとすればよい。   The function form of the correction amount f (z) of the force F is determined in advance. When correcting the result of FIG. 8, since the broken line is F = −0.275z−0.075, the correction amount may be f (z) = 0.275z.

図13には、力、探針15の針先の変位z、コイル電流Xの関係例を示す。探針15の針先での力FT(X、z)は、重心、支点、探針の位置で決まる重力による力FG(z)と、コイル電流による力FC(X)の和と考えられ、トータルの力は
FT(X、z)=FG(z)+FC(X)
と表される。FC(X)の変位zへの依存は十分に小さいと考えられるので無視する。
FT(X,z)はaX+bX+cでフィットできると述べたが、FG(z)=c(z)、FC(X)=aX+bXと考えられる。X=X0においてzが0からz1に変化すると図13の(b)に示すようにトータルの力はF0からFlに変化し、f(z1)=c(0)−c(z1)だけ小さくなる(力の絶対値は大きくなる)。従って、この分を補正する必要がある。通常はz=1での関数FT(X、0)が求められている。つまり、FT(X、0)=aX+bX+c(0)の関数形が求められている。z=z1での力を補正することは、FT(X、z1)=aX+bX+c(z1)=F0になるX1を求めて出力することであるが、図13から分かるように、FT(X、0)においてFT(X、0)=F0+f(z1)となるX1を求めることと同じである。
FT(X、z1)=aX+bX+c(z1)=F0
に対して、
FT(X、0)=aX+bX+c(0)=F0+f(z1)

aX+bX+c(0)−f(z1)=aX+bX+c(z1)=F0
となり同じ式になる。図13の関数の線が平行移動の関係だからである。以上から、aX+bX+c(0)=F0+f(z1)を満たすX=X1を求めればよく、図12で述べた方法と一致する。
FIG. 13 shows an example of the relationship between the force, the tip displacement z of the probe 15, and the coil current X. The force FT (X, z) at the tip of the probe 15 is considered to be the sum of the force FG (z) due to gravity determined by the center of gravity, the fulcrum, and the position of the probe, and the force FC (X) due to the coil current. The total force is FT (X, z) = FG (z) + FC (X)
It is expressed. Since the dependence of FC (X) on the displacement z is considered to be sufficiently small, it is ignored.
Although FT (X, z) can be fitted with aX 2 + bX + c, it is considered that FG (z) = c (z) and FC (X) = aX 2 + bX. When z changes from 0 to z1 at X = X0, the total force changes from F0 to Fl as shown in FIG. 13B, and becomes smaller by f (z1) = c (0) −c (z1). (The absolute value of force increases). Therefore, it is necessary to correct this amount. Usually, the function FT (X, 0) at z = 1 is obtained. That is, a function form of FT (X, 0) = aX 2 + bX + c (0) is obtained. Correcting the force at z = z1 is to obtain and output X1 such that FT (X, z1) = aX 2 + bX + c (z1) = F0. As can be seen from FIG. 13, FT (X , 0) is the same as finding X1 such that FT (X, 0) = F0 + f (z1).
FT (X, z1) = aX 2 + bX + c (z1) = F0
Against
FT (X, 0) = aX 2 + bX + c (0) = F0 + f (z1)
The aX 2 + bX + c (0 ) -f (z1) = aX 2 + bX + c (z1) = F0
And the same formula. This is because the function lines in FIG. From the above, X = X1 that satisfies aX 2 + bX + c (0) = F0 + f (z1) may be obtained, which is consistent with the method described in FIG.

こうして測定した変位zと力の関係を図14に、比較のため図8と同じスケールで示す。図14のグラフから認められるように力の変位zへの依存をかなり小さくできた。図8と同様に変位zの時間変化を測定し、それから加速度を求めて力を算出し、力を変位zに対してプロットした。その「変位zの時間変化の測定」、即ち、図9に示したような測定の際に、上述の「力の補正の制御」を行った。なお、測定の時定数は1ms、変位zの読取り及び力の出力は2msごとに行った。   The relationship between the displacement z and the force thus measured is shown in FIG. 14 on the same scale as FIG. 8 for comparison. As can be seen from the graph of FIG. 14, the dependence of the force on the displacement z can be made considerably small. The time change of the displacement z was measured in the same manner as in FIG. 8, and the acceleration was obtained therefrom to calculate the force. The force was plotted against the displacement z. In the “measurement of time change of the displacement z”, that is, the measurement as shown in FIG. 9, the above-described “control of force correction” was performed. The measurement time constant was 1 ms, the displacement z was read and the force was output every 2 ms.

この例では補正量を線形で近似したが、さらに詳細な補正量を設定すれば、力の変位への依存をさらに小さくできる。補正はコンピュータ装置21ヘのプログラムだけの問題であるので、どのような補正も可能である。図8に示した探針15の変位zと力の関係の例において、1次で表されるものは前述した「重心と支点のz成分の差」によるものと考えられ、それからずれるものは「支点用針3の針先曲率半径が有限であることによる支点(接触点)の移動」によると考えられる。   In this example, the correction amount is approximated linearly. However, if a more detailed correction amount is set, the dependence of the force on the displacement can be further reduced. Since the correction is a problem only for the program to the computer device 21, any correction is possible. In the example of the relationship between the displacement z and the force of the probe 15 shown in FIG. 8, what is expressed by the first order is considered to be due to the aforementioned “difference between the center of gravity and the z component of the fulcrum”. This is thought to be due to the movement of the fulcrum (contact point) due to the finite curvature of the tip of the fulcrum needle 3.

図14の補正の例では、変位zが0付近での探針15の上下の速さは2×10−3m/s程度である。実際の表面形状測定では、弱い力で測定する場合にはヘッドまたは試料の走査速度は1×10−4m/s程度なので、探針15の上下の速さもその程度である。従って、変位zの変化が1桁以上遅いので、リアルタイムの制御はこの実験の例よりも容易である。 In the example of correction in FIG. 14, the vertical speed of the probe 15 when the displacement z is around 0 is about 2 × 10 −3 m / s. In the actual surface shape measurement, when the measurement is performed with a weak force, the scanning speed of the head or the sample is about 1 × 10 −4 m / s, and the vertical speed of the probe 15 is also about that level. Therefore, since the change of the displacement z is slower by one digit or more, real-time control is easier than the example of this experiment.

実際に使用する範囲は±0.15mm程度であるので、その範囲での力の補正の詳細な測定を行った。制御自体は図14の場合と同様だが、変位計測のアンプの増幅率を5倍に上げた。また、変位zが0付近での探針15の上下の速さを1×10−3m/s程度に下げ、実際の表面形状測定時の状態に近づけた。下部ストッパーでの跳ね返りではなく、針圧発生装置8におけるコイル10による力で探針15を上方へ上げた。つまり、変位zが−0.2mm以上では力の補正を行い、力の変位zへの依存を小さくしたが、変位zが−0.2mm以下では補正をせず、従って、そこでは図8と同じ力の依存性である。それにより変位zが小さくなると、力が上向きに働き、探針15が振動する。その振動を利用して、変位zの時間変化を測定し、加速度、力を算出し、力を変位zに対してプロットした。測定対象の変位zが±0.15mmで、下部ストッパーまで下ろさずに上述のように振動させた。±0.15mm程度の範囲で力が−0.05mgf前後になるようにした結果を示すのが図15である。0.05mgf程度の力で、±0.15mm程度の広い範囲で表面形状測定が可能であることを示している。 Since the range actually used is about ± 0.15 mm, detailed measurement of force correction in that range was performed. The control itself is the same as in the case of FIG. 14, but the amplification factor of the displacement measuring amplifier is increased five times. In addition, the vertical speed of the probe 15 when the displacement z was near 0 was reduced to about 1 × 10 −3 m / s to bring it closer to the actual surface shape measurement state. The probe 15 was raised upward by the force of the coil 10 in the needle pressure generator 8, not by rebounding at the lower stopper. That is, when the displacement z is −0.2 mm or more, the force is corrected and the dependency of the force on the displacement z is reduced, but when the displacement z is −0.2 mm or less, the correction is not performed. The same power dependency. When the displacement z is thereby reduced, the force works upward and the probe 15 vibrates. Using the vibration, the time change of the displacement z was measured, the acceleration and the force were calculated, and the force was plotted against the displacement z. The displacement z of the measurement object was ± 0.15 mm, and it was vibrated as described above without being lowered to the lower stopper. FIG. 15 shows the result of making the force around −0.05 mgf in the range of about ± 0.15 mm. It shows that the surface shape can be measured in a wide range of about ± 0.15 mm with a force of about 0.05 mgf.

ところで、図示実施形態では、第1の支持部材を二箇所で支点支持している構造の装置に基いて説明してきたが、当然一つの支点で揺動自在に支持する構造の装置でも同様に実施することができる。また、本発明は、第1の支持部材の両端に設けられる変位センサの測定子と針圧発生装置のコアとの位置関係を逆にした触針式表面形状測定器にも同等に適用できる。  By the way, in the illustrated embodiment, the first support member has been described based on an apparatus having a structure in which the first support member is supported at two points. can do. In addition, the present invention can be equally applied to a stylus type surface shape measuring instrument in which the positional relationship between the measuring element of the displacement sensor provided at both ends of the first support member and the core of the needle pressure generator is reversed.

本発明を実施している触針式表面形状測定器の構成を概略図。The schematic of the structure of the stylus type surface shape measuring device which is implementing this invention. 図1における触針式表面形状測定器の要部を下から見た概略線図。The schematic diagram which looked at the principal part of the stylus type surface shape measuring instrument in FIG. 1 from the bottom. 図1における触針式表面形状測定器のホルダー部分の構成を示す拡大部分断面図。The expanded partial sectional view which shows the structure of the holder part of the stylus type surface shape measuring device in FIG. 図1における触針式表面形状測定器のホルダー部分の構成を示す拡大部分断面図。The expanded partial sectional view which shows the structure of the holder part of the stylus type surface shape measuring device in FIG. 図1における触針式表面形状測定器の支点部の構造を示す拡大断面図。The expanded sectional view which shows the structure of the fulcrum part of the stylus type surface shape measuring device in FIG. 触針式表面形状測定器を枠体に組み込んだ構造を示す概略斜視図。The schematic perspective view which shows the structure which incorporated the stylus type surface shape measuring device in the frame. 支点と重心の位置関係を示す線図。The diagram which shows the positional relationship of a fulcrum and a gravity center. 探針の変位zと力の関係を例示するグラフ。The graph which illustrates the relationship between the probe displacement z and the force. 探針の変位zの時間変化を例示するグラフ。The graph which illustrates the time change of the displacement z of a probe. 探針における力の時間変化を例示するグラフ。The graph which illustrates the time change of the force in a probe. 計測及び制御系の構成を示すブロック線図。The block diagram which shows the structure of a measurement and control system. 本発明の方法による力の出力の仕方を示すフロー線図。The flow diagram which shows the method of the output of the force by the method of this invention. 力と変位とコイル電流の関係を示すグラフ。The graph which shows the relationship between force, displacement, and coil current. 本発明の方法に従って力を補正した結果を示すグラフ。The graph which shows the result of having corrected force according to the method of the present invention. 本発明の方法に従って力を補正した結果の詳細測定例を示すグラフ。The graph which shows the detailed measurement example of the result of having corrected force according to the method of this invention.

符号の説明Explanation of symbols

1 :第1の支持部材
2 :支点用針取付け部材
3 :支点用針
4 :支点受け部材
5 :変位センサ
6 :コア
7 :コイル
8 :針圧発生装置
9 :コア
10 :針圧発生装置8のコイル
11 :磁石
12 :ホルダー
13 :長手方向溝
14 :第2の支持部材
15 :探針
16 :高透磁率部材
17 :ガイド突起
18 :板状部材
19 :枠体
19a:下部枠部材
21 :コンピュータ装置
22 :アナログ入出力ボード
23 :針圧発生装置用電源
24 :走査ステージ
25 :駆動装置
26 :汎用インターフェースボード
27 :検出回路
28 :差動トランス

1: 1st support member 2: Needle mounting member for fulcrum 3: Needle for fulcrum 4: Support point receiving member 5: Displacement sensor 6: Core 7: Coil 8: Needle pressure generator 9: Core 10: Needle pressure generator 8 Coil 11: magnet 12: holder 13: longitudinal groove 14: second support member 15: probe 16: high permeability member 17: guide protrusion 18: plate member 19: frame 19a: lower frame member 21: Computer device 22: Analog I / O board 23: Needle pressure generator power supply 24: Scan stage 25: Drive device 26: General-purpose interface board 27: Detection circuit 28: Differential transformer

Claims (3)

支点に揺動可能に取付けられた支持体の一端に探針を設け、探針の垂直方向変位を検出する変位センサの磁性体コアを設け、探針に針圧を加える針圧発生装置の磁性体コアを支持体に取付け、探針が捉えた試料の表面形状を支持体の支点回りの回転運動により変位センサで測定する触針式段差計の力の補正方法において、
探針の針先の変位成分zと探針の針先での力の関係を予め測定して関係式を求めてコンピュータにプログラムしておき、表面形状測定時には探針の針先の変位成分zをリアルタイムでモニターし、その関係式を用いて力発生用コイルに流す電流をコンピュータで制御することにより、探針の針先の変位成分zの変化を補償することを特徴とする触針式段差計の力の補正方法。
A probe is provided at one end of a support that is swingably attached to a fulcrum, a magnetic core of a displacement sensor that detects vertical displacement of the probe is provided, and the magnetic force of a needle pressure generator that applies needle pressure to the probe In the method of correcting the force of the stylus type step gauge that attaches the body core to the support and measures the surface shape of the sample captured by the probe with a displacement sensor by the rotational movement around the fulcrum of the support,
The relationship between the displacement component z of the probe tip and the force at the probe tip is measured in advance and a relational expression is obtained and programmed in a computer, and when the surface shape is measured, the displacement component z of the probe tip is measured. A stylus step that compensates for a change in the displacement component z of the tip of the probe by controlling the current flowing through the force generating coil by a computer using the relational expression in real time How to correct the meter force.
探針の針先の変位成分zをリアルタイムでモニターし、力の補正量f(z)を計算し、探針の針先の変位成分zと探針の針先での力の関係を予め測定して求めた関係式により出力すべきコイル電流を求めることを特徴とする請求項1に記載の触針式段差計の力の補正方法。   The displacement component z of the probe tip is monitored in real time, the force correction amount f (z) is calculated, and the relationship between the displacement component z of the probe tip and the force at the probe tip is measured in advance. 2. The method of correcting a force of a stylus profilometer according to claim 1, wherein the coil current to be output is obtained by the relational expression obtained as described above. 長期間の使用に伴う支点用針先の摩耗時には、探針の針先の変位成分zと探針の針先での力との関係式を求め直してコンピュータにおけるプログラムを変更することにより探針位置と力の関係の変化を補償して力を一定にすることを特徴とする請求項1に記載の触針式段差計の力の補正方法。

When the fulcrum needle tip wears due to long-term use, the probe is changed by recalculating the relational expression between the displacement component z of the probe tip and the force at the probe tip and changing the program in the computer. 2. The method of correcting a force of a stylus step meter according to claim 1, wherein the force is made constant by compensating for a change in the relationship between the position and the force.

JP2006158606A 2006-06-07 2006-06-07 Method of correcting force of stylus type step difference gage for measuring surface profile Pending JP2007327826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158606A JP2007327826A (en) 2006-06-07 2006-06-07 Method of correcting force of stylus type step difference gage for measuring surface profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158606A JP2007327826A (en) 2006-06-07 2006-06-07 Method of correcting force of stylus type step difference gage for measuring surface profile

Publications (1)

Publication Number Publication Date
JP2007327826A true JP2007327826A (en) 2007-12-20

Family

ID=38928394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158606A Pending JP2007327826A (en) 2006-06-07 2006-06-07 Method of correcting force of stylus type step difference gage for measuring surface profile

Country Status (1)

Country Link
JP (1) JP2007327826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089830A (en) * 2009-10-21 2011-05-06 Mitsutoyo Corp Measuring force control device
JP2012225743A (en) * 2011-04-19 2012-11-15 Mitsutoyo Corp Surface texture measuring machine
CN105910518A (en) * 2016-06-03 2016-08-31 马鞍山方圆动力科技有限公司 Portable hole location degree test tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230801A (en) * 1990-04-28 1992-08-19 Focus Messtechnik Gmbh & Co Kg Scanning head
JPH05340706A (en) * 1992-06-08 1993-12-21 Tokyo Seimitsu Co Ltd Displacement detector
JP2000074616A (en) * 1998-09-02 2000-03-14 Mitsutoyo Corp Surface tracking type measuring instrument
JP2000111334A (en) * 1998-09-30 2000-04-18 Mitsutoyo Corp Surface follow-up type measuring machine
JP2003121136A (en) * 2001-10-10 2003-04-23 Mitsutoyo Corp Touch sensor
JP3401444B2 (en) * 1998-12-15 2003-04-28 株式会社ミツトヨ Fine shape measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230801A (en) * 1990-04-28 1992-08-19 Focus Messtechnik Gmbh & Co Kg Scanning head
JPH05340706A (en) * 1992-06-08 1993-12-21 Tokyo Seimitsu Co Ltd Displacement detector
JP2000074616A (en) * 1998-09-02 2000-03-14 Mitsutoyo Corp Surface tracking type measuring instrument
JP2000111334A (en) * 1998-09-30 2000-04-18 Mitsutoyo Corp Surface follow-up type measuring machine
JP3401444B2 (en) * 1998-12-15 2003-04-28 株式会社ミツトヨ Fine shape measuring device
JP2003121136A (en) * 2001-10-10 2003-04-23 Mitsutoyo Corp Touch sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089830A (en) * 2009-10-21 2011-05-06 Mitsutoyo Corp Measuring force control device
JP2012225743A (en) * 2011-04-19 2012-11-15 Mitsutoyo Corp Surface texture measuring machine
CN105910518A (en) * 2016-06-03 2016-08-31 马鞍山方圆动力科技有限公司 Portable hole location degree test tool

Similar Documents

Publication Publication Date Title
KR101268043B1 (en) Microforce measurement device, microforce measurement method and probe for measuring shape of microsurface
JP5095084B2 (en) Method and apparatus for measuring surface shape of sample
US7685868B2 (en) Measuring head for nanoindentation instrument and measuring method using same
JP4852264B2 (en) Stylus type step gauge for surface shape measurement and its needle pressure correction method
CN104713496A (en) Magnetic suspension contact pin type displacement sensor for micro-topography measurement
JP2006226964A5 (en)
JP4922583B2 (en) Friction force correction method of stylus type step gauge for surface shape measurement
JP2006162302A (en) Electronic balance
JP2007327826A (en) Method of correcting force of stylus type step difference gage for measuring surface profile
JP5009564B2 (en) Surface following type measuring instrument
EP2085739A1 (en) Probe straightness measuring method
Chetwynd et al. A controlled-force stylus displacement probe
JP2009133730A (en) Step measuring method and device using stylus type step profiler for surface shape measurement
JP2003337094A (en) Microhardness tester
EP1491851A1 (en) Touch sensor
CN1157653A (en) Metrological stylus assembly
JP2013007670A (en) Measurement accuracy improvement method for stylus type step profiler for surface shape measurement and stylus type step profiler for surface shape measurement in which the method is applied
CN106217667B (en) A kind of flitch positioning device of crystal stick orientation sizing machine
JP4500156B2 (en) Material property evaluation system
JP5095255B2 (en) Air resistance correction method for stylus profilometer for surface shape measurement
CN206683554U (en) A kind of amesdial for measuring small stair large aperture
JP4659529B2 (en) Stylus type step gauge for surface shape measurement and automatic calibration method thereof
CN1664551A (en) Method for measuring dynamic bending moment
CN112444229B (en) Shape measuring device, reference device and calibration method of detector
CN209895619U (en) Intelligent Young modulus experimental instrument based on capacitive grating sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Effective date: 20110608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110805

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20111102

A521 Written amendment

Effective date: 20111221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120509