JP2006522872A - High strength Al-Zn alloy and method for producing such an alloy product - Google Patents

High strength Al-Zn alloy and method for producing such an alloy product Download PDF

Info

Publication number
JP2006522872A
JP2006522872A JP2006505139A JP2006505139A JP2006522872A JP 2006522872 A JP2006522872 A JP 2006522872A JP 2006505139 A JP2006505139 A JP 2006505139A JP 2006505139 A JP2006505139 A JP 2006505139A JP 2006522872 A JP2006522872 A JP 2006522872A
Authority
JP
Japan
Prior art keywords
alloy
product
amount
less
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006505139A
Other languages
Japanese (ja)
Other versions
JP4964586B2 (en
JP2006522872A5 (en
Inventor
リンツェ、ベネディクトゥス
クリスティアン、ヨアヒム、カイデル
アルフレート、ルードビヒ、ハインツ
Original Assignee
コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33041014&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2006522872(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー filed Critical コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー
Publication of JP2006522872A publication Critical patent/JP2006522872A/en
Publication of JP2006522872A5 publication Critical patent/JP2006522872A5/ja
Application granted granted Critical
Publication of JP4964586B2 publication Critical patent/JP4964586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本発明は、改良された耐食性と靱性の組合せを有する高強度Al−Zn合金製品に関し、該合金は、実質的に(重量%で)Zn6.0〜9.5、Cu1.3〜2.4、Mg1.5〜2.6、MnおよびZr<0.25、ただし、高Zn含有量には好ましくは0.05〜0.15、他の元素はそれぞれ0.05未満、合計で0.25未満、を含んでなり、残りがアルミニウムであり、その際、(重量%で)0.1[Cu]+1.3<[Mg]<0.2[Cu]+2.15、好ましくは0.2[Cu]+1.3<[Mg]<0.1[Cu]+2.15である。本発明は、これら合金製品の製造方法、およびそれらの幾つかの好ましい用途、例えば航空宇宙における上側翼用途、にも関する。The present invention relates to high-strength Al-Zn alloy products having a combination of improved corrosion resistance and toughness, the alloy being substantially (by weight) Zn 6.0-9.5, Cu 1.3-2.4. Mg1.5-2.6, Mn and Zr <0.25, preferably 0.05-0.15 for high Zn content, less than 0.05 each for other elements, 0.25 in total Less than, with the balance being aluminum, in which case 0.1% [Cu] +1.3 <[Mg] <0.2 [Cu] +2.15, preferably 0.2% [Cu] +1.3 <[Mg] <0.1 [Cu] +2.15. The invention also relates to a method of manufacturing these alloy products and some preferred applications thereof, for example upper wing applications in aerospace.

Description

発明の分野Field of Invention

本発明は、請求項1に記載の、改良された耐食性と靱性の組合せを有する、鍛造された高強度Al−Zn合金、請求項9に記載の、改良された耐食性および靱性の組合せを有する、鍛造された高強度Al−Zn合金の製造方法、および所望により該方法により製造されたそのような合金のプレート製品に関する。より詳しくは、本発明は、構造的航空用途に関するアルミニウム協会(Aluminum Association)の国際命名法でAA7000シリーズと呼ばれる、鍛造された高強度Al−Zn合金に関する。さらに詳しくは、本発明は、改良された強度、靱性および耐食性の組合せを有するAl−Zn合金を得るための、特別な時効または焼戻しを必要としない、新規な成分範囲(chemistry window)に関する。   The present invention provides a forged high-strength Al-Zn alloy having a combination of improved corrosion resistance and toughness according to claim 1, and having an improved combination of corrosion resistance and toughness according to claim 9. The present invention relates to a method for producing a forged high-strength Al-Zn alloy and, if desired, a plate product of such an alloy produced by the method. More particularly, the present invention relates to a forged high-strength Al—Zn alloy, referred to as the AA7000 series in the International Association of Aluminum Association for Structural Aviation Applications. More particularly, the present invention relates to a novel chemistry window that does not require special aging or tempering to obtain an Al-Zn alloy with an improved combination of strength, toughness and corrosion resistance.

この分野では、熱処理可能なアルミニウム合金を、比較的高い強度、高い靱性および耐食性が関与する多くの用途、例えば航空機の機体、車両部材、その他の用途に使用することが公知である。アルミニウム合金AA7050およびAA7150は、T6型焼戻しで高強度を示す(米国特許第6,315,842号参照)。析出硬化させたAA7x75、AA7x55合金製品も、T6焼戻しで高い強度値を示す。T6焼戻しは、合金の強度を高めることが知られており、その際、大量の亜鉛、銅およびマグネシウムを含む上記のAA7x50、AA7x75およびAA7x55合金製品は、それらの強度−対−重量比が高いことで知られており、従って、特に航空機工業で使用されている。しかし、これらの用途では非常に様々な気象条件にさらされるので、応力腐食および剥離の両方を含む腐食に対する十分な強度および耐性を与えるために、作業および時効条件を慎重に管理する必要がある。   It is known in the art to use heat treatable aluminum alloys for many applications involving relatively high strength, high toughness and corrosion resistance, such as aircraft fuselage, vehicle components, and other applications. Aluminum alloys AA7050 and AA7150 exhibit high strength with T6 tempering (see US Pat. No. 6,315,842). The precipitation-hardened AA7x75 and AA7x55 alloy products also show high strength values by T6 tempering. T6 tempering is known to increase the strength of alloys, where the above AA7x50, AA7x75 and AA7x55 alloy products containing large amounts of zinc, copper and magnesium have a high strength-to-weight ratio. And is therefore used especially in the aircraft industry. However, as these applications are exposed to a wide variety of weather conditions, the work and aging conditions need to be carefully managed to provide sufficient strength and resistance to corrosion, including both stress corrosion and delamination.

応力腐食および剥離ならびに破壊靱性に対する耐性を高めるために、これらのAA7000シリーズアルミニウム合金を人工的に過時効にかけることが公知である。T79、T76、T74またはT73型焼戻しに人工的に時効にかけると、それらの応力腐食、剥離腐食に対する耐性および破壊靱性が上記の順で、ただしT6焼戻し条件と比較したコスト対強度で、改良される(T73が最良であり、T79はT6に近い)。妥当な焼戻し条件は、T74型焼戻しであり、これは、妥当なレベルの引張強度、応力腐食耐性、剥離腐食耐性および破壊靱性を得るための、T73とT76の間の制限された過時効である。そのようなT74焼戻しは、アルミニウム製品を温度121℃で6〜24時間、171℃で約14時間過時効にかけることによって行われる。   It is known to artificially overage these AA7000 series aluminum alloys to increase resistance to stress corrosion and delamination and fracture toughness. When artificially aged to T79, T76, T74 or T73 type tempering, their resistance to stress corrosion, exfoliation corrosion and fracture toughness are improved in the above order, but at a cost / strength compared to T6 tempering conditions. (T73 is the best and T79 is close to T6). A reasonable tempering condition is T74 type tempering, which is a limited overaging between T73 and T76 to obtain reasonable levels of tensile strength, stress corrosion resistance, exfoliation corrosion resistance and fracture toughness. . Such T74 tempering is performed by overaging the aluminum product at a temperature of 121 ° C. for 6-24 hours and at 171 ° C. for about 14 hours.

特定の航空機構成部品のための設計基準に応じて、強度、靱性または耐食性における小さな改良でも、重量が低下し、航空機の耐用寿命全体にわたる燃費の向上につながる。これらの要求に応えるために、他の7000シリーズ型合金が開発されている。   Depending on the design criteria for a particular aircraft component, even minor improvements in strength, toughness or corrosion resistance can reduce weight and lead to improved fuel economy over the entire useful life of the aircraft. Other 7000 series alloys have been developed to meet these requirements.

ヨーロッパ特許第0377779号は、航空宇宙分野における、高い靱性および良好な腐食特性を備えたシートまたは薄板用途、例えば上側翼部材、の製造方法であって、重量%で
Zn 7.6〜8.4
Cu 2.2〜2.6
Mg 1.8〜2.1、
および
Zr 0.5〜0.2
Mn 0.05〜0.4
V 0.03〜0.2
Hf 0.03〜0.5
から選択された一種以上の元素(該元素の合計は0.6重量%を超えない)、残りの部分を構成するアルミニウムおよび不可避な不純物からなる組成を有する素地を加工する工程、該製品を溶体化熱処理および急冷する工程、および該製品を、順に79℃〜163℃の一種以上の温度で3回熱処理するか、またはそのような製品を先ず79℃〜141℃の一種以上の温度に2時間以上加熱するか、または該製品を148℃〜174℃の一種以上の温度に加熱することにより、人工的時効にかける工程を含んでなる方法を開示している。これらの製品は、「EB」またはそれより優れた、改良された剥離腐食耐性を示し、T76焼戻し条件における類似サイズのAA7x50製品よりも約15%大きな降伏強度を示す。これらの製品は、さらに、類似サイズの7x50−T77製品(AA7150−T77は、以下に基準合金として使用する)より少なくとも約5%大きな強度を示す。
EP 037779 is a method for the production of sheet or sheet applications with high toughness and good corrosion properties, for example upper wing members, in the aerospace field, Zn 7.6-8.4% by weight.
Cu 2.2-2.6
Mg 1.8-2.1,
And Zr 0.5-0.2
Mn 0.05-0.4
V 0.03-0.2
Hf 0.03-0.5
One or more elements selected from the above (the total of these elements does not exceed 0.6% by weight), the process of processing a substrate having a composition comprising aluminum constituting the remaining part and inevitable impurities, Heat treatment and quenching step, and the product is sequentially heat-treated three times at one or more temperatures from 79 ° C. to 163 ° C. Disclosed is a method comprising the step of subjecting to artificial aging by heating above or heating the product to one or more temperatures between 148 ° C and 174 ° C. These products exhibit improved exfoliation corrosion resistance, “EB” or better, and about 15% greater yield strength than similarly sized AA7 × 50 products in T76 tempering conditions. These products also exhibit a strength that is at least about 5% greater than similarly sized 7x50-T77 products (AA7150-T77 is used below as a reference alloy).

米国特許第5,312,498号は、剥離耐性および破壊靱性が改良されており、過剰の銅およびマグネシウムが無いようにバランスのとれた亜鉛、銅およびマグネシウムレベルを有するアルミニウム系合金製品の製造方法を開示している。このアルミニウム系合金製品の製造方法は、1または2工程の時効処理を行うと共に、銅、マグネシウムおよび亜鉛を化学量論的に釣り合わせる。開示されている2工程時効順序では、合金を先ず約121℃で約9時間時効にかけ、続いて約157℃で約10〜16時間の第二時効工程にかけ、続いて空気冷却している。そのような時効方法は、下側翼の外板用途または機体の外板に使用される薄板またはシートを対象としている。   U.S. Pat. No. 5,312,498 provides a method for producing aluminum-based alloy products having improved levels of peel resistance and fracture toughness and balanced zinc, copper and magnesium levels so that there is no excess copper and magnesium. Is disclosed. In this method for producing an aluminum-based alloy product, one or two aging treatments are performed, and copper, magnesium and zinc are stoichiometrically balanced. In the disclosed two-step aging sequence, the alloy is first aged at about 121 ° C. for about 9 hours, followed by a second aging step at about 157 ° C. for about 10-16 hours, followed by air cooling. Such an aging method is directed to a thin plate or sheet used for a lower wing skin or for a body skin.

米国特許第4,954,188号は、下記の合金化元素、すなわち重量%で
Zn 5.9〜8.2
Cu 1.5〜3.0
Mg 1.5〜4.0
Cr <0.04
合計0.5未満の他の元素、例えばジルコニウム、マンガン、鉄、ケイ素およびチタン、および残りの部分を構成するアルミニウムからなる合金を使用し、該合金を形状が予め決められた製品に加工し、該成形された製品を溶体化熱処理し、急冷し、該熱処理および急冷した製品を温度132℃〜140℃で6〜30時間時効にかける、耐剥離性が改良されていることを特徴とする高強度アルミニウム合金を製造する方法を開示している。所望の特性である高強度、高靱性および高耐食性は、この合金で、例えば米国特許第3,881,966号または第3,794,531号により以前に開示されているように時効温度を高くするのではなく、低くすることにより、達成された。
U.S. Pat. No. 4,954,188 discloses the following alloying elements: Zn 5.9-8.2% by weight.
Cu 1.5-3.0
Mg 1.5-4.0
Cr <0.04
Using an alloy consisting of other elements less than a total of 0.5, such as zirconium, manganese, iron, silicon and titanium, and the rest of aluminum, processing the alloy into a product of a predetermined shape; The molded product is subjected to solution heat treatment, quenched, and subjected to aging at a temperature of 132 ° C. to 140 ° C. for 6 to 30 hours. A method for producing a strength aluminum alloy is disclosed. The desired properties of high strength, high toughness and high corrosion resistance make this alloy high in aging temperature as previously disclosed, for example, by US Pat. Nos. 3,881,966 or 3,794,531. It was achieved by lowering rather than doing it.

公知の析出硬化させたアルミニウム合金AA7075および他のAA7000シリーズ合金は、T6焼戻し条件では、特定の条件下における十分な耐食性が得られないことが報告されている。しかし、合金の応力腐食割れに対する耐性を改良するT7型焼戻しは、T6条件と比較して、強度を大きく低下させる。   Known precipitation hardened aluminum alloys AA7075 and other AA7000 series alloys are reported to fail to provide sufficient corrosion resistance under certain conditions under T6 tempering conditions. However, T7 tempering, which improves the resistance to stress corrosion cracking of the alloy, greatly reduces the strength compared to the T6 condition.

従って、米国特許第5,221,377号は、実質的に約7.6〜8.4重量%のZn、約1.8〜2.2重量%のMgおよび約2.0〜2.6重量%のCuからなる合金製品を開示している。そのような合金製品は、良好な靱性および耐食性を有するその7x50−T6製品より約10%高い降伏強度を示す。この降伏強度は、579MPaを超え、剥離耐性(EXCO)レベルが「EC」であるか、またはそれより優れていることが報告されている。   Thus, U.S. Pat. No. 5,221,377 is substantially about 7.6-8.4 wt.% Zn, about 1.8-2.2 wt.% Mg and about 2.0-2.6. An alloy product comprising weight percent Cu is disclosed. Such an alloy product exhibits a yield strength about 10% higher than its 7x50-T6 product with good toughness and corrosion resistance. This yield strength is reported to exceed 579 MPa and the peel resistance (EXCO) level is “EC” or better.

米国特許第5,496,426号は、米国特許第5,221,377号に開示されているような合金、および熱間圧延、焼きなましおよび冷間縮小範囲が好ましくは20%〜70%以内である冷間圧延を含み、続いて好ましくは制御しながら焼きなましにかけ、AA7075−T6特性よりも優れた特性を示す合金の製法を開示している。AA7075−T6は、応力腐食耐性試験(35%NaCl交互浸漬試験におけるSCC耐性40日)に138MPaで不合格であるが、開示されている処理された合金はSCC耐性が241MPaである。   U.S. Pat. No. 5,496,426 is an alloy as disclosed in U.S. Pat. No. 5,221,377, and the hot rolling, annealing and cold shrinkage ranges are preferably within 20% to 70%. Disclosed is a method of making an alloy that includes some cold rolling, followed by preferably controlled annealing, which exhibits properties superior to the AA7075-T6 properties. AA7075-T6 fails the stress corrosion resistance test (SCC resistance 40 days in 35% NaCl alternating immersion test) at 138 MPa, but the disclosed processed alloy has a SCC resistance of 241 MPa.

米国特許第5,108,520号および第4,477,292号は、(1)合金を、室温よりかなり高いが、163℃より低い一種以上の温度で、実質的にピーク降伏強度未満への時効にかけること、(2)続いて合金を、約190℃の一種以上の温度で時効にかけ、合金の耐食性を増加すること、および(3)合金を、室温よりかなり高いが、163℃より低い一種以上の温度で時効にかけ、降伏強度を増加すること、を含んでなる3工程の時効を含む、溶体化熱処理した、析出硬化合金の時効方法を開示している。得られる製品は、良好な強度特性および良好な腐食性能を示した。しかし、3工程時効手順は、手間が掛かり、実行するのが困難なので、そのような合金の製造コストが増加する。   U.S. Pat. Nos. 5,108,520 and 4,477,292 describe (1) that alloys are substantially below peak yield strength at one or more temperatures significantly above room temperature but below 163 ° C. Aging, (2) subsequently aging the alloy at one or more temperatures of about 190 ° C. to increase the corrosion resistance of the alloy, and (3) the alloy is significantly above room temperature but below 163 ° C. Disclosed is a solution heat treatment aging method for precipitation hardened alloys, including a three-step aging comprising aging at one or more temperatures to increase yield strength. The resulting product showed good strength properties and good corrosion performance. However, the three-step aging procedure is labor intensive and difficult to perform, increasing the manufacturing cost of such alloys.

発明の具体的説明Detailed description of the invention

そこで、本発明の目的は、高い強度を有し、靱性と腐食性能のバランスが改良された、好ましくはプレート製品用の改良されたAl−Zn合金を提供することである。より詳しくは、本発明の目的は、航空宇宙における上側翼用途に使用できる、圧縮降伏強度が改良された、T77焼戻しにおける従来のAA7055合金の特性よりも優れた特性を有する合金を提供することである。   Accordingly, an object of the present invention is to provide an improved Al-Zn alloy having high strength and improved balance between toughness and corrosion performance, preferably for plate products. More particularly, it is an object of the present invention to provide an alloy with improved compressive yield strength that can be used for upper wing applications in aerospace and has properties superior to those of conventional AA7055 alloys in T77 tempering. is there.

本発明の別の目的は、T6型焼戻しの範囲における強度、およびT73型焼戻しの範囲における靱性および耐食性を示すAA7000シリーズアルミニウム合金を得ることである。   Another object of the present invention is to obtain an AA7000 series aluminum alloy that exhibits strength in the range of T6 type temper and toughness and corrosion resistance in the range of T73 type temper.

本発明のさらに別の目的は、時効−クリープ成形方法に使用でき、複雑で手間の掛かる時効処理を必要としない合金を提供することである。   Yet another object of the present invention is to provide an alloy that can be used in an aging-creep forming process and does not require complicated and time-consuming aging treatments.

本発明は、多くの好ましい目的を有する。   The present invention has many preferred purposes.

本発明の上記目的は、請求項1の特徴を使用することにより達成できる。他の好ましい実施態様は、従属請求項に記載および規定されている。そのような合金の好ましい製造方法は、請求項9に規定されており、それぞれのプレート製品は、請求項14および対応する従属請求項に特許権請求され、記載されている。   The above object of the invention can be achieved by using the features of claim 1. Other preferred embodiments are described and defined in the dependent claims. A preferred method for producing such an alloy is defined in claim 9 and each plate product is claimed and described in claim 14 and the corresponding dependent claims.

以下に記載するように、他に指示がない限り、合金の名称および焼戻しの名称は、米国アルミニウム協会(US Aluminum Association)から出版されているAluminum Standards and Data and the Regislation Recordsにおけるアルミニウム協会名称による。他に指示がない限り、百分率はすべて重量%である。   As noted below, unless otherwise indicated, the names of alloys and tempered names are from the Aluminum Association name in the Aluminum Standards and Data and the Regislation Records published by the US Aluminum Association. All percentages are by weight unless otherwise indicated.

本発明の上記目的は、改良された耐食性と靱性の組合せを有する高強度Al−Zn合金製品を使用することにより達成され、該合金は、実質的に(重量%で)
Zn 約6.0〜9.5
Cu 約1.3〜2.4
Mg 約1.5〜2.6
Mn <0.12
Zr <0.20、好ましくは0.05〜0.15
Cr <0.10
Fe <0.25、好ましくは<0.12
Si <0.25、好ましくは<0.12
Ti <0.10
Hfおよび/またはV<0.25、および
所望によりCeおよび/またはSc<0.20、特に0.05〜0.15、
各0.05未満で、かつ合計で0.25未満の他の複数の元素、残部アルミニウムを含んでなり、(重量%で)
0.1[Cu]+1.3<[Mg]<0.2[Cu]+2.15、
好ましくは0.2[Cu]+1.3<[Mg]<0.1[Cu]+2.15
である。
The above objective of the present invention is achieved by using a high strength Al-Zn alloy product having an improved combination of corrosion resistance and toughness, the alloy being substantially (in weight percent).
Zn about 6.0 to 9.5
Cu about 1.3 to 2.4
Mg about 1.5 to 2.6
Mn <0.12
Zr <0.20, preferably 0.05-0.15
Cr <0.10
Fe <0.25, preferably <0.12
Si <0.25, preferably <0.12
Ti <0.10
Hf and / or V <0.25, and optionally Ce and / or Sc <0.20, in particular 0.05 to 0.15,
Comprising a plurality of other elements each less than 0.05 and less than 0.25 in total, the balance aluminum (in weight percent)
0.1 [Cu] +1.3 <[Mg] <0.2 [Cu] +2.15,
Preferably 0.2 [Cu] +1.3 <[Mg] <0.1 [Cu] +2.15
It is.

AA7000シリーズ合金に対するそのような成分範囲は、好ましくは航空宇宙用上側翼用途に使用できる薄いプレート製品に製造した時に、優れた特性を示す。   Such component ranges for AA7000 series alloys exhibit excellent properties when manufactured into thin plate products that can preferably be used in aerospace upper wing applications.

上に規定する合金は、上記の手間の掛かる複雑なT77時効サイクルを使用せずに、T77焼戻しにおけるAA7x50またはAA7x55シリーズの既存の合金と同等であるか、またはより優れた特性を有する。この化学組成から得られるアルミニウム製品は、コストの問題に関して優れているのみならず、必要な処理工程が少ないので、製造も簡単である。さらに、この化学組成には、T77焼戻し合金を使用した場合には適用できない新規な製造技術、例えば時効クリープ成形、が可能である。上に規定する化学組成は、T77焼戻しに時効処理することもでき、その際、以下に説明するように、耐食性が2工程時効製法と比較してさらに改良され、特に剥離腐食性能が強化される。   The alloys defined above have the same or better properties as the existing AA7x50 or AA7x55 series alloys in T77 tempering without using the complex T77 aging cycle described above. Aluminum products obtained from this chemical composition are not only excellent in terms of cost, but are also easy to manufacture because they require fewer processing steps. In addition, this chemical composition allows for novel manufacturing techniques that are not applicable when using T77 tempered alloys, such as age creep forming. The chemical composition defined above can also be aged in T77 tempering, in which case the corrosion resistance is further improved as compared to the two-step aging process, and in particular the exfoliation corrosion performance is enhanced. .

本発明の、大量のZnおよび特別な範囲のMgとのCuの組合せを使用する、元素の選択された範囲により、強度、靱性および腐食性能、例えば剥離腐食耐性および応力腐食割れ耐性、の非常に優れた組合せが得られることが分かった。   The selected range of elements using a large amount of Zn and a special range of Mg and Cu combinations of the present invention will greatly enhance strength, toughness and corrosion performance, such as exfoliation corrosion resistance and stress corrosion cracking resistance. It has been found that an excellent combination is obtained.

剥離および応力腐食割れ性能を改良するには、銅含有量を高く維持すべきであることが報告されているのに対し、強度と密度のより優れた組合せは、比較的低い亜鉛含有量で達成できることが報告されている。   It has been reported that copper content should be kept high to improve exfoliation and stress corrosion cracking performance, while a better combination of strength and density is achieved with relatively low zinc content It has been reported that it can be done.

しかし、本発明では、亜鉛の量を多くすると共に、マグネシウムと銅の比を最適にすることにより、良好な腐食性能および従来のT77焼戻し合金よりも優れた靱性を維持しながら、より優れた強度が得られることが分かった。従って、亜鉛、マグネシウムおよび銅の組み合わせ含有量を、マンガンを全く含まない場合には約11.50〜12.50(重量%)の範囲内に、好ましくは0.06〜0.12(重量%)であるマンガンの存在下では11.00未満にするのが有利である。   However, according to the present invention, by increasing the amount of zinc and optimizing the ratio of magnesium to copper, it has better strength while maintaining good corrosion performance and better toughness than conventional T77 tempered alloys. Was found to be obtained. Accordingly, the combined content of zinc, magnesium and copper is within the range of about 11.50 to 12.50 (wt%) when no manganese is contained, preferably 0.06 to 0.12 (wt%). ) Is advantageously less than 11.00 in the presence of manganese.

マグネシウムの好ましい量は、0.2[Cu]+1.3<[Mg]<0.1[Cu]+2.15、最も好ましくは0.2[Cu]+1.4<[Mg]<0.1[Cu]+1.9である。銅は、約1.5〜2.1、より好ましくは1.5〜2.0未満である。マグネシウムおよび銅のバランスは、本発明の化学にとって重要である。   The preferred amount of magnesium is 0.2 [Cu] +1.3 <[Mg] <0.1 [Cu] +2.15, most preferably 0.2 [Cu] +1.4 <[Mg] <0.1. [Cu] +1.9. The copper is about 1.5 to 2.1, more preferably less than 1.5 to 2.0. The balance of magnesium and copper is important for the chemistry of the present invention.

銅およびマグネシウムは、合金に強度を付与するための重要な元素である。マグネシウムおよび銅の量が低過ぎると、強度が低下し、マグネシウムおよび銅の量が高過ぎると、腐食性能が悪くなり、合金製品の溶接性に関する問題が生じる。先行技術は、特殊な時効手順を使用して強度を改良し、良好な腐食性能を達成するために、少量のマグネシウムおよび銅を使用している。強度、靱性および腐食性能を調和させるために、銅およびマグネシウムの量(重量%)を約1.5〜2.3にすることにより、厚い合金製品で良好なバランスが得られることが分かった。しかし、腐食性能は薄い合金製品にとって不可欠なパラメータなので、使用する銅およびマグネシウムの量を少なくする必要があり、そのために強度が低下する。本発明で特許権請求する化学組成により、T74焼戻し合金の特性に類似した腐食性能を維持しながら、T6焼戻し合金の領域にある強度レベルを達成することができる。   Copper and magnesium are important elements for imparting strength to the alloy. If the amount of magnesium and copper is too low, the strength will decrease, and if the amount of magnesium and copper is too high, the corrosion performance will be poor and problems with the weldability of the alloy product will occur. The prior art uses small amounts of magnesium and copper to improve strength using special aging procedures and achieve good corrosion performance. It has been found that a good balance can be obtained with thick alloy products by adjusting the amount of copper and magnesium (wt%) to about 1.5-2.3 to balance strength, toughness and corrosion performance. However, since corrosion performance is an indispensable parameter for thin alloy products, it is necessary to reduce the amount of copper and magnesium used, thereby reducing strength. The chemical composition claimed in the present invention can achieve strength levels in the region of T6 tempered alloys while maintaining corrosion performance similar to that of T74 tempered alloys.

マグネシウムおよび銅の量とは別に、本発明は、マグネシウムおよび銅の亜鉛に対するバランス、特にマグネシウムの亜鉛に対するバランスを開示するが、これが合金にこれらの性能特性を与えている。本発明の合金の改良された耐食性は、EB以上の、好ましくはEA以上の剥離耐性(「EXCO」)を有する。   Apart from the amount of magnesium and copper, the present invention discloses a balance of magnesium and copper to zinc, in particular the balance of magnesium to zinc, which gives the alloy these performance characteristics. The improved corrosion resistance of the alloys of the present invention has a peel resistance (“EXCO”) greater than EB, preferably greater than EA.

これらの剥離特性は、T6の典型的な性能と共に、T73、T74およびT76焼戻しに時効処理したAA7075、AA7050およびAA7150製品に現在必要とされる応力腐食割れ(「SCC」)耐性および剥離耐性(「EXCO」)に関する標準により測定される。市販の合金がSCC標準に適合するか、否かを決定するために、特定の試験試料を予め規定された試験条件にかける。棒状の試料を3.5%NaCl水溶液に10分間浸漬し、続いて両端から一定ひずみ(応力レベル)で引っ張りながら、50分間空気乾燥させるサイクルにかける。そのような試験は、通常、最少20日間(または試料が20日経過する前に破損した、または割れた場合には、より短い時間)行う。この試験は、ASTM標準G47(G47−98)試験である。   These peel properties, along with the typical performance of T6, include the stress corrosion cracking ("SCC") and peel resistance ("SCC") resistance currently required for AA7075, AA7050 and AA7150 products aged to T73, T74 and T76 tempering. EXCO ")). To determine whether a commercially available alloy meets the SCC standard, a particular test sample is subjected to pre-defined test conditions. The rod-shaped sample is immersed in a 3.5% NaCl aqueous solution for 10 minutes, and then subjected to a cycle of air drying for 50 minutes while pulling from both ends with a constant strain (stress level). Such testing is typically performed for a minimum of 20 days (or a shorter time if the sample is broken or cracked before 20 days have passed). This test is the ASTM standard G47 (G47-98) test.

ASTM標準G47(G38−73)により行う、別の好ましいSCC試験を、薄いプレート製品を含む押出合金製品に使用する。この試験は、C字形リングの対向末端を、一定のひずみレベルおよび上記の条件と実質的に類似した交互浸漬条件を使用しながら、圧縮することからなる。AA7075、AA7050またはAA7150−T6焼戻し処理した合金はSCC試験に20日未満で不合格となり、剥離特性はECまたはEDであり、耐食性は焼戻しT76−、T74−、T73で向上する。T73の剥離特性は、EAであるか、またはそれより優れている。具体的な例は、以下に記載する。   Another preferred SCC test performed according to ASTM standard G47 (G38-73) is used for extruded alloy products including thin plate products. This test consists of compressing the opposite ends of the C-ring using a constant strain level and alternating dipping conditions substantially similar to those described above. AA7075, AA7050 or AA7150-T6 tempered alloys fail the SCC test in less than 20 days, the peel properties are EC or ED, and the corrosion resistance is improved by tempering T76-, T74-, T73. The peel properties of T73 are EA or better. Specific examples are described below.

本発明の合金は、亜鉛の量(重量%)が約8.1である場合、マグネシウムと銅の好ましい量は約1.93である。しかし、マンガンが0.05未満、好ましくは0.02未満である場合、亜鉛の量(重量%)は6.1〜8.3、より好ましくは6.1〜7.0である。本発明の幾つかの好ましい実施態様を下記の例で説明する。   The alloy of the present invention has a preferred amount of magnesium and copper of about 1.93 when the amount of zinc (wt%) is about 8.1. However, when manganese is less than 0.05, preferably less than 0.02, the amount (wt%) of zinc is 6.1-8.3, more preferably 6.1-7.0. Some preferred embodiments of the present invention are illustrated in the following examples.

亜鉛の量(重量%)が約7.6を超える場合、マグネシウムの量は好ましくは約0.06〜0.12である。マンガンは、合金微小構造の再結晶を引き起こすことができる操作の際に粒度調整に寄与するか、または粒度調整を促進する。好ましいマンガンのレベルは、従来のAA7000シリーズ合金におけるよりも低いが、亜鉛を多くする場合、引き上げることができる。   When the amount of zinc (wt%) is greater than about 7.6, the amount of magnesium is preferably about 0.06-0.12. Manganese contributes to or facilitates grain size adjustment during operations that can cause recrystallization of the alloy microstructure. The preferred manganese level is lower than in conventional AA7000 series alloys, but can be increased if more zinc is used.

追加の合金化元素Ceおよび/またはScの量は、0.20未満、好ましくは0.05〜0.15、最も好ましくは約0.10である。   The amount of additional alloying element Ce and / or Sc is less than 0.20, preferably 0.05 to 0.15, most preferably about 0.10.

改良された耐食性と靱性の組合せを有する高強度Al−Zn合金製品の好ましい製造方法は、
a)下記の組成(重量%で)、すなわち
Zn 約6.0〜9.5
Cu 約1.3〜2.4
Mg 約1.5〜2.6
Mn <0.12
Zr <0.20、好ましくは0.05〜0.15
Cr <0.10
Fe <0.25
Si <0.25
Ti <0.10
Hfおよび/またはV<0.25、所望によりCeおよび/またはSc<0.20
各0.05未満で、かつ合計で0.25未満の他の複数の元素、残部アルミニウムの組成を有し、(重量%で)
0.1[Cu]+1.3<[Mg]<0.2[Cu]+2.15
であるインゴットを鋳造する工程、
b)鋳造後、該インゴットを均質化および/または予備加熱する工程、
c)該インゴットを熱間加工し、所望により冷間加工し、加工製品を形成する工程、
d)該合金中の実質的にすべての可溶性構成成分を固溶体にするのに十分な温度で、十分な時間、溶体化熱処理する工程、および
e)溶体化熱処理した製品を、水または他の急冷媒体を使用し、噴霧急冷または浸漬急冷の一方により急冷する工程
を含んでなる。
A preferred method for producing a high strength Al-Zn alloy product having a combination of improved corrosion resistance and toughness is:
a) The following composition (in weight percent): Zn about 6.0 to 9.5
Cu about 1.3 to 2.4
Mg about 1.5 to 2.6
Mn <0.12
Zr <0.20, preferably 0.05-0.15
Cr <0.10
Fe <0.25
Si <0.25
Ti <0.10
Hf and / or V <0.25, optionally Ce and / or Sc <0.20
A plurality of other elements each less than 0.05 and in total less than 0.25, with the balance aluminum composition (in weight percent)
0.1 [Cu] +1.3 <[Mg] <0.2 [Cu] +2.15
A process of casting an ingot,
b) homogenizing and / or preheating the ingot after casting;
c) a step of hot-working the ingot, cold-working if desired, and forming a processed product;
d) a solution heat treatment for a sufficient time at a temperature sufficient to bring substantially all of the soluble constituents in the alloy into solid solution; and e) the solution heat treated product is water or other rapid cooling. Using a medium and comprising quenching by either spray quenching or immersion quenching.

本発明の特性は、加工した、溶体化熱処理した製品を人工的に時効処理することを含む好ましい方法により、さらに達成することができ、その際、時効処理工程は、温度105℃〜135℃、好ましくは約120℃で2〜20時間、好ましくは約8時間第一熱処理し、135℃より高いが、210℃未満、好ましくは約155℃の温度で4〜12時間、好ましくは8〜10時間第二熱処理することを含んでなる。   The properties of the present invention can be further achieved by a preferred method including artificially aging processed, solution heat treated products, wherein the aging treatment step is performed at a temperature of 105 ° C to 135 ° C, Preferably, the first heat treatment is carried out at about 120 ° C. for 2 to 20 hours, preferably about 8 hours, and the temperature is higher than 135 ° C. but less than 210 ° C., preferably about 155 ° C. Second heat treatment.

そのような2工程時効処理を通して、T76焼戻し合金の腐食性能と同等の腐食性能が達成される。しかし、加工し、熱処理した製品を人工的に時効処理にすることもでき、その場合、時効処理工程は、温度105℃〜135℃で、20時間を超え、30時間未満で行う第三熱処理を含んでなる。このT77焼戻し時効処理手順は、公知であり、2工程時効処理手順と比較して性能特性をさらに向上させる。しかし、2工程時効処理手順により、T77焼戻し製品に部分的に匹敵し、部分的により優れた、薄いアルミニウム合金製品が得られる。   Through such a two-step aging treatment, a corrosion performance equivalent to that of the T76 tempered alloy is achieved. However, the processed and heat-treated product can also be artificially aged, and in this case, the aging treatment is performed at a temperature of 105 ° C. to 135 ° C. for more than 20 hours and less than 30 hours. Comprising. This T77 tempering aging procedure is well known and further improves performance characteristics compared to a two-step aging procedure. However, the two-step aging procedure results in a thin aluminum alloy product that is partially comparable to and partially superior to the T77 tempered product.

さらに、加工し、熱処理した製品を、2工程時効処理手順でT79−またはT76−焼戻しに人工的に時効処理にすることもできる。鋳造後のインゴットを均質化および/または予備加熱した後、好ましくはインゴットを熱間加工し、所望により、熱間加工した製品を15mm〜45mmの加工製品に冷間加工し、薄いプレートを得ることを推奨できる。   Furthermore, the processed and heat-treated product can be artificially aged to T79- or T76-temper in a two-step aging procedure. After homogenizing and / or preheating the ingot after casting, the ingot is preferably hot worked, and if desired, the hot worked product is cold worked into a 15 mm to 45 mm processed product to obtain a thin plate Can be recommended.

そのような高強度Al−Zn合金のプレート製品は、上記の組成を有するか、または上記の方法により製造される合金により、得ることができる。そのようなプレート製品は、好ましくは薄い航空機部材として、より好ましくは細長い構造的形状の部材として使用できる。上側翼部材、好ましくは航空機の上側翼またはストリンガーの薄い外板部材として使用するプレート製品がさらに好ましい。   Such a plate product of high strength Al-Zn alloy can be obtained by an alloy having the above composition or manufactured by the above method. Such plate products can preferably be used as thin aircraft members, more preferably as elongated structural shaped members. Further preferred are plate products for use as upper wing members, preferably aircraft upper wings or stringer thin skin members.

本発明の合金の、上記の、および他の特徴および利点は、下記の好ましい実施態様の詳細な説明から容易に理解できる。   The above and other features and advantages of the alloys of the present invention can be readily understood from the following detailed description of the preferred embodiments.

例1
本発明の合金およびAA7150−T77合金を比較する試験を行った。本発明の合金例は、従来のAA7150−T77焼戻し合金よりも改良されていることが分かった。
Example 1
A test was performed comparing the alloy of the present invention and the AA7150-T77 alloy. It has been found that the example alloy of the present invention is an improvement over the conventional AA7150-T77 tempered alloy.

工業的規模で、4種類の異なったアルミニウム合金をインゴットに鋳造し、均質化し、410℃で6時間以上予備加熱し、30mmプレートに熱間圧延した。その後、プレートを475℃で溶体化熱処理し、水で急冷した。その後、急冷した製品を2工程T79−T76時効処理手順により時効処理した。化学的組成を表1に示す。   On an industrial scale, four different aluminum alloys were cast into ingots, homogenized, preheated at 410 ° C. for over 6 hours, and hot rolled into 30 mm plates. Thereafter, the plate was solution heat treated at 475 ° C. and quenched with water. Thereafter, the rapidly cooled product was subjected to an aging treatment by a two-step T79-T76 aging treatment procedure. The chemical composition is shown in Table 1.

表1
薄いプレート合金の化学組成(重量%)、残りはアルミニウムおよび不可避な不純物、合金1〜4はMn≦0.02

Si Fe Cu Mn Mg Cr Zn Ti Zr
合金1 0.03 0.06 2.23 0.00 2.08 0.00 6.24 0.03 0.10
(7050)
合金2 0.05 0.08 2.05 0.01 2.04 0.01 6.18 0.04 0.11
合金3 0.05 0.09 2.20 0.01 2.30 0.01 7.03 0.04 0.10
合金4 0.04 0.07 1.91 0.02 2.13 0.00 6.94 0.03 0.11
Table 1
Chemical composition of thin plate alloy (wt%), the rest is aluminum and inevitable impurities, alloys 1-4 are Mn ≦ 0.02

SiFeCuMnMgCrZnTiZr
Alloy 1 0.03 0.06 2.23 0.00 2.08 0.00 6.24 0.03 0.10
(7050)
Alloy 2 0.05 0.08 2.05 0.01 2.04 0.01 6.18 0.04 0.11
Alloy 3 0.05 0.09 2.20 0.01 2.30 0.01 7.03 0.04 0.10
Alloy 4 0.04 0.07 1.91 0.02 2.13 0.00 6.94 0.03 0.11

次いで、時効処理した合金を下記の試験条件で試験した。   The aged alloy was then tested under the following test conditions.

引張降伏強度は、EN10.002により測定し、剥離耐性(「EXCO」)は、ASTM G−34−97により測定し、応力腐食割れ(「SCC」)は、すべてST方向で、ASTM G−47−98により測定し、Kahn−引裂き(靱性)は、ASTM E−399により測定し、圧縮降伏強度(「CYS」)は、ASTM E−9により測定した。   Tensile yield strength is measured according to EN10.002, peel resistance ("EXCO") is measured according to ASTM G-34-97, and stress corrosion cracking ("SCC") is all in the ST direction, ASTM G-47. The Kahn-tear (toughness) was measured by ASTM E-399, and the compressive yield strength (“CYS”) was measured by ASTM E-9.

表1に示す4種類の合金の、T79−T76時効処理したプレート製品の結果を、表2aに、従来のAA7150−T77焼戻し合金と比較して示し、表2bに、従来のAA7150−T76/T74/T6焼戻し合金と比較して示す。   Table 2a shows the results of T79-T76 aging plate products of the four types of alloys shown in Table 1 in comparison with the conventional AA7150-T77 tempered alloy, and Table 2b shows the conventional AA7150-T76 / T74. / T6 compared with tempered alloy.

表2a
3種類の基準合金(AA7150−T77)と比較した表1の合金(30mmプレート)の強度および靱性の概観、合金1〜4はT79−T76に時効処理

Rp−L CYS−LT EXCO K1C−LT
(MPa) (MPa) (MPa√m)
合金1 555 565 EC 35.1
合金2 561 604 EA/B 34.5
合金3 565 590 EB 29.1
合金4 591 632 EB 28.9
AA7150-T77 586 - EB 28.6
AA7150-T77 579 - EB 29.2
AA7150-T77 537 - EA 33.2
NF=40日後に損傷無し
Table 2a
Overview of strength and toughness of alloys (30 mm plate) in Table 1 compared to three reference alloys (AA7150-T77), Alloys 1-4 are aged to T79-T76

Rp-L CYS-LT EXCO K 1C -LT
(MPa) (MPa) (MPa√m)
Alloy 1 555 565 EC 35.1
Alloy 2 561 604 EA / B 34.5
Alloy 3 565 590 EB 29.1
Alloy 4 591 632 EB 28.9
AA7150-T77 586-EB 28.6
AA7150-T77 579-EB 29.2
AA7150-T77 537-EA 33.2
NF = no damage after 40 days

表2b
3種類の基準合金(AA7150−T76、AA7150−T74、AA7150−T6)と比較した表1の合金(30mmプレート)の腐食性能の概観、合金1〜4はT79−T76に時効処理

SCC閾
合金1 172MPaでNF
合金2 240MPaでNF
合金3 240MPaでNF
合金4 240MPaでNF
AA7150-T76 117−172MPa
AA7150-T74 240MPa
AA7150-T6 <48MPa
NF=40日後に損傷無し
Table 2b
An overview of the corrosion performance of the alloys (30 mm plate) in Table 1 compared to three reference alloys (AA7150-T76, AA7150-T74, AA7150-T6), Alloys 1-4 are aged to T79-T76

SCC threshold
Alloy 1 NF at 172 MPa
Alloy 2 NF at 240 MPa
Alloy 3 NF at 240 MPa
Alloy 4 NF at 240 MPa
AA7150-T76 117-172 MPa
AA7150-T74 240 MPa
AA7150-T6 <48MPa
NF = no damage after 40 days

表2a、bから分かるように、合金1、2および4は、より優れた強度/靱性の組合せを示す。合金2、3および4は、すべて妥当なEXCO性能を有し、合金2、3および4は、合金No.1(AA7050合金)よりも大幅に高い圧力降伏強度を有する。合金2および4は、航空宇宙における上側翼用途に非常に好適な特性バランスを示し、従来の7150−T77合金の特性バランスよりも優れた特性バランスを示している。しかし、表3に示すように、本発明の合金にT77焼戻しを使用することも可能である。   As can be seen from Tables 2a, b, Alloys 1, 2 and 4 show better strength / toughness combinations. Alloys 2, 3 and 4 all have reasonable EXCO performance, and Alloys 2, 3 and 4 are alloy no. 1 (AA 7050 alloy) has a significantly higher pressure yield strength. Alloys 2 and 4 exhibit a property balance that is very suitable for upper wing applications in aerospace, and a property balance superior to that of the conventional 7150-T77 alloy. However, as shown in Table 3, it is also possible to use T77 tempering for the alloys of the present invention.

表3
T77焼戻し条件により焼き戻した合金2および4、強度、靱性および腐食性能の概観

Rp-L CYS-LT EXCO K1C-LT SCC閾
(MPa) (MPa) (MPa√m)
合金2 585 613 EA 32.2 240MPaでNF
合金4 607 641 EA 26.4 240MPaでNF
Table 3
Overview of alloys 2 and 4 tempered under T77 tempering conditions, strength, toughness and corrosion performance

Rp-L CYS-LT EXCO K 1C -LT SCC threshold
(MPa) (MPa) (MPa√m)
Alloy 2 585 613 EA 32.2 NF at 240MPa
Alloy 4 607 641 EA 26.4 NF at 240MPa

別のSCC試験を有望な合金No.4に行ったが、そこでは、合金4の試料をASTM G−47−98(AA7000シリーズアルミニウム合金製品の応力腐食割れに対する感受性を測定するための標準的な試験方法)に記載されている手順により調製し、ASTM G−44−94(3.5%NaCl溶液に交互浸漬することにより、金属および合金の応力腐食割れ耐性を評価するための標準的な方法に従う交互浸漬)に規定される腐食性雰囲気に露出した。   Promising alloy no. 4 where a sample of Alloy 4 was prepared according to the procedure described in ASTM G-47-98 (a standard test method for measuring the susceptibility of AA7000 series aluminum alloy products to stress corrosion cracking). Corrosivity as defined and prepared according to ASTM G-44-94 (alternating immersion according to standard methods for assessing stress corrosion cracking resistance of metals and alloys by alternating immersion in 3.5% NaCl solution) Exposed to the atmosphere.

表4に示すように、4種類の応力レベルを合金4の試料に対して選択した。各応力レベルに対して、3個の試料を試験環境(ASTM G−44)に露出した。1個は1週間後に取り出し、他の2個は40日間露出した。露出中に亀裂が生じなかった場合、引張特性を表4に示すように測定した。   As shown in Table 4, four stress levels were selected for the alloy 4 samples. For each stress level, three samples were exposed to the test environment (ASTM G-44). One was removed after one week and the other two were exposed for 40 days. When no cracks occurred during exposure, the tensile properties were measured as shown in Table 4.

表4
4種類の異なった応力レベルに露出した後の試料4の引張強度特性、予備応力はLT方向に作用していた。

合金4 予備応力 引張強度[MPa]
[MPa] 1週間 40日間
300 524.3 428.0
340 513.1 416.9
380 503.1 424.5
420 515.5 425.1
Table 4
The tensile strength characteristics and prestress of sample 4 after exposure to four different stress levels were acting in the LT direction.

Alloy 4 prestress tensile strength [MPa]
[MPa] 1 week 40 days
300 524.3 428.0
340 513.1 416.9
380 503.1 424.5
420 515.5 425.1

図4から分かるように、負荷の増加と共に残留強度の低下は測定されなかった、すなわち、引張強度特性に関する限り、測定できる応力腐食は40日後にも現れなかった。   As can be seen from FIG. 4, no decrease in residual strength with increasing load was measured, ie, as far as tensile strength properties were concerned, no measurable stress corrosion appeared after 40 days.

例2
より高い強度レベルが必要とされ、靱性はあまり重要ではない場合、上側翼用途には、AA7150−T77合金の代わりに、従来のAA7055−T77合金が好ましい。従って、本発明は、従来のAA7055−T77合金と等しいか、またはそれより優れた特性を示す最適な銅およびマグネシウムの範囲を開示する。
Example 2
Where higher strength levels are required and toughness is less important, conventional AA7055-T77 alloy is preferred for upper wing applications instead of AA7150-T77 alloy. Accordingly, the present invention discloses optimal copper and magnesium ranges that exhibit properties that are equal to or better than conventional AA7055-T77 alloys.

表5に示すような化学組成を有する11種類の異なったアルミニウム合金をインゴットに鋳造した。   Eleven different aluminum alloys having chemical compositions as shown in Table 5 were cast into ingots.

表5
11種類の合金の化学組成(重量%)、残りの部分はアルミニウムおよび不可避な不純物、Zr=0.08、Si=0.05、Fe=0.08である。

合金 Cu Mg Zn Mn
1 2.40 2.20 8.2 0.00
2 1.94 2.33 8.2 0.00
3 1.26 2.32 8.1 0.00
4 2.36 1.94 8.1 0.00
5 1.94 1.92 8.1 0.00
6 1.30 2.09 8.2 0.00
7 1.92 1.54 8.1 0.00
8 1.27 1.57 8.1 0.00
9 2.34 2.25 8.1 0.07
10 2.38 2.09 8.1 0.00
11 2.35 1.53 8.2 0.00
Table 5
The chemical composition (% by weight) of 11 types of alloys, the remainder being aluminum and inevitable impurities, Zr = 0.08, Si = 0.05, Fe = 0.08.

Alloy Cu Mg Mg Zn Mn
1 2.40 2.20 8.2 0.00
2 1.94 2.33 8.2 0.00
3 1.26 2.32 8.1 0.00
4 2.36 1.94 8.1 0.00
5 1.94 1.92 8.1 0.00
6 1.30 2.09 8.2 0.00
7 1.92 1.54 8.1 0.00
8 1.27 1.57 8.1 0.00
9 2.34 2.25 8.1 0.07
10 2.38 2.09 8.1 0.00
11 2.35 1.53 8.2 0.00

強度および靱性は、鋳造合金を410℃で6時間予備加熱し、次いで合金を28mmゲージに熱間圧延してから測定した。その後、溶体化熱処理を475℃で行い、水で急冷した。時効処理は、120℃で8時間、および155℃で8〜10時間(T79−T76焼戻し)行った。結果を表6に示す。   Strength and toughness were measured after pre-heating the cast alloy at 410 ° C. for 6 hours and then hot rolling the alloy to 28 mm gauge. Thereafter, solution heat treatment was performed at 475 ° C. and quenched with water. The aging treatment was performed at 120 ° C. for 8 hours and at 155 ° C. for 8 to 10 hours (T79-T76 tempering). The results are shown in Table 6.

表6
表5に示す11種類の合金の、指定する方向における強度および靱性の概観

Rp Rm Kq
合金 L LT L LT L−T
1 628 596 651 633 28.9
2 614 561 642 604 29.3
3 566 544 596 582 39.0
4 614 568 638 604 33.0
5 595 556 620 590 37.1
6 562 513 590 552 38.6
7 549 509 573 542 41.7
8 530 484 556 522 41.9
9 628 584 644 618 26.6
10 614 575 631 606 28.1
11 568 529 594 568 36.6
Table 6
An overview of the strength and toughness of the 11 alloys shown in Table 5 in the specified direction.

Rp Rm Kq
Alloy L LT L LT L-T
1 628 596 651 633 28.9
2 614 561 642 604 29.3
3 566 544 596 582 39.0
4 614 568 638 604 33.0
5 595 556 620 590 37.1
6 562 513 590 552 38.6
7 549 509 573 542 41.7
8 530 484 556 522 41.9
9 628 584 644 618 26.6
10 614 575 631 606 28.1
11 568 529 594 568 36.6

合金3〜8および11は良好な靱性を示したのに対し、合金1〜5および9および10は良好な強度特性を示した。従って、合金3、4および5は、強度と靱性の良好なバランスを示すので、亜鉛が8.1の量で存在する場合、銅含有量が1.3を超え、マグネシウム含有量が1.6(重量%で)を超えることは明らかである。そのような量は、銅およびマグネシウム範囲の下限である。表6から分かるように、銅およびマグネシウムレベルが高過ぎる場合(合金1、2、9および10)、靱性は許容できない低いレベルに低下する
Alloys 3-8 and 11 showed good toughness, while alloys 1-5, 9 and 10 showed good strength properties. Therefore, Alloys 3, 4 and 5 show a good balance between strength and toughness, so that when zinc is present in an amount of 8.1, the copper content exceeds 1.3 and the magnesium content is 1.6. It is clear that it exceeds (in weight percent). Such an amount is the lower limit of the copper and magnesium ranges. As can be seen from Table 6, if the copper and magnesium levels are too high (alloys 1, 2, 9 and 10), the toughness drops to an unacceptably low level.

例3
本発明の合金の特性に対するマンガンの影響を調べた。最適マンガンレベルは、亜鉛量が高い合金では0.05〜0.12であることが分かった。これらの結果を表7および8に示す。記載していない化学特性および処理パラメータは、すべて例2の特性およびパラメータと同等である。
Example 3
The effect of manganese on the properties of the alloy of the present invention was investigated. The optimum manganese level was found to be 0.05 to 0.12 for alloys with high zinc content. These results are shown in Tables 7 and 8. All chemical properties and processing parameters not listed are equivalent to those of Example 2.

表7
3種類の合金(Mn−0、Mn−1およびMn−2)の化学組成(重量%)、残りはアルミニウムおよび不可避な不純物、Zr=0.08、Si=0.05、Fe=0.08

合金 Cu Mg Zn Mn
Mn−0 1.94 2.33 8.2 0.00
Mn−1 1.94 2.27 8.1 0.06
Mn−2 1.96 2.29 8.2 0.12
Table 7
Chemical composition (% by weight) of three types of alloys (Mn-0, Mn-1 and Mn-2), the rest being aluminum and inevitable impurities, Zr = 0.08, Si = 0.05, Fe = 0.08

Alloy Cu Mg Mg Zn Mn
Mn-0 1.94 2.33 8.2 0.00
Mn-1 1.94 2.27 8.1 0.06
Mn-2 1.96 2.29 8.2 0.12

表8
表7に示す3種類の合金の、指定する方向における強度および靱性の概観

合金 Rp Rm Kq
L LT L LT L−T
Mn−0 614 561 642 604 29.3
Mn−1 612 562 635 602 31.9
Mn−2 612 560 639 596 29.9
Table 8
An overview of strength and toughness in the specified direction for the three alloys shown in Table 7.

Alloy Rp Rm Kq
L LT L LT L-T
Mn-0 614 561 642 604 29.3
Mn-1 612 562 635 602 31.9
Mn-2 612 560 639 596 29.9

表8に示すように、強度特性が増加するにつれて、靱性は低下する。亜鉛量が高い合金では、最適マンガンレベルは0.05〜0.12である。   As shown in Table 8, as the strength properties increase, the toughness decreases. For alloys with a high zinc content, the optimum manganese level is 0.05 to 0.12.

例4
より高い強度レベルが必要であり、靱性はあまり重要ではない場合、上側翼用途用の合金としては、AA7150−T77合金の代わりに、従来のAA7055−T77合金が好ましい。従って、本発明は、従来のAA7055−T77合金と等しいか、またはそれより優れた特性を示す、銅およびマグネシウムの最適範囲を開示する。
Example 4
Where higher strength levels are required and toughness is less important, the conventional AA7055-T77 alloy is preferred as the alloy for upper wing applications instead of the AA7150-T77 alloy. Thus, the present invention discloses an optimal range of copper and magnesium that exhibits properties that are equal to or better than conventional AA7055-T77 alloys.

2種類の異なったアルミニウム合金を、表9に示す化学組成を有するインゴットに鋳造した。   Two different aluminum alloys were cast into ingots having the chemical compositions shown in Table 9.

表9
3種類の合金の化学組成(重量%)、残りはアルミニウムおよび不可避な不純物、Zr=0.08、Si=0.05、Fe=0.08、(Ref=AA7055合金)

合金 Si Fe Cu Mn Mg Cr Zn Ti Zr
1 0.05 0.09 2.24 0.01 2.37 0.01 7.89 0.04 0.10
2 0.04 0.07 1.82 0.08 2.18 0.00 8.04 0.03 0.10
Ref. 2.1- 1.8- 7.6-
2.6 2.2 8.4
Table 9
Chemical composition of 3 types of alloys (% by weight), the rest are aluminum and inevitable impurities, Zr = 0.08, Si = 0.05, Fe = 0.08, (Ref = AA7055 alloy)

Alloy Si Fe Cu Cu Mn Mg Cr Zn Ti Zr
1 0.05 0.09 2.24 0.01 2.37 0.01 7.89 0.04 0.10
2 0.04 0.07 1.82 0.08 2.18 0.00 8.04 0.03 0.10
Ref. 2.1- 1.8- 7.6-
2.6 2.2 8.4

合金1および2を、それらの強度特性に関して試験した。これらの特性を表10に示す。合金2は、2種類の焼戻し条件(T79−T76およびT77)により焼戻し処理した。基準合金AA7055は、T77焼戻し(M−Ref)で測定し、T77焼戻しにおけるAA7055基準合金の技術的データも示す(Refにより)。   Alloys 1 and 2 were tested for their strength properties. These characteristics are shown in Table 10. Alloy 2 was tempered under two tempering conditions (T79-T76 and T77). Reference alloy AA7055 is measured by T77 tempering (M-Ref) and also shows technical data of AA7055 reference alloy in T77 tempering (by Ref).

表10
表9に示す本発明の2種類の合金の、合金No.2は2種類の焼戻し条件における強度の概観、基準合金(AA7055)測定(M−Ref)および技術シート(Ref)

合金 焼戻し Rp-L Rp-LT Rp-ST Rm-L Rm-LT Rm-ST
1 T79-T76 604 593 559 634 631 613
2 T79-T76 612 598 571 645 634 618
2 T77 619 606 569 640 631 610
Ref T77 614 614 - 634 641 -
M-Ref T77 621 611 537 638 634 599
Table 10
The alloy nos. 2 is an overview of strength under two tempering conditions, a standard alloy (AA7055) measurement (M-Ref), and a technical sheet (Ref).

Alloy Tempering Rp-L Rp-LT Rp-ST Rm-L Rm-LT Rm-ST
1 T79-T76 604 593 559 634 631 613
2 T79-T76 612 598 571 645 634 618
2 T77 619 606 569 640 631 610
Ref T77 614 614-634 641-
M-Ref T77 621 611 537 638 634 599

LTおよびTL方向における靱性ならびにLおよびLT方向における圧縮降伏強度ならびに腐食性能特性を表11に示す。   Table 11 shows the toughness in the LT and TL directions and the compressive yield strength and corrosion performance characteristics in the L and LT directions.

表11
表9に示す本発明の2種類の合金の、異なった焼戻し条件および異なった試験方向における靱性およびCYS特性、NF=指定する応力レベルで40日後に損傷無し、その他は試料が破損した日を示す。

合金 焼戻し KICIC CYS-L CYS-LT EXCO SCC
(L-T) (T-L)
1 T79-T76 21.0 - 596 621 EC 2,3,8
2 T79-T76 28.9 27.1 630 660 EB 172MPaで
NF
2 T77 28.8 26.5 628 656 EA 210MPaで
NF
Ref T77 28.6 26.4 621 648 EB 103MPaで
NF
M-Ref T77 - - - - EB 103MPaで
NF
Table 11
The toughness and CYS properties of the two alloys of the present invention shown in Table 9 in different tempering conditions and in different test directions, NF = no damage after 40 days at the specified stress level, others indicate the day the sample broke .

Alloy Tempering K IC K IC CYS-L CYS-LT EXCO SCC
(LT) (TL)
1 T79-T76 21.0-596 621 EC 2,3,8
2 T79-T76 28.9 27.1 630 660 EB at 172MPa
NF
2 T77 28.8 26.5 628 656 EA at 210MPa
NF
Ref T77 28.6 26.4 621 648 EB at 103MPa
NF
M-Ref T77----EB 103MPa
NF

本発明の合金は、従来のAA7055−T77合金と同等の引張特性を有する。しかし、ST方向における特性は、従来のAA7055−T77合金のそれよりも優れている。応力腐食性能もAA055−T77合金よりも優れている。従って、本発明の合金は、AA7055−T77焼戻し合金の安価な代替品として使用でき、時効クリープ成形にも使用でき、その際、優れた圧縮降伏強度および耐食性を示す。   The alloy of the present invention has tensile properties equivalent to the conventional AA7055-T77 alloy. However, the characteristics in the ST direction are superior to those of the conventional AA7055-T77 alloy. Stress corrosion performance is also superior to AA055-T77 alloy. Therefore, the alloy of the present invention can be used as an inexpensive alternative to the AA7055-T77 tempered alloy, and can also be used for aging creep forming, showing excellent compressive yield strength and corrosion resistance.

以上、本発明を十分に説明したが、当業者には明らかな様に、ここで説明した本発明の精神または範囲から離れることなく、多くの変形および修正を行うことが可能である。本発明は、付随する請求項により規定される。   Although the present invention has been fully described above, many variations and modifications can be made without departing from the spirit or scope of the invention described herein, as will be apparent to those skilled in the art. The invention is defined by the appended claims.

Claims (30)

改良された耐食性と靱性の組合せを有する鍛造された高強度Al−Zn合金製品であって、実質的に(重量%で)
Zn 6.0〜9.5
Cu 1.3〜2.4
Mg 1.5〜2.6
Mn <0.12
Zr <0.20
Cr <0.10
Fe <0.25
Si <0.25
Ti <0.10
Hfおよび/またはV<0.25、
所望によりCeおよび/またはSc<0.20
各0.05未満で、かつ合計で0.25未満の他の複数の元素、残部アルミニウムを含んでなり、(重量%で)
0.1[Cu]+1.3<[Mg]<0.2[Cu]+2.15
である、合金。
A forged high-strength Al-Zn alloy product having a combination of improved corrosion resistance and toughness, substantially (in weight percent)
Zn 6.0-9.5
Cu 1.3-2.4
Mg 1.5-2.6
Mn <0.12
Zr <0.20
Cr <0.10
Fe <0.25
Si <0.25
Ti <0.10
Hf and / or V <0.25,
Ce and / or Sc <0.20 as desired
Comprising a plurality of other elements each less than 0.05 and less than 0.25 in total, the balance aluminum (in weight percent)
0.1 [Cu] +1.3 <[Mg] <0.2 [Cu] +2.15
Is an alloy.
Mgの量(重量%)が、
0.2[Cu]+1.3<[Mg]<0.1[Cu]+2.15
の範囲内にある、請求項1に記載の合金。
The amount of Mg (wt%)
0.2 [Cu] +1.3 <[Mg] <0.1 [Cu] +2.15
The alloy of claim 1 in the range of
Mgの量(重量%)が、
0.2[Cu]+1.4<[Mg]<0.1[Cu]+1.9
の範囲内にある、請求項1に記載の合金。
The amount of Mg (wt%)
0.2 [Cu] +1.4 <[Mg] <0.1 [Cu] +1.9
The alloy of claim 1 in the range of
前記合金製品が、EBまたはそれより優れた剥離腐食耐性(「EXCO」)を有する、請求項1に記載の合金。   The alloy of claim 1, wherein the alloy product has EB or better exfoliation corrosion resistance (“EXCO”). 前記合金製品が、EAまたはそれより優れた剥離腐食耐性(「EXCO」)を有する、請求項1に記載の合金。   The alloy of claim 1, wherein the alloy product has EA or better exfoliation corrosion resistance (“EXCO”). Cuの量(重量%)が1.5〜2.1である、請求項1に記載の合金。   The alloy according to claim 1, wherein the amount (% by weight) of Cu is 1.5 to 2.1. Cuの量(重量%)が1.5〜2.0である、請求項1に記載の合金。   The alloy according to claim 1, wherein the amount (% by weight) of Cu is 1.5 to 2.0. Zrの量(重量%)が0.05〜0.15である、請求項1に記載の合金。   The alloy according to claim 1, wherein the amount (% by weight) of Zr is 0.05 to 0.15. Znの量(重量%)が約8.1である場合、MgおよびCuの量(重量%)が約1.93である、請求項1に記載の合金。   The alloy of claim 1 wherein the amount of Mg and Cu (wt%) is about 1.93 when the amount of Zn (wt%) is about 8.1. Mnが0.05未満である場合、Znの量(重量%)が6.1〜8.3、好ましくは6.1〜7.0である、請求項1に記載の合金。   The alloy according to claim 1, wherein when Mn is less than 0.05, the amount (wt%) of Zn is 6.1-8.3, preferably 6.1-7.0. Mnが0.02未満である場合、Znの量(重量%)が6.1〜8.3、好ましくは6.1〜7.0である、請求項1に記載の合金。   The alloy according to claim 1, wherein when Mn is less than 0.02, the amount (wt%) of Zn is 6.1-8.3, preferably 6.1-7.0. Znの量(重量%)が7.6を超える場合、Mnの量(重量%)が0.06〜0.12である、請求項1に記載の合金。   The alloy according to claim 1, wherein when the amount (wt%) of Zn exceeds 7.6, the amount (wt%) of Mn is 0.06 to 0.12. Feの量(重量%)が0.12未満である、請求項1に記載の合金。   The alloy according to claim 1, wherein the amount (% by weight) of Fe is less than 0.12. Siの量(重量%)が0.12未満である、請求項1に記載の合金。   The alloy according to claim 1, wherein the amount (wt%) of Si is less than 0.12. 前記合金が、2工程時効処理手順でT79またはT76焼戻しに、人工的に時効処理されている、請求項1に記載の合金。   The alloy of claim 1, wherein the alloy is artificially aged to T79 or T76 temper in a two-step aging procedure. 前記2工程時効処理手順が、温度105℃〜135℃で2〜20時間の第一熱処理、および135℃より高いが、210℃未満の温度で4〜12時間の第二熱処理からなる、請求項15に記載の合金。   The two-step aging treatment procedure comprises a first heat treatment at a temperature of 105 ° C to 135 ° C for 2 to 20 hours and a second heat treatment at a temperature higher than 135 ° C but less than 210 ° C for 4 to 12 hours. 15. The alloy according to 15. 前記製品がプレート製品である、請求項1に記載の合金。   The alloy of claim 1, wherein the product is a plate product. 前記製品が、厚さ15〜45mmのプレート製品である、請求項1に記載の合金。   The alloy according to claim 1, wherein the product is a plate product having a thickness of 15 to 45 mm. 前記プレート製品が、薄い航空機部材である、請求項18に記載の合金。   The alloy of claim 18, wherein the plate product is a thin aircraft member. 前記プレート製品が、細長い構造的形状の航空機部材である、請求項18に記載の合金。   The alloy of claim 18, wherein the plate product is an elongated structurally shaped aircraft member. 前記プレート製品が、航空機の上側翼部材である、請求項18に記載の合金。   The alloy of claim 18, wherein the plate product is an aircraft upper wing member. 前記プレート製品が、航空機の上側翼の薄い外板部材である、請求項18に記載の合金。   The alloy of claim 18, wherein the plate product is a thin skin member of an aircraft upper wing. 前記プレート製品が、航空機のストリンガーである、請求項18に記載の合金。   The alloy of claim 18, wherein the plate product is an aircraft stringer. 前記プレート製品が、航空機の上側翼のストリンガーである、請求項18に記載の合金。   The alloy of claim 18, wherein the plate product is an aircraft upper wing stringer. 請求項1に記載の、改良された耐食性と靱性の組合せを有する鍛造された高強度Al−Zn合金製品の製造方法であって、
a)下記の組成(重量%で)、すなわち
Zn 6.0〜9.5
Cu 1.3〜2.4
Mg 1.5〜2.6
Mn <0.12
Zr <0.20、好ましくは0.05〜0.15
Cr <0.10
Fe <0.25
Si <0.25
Ti <0.10
Hfおよび/またはV<0.25、所望によりCeおよび/またはSc<0.20
各0.05未満で、かつ合計で0.25未満の他の複数の元素、残部アルミニウムの組成を有し、(重量%で)
0.1[Cu]+1.3<[Mg]<0.2[Cu]+2.15
であるインゴットを鋳造する工程、
b)鋳造後、前記インゴットを均質化および/または予備加熱する工程、
c)前記インゴットを熱間加工し、所望により冷間加工し、加工製品を形成する工程、
d)溶体化熱処理する工程、および
e)前記溶体化熱処理した製品を急冷する工程
を含んでなる、方法。
A method for producing a forged high-strength Al-Zn alloy product having improved corrosion resistance and toughness combination according to claim 1 comprising:
a) The following composition (in wt%): Zn 6.0-9.5
Cu 1.3-2.4
Mg 1.5-2.6
Mn <0.12
Zr <0.20, preferably 0.05-0.15
Cr <0.10
Fe <0.25
Si <0.25
Ti <0.10
Hf and / or V <0.25, optionally Ce and / or Sc <0.20
A plurality of other elements each less than 0.05 and in total less than 0.25, with the balance aluminum composition (in weight percent)
0.1 [Cu] +1.3 <[Mg] <0.2 [Cu] +2.15
A process of casting an ingot,
b) a step of homogenizing and / or preheating the ingot after casting;
c) Hot working the ingot, cold working as desired to form a processed product;
d) a solution heat treatment step; and e) a step of rapidly cooling the solution heat treated product.
前記加工した、溶体化熱処理した製品を人工的に時効処理し、前記時効処理工程が、温度105℃〜135℃で2〜20時間の第一熱処理、および135℃より高いが、210℃未満の温度で4〜12時間の第二熱処理を含んでなる、請求項24に記載の方法。   The processed, solution heat-treated product is artificially aged, and the aging treatment step is a first heat treatment at a temperature of 105 ° C. to 135 ° C. for 2 to 20 hours, and higher than 135 ° C. but less than 210 ° C. 25. The method of claim 24, comprising a second heat treatment at a temperature for 4-12 hours. 前記加工した、溶体化熱処理した製品を人工的に時効処理し、前記時効処理工程が、温度105℃〜135℃で20時間を超え、30時間未満の第三熱処理を含んでなる、請求項25に記載の方法。   26. Artificial aging treatment of the processed, solution heat treated product, wherein the aging treatment step comprises a third heat treatment at a temperature of 105 ° C. to 135 ° C. for more than 20 hours and less than 30 hours. The method described in 1. 前記加工した、溶体化熱処理した製品を人工的に時効処理し、前記時効処理工程が、温度105℃〜135℃で2〜20時間の第一熱処理、および135℃より高いが、210℃未満の温度で4〜12時間の第二熱処理を含んでなる、請求項25に記載の方法。   The processed, solution heat-treated product is artificially aged, and the aging treatment step is a first heat treatment at a temperature of 105 ° C. to 135 ° C. for 2 to 20 hours, and higher than 135 ° C. but less than 210 ° C. 26. The method of claim 25, comprising a second heat treatment at temperature for 4-12 hours. 前記加工した、溶体化熱処理した製品を2工程時効処理手順で、T79またはT76焼戻しに人工的に時効処理する、請求項24に記載の方法。   25. The method of claim 24, wherein the processed solution heat treated product is artificially aged to T79 or T76 temper in a two-step aging procedure. 前記鋳造後のインゴットを均質化および/または予備加熱した後、前記インゴットを熱間加工し、所望により、厚さ15mm〜45mmの加工製品に冷間加工する、請求項24に記載の方法。   25. The method of claim 24, wherein after the casting ingot is homogenized and / or preheated, the ingot is hot worked and optionally cold worked into a 15 mm to 45 mm thick work product.
JP2006505139A 2003-04-10 2004-04-09 High strength Al-Zn alloy and method for producing such an alloy product Expired - Lifetime JP4964586B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03076049.0 2003-04-10
EP03076049 2003-04-10
PCT/EP2004/003997 WO2004090183A1 (en) 2003-04-10 2004-04-09 High strength al-zn alloy and method for producing such an alloy product

Publications (3)

Publication Number Publication Date
JP2006522872A true JP2006522872A (en) 2006-10-05
JP2006522872A5 JP2006522872A5 (en) 2010-08-12
JP4964586B2 JP4964586B2 (en) 2012-07-04

Family

ID=33041014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006505139A Expired - Lifetime JP4964586B2 (en) 2003-04-10 2004-04-09 High strength Al-Zn alloy and method for producing such an alloy product

Country Status (12)

Country Link
US (2) US20050034794A1 (en)
JP (1) JP4964586B2 (en)
CN (2) CN103146969B (en)
AT (1) AT502294B1 (en)
BR (1) BRPI0409360A (en)
CA (2) CA2881183C (en)
DE (1) DE112004000596B4 (en)
ES (2) ES2288389A1 (en)
FR (1) FR2853666B1 (en)
GB (1) GB2415203B (en)
RU (1) RU2353699C2 (en)
WO (1) WO2004090183A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186651A (en) * 2016-02-11 2017-10-12 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Al-Mg-Zn ALLOY WITH SCANDIUM FOR INTEGRAL CONSTRUCTION OF ALM STRUCTURES
JP2020535307A (en) * 2017-09-26 2020-12-03 コンステリウム イソワールConstellium Issoire Al-Zn-Cu-Mg alloy with high strength and manufacturing method
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932473B2 (en) * 2003-03-17 2012-05-16 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure
WO2004090185A1 (en) * 2003-04-10 2004-10-21 Corus Aluminium Walzprodukte Gmbh An al-zn-mg-cu alloy
US20060085528A1 (en) * 2004-10-01 2006-04-20 Steve Thomas System and method for monitoring network communications for pestware
US7883591B2 (en) * 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
EP1683882B2 (en) * 2005-01-19 2010-07-21 Otto Fuchs KG Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
CN100441715C (en) * 2005-03-07 2008-12-10 东北轻合金有限责任公司 Super large-scale aluminium alloy free forging piece and its prodn. method
US9410229B2 (en) * 2005-03-24 2016-08-09 Kaiser Aluminum Fabricated Products, Llc High strength aluminum alloys and process for making the same
US20060213591A1 (en) 2005-03-24 2006-09-28 Brooks Charles E High strength aluminum alloys and process for making the same
US20060289093A1 (en) * 2005-05-25 2006-12-28 Howmet Corporation Al-Zn-Mg-Ag high-strength alloy for aerospace and automotive castings
US8157932B2 (en) * 2005-05-25 2012-04-17 Alcoa Inc. Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings
CN1303237C (en) * 2005-09-19 2007-03-07 陈继忠 Aluminium alloy screw and its manufacturing method
US8083871B2 (en) * 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
RU2443797C2 (en) * 2006-07-07 2012-02-27 Алерис Алюминум Кобленц Гмбх Products from aluminium alloy of aa7000 series and their manufacturing method
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8840737B2 (en) 2007-05-14 2014-09-23 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8673209B2 (en) * 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
CN102066596B (en) 2008-06-24 2016-08-17 阿勒里斯铝业科布伦茨有限公司 There is the Al-Zn-Mg alloy product of the quenching sensitive of reduction
CN101407876A (en) * 2008-09-17 2009-04-15 北京有色金属研究总院 Aluminum alloy material for manufacturing large cross section main load-carrying structure member and preparation thereof
US8206517B1 (en) 2009-01-20 2012-06-26 Alcoa Inc. Aluminum alloys having improved ballistics and armor protection performance
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
RU2449047C1 (en) * 2010-10-29 2012-04-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Method for obtaining superplastic sheet of high-strength aluminium alloy
EP2714954A4 (en) * 2011-05-21 2015-08-19 Questek Innovations Llc Aluminum alloys
CN102251158A (en) * 2011-07-09 2011-11-23 浙江巨科铝业有限公司 Aluminium alloy for vehicle hub and preparation method thereof
CN102489973B (en) * 2011-12-23 2013-08-28 东北轻合金有限责任公司 Method for manufacturing aluminum alloy hollow section for sedan bumper
EP2662467A1 (en) * 2012-04-22 2013-11-13 Kaiser Aluminum Fabricated Products, LLC Ultra-thick high strength 7xxx series aluminum alloy products and methods of making such products
CN102760508B (en) * 2012-07-18 2014-05-28 中南大学 High-conductivity creep-resistant aluminium alloy cable conductor containing Hf and Ce and preparation method thereof
CN102978549A (en) * 2012-11-21 2013-03-20 中南大学 Method for bending creep age forming of Al-Zn-Mg-Cu series aluminium alloy plate
CN102978544B (en) * 2012-11-21 2014-08-20 中南大学 Method for multilevel creep age forming of Al-Zn-Mg-Cu series aluminium alloy plate
CN103540875A (en) * 2013-03-09 2014-01-29 中南大学 Bending, creeping and ageing method for Al-Zn-Mg-Cu aluminum-alloy plate
CN103409710A (en) * 2013-07-05 2013-11-27 中南大学 Aging heat treatment method of Al-Zn-Mg-Cu aluminum alloy
CN103667825B (en) * 2013-12-30 2016-04-13 上海华峰新材料研发科技有限公司 A kind of ultra-high-strength/tenacity anticorodal and manufacture method thereof
RU2553781C1 (en) * 2014-03-07 2015-06-20 Закрытое акционерное общество "Военно-промышленная инвестиционная группа "ВИЛС" High-strength heat-treatable aluminium alloy and article made thereof
CN104789837A (en) * 2014-05-07 2015-07-22 天长市正牧铝业科技有限公司 Aluminum alloy material used for manufacturing baseball bat
CN104789836B (en) * 2014-05-07 2017-05-24 天长市正牧铝业科技有限公司 Lightweight high-strength aluminum alloy
CN104789839B (en) * 2014-05-07 2017-06-30 天长市正牧铝业科技有限公司 A kind of lightweight tenacity aluminum alloy
CN104789835A (en) * 2014-05-07 2015-07-22 天长市正牧铝业科技有限公司 High-strength and high-toughness aluminum alloy for baseball bat
CN104789838A (en) * 2014-05-07 2015-07-22 天长市正牧铝业科技有限公司 Strong and tough aluminum alloy for baseball bat
CN104060915B (en) * 2014-05-26 2016-07-06 安徽盛达前亮铝业有限公司 Inside open interior wing side plate
CN104060917B (en) * 2014-05-26 2016-02-10 安徽盛达前亮铝业有限公司 Side plate aluminium extruded sections under interior wing
CN104047502B (en) * 2014-05-26 2016-05-18 安徽盛达前亮铝业有限公司 Door jamb
CN104294117A (en) * 2014-10-29 2015-01-21 严静儿 High-ductility aluminum alloy
CN104294116A (en) * 2014-10-29 2015-01-21 严静儿 High-performance aluminum alloy
CN105838944B (en) * 2015-01-16 2017-09-19 昆山捷安特轻合金科技有限公司 A kind of carbody high strength weldable aluminium and preparation method thereof
CN106555086A (en) * 2015-09-24 2017-04-05 湖南稀土金属材料研究院 A kind of high strength anti-corrosion Al-Zn-Mg- (Cu) line aluminium alloy bar and preparation method thereof
CN105112746B (en) * 2015-09-25 2017-05-17 沈阳工业大学 High-strength Al-Zn-Mg-Cu-Ce-Y-Er-La-Sc wrought aluminum alloy and manufacturing method thereof
RU2613270C1 (en) * 2015-10-20 2017-03-15 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") HIGH-STRENGTH ALUMINIUM-BASED WROUGHT ALLOY OF Al-Zn-Mg-Cu-SYSTEM AND ARTICLE MADE THEREOF
HUE063975T2 (en) * 2015-10-29 2024-02-28 Howmet Aerospace Inc Improved wrought 7xxx aluminum alloys, and methods for making the same
PT3265595T (en) * 2015-10-30 2019-05-08 Novelis Inc High strength 7xxx aluminum alloys and methods of making the same
RU2610190C1 (en) * 2015-11-05 2017-02-08 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") High-strength aluminium alloy and article made of it
EP3181711B1 (en) * 2015-12-14 2020-02-26 Apworks GmbH Aluminium alloy containing scandium for powder metallurgy technologies
CN106435303B (en) * 2016-03-07 2018-08-03 中安顺兴(北京)安全技术有限公司 A kind of high intensity, high-ductility rare earth aluminum alloy material and preparation method thereof
CN105935733A (en) * 2016-06-14 2016-09-14 山东南山铝业股份有限公司 Preparation method of large-size high-strength aluminum alloy forged cake
CN105964849A (en) * 2016-06-14 2016-09-28 山东南山铝业股份有限公司 Isothermal die forging technology for large-size high-strength aluminum alloy parts
WO2018037390A2 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
MX2019004494A (en) * 2016-10-24 2019-12-18 Shape Corp Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components.
CN106399775A (en) * 2016-11-11 2017-02-15 湖北万佳宏铝业股份有限公司 High-strength aluminum alloy material formula and preparation method thereof
RU2654224C1 (en) * 2016-12-26 2018-05-17 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Aluminum-based alloy for anti-meteorite protection
MX2019014060A (en) * 2017-05-30 2020-02-05 Obshchestvo S Ogranichennoy Otvetstvennostyu Obedinennaya Kompaniya Rusal Inzhenerno Tekh Tsentr High-strength aluminium-based alloy.
CN107245617B (en) * 2017-06-13 2019-07-05 上海新益电力线路器材有限公司 A kind of power circuit power transmission and transformation aluminium alloy element and preparation method thereof
FR3068370B1 (en) * 2017-07-03 2019-08-02 Constellium Issoire AL-ZN-CU-MG ALLOYS AND PROCESS FOR PRODUCING THE SAME
CN107447140B (en) * 2017-07-26 2019-02-05 广西大学 A kind of high strength alumin ium alloy and preparation method thereof haveing excellent performance
CN107937847A (en) * 2017-12-29 2018-04-20 西南铝业(集团)有限责任公司 A kind of homogenizing heat treatment of the strong 7 line aluminium alloy material of superelevation for heavy haul train draw bar
CN108149095A (en) * 2017-12-29 2018-06-12 西南铝业(集团)有限责任公司 A kind of production method of the strong 7 line aluminium alloy material of inexpensive superelevation for heavy haul train draw bar
CN108220845A (en) * 2017-12-29 2018-06-29 西南铝业(集团)有限责任公司 A kind of solid solution aging technique of the strong 7 line aluminium alloy material of superelevation for heavy haul train draw bar
CN107937776A (en) * 2017-12-29 2018-04-20 西南铝业(集团)有限责任公司 A kind of strong 7 line aluminium alloy material of inexpensive superelevation for heavy haul train draw bar
CN108179332A (en) * 2017-12-29 2018-06-19 西南铝业(集团)有限责任公司 A kind of strong 7 line aluminium alloy material of inexpensive superelevation for heavy haul train draw bar and its production method
RU2691475C1 (en) * 2018-09-24 2019-06-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Cast aluminum alloy with cerium additive
BR112021004434B1 (en) * 2018-11-12 2024-01-02 Novelis Koblenz Gmbh 7XXX SERIES ALUMINUM ALLOY PRODUCT
EP3670690A1 (en) 2018-12-20 2020-06-24 Constellium Issoire Al-zn-cu-mg alloys and their manufacturing process
CA3143806A1 (en) * 2019-06-24 2020-12-30 Arconic Technologies Llc Improved thick wrought 7xxx aluminum alloys, and methods for making the same
CN110592443B (en) * 2019-08-27 2021-03-23 江苏大学 Heat-resistant corrosion-resistant 680MPa-730MPa Ti alloyed aluminum alloy and preparation method thereof
CN111575618B (en) * 2020-05-15 2021-07-02 江苏理工学院 Treatment method for reducing cracking tendency of large-deformation rolling Al-Zn alloy
US20220145439A1 (en) * 2020-11-11 2022-05-12 Kaiser Aluminum Fabricated Products, Llc High Strength and High Fracture Toughness 7xxx Aerospace Alloy Products
CN112941379A (en) * 2021-01-22 2021-06-11 宁波胶点密封工业有限公司 Aluminum alloy plate for producing die and preparation process thereof
CN113373356B (en) * 2021-06-21 2023-03-28 哈尔滨工程大学 Al-Zn-Mg-Cu-Re aluminum alloy and preparation method thereof
EP4386097A1 (en) 2022-12-12 2024-06-19 Constellium Rolled Products Ravenswood, LLC 7xxx wrought products with improved compromise of tensile and toughness properties and method for producing
CN117161121A (en) * 2023-09-06 2023-12-05 大庆冬青技术开发有限公司 High-strength high-toughness rare aluminum alloy toughness ceramic oil pipe and downhole tool pipe column
CN117821815B (en) * 2024-03-04 2024-06-04 鼎镁新材料科技股份有限公司 High-strength coarse-grain-free Al-Zn-Mg-Cu aluminum alloy for motorcycle wheels and preparation method thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651560A (en) * 1979-09-29 1981-05-09 Sumitomo Light Metal Ind Ltd Manufacture of aircraft stringer material
US4305763A (en) * 1978-09-29 1981-12-15 The Boeing Company Method of producing an aluminum alloy product
JPS57108240A (en) * 1980-12-24 1982-07-06 Mitsubishi Alum Co Ltd High tensile al alloy with superior extrusibility
JPS57161045A (en) * 1981-03-31 1982-10-04 Sumitomo Light Metal Ind Ltd Fine-grain high-strength aluminum alloy material and its manufacture
JPS5928555A (en) * 1982-08-06 1984-02-15 Sumitomo Light Metal Ind Ltd High tensile aluminum alloy good in extrudability and excellent in strength and toughness
JPS6013047A (en) * 1983-06-30 1985-01-23 Showa Alum Corp High-strength aluminum alloy with superior cold workability
JPS6333539A (en) * 1986-07-24 1988-02-13 ソシエテ・メタル−ルジク・ドウ・ジエルザ Al alloy for pressure hollow body
JPS63297180A (en) * 1987-05-27 1988-12-05 昭和アルミニウム株式会社 Bicycle frame by adhesive structure
JPH02190434A (en) * 1989-01-13 1990-07-26 Aluminum Co Of America <Alcoa> Aluminum alloy product having improved combination on strength, toughness and corrosion
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
JPH03140433A (en) * 1989-10-27 1991-06-14 Nkk Corp High strength aluminum alloy having excellent corrosion resistance
EP0587274A1 (en) * 1992-08-13 1994-03-16 Reynolds Metals Company Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness and product thereof
JPH07316601A (en) * 1994-03-28 1995-12-05 Toyo Alum Kk Production of rapidly solidified aluminum powder and aluminum alloy compact
JPH08232053A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd Production of high strength aluminum alloy extruded material
US5560789A (en) * 1994-03-02 1996-10-01 Pechiney Recherche 7000 Alloy having high mechanical strength and a process for obtaining it
EP0829552A1 (en) * 1996-09-11 1998-03-18 Aluminum Company Of America Aluminium alloy products suited for commercial jet aircraft wing members
WO2002052053A1 (en) * 2000-12-21 2002-07-04 Alcoa Inc. Aluminum alloy products and artificial aging nethod
JP2004002983A (en) * 2002-03-27 2004-01-08 Kobe Steel Ltd Bat made of aluminium alloy

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2249349A (en) * 1939-08-23 1941-07-15 Aluminum Co Of America Method of hot working an aluminum base alloy and product thereof
BE639908A (en) * 1962-11-15
US3305410A (en) * 1964-04-24 1967-02-21 Reynolds Metals Co Heat treatment of aluminum
US3418090A (en) * 1966-03-14 1968-12-24 Reynolds Metals Co Composite aluminum article
US3674448A (en) * 1969-04-21 1972-07-04 Aluminum Co Of America Anodic aluminum material and articles and composite articles comprising the material
DE2052000C3 (en) * 1970-10-23 1974-09-12 Fa. Otto Fuchs, 5882 Meinerzhagen Use of a high-strength aluminum alloy
US3826688A (en) * 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
US3881966A (en) * 1971-03-04 1975-05-06 Aluminum Co Of America Method for making aluminum alloy product
US3857973A (en) * 1971-03-12 1974-12-31 Aluminum Co Of America Aluminum alloy container end and sealed container thereof
US3791880A (en) * 1972-06-30 1974-02-12 Aluminum Co Of America Tear resistant sheet and plate and method for producing
US3791876A (en) * 1972-10-24 1974-02-12 Aluminum Co Of America Method of making high strength aluminum alloy forgings and product produced thereby
US4477292A (en) * 1973-10-26 1984-10-16 Aluminum Company Of America Three-step aging to obtain high strength and corrosion resistance in Al-Zn-Mg-Cu alloys
US4140549A (en) * 1974-09-13 1979-02-20 Southwire Company Method of fabricating an aluminum alloy electrical conductor
US3984259A (en) * 1975-08-22 1976-10-05 Aluminum Company Of America Aluminum cartridge case
FR2393070A1 (en) * 1977-06-02 1978-12-29 Cegedur THERMAL TREATMENT PROCESS OF ALUMINUM ALLOY SHEETS
FR2409319A1 (en) * 1977-11-21 1979-06-15 Cegedur THERMAL TREATMENT PROCESS FOR THIN 7000 SERIES ALUMINUM ALLOY PRODUCTS
US5108520A (en) * 1980-02-27 1992-04-28 Aluminum Company Of America Heat treatment of precipitation hardening alloys
JPS5852386A (en) * 1981-09-24 1983-03-28 Mitsubishi Oil Co Ltd Preparation of raw material pitch for carbon fiber
US4954188A (en) * 1981-12-23 1990-09-04 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
GB2114601B (en) * 1981-12-23 1986-05-08 Aluminum Co Of America High strength aluminum alloy resistant to exfoliation and method of heat treatment
US4828631A (en) * 1981-12-23 1989-05-09 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
US4711762A (en) * 1982-09-22 1987-12-08 Aluminum Company Of America Aluminum base alloys of the A1-Cu-Mg-Zn type
US4589932A (en) * 1983-02-03 1986-05-20 Aluminum Company Of America Aluminum 6XXX alloy products of high strength and toughness having stable response to high temperature artificial aging treatments and method for producing
US4618382A (en) * 1983-10-17 1986-10-21 Kabushiki Kaisha Kobe Seiko Sho Superplastic aluminium alloy sheets
US4713216A (en) * 1985-04-27 1987-12-15 Showa Aluminum Kabushiki Kaisha Aluminum alloys having high strength and resistance to stress and corrosion
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
US4927470A (en) * 1988-10-12 1990-05-22 Aluminum Company Of America Thin gauge aluminum plate product by isothermal treatment and ramp anneal
US4988394A (en) * 1988-10-12 1991-01-29 Aluminum Company Of America Method of producing unrecrystallized thin gauge aluminum products by heat treating and further working
US4946517A (en) * 1988-10-12 1990-08-07 Aluminum Company Of America Unrecrystallized aluminum plate product by ramp annealing
US4976790A (en) * 1989-02-24 1990-12-11 Golden Aluminum Company Process for preparing low earing aluminum alloy strip
US5213639A (en) * 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
US5186235A (en) * 1990-10-31 1993-02-16 Reynolds Metals Company Homogenization of aluminum coil
US5277719A (en) * 1991-04-18 1994-01-11 Aluminum Company Of America Aluminum alloy thick plate product and method
US5356495A (en) * 1992-06-23 1994-10-18 Kaiser Aluminum & Chemical Corporation Method of manufacturing can body sheet using two sequences of continuous, in-line operations
US5496423A (en) * 1992-06-23 1996-03-05 Kaiser Aluminum & Chemical Corporation Method of manufacturing aluminum sheet stock using two sequences of continuous, in-line operations
US5313639A (en) * 1992-06-26 1994-05-17 George Chao Computer with security device for controlling access thereto
US5376192A (en) * 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
US5919323A (en) * 1994-05-11 1999-07-06 Aluminum Company Of America Corrosion resistant aluminum alloy rolled sheet
US5496426A (en) * 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product
FR2726007B1 (en) * 1994-10-25 1996-12-13 Pechiney Rhenalu PROCESS FOR PRODUCING ALSIMGCU ALLOY PRODUCTS WITH IMPROVED INTERCRYSTALLINE CORROSION RESISTANCE
US5624632A (en) * 1995-01-31 1997-04-29 Aluminum Company Of America Aluminum magnesium alloy product containing dispersoids
US5681405A (en) * 1995-03-09 1997-10-28 Golden Aluminum Company Method for making an improved aluminum alloy sheet product
AU5422096A (en) * 1995-03-21 1996-10-08 Kaiser Aluminum & Chemical Corporation A method of manufacturing aluminum aircraft sheet
AU5664796A (en) * 1995-05-11 1996-11-29 Kaiser Aluminum & Chemical Corporation Improved damage tolerant aluminum 6xxx alloy
US5865911A (en) * 1995-05-26 1999-02-02 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
US5863359A (en) * 1995-06-09 1999-01-26 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
FR2737225B1 (en) * 1995-07-28 1997-09-05 Pechiney Rhenalu AL-CU-MG ALLOY WITH HIGH FLUID RESISTANCE
US5718780A (en) * 1995-12-18 1998-02-17 Reynolds Metals Company Process and apparatus to enhance the paintbake response and aging stability of aluminum sheet materials and product therefrom
US6027582A (en) * 1996-01-25 2000-02-22 Pechiney Rhenalu Thick alZnMgCu alloy products with improved properties
EP0799900A1 (en) * 1996-04-04 1997-10-08 Hoogovens Aluminium Walzprodukte GmbH High strength aluminium-magnesium alloy material for large welded structures
JP2001513144A (en) * 1997-02-19 2001-08-28 アルキャン・インターナショナル・リミテッド Manufacturing method of aluminum alloy sheet
JP3705320B2 (en) * 1997-04-18 2005-10-12 株式会社神戸製鋼所 High strength heat treatment type 7000 series aluminum alloy with excellent corrosion resistance
US6315842B1 (en) * 1997-07-21 2001-11-13 Pechiney Rhenalu Thick alznmgcu alloy products with improved properties
ES2219932T3 (en) * 1997-12-12 2004-12-01 Aluminium Company Of America ALUMINUM ALLOY WITH HIGH TENACITY TO USE AS A PLATE IN Aerospace APPLICATIONS.
US6224992B1 (en) * 1998-02-12 2001-05-01 Alcoa Inc. Composite body panel and vehicle incorporating same
FR2789406B1 (en) * 1999-02-04 2001-03-23 Pechiney Rhenalu ALCuMg ALLOY PRODUCT FOR AIRCRAFT STRUCTURAL ELEMENT
CA2362978A1 (en) * 1999-03-01 2000-09-08 Alcan International Limited Aa6000 aluminium sheet method
ATE529255T1 (en) * 1999-03-18 2011-11-15 Aleris Aluminum Koblenz Gmbh WELDABLE STRUCTURAL COMPONENT MADE OF AN ALUMINUM ALLOY
FR2792001B1 (en) * 1999-04-12 2001-05-18 Pechiney Rhenalu PROCESS FOR MANUFACTURING TYPE 2024 ALUMINUM ALLOY SHAPED PARTS
JP3494591B2 (en) * 1999-06-23 2004-02-09 株式会社デンソー Aluminum alloy brazing sheet with good corrosion resistance for vacuum brazing and heat exchanger using the same
RU2165995C1 (en) * 1999-10-05 2001-04-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Highly string aluminium-based alloy and product made of said alloy
FR2802946B1 (en) * 1999-12-28 2002-02-15 Pechiney Rhenalu AL-CU-MG ALLOY AIRCRAFT STRUCTURAL ELEMENT
FR2805282B1 (en) * 2000-02-23 2002-04-12 Gerzat Metallurg A1ZNMGCU ALLOY PRESSURE HOLLOW BODY PROCESS
US7135077B2 (en) * 2000-05-24 2006-11-14 Pechiney Rhenalu Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
RU2184166C2 (en) * 2000-08-01 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Aluminum-based high-strength alloy and product manufactured therefrom
JP4285916B2 (en) * 2001-02-16 2009-06-24 株式会社神戸製鋼所 Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
AU2002245705A1 (en) * 2001-03-20 2002-10-03 Alcoa Inc. Method for aging 7000 series aluminium
US6543122B1 (en) * 2001-09-21 2003-04-08 Alcoa Inc. Process for producing thick sheet from direct chill cast cold rolled aluminum alloy
FR2838136B1 (en) * 2002-04-05 2005-01-28 Pechiney Rhenalu ALLOY PRODUCTS A1-Zn-Mg-Cu HAS COMPROMISED STATISTICAL CHARACTERISTICS / DAMAGE TOLERANCE IMPROVED
FR2838135B1 (en) * 2002-04-05 2005-01-28 Pechiney Rhenalu CORROSIVE ALLOY PRODUCTS A1-Zn-Mg-Cu WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy
CN100347330C (en) * 2002-06-24 2007-11-07 克里斯铝轧制品有限公司 Method of producing a high strength balanced AL-MG-SI alloy and a weldable product of that alloy
FR2842212B1 (en) * 2002-07-11 2004-08-13 Pechiney Rhenalu A1-CU-MG ALLOY AIRCRAFT STRUCTURAL ELEMENT
FR2846669B1 (en) * 2002-11-06 2005-07-22 Pechiney Rhenalu PROCESS FOR THE SIMPLIFIED MANUFACTURE OF LAMINATED PRODUCTS OF A1-Zn-Mg ALLOYS AND PRODUCTS OBTAINED THEREBY
US7060139B2 (en) * 2002-11-08 2006-06-13 Ues, Inc. High strength aluminum alloy composition
BRPI0315625B8 (en) * 2002-11-15 2022-11-08 Alcoa Inc LOW SILICON ALUMINUM ALLOY PRODUCT.
JP4932473B2 (en) * 2003-03-17 2012-05-16 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure
WO2004090185A1 (en) * 2003-04-10 2004-10-21 Corus Aluminium Walzprodukte Gmbh An al-zn-mg-cu alloy
JP2005016937A (en) * 2003-06-06 2005-01-20 Denso Corp Aluminum heat exchanger with excellent corrosion resistance
US8043445B2 (en) * 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
US20050095447A1 (en) * 2003-10-29 2005-05-05 Stephen Baumann High-strength aluminum alloy composite and resultant product
US20070204937A1 (en) * 2005-07-21 2007-09-06 Aleris Koblenz Aluminum Gmbh Wrought aluminium aa7000-series alloy product and method of producing said product
US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
US8608876B2 (en) * 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
RU2443797C2 (en) * 2006-07-07 2012-02-27 Алерис Алюминум Кобленц Гмбх Products from aluminium alloy of aa7000 series and their manufacturing method
EP2389458B1 (en) * 2009-01-22 2015-09-16 Alcoa Inc. Improved aluminum-copper alloys containing vanadium

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305763A (en) * 1978-09-29 1981-12-15 The Boeing Company Method of producing an aluminum alloy product
JPS5651560A (en) * 1979-09-29 1981-05-09 Sumitomo Light Metal Ind Ltd Manufacture of aircraft stringer material
JPS57108240A (en) * 1980-12-24 1982-07-06 Mitsubishi Alum Co Ltd High tensile al alloy with superior extrusibility
JPS57161045A (en) * 1981-03-31 1982-10-04 Sumitomo Light Metal Ind Ltd Fine-grain high-strength aluminum alloy material and its manufacture
JPS5928555A (en) * 1982-08-06 1984-02-15 Sumitomo Light Metal Ind Ltd High tensile aluminum alloy good in extrudability and excellent in strength and toughness
JPS6013047A (en) * 1983-06-30 1985-01-23 Showa Alum Corp High-strength aluminum alloy with superior cold workability
JPS6333539A (en) * 1986-07-24 1988-02-13 ソシエテ・メタル−ルジク・ドウ・ジエルザ Al alloy for pressure hollow body
JPS63297180A (en) * 1987-05-27 1988-12-05 昭和アルミニウム株式会社 Bicycle frame by adhesive structure
JPH02190434A (en) * 1989-01-13 1990-07-26 Aluminum Co Of America <Alcoa> Aluminum alloy product having improved combination on strength, toughness and corrosion
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
JPH03140433A (en) * 1989-10-27 1991-06-14 Nkk Corp High strength aluminum alloy having excellent corrosion resistance
EP0587274A1 (en) * 1992-08-13 1994-03-16 Reynolds Metals Company Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness and product thereof
US5560789A (en) * 1994-03-02 1996-10-01 Pechiney Recherche 7000 Alloy having high mechanical strength and a process for obtaining it
JPH07316601A (en) * 1994-03-28 1995-12-05 Toyo Alum Kk Production of rapidly solidified aluminum powder and aluminum alloy compact
JPH08232053A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd Production of high strength aluminum alloy extruded material
EP0829552A1 (en) * 1996-09-11 1998-03-18 Aluminum Company Of America Aluminium alloy products suited for commercial jet aircraft wing members
WO2002052053A1 (en) * 2000-12-21 2002-07-04 Alcoa Inc. Aluminum alloy products and artificial aging nethod
JP2004002983A (en) * 2002-03-27 2004-01-08 Kobe Steel Ltd Bat made of aluminium alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186651A (en) * 2016-02-11 2017-10-12 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Al-Mg-Zn ALLOY WITH SCANDIUM FOR INTEGRAL CONSTRUCTION OF ALM STRUCTURES
JP2020535307A (en) * 2017-09-26 2020-12-03 コンステリウム イソワールConstellium Issoire Al-Zn-Cu-Mg alloy with high strength and manufacturing method
JP7252942B2 (en) 2017-09-26 2023-04-05 コンステリウム イソワール Al-Zn-Cu-Mg alloy with high strength and manufacturing method
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
US11746400B2 (en) 2019-06-03 2023-09-05 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same

Also Published As

Publication number Publication date
ES2398002A1 (en) 2013-03-13
CN103146969B (en) 2015-07-08
CA2881183A1 (en) 2004-10-21
BRPI0409360A (en) 2006-04-25
RU2353699C2 (en) 2009-04-27
CN103146969A (en) 2013-06-12
JP4964586B2 (en) 2012-07-04
US20090320969A1 (en) 2009-12-31
GB2415203B (en) 2007-01-03
FR2853666A1 (en) 2004-10-15
AT502294A1 (en) 2007-02-15
CA2519387C (en) 2015-06-02
FR2853666B1 (en) 2007-05-11
CN1780925B (en) 2013-03-27
ES2398002B2 (en) 2015-01-22
CN1780925A (en) 2006-05-31
GB0520502D0 (en) 2005-11-16
CA2519387A1 (en) 2004-10-21
US20050034794A1 (en) 2005-02-17
WO2004090183A1 (en) 2004-10-21
DE112004000596T5 (en) 2006-03-09
DE112004000596B4 (en) 2011-03-24
RU2005134846A (en) 2006-04-10
CA2881183C (en) 2018-06-12
AT502294B1 (en) 2010-02-15
ES2288389A1 (en) 2008-01-01
GB2415203A (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP4964586B2 (en) High strength Al-Zn alloy and method for producing such an alloy product
JP5068654B2 (en) High strength, high toughness Al-Zn alloy products and methods for producing such products
CA2485524C (en) Method for producing a high strength al-zn-mg-cu alloy
EP0020505B1 (en) Method of producing aluminum alloys
US7883591B2 (en) High-strength, high toughness Al-Zn alloy product and method for producing such product
CA2596190C (en) Al-zn-cu-mg aluminum base alloys and methods of manufacture and use
JP2008516079A5 (en)
EP1945825B1 (en) Al-cu-mg alloy suitable for aerospace application
US11472532B2 (en) Extrados structural element made from an aluminium copper lithium alloy
CA3067484A1 (en) Al- zn-cu-mg alloys and their manufacturing process
EP3521467B1 (en) A low cost, low density, substantially ag-free and zn-free aluminum-lithium plate alloy for aerospace application
US6569271B2 (en) Aluminum alloys and methods of making the same
JP2001504551A (en) Method for producing AA7000 aluminum forged product subjected to modified solution heat treatment
US20190368009A1 (en) High Strength, Better Fatigue Crack Deviation Performance, and High Anisotropic Ductility 7xxx Aluminum Alloy Products and Methods of Making Such Products
CN112921218A (en) High strength press quenched 7XXX alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100526

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110525

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4964586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250