JP2006505243A - Mcpタンパク質の新規のアンタゴニスト - Google Patents

Mcpタンパク質の新規のアンタゴニスト Download PDF

Info

Publication number
JP2006505243A
JP2006505243A JP2003582187A JP2003582187A JP2006505243A JP 2006505243 A JP2006505243 A JP 2006505243A JP 2003582187 A JP2003582187 A JP 2003582187A JP 2003582187 A JP2003582187 A JP 2003582187A JP 2006505243 A JP2006505243 A JP 2006505243A
Authority
JP
Japan
Prior art keywords
mcp
protein
antagonist
peptide
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003582187A
Other languages
English (en)
Inventor
プロードフット,アマンダ
コスコ−ビルボワ,マリー
ハンデル,トレーシー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE REGENTS OF THE UNIVERSITY OF CARIFORNIA
Original Assignee
THE REGENTS OF THE UNIVERSITY OF CARIFORNIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE REGENTS OF THE UNIVERSITY OF CARIFORNIA filed Critical THE REGENTS OF THE UNIVERSITY OF CARIFORNIA
Publication of JP2006505243A publication Critical patent/JP2006505243A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • C07K14/523Beta-chemokines, e.g. RANTES, I-309/TCA-3, MIP-1alpha, MIP-1beta/ACT-2/LD78/SCIF, MCP-1/MCAF, MCP-2, MCP-3, LDCF-1, LDCF-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Communicable Diseases (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

MCPタンパク質のN末端に位置するGAG結合部位が、非保存的置換に従って除去されるMCP変異体を生成することによって、MCPタンパク質、特にMCP−1タンパク質の新規のアンタゴニストを得ることができる。本発明に従って調製される化合物は、炎症性疾患、自己免疫疾患、血管障害、および癌などのMCPタンパク質の所望されない活性に関連する疾患の治療または予防に使用することができる。

Description

本発明は、MCPタンパク質を適切に変異させることによって生成されているMCPタンパク質、特にヒトMCP−1の新規のアンタゴニストに関する。
ケモカインは、血液から損傷部位への白血球の直接的遊走を仲介する小さな分泌型炎症性タンパク質である。このファミリーのタンパク質を特徴付ける保存されたシステインの位置に依存して、ケモカインファミリーは、一連の膜受容体に対応するC、C−C、C−X−CおよびC−X3−Cケモカインに構造的に分けることができる(バギオリニ M(Baggiolini M)ら、1997;フェルナンデス EJ(Fernandez EJ)およびロリス E(Lolis E)、2002)。通常、ケモカインは、損傷部位で産生され、白血球遊走および活性化を引き起こし、炎症、免疫、ホメオスタシスおよび血管形成過程において基本的な役割を果たす。従って、これらの分子は、白血球の過剰な漸増および活性化を予防する目的で、特に、特定のケモカインおよびそれらの受容体を阻害することによって、上記過程に関連する疾患における治療的介入の可能性を付与する(バギオリニ M(Baggiolini M)、2001;ロエトシャー P(Loetscher P)およびクラーク−ルイス I(Clark−Lewis I)、2001;ゴッデサルト N(Godessart N)およびクンケル SL(Kunkel SL)、2001)。
単球走化性タンパク質1(以後、MCP−1)は、CCL2、小誘導サイトカインA2(SCYA2)、単球走化活性化因子(MCAF)、単球分泌タンパク質Je、単球走化性因子、およびHC11などの様々な名称でも公知であるCCケモカインファミリーのメンバーである。このケモカインは、様々な炎症性疾患、異なるタイプの腫瘍、心同種移植、AIDS、および結核における損傷と感染のシグナルに応答して、単球および好塩基性細胞の漸増を促進することが可能である(グ L(Gu L)ら、1999)。
構造的かつ機能的に相同なタンパク質が同定されており、MCP−2(CCL7)、MCP−3(CCL8)、MCP−4(CCL13)、およびエオタキシン(CCL11)と呼ばれている。このC−Cケモカインのサブファミリーは、RANTESまたはMIP−1α/βなどの他のC−Cケモカインとは顕著に異なり、おそらく、共通の祖先配列から共進化した。それらは、類似の受容体の用法を有し、特にCCR2(但し、CCR1、CCR3、およびCCR5についても)結合する。従って、これらのC−Cケモカインの免疫学的および炎症性アゴニストまたはアンタゴニスト活性は共通である(ヒューゲス AL(Hughes AL)およびエーガー M(Yeager M)、1999;ベルコート TA(Berhkout TA)ら、1997;ルスター AD(Luster AD)およびローデンベルグ ME(Rothenberg ME)、1997、プルースト P(Proost P)ら、1996)。
MCP−1に関連する生理学的活性については、トランスジェニック動物および他の動物モデルによって広範に研究されており、MCP−1は、多くの感染、炎症および自己免疫疾患における単球および他の細胞タイプ(例えば、星状細胞)、ならびにTヘルパーの応答に関連するサイトカインの発現の漸増を制御することが実証されている。MCP−1によって誘導されると思われる他の疾患は、血管障害(冠動脈介入後の再狭窄、動脈硬化症、アテローム硬化症、虚血、脳卒中)および癌関連血管形成である(イケダ Y(Ikeda Y)ら、2002;エガシラ K(Egashira K)ら、2002;グ L(Gu L)ら、2000;サルセド R(Salcedo R)ら、2000;ゴスリング J(Gosling J)ら、1999;ル B(Lu B)ら、1998;ルットレッジ BJ(Rutledge BJ)ら、1995)。
MCP−1標的化はいくらかの疾患に対する可能な治療アプローチとして考えられるため、MCP−1誘導性病因学的アッセイに対して多かれ少なかれ重要な阻害効果を得る異なるタイプのMCP−1アンタゴニストは文献に記載されている(ドーソン J(Dawson J)、2003)。MCP−1アンタゴニストの例には、天然または合成的にN末端アミノ酸2〜10を失うMCP−1のN末端欠失変異(エガシラ K(Egashira K)ら、2000;ザング Y(Zhang Y)およびロリンス BJ(Rollins BJ)、1995;マックキバン GA(McQuibban GA)ら、2002)、抗MCP−1モノクローナル抗体(アジュエボール MN(Ajuebor MN)ら、1998;エグテサド M(Eghtesad M)ら、2001)、RNAアプタマー(ローデス A(Rhoodes A)ら、2001)、MCP−1に対する内部の配列において設計されるペプチド(レクレス J(Reckless J)およびグラインゲル DJ(Grainger DJ)、1999)、MCP−1アンタゴニストペプチド疑似物(カジ M(Kaji M)ら、2001)、アンチセンスオリゴヌクレオチド(国際公開第94/09128号パンフレット)、小さな分子(ミルザデーゲン T(Mirzadegan T)ら、2000)、ポリマー修飾MCP−1(国際公開第02/04015号パンフレット)、またはウイルスデコイ受容体(アレキサンダー JM(Alexander JM)ら、2002;ベック CG(Beck CG)ら、2001)がある。
構造的に、MCPタンパク質は、N末端ループおよびC末端でαへリックスが重なっている3つのβシートを示す(ハンデル TM(Handel TM)ら、1996;ルブノスキー J(Lubkowski J)ら、1997;ブラズクジク J(Blaszczyk J)ら、2000)。文献には、構造活性研究の多くの例(ゴング JH(Gong JH)およびクラーク−ルイス I(Clark−Lewis I)、1995;ザング(Zhang)ら、1996;ビール CJ(Beall CJ)ら、1996;ステイツ SA(Steitz SA)ら、1998;グ L(Gu L)ら、1999;ヘンメリッヒ S(Hemmerich S)ら、1999;シート BT(Seet BT)ら、2001)が提供されており、該研究では、MCP−1変異体は受容体に対して低い活性および/または親和性を有するか、あるいは(他の多くのケモカインにおけるような)N末端短縮、または(成熟ヒトMCP−1の番号付けに従って)残基3、8、10、13、15、18、19、24、28、30、37、38、および39での単一の変異を発現することにより他の結合タンパク質が得られている。同様の結果がエオタキシンについても得られている(メイヤー MR(Mayer MR)およびストーン MJ(Stone MJ)、2001)。
ケモカインは、プロテオグリカン(PG)およびグリコサミノグリカン(GAG)と相互作用し、多くの細胞シグナル伝達可溶性分子(インターロイキン、成長ホルモン)に共通の特徴である。プロテオグリカンは、セリン残基でグリコサミノグリカンの付加によって翻訳後修飾される負に荷電したタンパク質である。塩基性残基(主にアルギニンおよびリジン)のクラスターは、タンパク質が、一般に、ヘパリン、コンドロイチン硫酸、ヘパラン硫酸、デルマタン硫酸、およびヒアルロン酸などの二糖単位の反復を特徴とするGAGと結合することを可能にする。PGおよびGAGは、おそらく、細胞外環境でタンパク質分解からこの分子を保護する目的で、膜表面ならびに可溶性分子上に存在し得る。GAGは、特異的受容体に対する細胞シグナル伝達分子の正確な提示、および究極的に標的細胞活性化の調節を援助し得ることも提唱されている。ケモカインの場合、炎症部位での固定勾配への濃縮、ならびに、従って、細胞受容体との相互作用およびそれらの活性化状態は、特定のGAGによって調節されるようである。GAGとの相互作用およびそれらの勾配の形成については、相対的親和性を測定して、MCP−1を含む多くのケモカインについて明らかに実証されている。従って、そのような相互作用の調節は、炎症性疾患における治療アプローチを表し得ることが示唆されている(フーゲベルフ AJ(Hoogewerf AJ)ら、1997;クシェルト G(Kuschert G)ら、1999;アリ S(Ali S)ら、2001;パテル D(Patel D)ら、2001;国際公開第02/28419号パンフレット;国際公開第99/50246号パンフレット)。
しかし、GAG/MCP−1相互作用の構造的要件および機能的効果についてはあまり研究されていない。GAGが、内皮細胞から分泌されるMCP−1の活性および産生を調節することができることは公知である(ダグラス MS(Douglas MS)ら、1997)。MCP−1のC末端におけるリジン58およびヒスチジン66をアラニンで置換すると、受容体結合、Ca2+流入、または走化性活性に影響を及ぼすことなくGAG結合が妨害されることも報告されている(チャクラバルティー L(Chakravarty L)ら、1998)が、それがMCP−1の他のGAG結合部位である可能性があること、およびインビボ効果がそれらの除去を生じ得るかどうかについては、先行分野において開示されていない。いくつかのケモカインについて広範な研究が実施されているが、ケモカインにはGAG結合ドメインの顕著な構造的多様性が存在するため、配列の相同性に基づいて、GAG結合を減損するにはどの残基を非保存的置換で修飾しなければならないか、およびどのような効果を得ることができるかについて予想することは不可能である(ロルタット−ジャコフ H(Lortat−Jacob H)ら、2002)。
ヒトMCP−1のN末端の二塩基部位(アルギニン18、リジン19)は、MCP−1のGAGとの相互作用を担うことを見出した。非保存的置換(例えば、アラニン)によってこの部位を除去すると、GAGと相互作用する傾向が低いだけではなく、MCP−1に対する驚くべきインビボ用量関連アンタゴニスト活性を有するMCP−1変異体を生成することが可能である。そのような証拠を活用して、対応するMCPタンパク質のアンタゴニストとしてMCP−1、および他のMCP−1タンパク質の変異体を使用することができる。本発明に従って調製される化合物を使用して、それらの受容体を発現する白血球遊走および活性化を阻害し、それによって、炎症および自己免疫疾患などの過剰または制御されていない白血球遊走に関連する疾患の治療において使用するための有用な治療組成物を提供することができる。本発明の他の特徴および利点については、以下の詳細な説明から明らかになろう。
上記の文献を見ると、ヒトMCP−1のN末端における特定の二塩基性部位がGAG結合部位を規定すること、およびこの部位における残基の非保存的置換により、MCP−1に対するアンタゴニスト活性を有する分子が生じることは示されていない。さらに、公知のMCPタンパク質の間この二塩基性部位、ならびに塩基性でありおよび/またはGAG結合に関与することが公知である他の残基が変換されれば、MCPタンパク質のアンタゴニストは、ヒトMCP−1において機能的に特徴付けられた残基に対応する残基の非保存的置換によって得ることができるといえる。
本発明の主な目的は、ヒト成熟MCP−1の配列に対して番号付けされた以下の組み合わせの残基、
a)18および19;
b)18および/または19と58;
c)18および/または19と66;
d)18および/または19と58および66;
e)18および/または19と24、44、49、75のうちの1つもしくはそれ以上;
がアラニン、グリシン、セリン、スレオニン、プロリン、アスパラギン酸、アスパラギン、グルタミン酸、またはグルタミンに置換されている、MCPタンパク質の変異体からなるMCPタンパク質の新規のアンタゴニストを提供することである。
本特許出願は、上記の組み合わせの特定の例である、アルギニン18およびリジン19がアラニンに置換された、新規の組換えMCP−1変異体によって得られる驚くべきインビボまたはインビトロデータを提供する。これらの結果は、他の高度に保存されたMCPタンパク質の配列および構造に関する知識と組み合わせると、この二塩基性部位は、MCPタンパク質の生物学的活性において一般的な役割を果たすことができるだけではなく、従って、他のアンタゴニスト分子を得るために、これらの相同タンパク質において改変をすることができることが示唆される。
アンタゴニスト特性を有する分子を得るために、MCPタンパク質において非保存的様式で変異しなければならない塩基性残基は、本質的に、18および19位の両方の残基、58および66などのGAG結合に関与することがすでに公知である残基の少なくとも一方と組み合わされた18および19位の塩基性残基の少なくとも1つ(チャクラバルティ L(Chakravarty L)ら、1999)、またはすべてのヒトMCPタンパク質において保存されている他の塩基性残基の少なくとも1つと組み合わされた18および19位の塩基性残基の少なくとも1つ(図1B;ベルコート TA(Berhkout TA)ら、1997)である。塩基性残基と置き換わるアミノ酸は、好ましくは、アラニンまたはグリシンのような非極性の小さなアミノ酸であるが、タンパク質の構造にそれほど干渉しない電荷およびディメンションを有し、かつ同時にGAG結合に適合しなければ(例えば、セリン、スレオニン、プロリン、アスパラギン酸、アスパラギン、グルタミン酸、もしくはグルタミン)、他のアミノ酸も適切である。
従って、本発明の主な目的は、上記の変異の組み合わせを含有し、MCPタンパク質のアンタゴニストとして作用するMCPタンパク質の変異体を提供することである。
用語「MCPタンパク質のアンタゴニスト」は、対応する成熟、全長、天然に存在する(野生型)MCPタンパク質に対してアンタゴニストとして作用する任意の分子を意味する。当該分野において既知のMCP−1アンタゴニストは、改変に関与する。
本出願では、MCPタンパク質という用語は、ヒトMCP−1、ヒトMCP−2、ヒトMCP−3、ヒトMCP−4、およびエオタキシン(図1B;説明書きは、対応するスイスプロット(SWISSPROT)受託番号を示す)、ならびにヒト成熟MCP−1、MCP−2、MCP−3、MCP−4、またはエオタキシンとの間に少なくとも70%、好ましくは80%、より好ましくは90%の相同性を有し、上記で同定されたすべての位置において塩基性の正に荷電したアミノ酸(アルギニン、リジン、もしくはヒスチジン)を含有する他の任意のタンパク質を含む。
本発明のさらなる目的は、MCPタンパク質のアンタゴニストであって、
a)アンタゴニスト活性を妨げることなく、1つもしくはそれ以上のアミノ酸残基が付加、欠失、または置換されている、上記で規定したMCPタンパク質の変異体の活性変異体;
b)(a)のポリペプチドあるいはペプチドの配列および/または構造に対して設計されるペプチド疑似物;
c)(a)もしくは(b)のアミノ酸配列、および対応するMCPタンパク質以外のタンパク質配列に属するアミノ酸配列を含んでなる、ポリペプチドまたはペプチド;
d)(a)、(b)、または(d)の活性フラクション、前駆体、塩もしくは誘導体、
から選択される、アンタゴニストである。
上記で規定し、MCP−1アンタゴニストとしてMCP−1WT*2Aを使用して、本特許出願において例示したMCP変異体は、活性変異体で維持するか、または増強することさえできる。このカテゴリーの分子は前記配列の天然または人工のアナログを含み、ここで、1つもしくはそれ以上のアミノ酸残基が付加、欠失、または置換されており、但し、それらは、当該分野において公知の手段によって決定され、以下の実施例において開示されるように、同等もしくはそれより高いレベルで、本発明において特徴付けられるのと同じ生物学的活性を示す。
例えば、許容可能な置換は、ヒトMCP−1の本質的特性を変更することなく精製を改善ずるための実施例に示すメチオニン64のイソロイシンによる置換(MCP−1WT*2A;配列番号3)のようなGAG結合に関与しない残基に対するものであるべきである。従って、本発明の別の目的は、MCP−1WT*2Aに対応する配列を有するMCP−1アンタゴニスト(配列番号3)である。あるいは、MCP−1アンタゴニストは、GAG結合に関与する残基に対する置換に加えて、MCP−1の公知のN末端欠失変異体におけるように、2〜10のN末端アミノ酸を失い得(エガシラ K(Egashira K)ら、2000;ザング Y(Zhang Y)およびローリングス BJ(Rollins BJ)、1995;マッククイバン GA(McQuibban GA)ら、2002)、おそらく、改善されたアンタゴニスト特性を得る。
天然のアナログは、マウスMCP−1(スイスプロット(SWISSPROT)受託番号P10148)のようなヒトまたは他の生物体において同定されるMCPタンパク質の対応する配列を意図する。人工のアナログは、既知の化学合成および/または部位特異的変異技術、もしくは適切な他の任意の既知の技術によって調製されたペプチドを意図し、先行技術および本特許出願の実施例において提示された教義を使用して、当業者が日常的に入手および試験することができる限定された組の実質的に対応する変異されたかもしくは短くされたペプチドまたはポリペプチドを提供する。
本発明に従えば、これらの活性変異の好適な変化は、「保存的」または「安全な」置換として一般に公知であり、非塩基性残基を含む。保存的アミノ酸置換は、分子の構造および生物学的機能を保存するために、十分に類似の化学特性を有するアミノ酸による置換である。特に、挿入または欠失が数個、例えば、10個未満、好ましくは、3個未満のアミノ酸に関与し、タンパク質またはペプチドの機能的コンホメーションにきわめて重要であるアミノ酸を除去せずもしくは置き換えなければ、上記で規定した配列において、該配列の機能を変更することなく、アミノ酸の挿入および欠失を作製することができることも明らかである。
文献では、天然のタンパク質の配列および/または構造に対する統計的ならびに物理化学的研究に基づく保存的アミノ酸置換の選択を実施することができる多くのモデルが提供されている(ロゴブ SI(Rogov SI)およびネクラソブ AN(Nekrasov AN)、2001)。タンパク質設計実験は、特定のサブセットのアミノ酸を使用して、タンパク質構造においてより容易に適応することができ、機能的かつ構造的ホモログおよびパラログを検出するために使用することができるアミノ酸「同義」置換の分類を援助する折りたたみ可能および活性なタンパク質を産生することができることを示している(マルフィー LR(Murphy LR)ら、2000)。同義のアミノ酸のグループおよびより好適な同義のグループは、表1において規定したグループである。
これらの教義に基づいて作製される置換によって精製される活性な変異体、ならびに1つもしくはそれ以上のアミノ酸が除去または付加された活性な変異体は、本発明の目的、即ち、はじめに選択された変異体に匹敵するか、または可能であれば改善されたGAG結合特性および対応するMCPタンパク質に対するアンタゴニスト活性をそれほど有さないMCPタンパク質の新規の変異体の範囲にある。
上記の代替的化合物は、特に、アンタゴニストとしての能力に関する限り、本特許出願において開示された塩基性特徴に影響を及ぼさない上記で規定したMCPタンパク質の変異体の配列に対する変化を有する分子を包括することを意図する。同様の化合物は、コーディングDNAの従来の変異技術、コーディングDNA配列のレベルでのコンビナトリアル技術(DNAシャッフリング、ファージディスプレイ/選択)、またはコンピュータ支援設計研究から生じ得、続いて、先行技術および以下の実施例に記載のように所望の活性についてバリデーションが行われる。
特定のアンタゴニストは、上記で規定したMCP変異体のペプチド疑似物(ペプチドの疑似物とも呼ばれる)の形態で得ることができ、ここで、ペプチドまたはポリペプチドの性質は、アミノ酸側鎖、アミノ酸のキラリティ、および/またはペプチド骨格のレベルで化学的に改変されている。これらの変更は、類似または改善された治療、診断および/または薬物動態特性を有するMCPアンタゴニストを提供することを意図する。
例えば、ペプチドが、被験体への注入後にペプチダーゼによる切断を受けやすいことが問題である場合、特に感受性のペプチド結合を非切断型ペプチド疑似物で置換することによって、より安定で、従って治療としてより有用なペプチドを提供することができる。同様に、L−アミノ酸残基の置換は、タンパク質分解に対する感受性を低下させ、最終的にペプチド以外の他の有機化合物により類似させる標準的な方法である。t−ブチルオキシカルボニル、アセチル、エチル(theyl)、スクシニル、メトキシスクシニル、スベリル、アジピル、アゼライル、ダンシル、ベンゾイルオキシカルボニル、フルオレニルメトキシカルボニル、メトキシアゼライル、メトキシアジピル、メトキシスベリル、および2,4−ジニトロフェニルなどのアミノ末端遮断基もまた有用である。効力の増加、活性の延長、精製の容易化および/または半減期の増加を提供する他の多くの改変は当該分野において公知である(国際公開第02/10195号パンフレット;ビライン M(Villain M)ら、2001)。ペプチド疑似物に含まれるアミノ酸の好適な代替的「同義の」グループは、表IIにおいて規定されるグループである。
ペプチド疑似物、ならびに非ペプチド疑似物の合成および開発のための技術は、当該分野において周知である(ソーヤ TK(Sawyer TK)、1997;フルビー VJ(Hruby VJ)およびバルセ PM(Balse PM)、2000;ゴレビオウスキー A(Golebiowski A)ら、2001)。インビトロおよびインビボ翻訳系の両方を使用して、タンパク質の構造および機能を探査ならびに/または改善して、非天然のアミノ酸をタンパク質に組み入れる様々な方法論もまた、文献に開示されている(ドーゲルティー DA(Dougherty DA)、2000)。MCP−1アンタゴニストペプチド疑似物は、文献において公知であるが、MCP−1に対して高度に相同ではない(カジ M(Kaji M)ら、2001)。
本特許出願は、MCPアンタゴニストとして、上記で規定したアミノ酸配列および対応するMCPタンパク質以外のタンパク質配列に属するアミノ酸配列を含んでなるポリペプチドまたはペプチドを開示する。後者の異種配列は、アンタゴニスト活性を有意に損なうことなく、またはGAG結合特性を提供することなく、さらなる特性を提供すべきである。そのようなさらなる特性の例には、より容易な精製手順、体液中においてより長く継続する半減期、または細胞外局在化がある。この後者の特徴は、本特許出願においてMCPアンタゴニストとして規定される分子を、これらのペプチドの単離および精製を容易にするだけでなく、MCPタンパク質およびそれらの受容体が自然に相互作用する空間に局在化することを可能にするため、上記の定義に含まれる融合またはキメラタンパク質の特定のグループを規定するのに特に重要である。
(c)のポリペプチドまたはペプチドを生成するために使用することができるさらなるタンパク質配列は、膜結合タンパク質の細胞外ドメイン、免疫グロブリンの定常領域、多量体化ドメイン、細胞外タンパク質、シグナルペプチド含有タンパク質、輸送シグナル含有タンパク質のポリペプチドまたはペプチドである。MCPタンパク質の変異体に融合しようとするこれらの配列の1つもしくはそれ以上は、前記因子の特定の使用に対して機能的である。一般的な手順として、これらの融合タンパク質は、それらをコードする核酸セグメントを作製し、一般的な遺伝子操作技術を使用し、エピソームもしくは非相同的に組み込まれたベクター、ならびに形質転換、感染、もしくはトランスフェクションに基づく技術を使用して、原核または真核宿主細胞を改変するために使用されるウイルスあるいはプラスミド由来の複製可能なベクターにおいてクローニングすることによって、産生させることができる。これらのベクターは、原核または真核宿主細胞において、構成的に活性もしくは誘導性であるように選択されるそれら自体の転写開始/終止調節配列の制御下で、該原核または真核宿主細胞においてMCPアンタゴニストを含む融合タンパク質の発現を可能にする。次いで、そのような細胞において実質的に富化された細胞株を単離し、安定な細胞株を提供することができる。
細胞外、輸送シグナル、またはシグナルペプチド含有タンパク質の場合におけるように、さらなるタンパク質配列がMCPアンタゴニストを細胞外空間に分泌させる場合、さらなるプロセシングのために因子をより容易に回収し、培養細胞から回収することができるか、あるいは、細胞を直接使用または投与することができる。
本発明のポリペプチドおよびペプチドは、例えば、活性フラクション、前駆体、塩、誘導体、共役もしくは複合体としての所望の使用および/または産生方法に従って好適であることができる他の代替的形態であることができる。
用語「活性」は、そのような代替的化合物が本発明のMCP変異体の機能的特長を維持すべきであり、また、薬学的に許容可能および有用であるべきであることを意味する。
用語「フラクション」とは、化合物単独あるいは関連分子または該化合物に結合した残基、例えば、糖もしくはリン酸の残基、または本来のポリペプチドもしくはペプチドの凝集体との組み合わせでの化合物自体のポリペプチド鎖の任意のフラグメントを指す。そのような分子は、通常、主要配列には影響を及ぼさない他の改変、例えば、ペプチドのインビボまたはインビトロ化学誘導(アセチル化もしくはカルボキシル化)からも生じることができ、それらは、ペプチドの合成およびプロセシング中あるいはさらなるプロセシング工程において、該ペプチドのリン酸化(ホスホチロシン、ホスホセリン、もしくはホスホスレオニン残基の導入)または糖鎖形成(糖鎖形成に影響を及ぼす酵素、例えば、哺乳動物の糖鎖形成もしくは脱糖鎖酵素にペプチドを暴露させることによる)のパターンを改変することによって作製される。
「前駆体」とは、細胞または身体への投与の前後に、代謝的および酵素的プロセシングによって、本発明の化合物に変換することができる化合物である。
本明細書で使用する用語「塩」は、本発明のペプチド、ポリペプチド、またはそのアナログのカルボキシル基の塩およびアミノ基の酸付加塩の両方を指す。カルボキシル基の塩は、当該分野において公知の手段によって形成することができ、無機塩、例えば、ナトリウム、カルシウム、アンモニウム、鉄または亜鉛塩など、および例えば、アシン、例えばトリエタノールアミン、アルギニンまたはリジン、ピペリジン、プロカインなどによって形成されるような有機性塩基との塩を含む。酸付加塩としては、例えば、塩酸または硫酸などの無機酸との塩、および例えば、酢酸またはシュウ酸などの有機酸との塩が挙げられる。そのようないずれの塩も、本発明のペプチドおよびポリペプチドまたはそれらのアナログに対して実質的に類似の活性を有するべきである。
本明細書で使用する用語「誘導体」は、既知の方法に従って、アミノ酸部分の側鎖上、またはN末端もしくはC末端基上に存在する官能基から調製することができる誘導体を指す。そのような誘導体としては、例えば、カルボキシル基のエステルもしくは脂肪族アミド、遊離アミノ基のN−アシル誘導体または遊離ヒドロキシル基のO−アシル誘導体が挙げられ、例えば、アルカノイルまたはアロイル基のようなアシル基により形成される。
本発明のMCPアンタゴニストの有用な共役または複合体は、受容体もしくは他のタンパク質との相互作用(放射能または経口標識、ビオチン)、治療効力(細胞障害性薬剤)、またはポリエチレングリコールおよび他の天然もしくは合成ポリマーなどの薬物送達効力に関する薬剤を改善する分野において公知の分子ならびに方法を使用して、生成することができる(ピライ O(Pillai O)およびパンチャグヌラ R(Panchagnula R)、2001)。
本発明の化合物は、上記の組換えDNA関連の技術、および化学合成技術を含む当該分野において任意の周知の手順によって調製することができる。
本発明の別の目的は、本発明のMCP変異体をコードするDNA配列を含んでなり、実質的に同一のヌクレオチド配列を含む、DNA分子である。「実質的に同一のヌクレオチド配列」には、遺伝子コードの縮重によって、所定のアミノ酸配列を同様にコードする他のすべての核酸配列が含まれる。
本発明はまた、上記のDNAを含んでなる発現ベクター、そのようなベクターで形質転換した宿主細胞、ならびに前記形質転換細胞の適切な培養培地における培養および発現されたタンパク質の回収を介する本発明のMCPアンタゴニストの調製プロセスを含む。
本発明のタンパク質をコードするDNA配列は、適切なプラスミドに挿入および連結することができる。一旦形成されると、発現ベクターは、適切な宿主細胞に導入され、次いで、ベクターを発現させて所望のタンパク質が得られる。
本明細書に記載の本発明の組換えタンパク質の任意の発現は、適切な発現ベクターを使用して、真核細胞(例えば、酵母、昆虫もしくは哺乳動物細胞)または原核細胞において生じさせることができる。当該分野において公知の任意の方法を用いることができる。
例えば、上記のいずれかの方法によって得られるタンパク質をコードするDNA分子を、当該分野において周知の技術によって、適切に構築された発現ベクターに挿入する。ホモポリマーテーリングまたは合成DNAリンカーもしくは平滑末端連結技術の使用に関与する制限連結によって、二本鎖cDNAをプラスミドベクターに連結する:DNAリガーゼを使用して、DNA分子を連結し、所望でない結合は、アルカリホスファターゼによる処置で回避する。
所望のタンパク質の発現を可能にするために、発現ベクターはまた、遺伝子発現およびタンパク質の産生を可能にするような方法で、所望のタンパク質をコードするDNAに連結された転写および翻訳調節の情報を含有する特定のヌクレオチド配列を含んでなる。まず、遺伝子を転写させるためには、RNAポリメラーゼによって認識可能なプロモーターは該遺伝子の前方に位置し、ポリメラーゼは該プロモーターに結合し、従って、転写のプロセスが開始される。異なる効率で稼動する上記のようなプロモーター(強力および弱いプロモーター)は多様に存在する。
真核細胞宿主では、宿主の性質に依存して、異なる転写および翻訳調節配列を用いることができる。それらは、アデノウイルス、ウシパピローマウイルス、シミアンウイルスなどのウイルス供給源から誘導することができ、ここで、調節シグナルは、高レベルの発現を有する特定の遺伝子に関連する。その例には、ヘルペスウイルスのTKプロモーター、SV40初期プロモーター、酵母gal4遺伝子プロモーターなどがある。遺伝子の発現を調節することができるような抑制および活性化を可能にする転写開始調節シグナルを選択してもよい。
本発明のタンパク質をコードするヌクレオチド配列を含んでなるDNA分子は、宿主細胞に所望の遺伝子を組み込むことが可能な、操作可能に連結された転写および翻訳調節シグナルを有するベクターに挿入される。
導入されたDNAによって安定に形質転換されている細胞は、発現ベクターを含有する宿主細胞の選択を可能にする1つもしくはそれ以上のマーカーを導入することによって、選択することができる。マーカーはまた、栄養要求性宿主に対する光合成、殺生物耐性、例えば、抗生物質、または銅などの重金属なども提供することができる。選択マーカー遺伝子は、発現しようとするDNA遺伝子配列に直接連結するか、または同時トランスフェクションによって同じ細胞に導入することができる。
ベクターのさらなるエレメントはまた、本発明のタンパク質の最適な産生を得ること、特に、プラスミドまたはウイルスベクターを含有する特定の細胞を選択するのに有用であり得る。即ち、ベクターを含有するレシピエント細胞を認識し、ベクターを含有しないレシピエント細胞から選択することが容易であること;特定の宿主細胞において所望のベクターのコピー数が得られること;および所望により異なる主の宿主細胞間でベクターを「往復させる」ことが可能であることである。
一旦、発現のために、構築物を含有するベクターまたはDNA配列を調製したら、様々な適切な手段:形質転換、トランスフェクション、接合、プロトプラスト融合、エレクトロポレーション、リン酸カルシウム沈殿、直接マイクロインジェクションなどのいずれかによって、DNA構築物を適切な宿主細胞に導入することができる。
宿主細胞は、原核細胞または真核細胞のいずれであってもよい。真核生物宿主は、正確な折りたたみまたは正確な部位での糖鎖形成を含む翻訳後修飾をタンパク質分子に提供するため、真核生物宿主、例えば、ヒト、サル、マウスおよびチャイニーズハムスター卵巣(CHO)細胞などの哺乳動物細胞が好ましい。また、酵母細胞は、糖鎖形成を含む翻訳後ペプチド修飾を行うことができる。酵母における所望のタンパク質の産生のために利用することができる強力なプロモーター配列および高コピー数のプラスミドを利用する多くの組換えDNAストラテジーが存在する。酵母は、クローニングされた哺乳動物の遺伝子産物に対するリーダー配列を認識し、リーダー配列を有するペプチド(即ち、プレペプチド)を分泌する。
ベクターの導入後、宿主細胞を選択培地で増殖させ、ベクター含有細胞の増殖を選択した。クローニングした遺伝し配列の発現により、所望のタンパク質が産生される。
本発明の目的は、MCPタンパク質のアンタゴニストに関する本特許出願によって提供される開示内容を、一般的分子生物学技術の知識と組み合わせることによって、達成することができる。多くのレビュー(マクリデス SC(Makrides SC)、1999)および書籍が、ベクターおよび原核または真核宿主細胞を使用して、どのようのにクローニングし、組換えタンパク質を産生させるかについての教義を提供しており、オックスフォード大学出版(Oxford University Press)発行の「A Practical Approach」シリーズにいくつかのタイトル(「DNA Cloning 2: Expression Systems」、1995;「DNA Cloning 4: Mammalian Systems」、1996;「Protein Expression」、1999;「Protein Purification Techniques」、2001)がある。
化学合成技術の例には、固相合成および液相合成がある。固相合成では、例えば、合成しようとするペプチドのC末端に対応するアミノ酸を、有機溶媒に不溶性の支持体に結合させ、アミノ基を有するアミノ酸と適切な保護基で保護された側鎖の官能基とを、C末端からN末端の順に1個ずつ縮合する反応と、樹脂に結合したアミノ酸またはペプチドのアミノ基の保護基を脱離させる反応との交互の反復反応によって、ペプチド鎖は上記様式で伸張される。固相合成方法は、使用する保護基のタイプに依存して、大まかにtBoc方法とFmoc方法とに分類される。典型的に使用される保護基としては、アミノ基に対するtBoc(t−ブトキシカルボニル)、Cl−Z(2−クロロベンジルオキシカルボニル)、Br−Z(2−ブロモベンジルオキシカルボニル)、Bzl(ベンジル)、Fmoc(9−フルオレニルメトキシカルボニル)、Mbh(4,4’−ジメトキシジベンズヒドリル)、Mtr(4−メトキシ−2,3,6−トリメチルベンゼンスルホニル)、Trt(トリチル)、Tos(トシル)、Z(ベンジルオキシカルボニル)およびCl2−Bzl(2,6−ジクロロベンジル);グアニジノ基に対するNO2(ニトロ)およびPmc(2,2,5,7,8−ペンタメチルクロマン−6−スルホニル);ならびに水酸基に対するtBu(t−ブチル)が挙げられる。所望のペプチドの合成後、該ペプチドを脱保護反応に供し、固相支持体から切り離す。そのようなペプチド切断反応は、Boc方法ではフッ化水素またはトリフルオロメタンスルホン酸、およびFmoc方法ではTFAで行う。総体的に、合成MCPタンパク質は、文献に開示されている(ブラウン A(Brown A)ら、1996)。
本発明の天然、合成または組換えMCPアンタゴニストの精製は、この目的のための既知の方法のいずれか1つ、即ち、抽出、沈殿、クロマトグラフィー、電気泳動などに関与する任意の従来の手順によって行うことができる。本発明のタンパク質を精製するために好適に使用することができるさらなる精製手順は、標的タンパク質に結合し、カラム内に含有されるゲルマトリックス上で生成および固定化されるモノクローナル抗体または親和性基を使用するアフィニティークロマトグラフィーである。タンパク質を含有する不順な調製物をカラムに通過させる。タンパク質は、ヘパリンまたは特異的抗体によってカラムに結合する一方、不純物は通過する。洗浄後、pHまたはイオン強度の変化によって、タンパク質はゲルから溶出される。あるいは、HPLC(高性能液体クロマトグラフィー)を使用することができる。溶出は、タンパク質の精製に一般に用いられる水−アセトニトリルを基剤とする溶媒を使用して行うことができる。本発明は、本発明の化合物の精製された調製物を含む。本明細書で使用される精製された調製物は、本発明の化合物の少なくとも1乾燥重量%、好ましくは5乾燥重量%である調製物を指す。
本発明の別の目的は、自己免疫および炎症性疾患ならびに細菌およびウイルス感染症などのMCPタンパク質の受容体を発現する白血球の過剰な遊走および活性化をもたらすMCPタンパク質の所望されない活性に関連する疾患を治療または予防するための医薬品、特に薬学的組成物の有効成分(薬学的に許容可能なキャリア、賦形剤、安定化剤、または希釈剤と組み合わせて処方される)として上記で規定したMCPアンタゴニストの使用である。そのような疾患の非制限的例は、次の通りである。関節炎、慢性関節リウマチ(RA)、乾癬性関節炎、感染、変形性関節症、全身性エリテマトーデス(SLE)、全身性硬化症、強皮症、多発性筋炎、子宮体腎炎、線維症、肺線維症、アレルギー性または過敏性疾患、皮膚炎、遅延型過敏症またはDTHとも呼ばれるIV型過敏症、喘息、慢性閉塞性肺疾患(COPD)、炎症性腸疾患(IBD)、クローン病、潰瘍性大腸炎、多発性硬化症、敗血症性ショック、HIV感染、移植、移植片対宿主病(GVHD)、子宮内膜症、膵炎、甲状腺炎、脳症。
課題に関する文献を見ると、MCPタンパク質アンタゴニストは、血管障害(冠動脈介入後の再狭窄、動脈硬化症、アテローム硬化症、虚血、脳卒中)もしくは癌などのMCPタンパク質の所望されない活性に関する他の疾患の治療または予防のための薬学的組成物における有効成分であることができる。
従って、本発明の別の目的は、本発明のMCPタンパク質アンタゴニストの有効量の投与を含んでなる、上記疾患のいずれかを治療または予防するための方法である。
薬学的組成物は、MCPアンタゴニストに加えて、適切な薬学的に許容可能なキャリア、生物学的に適応可能なビヒクルおよび動物への投与に適切である添加物(例えば、生理食塩水)を含有してもよく、究極的に、活性化合物の薬学的に使用することができる調製物へのプロセシングを容易にする助剤(賦形剤、安定化剤または希釈剤など)を含んでなる。そのような組成物は、究極的に、相乗的に作用する別の治療組成物、または調整された様式で本発明のMCP変異体と組み合わせることができる。例えば、シクロスポリンとの併用でCC−ケモカインアンタゴニストの類似の相乗的特性が実証されている(国際公開第00/16796号パンフレット)。あるいは、他の組成物は、特定の疾患に対する治療上活性な薬剤であることが既知の化合物(例えば、多発性硬化症のためのIFNβ、慢性関節リウマチのための可溶性TNF受容体)と共に主薬を形成することができる。
薬学的組成物は、投与形態の要件を満たす許容可能な任意の方法で処方することができる。例えば、薬物送達のための生態適合物質および他のポリマーの使用、また特定の投与形態のバリデーションのための異なる技術およびモデルが文献に開示されている(ルオ B(Luo B)およびプレストウィッチ CG(Prestwich GD)、2001;クラランド JL(Cleland JL)ら、2001)。
「有効量」は、病状の減少または緩解をもたらす疾患の経過および重症度に影響を及ぼすのに十分な有効成分の量を指す。有効量は、投与経路および患者の症状に依存する。
「薬学的に許容可能」とは、有効成分の生物学的活性の有効性を妨げることなく、かつ投与される宿主に毒性を示さない任意のキャリアを包含することを意味する。例えば、非経口投与では、上記の有効成分は、食塩水、デキストロース溶液、血清アルブミンおよびリンゲル溶液などのビヒクル中で注射のための単位剤型で処方することができる。
当業者であれば、有効成分の所望の血液レベルを確立するために、任意の許容される投与形態を使用および決定することができる。例えば、投与は、皮下、静脈内、皮内、筋肉内、腹膜内、鼻内、経皮、直腸、経口、または口内経路などの様々な非経口投与によってでもよい。非経口投与は、大量注入または経時的に緩徐な潅流によることができる。非経口投与のための調製物は、滅菌水性または非水性溶液、懸濁液、および乳液を含み、当該分野において公知の助剤または賦形剤を含有してもよく、日常的方法に従って調製することができる。さらに、適切な油性注入用懸濁液としての活性化合物の懸濁液を投与してもよい。適切な親油性溶媒またはビヒクルには、脂肪油、例えば、ゴマ油、または合成脂肪酸エステル、例えば、ゴマ油、または合成脂肪酸エステル、例えば、オレイン酸エチルもしくはトリグリセリドが含まれる。懸濁液の粘度を増加させる物質を含有することができる水性注入懸濁液には、例えば、カルボキシメチルセルロースナトリウム、ソルビトール、および/またはデキストランが含まれる。必要に応じて、懸濁液は、安定化剤を含有してもよい。薬学的組成物は、注入による投与のために、適切な溶液を含み、約0.01〜99パーセント、好ましくは、約20〜75パーセントの活性化合物を、賦形剤と共に含有する。直腸に投与することができる組成物には、坐剤が含まれる。
投与される用量は、レシピエントの年齢、性別、健康状態、および重量、併用治療の種類、存在すれば、治療回数、ならびに所望する効果の性質に依存することが理解される。用量は、個々の被験体に合わせて調整され、当業者によって理解および決定可能である。各治療に要求される総用量は、複数投与または単回投与によって投与してもよい。本発明の薬学的組成物は、単独または症状、もしくは症状の他の徴候に対する他の療法と組み合わせて投与してもよい。通常、有効成分の1日あたりの用量は、体重1キログラムあたり0.01〜100ミリグラムの間からなる。通常、分割用量または徐放形態で1日あたり1キログラムあたり1〜40ミリグラムが、所望の結果を得るのに有効である。第2または以後の投与を、個体に投与した初回または前回の用量と同量、未満、もしくはそれより多い用量で実施することができる。
特定の実施態様を参考にして本発明を説明してきたが、説明の内容は、当業者が特許請求の範囲の意義および目的を逸脱することなく行うことができるあらゆる改変または置換を含んでなる。
以下の実施例によって、本発明を説明するが、該実施例は、いずれの方法においても本発明を制限するものと解釈されるべきではない。実施例は、以下に明記した図面を指す。
実施例1:非ヘパリン結合MCP−1変異体MCP−1WT*2Aのインビトロ特徴付け
材料および方法
MCP−1変異体MCP−1WT*およびMCP−1WT*2Aの発現
ヒトMCP−1(hMCP−1;図1;配列番号1)、および特に前駆体分子のセグメント24〜99に対応する成熟型のヒトMCP−1(スイスプロット(SWISSPROT)受託番号P13500)をコードするDNA配列のインビトロ、PCRに基づく変異によって、MCP−1変異体を生成した。
まず、ヒトMCP−1(24〜99)をコードする配列のN末端にメチオニンの開始コドンを付加し、内部のメチオニン(前駆体のアミノ酸87および成熟タンパク質の64)をイソロイシンで置換したMCP−1WT*と呼ばれる活性な変異体MCP−1タンパク質をコードするプラスミドを生成した。この置換によって、大腸菌(E.coli)での発現のためにプラスミドを使用する場合に、MCP−1の典型的な特性に影響を及ぼすことなく、メチオニンスルホキシドを含有する所望されないMCP−1種の形成が回避される(パボラ CD(Paavola CD)ら、1998)。MCP−1WT*と呼ばれる得られる配列をクローニングし、77個の残基を含有するタンパク質としてpET3プラスミド(パボラ CD(Paavola CD)ら、1998)に基づくプラスミドを利用することによって、大腸菌(E.coli)において発現させた(図1A;配列番号2)。
次いで、MCP−1WT*と同じ長さおよび精製特徴を有するMCP−1変異体MCP−1WT*2Aを生成するために、ヒトMCP−1前駆体の41および42位(成熟タンパク質の18および19位)のアルギニンおよびリジンの代わりに2個のアラニンをコードするPCRフラグメントをクローニングすることによって、MCP−1WT*を発現するプラスミドをさらに変異した(図1;配列番号3)。
すべての構築物は、標準的な分子生物学的技術(PCR変異および増幅、DNA配列決定、制限消化)によって入手および制御し、クローニングプロセス中は大腸菌(E.coli)のDH5α株に維持した。大腸菌(E.coli)での発現に最適なコドン使用を有するために、コーディング配列を選択した(カネ JF(Kane JF)、1995)。
次いで、MCP−1WT*およびMCP−1WT*2AをコードするpET3に基づくプラスミドを、TAP302と呼ばれる大腸菌(E.coli)BL21(pLys)由来株に移し、(パボラ CD(Paavola CD)ら、1998)に記載のように、得られる株を、MCP−1変異体の組換え発現に使用した。このプロトコルには、N末端メチオニンを除去し、従って、天然成熟型と同じ長さを有する組換えMCP−1変異体(76アミノ酸;図1B)を得るためのアミノペプチダーゼの使用が含まれる。組換えタンパク質の正体を質量分析によって確認した。
MCP−1WT*およびMCP−1WT*2Aのクロマトグラフィーアッセイ
MCP−1WT*およびMCP−1WT*2Aを、ヘパリンセファロースカラムまたはSPセファロース陽イオン交換カラムのいずれか一方に充填した。いずれの場合においても、カラムを10mMリン酸カリウム(pH7.5)で平衡化し、同緩衝液中0〜1NaClの直線勾配でタンパク質を溶出させた。
MCP−1WT*およびMCP−1WT*2Aのヘパリン結合アッセイ
0.02〜30μMの範囲を含むリン酸緩衝食塩水(PBS)中MCP−1WT*変異体の系列希釈を、170nMの[3H]−ヘパリンと共に1時時間、37℃でインキュベートした。3回反復の20μlの各サンプルを、ニトロセルロースフィルターを固定した96ウェルP81ユニフィルター(Unifilter)プレート(ワットマン社(Whatman Inc))に移した。真空ポンプを使用して、プレートを200μlのPBSで3回洗浄し、非結合標識ヘパリンを除去した。シンチレーション液(50μl)を各ウェルに添加し、βカウンターで放射能を計数(1分間/ウェル)した。プリズム(Prism)プログラム(グラフパッド・ソフトウェア(GraphPad Software))を使用して、データを解析した。
平衡競合受容体結合アッセイ
シンチレーション近接アッセイ(SPA)およびトレーサーとして[125I]−MCP−1を使用し、MCP−1受容体(CCR2)を安定に発現するチャイニーズハムスター卵巣(CHO)細胞由来の膜上で、アッセイを行った。[125I]サプライヤー(アマシャム(Amersham))に従って、組換え成熟MCP−1から放射性標識ケモカイン(2200mCi/モルの比放射能)を作製した。結合緩衝液(50mM HEPES pH7.2、1mM CaCl2、5mM MgCl2、0.15M NaClおよび0.5%BSA)中非標識MCP−1の系列希釈(範囲10-6〜10-12M)によって、競合物を調製した。
小麦胚芽SPAビーズ(アマシャム(Amersham))をPBSに50mg/mlとなるように懸濁し、結合緩衝液中に10mg/mlとなるように希釈し、アッセイでの最終濃度は0.25mg/ウェルであった。CCR2を発現する膜を−80℃で保存し、結合緩衝液中に80μg/mlとなるように希釈した。最終膜濃度は2μg/ウェルおよび[125I]−MCP−1の最終濃度は0.1nMであった。プレートを室温で、撹拌しながら4時間、インキュベートした。βカウンターで放射能を計数(1分間/ウェル)した。グラフィット(Grafit)プログラム(エリサカス・ソフトウェア(Erithacus Software))を使用して、3回反復のサンプルのデータを解析した。
結果
文献には、MCP−1のヘパリン/GAG結合特性を試験するための異なるアプローチが示されている(フーゲベルフ AJ(Hoogewerf AJ)ら、1997;カスチェルト G(Kuschert G)ら、1999;アリ S(Ali S)ら、2001;パテル D(Patel D)ら、2001;チャクラバルティー L(Chakravarty L)、1998)。
配列が成熟型のヒトMCP−1(図1)に基づくMCP−1の2つの変異体を大腸菌(E.coli)において発現させた。第1の変異体MCP−1WT*は、MCP−1の結合特性および典型的な活性を妨害することなく、メチオニン酸化の可能性を除去することが既知の変異を有する成熟ヒトMCP−1前駆体に対応する(パボラ CD(Paavola CD)ら、1998)。この「活性な」変異体の配列に基づいて、N末端の二塩基部位が付加的にアラニン残基に置換された第2の変異体MCP−1WT*2Aを発現させた。
まず、ヘパリンクロマトグラフィーによって、MCP−1特性に対するこの後者の置換の影響について試験した。MCP−1WT*を溶出させるのに必要なNaClの濃度は0.54M NaClである一方、MCP−1WT*2Aは0.24M NaClで溶出されたため、このクロマトグラフィーカラムに適用された2つの変異体の溶出プロファイルはかなり異なる。SPセファロースカラム上での陽イオン交換クロマトグラフィーを使用して、類似の差異を測定した(0.27M NaClに対して0.55M NaCl)。
上記クロマトグラフィー媒体上の溶出プロファイルを比較することによって、塩基性アミノ酸対ヘパリン結合特性による非特異的静電的相互作用の寄与が定性的に示される(プロウドフット A(Proudfoot A)、2001)。陽イオン交換クロマトグラフィー上で得られるNaCl濃度の差異を、ヘパリンクロマトグラフィー上で得られた濃度から差し引いた。この方法に従って、得られる数字が正(この場合、0.02M)である場合、ヘパリンとの相互作用は、MCP−1WT*2Aの変異された二塩基性部位との関連が同定されると結論付けることができる。
次いで、滴定されたヘパリンおよびMCP−1発現大腸菌(E.coli)変異体の系列希釈を使用して、ヘパリンへの結合の直接測定を実施した(図2)。ニトロセルロースフィルターに希釈物を添加することによって、タンパク質−ヘパリン複合体を単離した。そのような支持体はタンパク質を効率的に保持することが可能であり、従って、タンパク質に結合した放射性標識ヘパリンの量を評価することが可能である。このアプローチにより、MCP−1WT*と比較して、MCP−1WT*2Aのヘパリン結合特性が有意に減少したことが確認された。
最後に、平衡競合受容体結合アッセイを実施して、特異的受容体CCR2の結合対するMCP−1WT*2Aの低減したヘパリン結合特性の影響を実証した(図3)。2つの変異体のうちの1つ、またはMCP−1の系列希釈と混合した放射性標識MCP−1を含有するサンプルを、CCR2を安定に発現するCHO細胞から調製した膜と共にインキュベートした。MCP−1WT*およびMCP−1タンパク質がほとんど同一の結合プロファイルを示したが、MCP−1WT*2A変異体のIC50は、試験した他の2つのタンパク質の0.08±0.045nMと比較して、1.73±0.6nMであり、このヘパリン結合欠損MCP−1変異体において高い親和性を示すため、該MCP−1WT*2A変異体では、CCR2に対する親和性が20倍減少する。
実施例2:細胞漸増のモデルにおける非ヘパリン結合MCP−1変異体の特徴付け
材料および方法
走化性アッセイ
5μmポアサイズ膜(ニューロプローブ(Neuroprobe))を固定した24ウェルトランスウェル走化性チャンバ(コースター(Costar))においてヒト前単球細胞株(THP−1)を使用し、アッセイを行った。組換えMCP−1タンパク質を、5%不活化ウシ胎児血清(FCS)、2mMグルタミンおよび25mM HEPES(pH7.2)を含有する600μlのRPMI培地中に系列希釈(10-6〜10-12Mの範囲)した。これらのサンプルを下方のウェルに配置する一方、THP−1細胞(同倍地中10×106細胞/mlでの100μlの細胞懸濁液)を挿入部に配置した。チャンバを3時間、37℃、5%CO2下でインキュベートした。次いで、サンプルを取り出し、1.5mlチューブに移し、200×gで5分間、遠心分離した。ペレット化した細胞を100mlのPBSに再懸濁し、コールターカウンター(ベックマン(Beckman))で計数した。プリズム(Prism)プログラム(グラフパッド・ソフトウェア(GraphPad Software))を使用して、データを解析した。
腹膜細胞漸増アッセイ
0.2ml滅菌、リポ多糖を含まないPBSに希釈した10μgの組換えMCP−1WT*またはMCP−1WT*2Aタンパク質を8〜12週齢の雌性BALB/cマウスに腹腔内注入することによって、細胞漸増を誘導した。MCP−1WT*2Aのアンタゴニスト特性を試験する場合、0.2mlの同滅菌溶液に希釈した指示された量のタンパク質を、アゴニスト(MCP−1WT*)投与の30分前に投与した。アゴニストの投与の16時間後、エアゾール化したCO2によってマウスを屠殺し、5mlのPBSで3回、腹腔洗浄を実施した。洗浄液をプールし、600×gで10分間、遠心分離し、ペレット化した細胞を1mlの最終容積で再懸濁し、誘発されたすべての白血球を、血球計で計数した。
結果
MCP−1に関連する異なるタンパク質の特性を特徴付けるために、細胞漸増アッセイを使用した(アジュエボル MN(Ajuebor MN)ら、1998;レックレス J(Reckless J)およびグラインジャー DJ(Grainger DJ)、1999;カジ M(Kaji M)ら、2001)。
ヒト単球(THP−1細胞株)に対する走化性アッセイにおいてMCP−1WT*2Aについて得られる結果は、実施例1に記載の受容体結合アッセイで得られた結果に良好に対応する。MCP−1WT*2Aは、THP−1走化性の強固な応答(ベースラインの6倍を超える)を誘導することが可能であったが、ベースラインより9倍の増加を誘導した野生型タンパク質の1nMと比較して、10nMで最大活性が観察された(図4)。
腹膜細胞漸増アッセイを使用して、MCP−1のアンタゴニストまたはアゴニストとしてのMCP−1WT*2Aの活性も評価した(図5)。MCP−1WT*およびMCP−1WT*2Aを投与する場合、ヘパリン結合欠損変異体は、MCP−1WT*が実質的な漸増を引き起こす用量(10マイクログラム/マウス)で、腹膜への細胞漸増を誘導することができなかった。さらに、MCP−1WT*の投与の30分前にMCP−1WT*2Aを投与する場合、MCP−1WT*によって誘導される細胞漸増は、用量依存様式で有意に拮抗される。従って、MCP−1のGAG結合を排除すると、MCP−1によって誘導される細胞漸増を、インビボで阻害することが可能なMCP−1のアンタゴニストが産生される。
実施例3:動物に基づくモデルにおける非ヘパリン結合MCP−1変異体の特徴付け
材料および方法
遅延型接触過敏症モデル
接触過敏症を測定するためのマウス耳膨潤試験を、先に記載(ガリグエ JL(Garrigue JL)ら、1994)の通りに実施した。簡単に説明すると、アセトン/オリーブ油(4:1)中0.5%2,4−ジニトロフルオロベンゼン(DNFB;シグマ・ケミカル社(Sigma Chemical Co.))溶液の25μlを、剃毛した腹部に適用することによって、マウスを局所的に予め感作させた。5日後、同ビヒクル中0.2%DNFBの20μlを右側の耳に適用し、ビヒクル単独を左側の耳に適用した。5〜9日目の連日、0.5mg/kg(10マイクログラム/マウス)のMCP−1WT*またはコントロールグループではPBSのみの腹腔内投与でマウスを処置した。DNFB攻撃の1時間前に、第1の処置を投与した。ダイヤル・シックネス・ゲージ(ミツトヨ社(Mitutoyo Corp.))で耳の膨潤を測定し、攻撃後の値から攻撃前の値を差し引き、さらに、ビヒクル攻撃した反対側の耳において検出された任意の膨潤を差し引くことによって耳の膨潤を見積もった。
ブレオマイシン誘導性肺線維症モデル
C57BL/6雌性マウスに、ブレオマイシン(25μl PBS中3.75U/kg)を気管内投与した(0日目)。ブレオマイシンの点滴1時間後、試験動物に、0.2ml PBS中0.25mg/kg MCP−1WT*2Aまたは0.2ml PBSのみのいずれかを腹腔内投与した。この処置を連日行い、10日間継続した。体重の消失および死亡率の百分率を連日記録した。10日目に、すべてのマウスをCO2窒息によって屠殺した。コラーゲン沈着の指標としてのヒドロキシプロリンレベルの測定のために、4つの肺胞を−80℃に配置し、ならびに1つの肺胞を、肺線維症の組織学的決定のために処理した。ヒドロキシプロリンの分析によって、総肺コラーゲンを決定した。簡単に説明すると、肺を、ティッシュ・テアラー(Tissue Tearor)によりTris−HCl(pH7.6)中で均質化し、続いて、アンバーライト(Amberlite)中で1晩、115℃でインキュベートする。クエン酸/酢酸緩衝液、イソプロパノール、クロラミン−T、およびDAB溶液をサンプルに添加し、30分間、60℃で放置する。サンプルを室温で10分間、冷却し、分光光度計上560nmで読み取った。肺線維症は、10%ホルマリンに右肺胞を固定化することによって組織学的にも決定し、続いて、パラフィンに包埋し、切片を作製し、マッソン(Masson)のトリクロム溶液で染色した。光学顕微鏡で組織学的変化を調べた。半定量的評価法を使用し、線維化領域の百分率を計算して、ブレオマイシン誘導性肺炎症および線維症の形態学的評価を実施した。
実験自己免疫脳脊髄炎(EAE)モデル
0日目に、完全フロイントアジュバント(CFA;ディフコ・ラボ(Difco Lab.))中MOG35-56ペプチド(200マイクログラム)および結核菌(Mycobacterium tuberculosis)(500マイクログラム)を含有する0.2mlの乳液を左側腹部の皮下に注入することによって、雌性マウス(8週齢;C57BL/6NCrlBR株;18〜22グラムの重量)に免疫した。直後に、百日咳毒(0.5M NaCl、15mM Tris(pH7.5)、0.017%トリトン(Triton)X−100を含有する400マイクロリットルの緩衝液中500ナノグラム)を腹腔内投与した。2日目に、百日咳毒を含有する同溶液の第2の腹腔内注入を、動物に施した。7日目に、CFA中MOG35-56ペプチド(200マイクログラム)の2回目の投与を、右側腹部への皮下注入でマウスに投与した。この手順により、約18〜20日目に疾患が発症し、尾から生じて進行的に前肢にまで上昇する進行性の麻痺が出現する。
実験7日目(疾患の通常の発症の約1〜3日前)に、各動物について処置を開始し、連続21日間、継続した。7日目から開始し、動物を、以下の臨床評価によって、麻痺の存在について個々に調べた。
0=疾患の徴候なし
0.5=尾の部分的麻痺
1=尾の麻痺
1.5=尾の麻痺+後肢の片側のみに部分的麻痺
2=尾の麻痺+後肢の脆弱化または後肢の部分的麻痺
2.5=尾の麻痺+後肢の部分的麻痺(骨盤下部)
3=尾の麻痺+後肢の完全な麻痺
3.5=尾の麻痺+後肢の完全な麻痺+失禁
4=尾の麻痺+後肢の麻痺+前肢の脆弱化または部分的麻痺
5=瀕死または死亡。
実験は、以下に示すように、それぞれ10匹の動物からなる3つのグループで行った。グループ1はポジティブコントロールとしてPBSで処置した。グループ2は、0.05mg/kgのMCP−1WT*2Aの腹腔内注入で連日処置した。グループ3は、0.5mg/kgのMCP−1WT*2Aの腹腔内注入で連日処置した。MCP−1WT*2A変異タンパク質を滅菌水に溶解し、次いで、滅菌PBSに希釈(200マイクロリットル/マウス)し、必要とされる濃度を達成した。
コラーゲン誘導性関節炎(CIA)モデル
0日目に、完全フロイントアジュバント(CFA;ディフコ・ラボ(Difco Lab.))中ウシII型コラーゲン(100マイクログラム;モルウェル・ダイアグノスティクス(Morwell Diagnostics))および結核菌(Mycobacterium tuberculosis)(400マイクログラム)からなる0.2mlの乳液を尾の付け根に皮内注入することによって、雄性マウス(8〜12週齢;DBA/1株;18〜22グラムの重量)に免疫した。
約16から20日目から炎症の徴候が出現し、1つもしくはそれ以上の肢に影響を及ぼした。前足および後ろ足の指の炎症の存在に関する目視臨床評価に基づき、以下からなる臨床評価によって、疾患の重症度について動物を個々に格付けした:
0=疾患の徴候なし
0.5=1〜5本の前/後足の指に炎症の徴候を伴う
1=6〜10本の前/後足の指に炎症の徴候を伴う
1.5=11〜15本の前/後足の指に炎症の徴候を伴う
2=16〜20本の前/後足の指に炎症の徴候を伴う。
総合的臨床評価>0.5を有する2つのグループ(n=10匹のマウス)を、7日間連続で、PBS(コントロールグループ)の腹腔内注入または0.05mg/kgのMCP−1WT*2Aで連日処置した。最後の処置の24時間後にすべてのマウスを屠殺した。
オボアルブミン誘導性肺炎症(OVA)モデル
雌性マウス(8〜10週齢;Balb/c株)。2mg水酸化アルミニウム2%(セルヴァ(Serva))において沈殿した200μlの総容積の10μgオボアルブミン(シグマ(Sigma))の腹腔内注入によって、マウスを感作した。750μlのLPSを含まない0.9%NaClにおいて25μlオボアルブミン(2mg/ml)、250μl水酸化アルミニウムを混合し、水酸化アルミニウム2%/オボアルブミン溶液を調製し、3〜4時間、4℃で沈殿させた。感作の15日後、以下のように6匹からなるグループで、マウスを処置および攻撃した:
グループ1:LPSを含まない0.9%NaClで攻撃し、PBSで処置した(ベースライン)
グループ2:オボアルブミンで攻撃し、PBSで処置した(ネガティブコントロール)
グループ3:オボアルブミンで攻撃し、0.5mg/kgのMCP−1WT*2Aで処置した。
5日間連続、各攻撃の30分前に、腹腔内注入(200マイクロリットル)によって、PBSまたはMCP−1WT*2Aを投与した。オボアルブミン(50マイクロリットルのLPSを含まない0.9%NaCl中に懸濁した15マイクログラムの沈殿オボアルブミン)で、イソフルランによる吸入麻酔下のマウスの鼻腔内を攻撃した。攻撃後72時間目に、0.9%NaCl中14%ウレタン(v:v)の300μlの致死的腹膜内注入によって、マウスを屠殺した。結合組織から気管を摘出し、小さな切開を作製し、0.75ミリメートル径のカテーテルを気管に挿入した。その場所で1片の縫合糸によりカニューレを結び1mlシリンジに付着させた。インサイチュで、肺に0.4ミリリットルのPBSを充填した。緩徐にマッサージした後、肺から液体を抜き出して細胞を取り出し、氷上のプラスチックチューブに回収した。この手順を4回繰り返し、各動物から回収した細胞懸濁液を氷上で合わせて、約1.4mlの最終容積を得た。血球計を使用し、細胞懸濁液のトリパンブルーへの2倍希釈液を使用して、細胞の計数を実施した。
結果
MCP−1のインビボ特性については、多くの論文において、特にトランスジェニックマウスを利用することによって、特徴付けられている(ル B(Lu B)ら、1998;ルットレッジ BJ(Rutledge BJ)ら、1995)。次いで、ヒト炎症および疾患の動物モデルを利用して、MCP−1WT*2Aを試験し、腹膜細胞漸増モデルを使用して得られたこのMCP−1ヘパリン結合欠損変異体のアンタゴニスト活性に関する結果を確認した。
遅延型接触過敏症は、T細胞によって仲介されるハプテン特異的皮膚炎症を耳の膨潤によって測定する動物モデルである。増強された接触過敏症は、高レベルのMCP−1を血清に構成的に産生するトランスジェニックマウスで示されている(ミズモト N(Mizumoto N)ら、2001)。ハプテンとして接触感作物質2,4−ジニトロフルオロベンゼン(DNFB)を利用して、正常マウスの耳の皮膚を攻撃した。得られる膨潤は、処置期間を通してビヒクルのみで処置したマウスで観察された効果と比較した場合、MCP−1WT*2Aの腹膜内投与(DNFBによる攻撃時に開始した)によって処置したマウスよりも有意に低かった(図6)。
MCP−1は、肺または皮膚炎症プロセスにおいてプロコラーゲンの沈着を誘導することが公知である(ホガボアム CM(Hogaboam CM)ら、1999)ため、肺炎症/線維症モデルで、MCP−1WT*2Aの特性について試験した。
マウスにおけるブレオマイシンの気管内点滴により、それぞれ7〜10日以内に肺炎症および線維症が生じ、肺におけるコラーゲンの顕著な蓄積ならびに重要の迅速な減少を伴う(チェン ES(Chen ES)ら、2001)。マウスをブレオマイシンに暴露させ、1時間後にMCP−1WT*2Aの腹腔内投与またはPBSのみで処置した後の10日間を通して重量を記録し、さらにブレオマイシンで処置しなかったコントロールグループと比較した。2日目より明白になっている通り、PBSで処置したコントロールマウスは、MCP−1WT*2A処置マウスと比較して有意に高い量の重量を消失している(図7)。肺線維症および炎症は、2つの異なる方法を使用して、10日目に動物を屠殺した後に評価した。ブレオマイシンが、コラーゲン合成および線維症に比例して肺のヒドロキシプロリンの合成を増加することは公知である(マドテス DK(Madtes DK)ら、1999)。PBSのみで処置したマウスで測定されるヒドロキシプロリンのレベルは、MCP−1WT*2Aの腹膜内投与を受けたグループで測定されたレベルよりも有意に高かった。実際、この後者のグループのレベルは、ブレオマイシン非処置マウスに匹敵した。別の半定量的組織学的評価により、MCP−1WT*2A処置グループ対コントロールにおける線維症の総レベルの有意な低下を確認した(図8)。
MCP−1に対する抗体および機能的MCP−1遺伝子を欠くトランスジェニックマウスにより、例えば、ヘルペスウイルス誘導性脳脊髄炎(HSM)および実験自己免疫脳脊髄炎(EAE)に関連する中枢神経系、多発性硬化症の動物モデルにおけるマクロファージ漸増および炎症に対するMCP−1の極めて重要な役割が実証された(ナカジマ H(Nakajima H)ら、2001;ファング DR(Huang DR)ら、2001)。MCP−1WT*2Aの投与により、試験した投与の両方において、EAE動物モデルの臨床スコアが顕著に改善された(図9)。
上記で考察したように、MCP−1は強力な線維形成誘導性効果を有する。コラーゲン誘導性関節炎(CIA)モデルにおいて、このMCP−1活性に対するMCP−1WT*2Aの特性を試験した。また、この場合、MCP−1WT*2Aは、処置したマウスの臨床評価を顕著に改善した(図10)。
喘息を特徴とする肺アレルギー性炎症ならびに気管支高感受性(BHR)は、肺における異なる白血球のサブセットの蓄積および活性化によって達成される。抗体によるMCP−1の遮断は、BHRおよび炎症を劇的に減少する(ゴンザロ JA(Gonzalo JA)、1998)。オボアルブミン誘導性肺炎症(OVA)モデルでは、細胞漸増の減少について、MCP−1WT*2Aは有意な改善を提供した(図11)。
本発明の実施例において変異させた二塩基性部位が、ヒスチジン66およびリジン58などのGAGへのMCP−1結合に関与することが公知である他の塩基(チャクラバルティー L(Chakravarty L)ら、1998)と共に、すべてのMCPにおいて変換されれば(図1B)、アンタゴニスト活性を有する他のMCPに基づく変異体を、本特許出願の所見に基づいて設計することができる。
特に、MCPアンタゴニストは、18および19、18および58(または66)、19および58(または66)位でのヒト成熟MCP−1(配列番号4)、MCP−2(配列番号5)、MCP−3(配列番号6)、MCP−4(配列番号7)、またはエオタキシン(配列番号8)の二重変異、ならびに18、19および58(または66;番号付けはヒト成熟MCP−1に与えられる番号付けに対応する)位での三重変異であることができる。18および19位の残基に加えてさらに変異させることができる他の残基は、すべてのヒトMCPタンパク質において高度に変換されることが同定されている他の塩基性残基である(前記24、44、49、75;図1B)。
これらの代替的分子の特性については、上記の方法のいずれか、ならびに当該分野において既知の他のバリデーションアプローチを利用することによって試験することができる。他の多くの有用なケモカイン関連技術(組換え発現、インビトロアッセイ、トランスジェニック動物)は、文献(「Chemokine Protocols」、Methods in Molecular Biology、第138巻、ヒューマナ出版(Humana Press)、2000;「Chemokine Receptors」、Methods in Enzymology、第288巻、アカデミック出版(Academic Press)、1997)において広範に検討されている。
Figure 2006505243
Figure 2006505243
参考文献
アジュエボル NM(Ajuebor MN)ら、Br J Pharmacol、 125: 319−326、1998
アレキサンダー JM(Alexander JM)ら、Cell、 111: 343−356、2002
アリ S(Ali S)ら、Biochem J、 358: 737−745、 2001
バギオリニ M(Baggiolini M)ら、Annu Rev Immunol、 15: 675−705、1997
バギオリニ M(Baggiolini M)、J Intern Med、 250: 91−104、 2001
ビール CJ(Beall CJ)ら、Biochem J, 313: 633−640、1996
ベック CG(Beck CG)ら、J Biol Chem、 276: 43270−43276、 2001
ベルコート TA(Berhkout TA)ら、J Biol Chem、 272: 16404−16413、 1997
ブラジクジク J(Blaszczyk J)ら、Biochemistry、 39: 14075−14081、2000
ブラウン A(Brown A)ら、J Pept Sci、 2: 40−46、1996
チェン ES(Chen ES)ら、Am J Respir Cell Mol Biol ; 24: 545−555、2001
チャクラバルティ L(Chakravarty L)ら、J Biol Chem、 273: 29641−29647、1998
クレランド JL(Cleland JL)ら、Curr Opin Biotechnol、 12 : 212−219、 2001
ドーソン J(Dawson J)、Expert Opin Ther Targets、 7: 35−48、2003
ダグラス MS(Douglas MS)ら、Immunology、 92: 512−518、1997
ダグヘルティ DA(Dougherty DA)、Curr Opin Chem Biol、 4: 645−652、2000
エガシラ K(Egashira K)ら、FASEB J、 14: 1974−1978、2000
エガシラ K(Egashira K)ら、Circ Res、 90 : 1167−1172、 2002
エテサド M(Eghtesad M)ら、Immunology、 102: 157−164、2001
フェルナンデス EJ(Fernandez EJ)およびロリス E(Lolis E)、Annu Rev Pharmacol Toxicol、 42: 469−499、 2002
ガリグエ JL(Garrigue JL)ら、Contact Dermatitis、 30: 231−237、1994
ゴッデサルト N(Godessart N)およびクンケル SL(Kunkel SL)、Curr Opin Immunol、 13: 670−675、2001
ゴレビオスキー A(Golebiowski A)ら、Curr Opin Drug Discov Devel、 4 : 428−34、 2001
ゴング J(Gong J)およびクラーク−ルイス I(Clark−Lewis I)、J Exp Med、 181: 631−640、1995
ゴンザロ JA(Gonzalo JA)ら、J Exp Med、 188: 157−167、1998
ゴスリング J(Gosling J)ら、J Clin Invest、 103: 773−778、1999
グ L(Gu L)ら、Chem Immunol、 72: 7−29、1999
グ L(Gu L)ら、Nature、 404: 407−411、2000
ハンデル TM(Handel TM)ら、Biochemistry、 35: 6569−6584、1996
ヘンメリッヒ S(Hemmerich S)ら、Biochemistry、 38: 13013−13025、1999
ホガボアム CM(Hogaboam CM)ら、J Immunol、 163: 2193−201、1999
フーゲベルフ AJ(Hoogewerf AJ)ら、Biochemistry、 36: 13570−13578、1997
フルビー VJ(Hruby VJ)およびバルセ PM(Balse PM)、Curr Med Chem、 7: 945−970、2000
ファング DR(Huang DR)ら、J Exp Med、 193: 713−726、 2001
ヒューゲス AL(Hughes AL)およびイェーガー M(Yeager M)、Immunogenetics、 49: 115−124、1999
イケダ Y(Ikeda Y)ら、Am J Physiol Heart Circ Physiol、 283: H2021−2028、2002
カジ M(Kaji M)ら、J Biochem、 129: 577−583、2001
カネ JF(Kane JF)、Curr Opin Biotechnol、 6 : 494−500、1995
クシェルト G(Kuschert G)ら、Biochemistry、 38: 12959−12968、1999
ロエトシャー P(Loetscher P)およびクラーク−ルイス I(Clark−Lewis I)、J Leukoc Biol、 69: 881−884、2001
ロルタット−ヤコブ H(Lortat−Jacob H)ら、Proc Natl Acad Sci USA、 99: 1229−1234、2002
ル B(Lu B)ら、J Exp Med、 187: 601−608、1998
ルブコスキー J(Lubkowski J)ら、 Nat Struct Biol、 4: 64−69、1997
ルオ B(Luo B)およびプレストウィッチ GD(Prestwich GD)、Exp Opin Ther Patents、 11: 1395−1410、2001
ルスター AD(Luster AD)およびローテンベルグ ME(Rothenberg ME)、J Leukoc Biol、 62: 620−33、1997
マッドテス DK(Madtes DK)ら、 Am J Respir Cell Mol Biol、 20: 924−934、 1999
マクリデス SC(Makrides SC)、Protein Expr Purif、 17: 183−202、1999
メンテン P(Menten P)ら、Eur Cytokine Netw、 12: 554−560、 2001
メイヤー MR(Mayer MR)およびストーン MJ(Stone MJ)、J Biol Chem、 276: 13911−13916、2001
マッククイバン GA(McQuibban GA)ら、Blood、 100: 1160−1167、 2002
ミルザデガン T(Mirzadegan T)ら、J Biol Chem、 275: 25562−25571、2000
ミズモト N(Mizumoto N)ら、Immunobiology、 204: 477−493、2001
マーフィー LR(Murphy LR)ら、Protein Eng、 13: 149−152、2000
ナカジマ H(Nakajima H)ら、J Leukoc Biol、 70: 374−380、 2001
パボラ CD(Paavola CD)ら、J Biol Chem、 273: 33157−33165、1998
パテル D(Patel D)ら、Clin Immunol、 99: 43−52、2001
ピライ O(Pillai O)およびパンチャグヌラ R(Panchagnula R)、Cur Opin Chem Biol、 5: 447−451、2001
プルースト P(Proost P)ら、J Leukoc Biol、 59: 67−74、1996
プラウドフット A(Proudfoot A)ら、J Biol Chem、 276: 10620−10626、 2001
レックレス J(Reckless J)およびガラインガー DJ(Grainger DJ)、Biochem J、 340: 803−811、1999
ローデス A(Rhodes A)ら、FEBS Lett、 506: 85−90、2001
ルトレッジ BJ(Rutledge BJ)ら、J Immunol、 155: 4838−4843、1995
ロゴブ SI(Rogov SI)およびネクラソブ AV(Nekrasov AN)、Protein Eng、 14: 459−463、2001
サルセド R(Salcedo R)ら、Blood、 96: 34−40、2000
ソーヤー TK(Sawyer TK)、「Structure Based Drug Design」、ビーラパンジアン P(Veerapandian P)編、マルセル・デッカー社(Marcel Dekker Inc.)、557−663頁、1997
シート BT(Seet BT)ら、Proc Natl Acad Sci USA、 98: 9008−9013、 2001
ステイツ SA(Steitz SA)ら、FEBS Lett、 430: 158−164、 1998
ビライン M(Villain M)ら、Chem Biol、 8: 673−9、2001
ザング Y(Zhang Y)およびロリンズ BJ(Rollins BJ)、Mol Cell Biol、 15: 4851−5、1995
ザング Y(Zhang Y)ら、Methods 10: 93−103、1996
(A)実施例において発現ならびに試験されるヒトおよび変異されたMCP−1タンパク質のアミノ酸配列(変異されたアミノ酸に下線を付している)を示す。MCP−1WT*およびMCP−1WT*2AのN末端のメチオニンは、さらなる残基によるタンパク質の活性に対する任意の影響を回避するために、アミノペプチダーゼによる処置による精製により、除去した。(B)成熟型のヒトMCP−1(CCL2;スイスプロット(SWISSPROT)受託番号P13500)、MCP−2(CCL7;スイスプロット(SWISSPROT)受託番号P80075)、MCP−3(CCL8;スイスプロット(SWISSPROT)受託番号P80098)、MCP−4(CCL8;スイスプロット(SWISSPROT)受託番号P99616)、およびエオタキシン(CCL11;スイスプロット(SWISSPROT)受託番号P51671)のアラインメントを示す。GAG(残基18と19)結合に関与するとして本特許出願におけるMCP−1において同定される塩基性残基がおよびより相同なヒトタンパク質において保存された対応する残基を枠で囲んでいる。すべてのヒトMCPタンパク質の間で保存された他の塩基性残基に下線を付している。 3H]−ヘパリン、およびケモカインとして、MCP−1WT*(○)またはMCP−1WT*2A(●)のいずれか一方により実施したヘパリン結合アッセイの結果を表すグラフを示す。 ケモカインとして、hMCP−1(□)、MCP−1WT*(○)、またはMCP−1WT*2A(●)の付加を生じるCCR2を発現するCHO膜からの[125I]−MCP−1の置換をモニターすることによって実施した平衡競合受容体結合アッセイの結果を表すグラフを示す。 THP−1細胞、および走化性薬剤として組換えヒトMCP−1(□)、MCP−1WT*(○)、またはMCP−1WT*2A(●)を使用して実施したトランスウェル走化性アッセイの結果を表すグラフを示す。 MCP−1WT*および/またはMCP−1WT*2Aを使用して、マウスにおいて実施した腹膜細胞漸増アッセイの結果の概要を表すグラフを示す。MCP−1WT*によって漸増した細胞数に対して統計的に有意な阻害活性を示すMCP−1WT*2Aの濃度をグラフ内で*で示す。 遅延型接触過敏症アッセイの結果の概要を表すグラフを示す。マウスを0.5mg/kg MCP−1WT*2A(黒四角)またはビヒクルのみ(□)で処置した。処置中の各日における耳の膨潤容積について、効果を測定する。 肺線維症を誘発させるためにブレオマイシンを投与したマウスの体重に対する影響の概要を表すグラフを示す。コントロールマウスの平均体重(□)を、0.25mg/kg MCP−1WT*2A(黒四角)またはPBSのみ(○)の腹膜内投与も同時に行った処置マウスの平均重量と比較する。示した重量は、各グループのマウスに対する平均重量値である。 非処置およびブレオマイシン処置マウス(さらにPBSのみ、または0.25mg/kg MCP−1WT*2Aの腹膜内投与でさらに処置した)において線維症のレベルを比較したグラフを示す。実施例に記載のように、分光的(上)または組織学的(下)のいずれかで、線維症のレベルを測定した。 PBSのみ(グループ1)、1マイクログラム/マウスのMCP−1WT*2A(グループ2)、または10マイクログラム/マウスのMCP−1WT*2A(グループ3)で処置した実験自己免疫脳脊髄炎(EAE)動物モデルにおいて測定した臨床スコアを比較したグラフを示す。 PBSのみ、または1マイクログラム/マウスのMCP−1WT*2Aで処置したコラーゲン誘導性関節炎(CIA)動物モデルにおいて測定した臨床スコアを比較したグラフを示す。 PBSのみ(グループ1)で処置および攻撃、PBSによる処置およびオボアルブミンで攻撃(グループ2)、または10マイクログラム/マウスのMCP−1WT*2Aで処置およびオボアルブミンで攻撃(グループ3)した動物モデルの気管から単離した細胞の量を比較したグラフを示す。

Claims (21)

  1. ヒト成熟MCP−1の配列に対して番号付けされた以下の組み合わせの残基、
    a)18および19;
    b)18および/または19と58;
    c)18および/または19と66;
    d)18および/または19と58および66;
    e)18および/または19と24、44、49、75のうちの1つもしくはそれ以上;
    がアラニン、グリシン、セリン、スレオニン、プロリン、アスパラギン酸、アスパラギン、グルタミン酸、またはグルタミンに置換されている、MCPタンパク質の変異体からなるMCPタンパク質のアンタゴニスト。
  2. 残基18および19がアラニンで置換されている、請求項1に記載のアンタゴニスト。
  3. MCPタンパク質が、ヒトMCP−1、ヒトMCP−2、ヒトMCP−3、ヒトMCP−4、またはヒトエオタキシンである、請求項1または2に記載のアンタゴニスト。
  4. MCPタンパク質が、ヒト成熟MCP−1、MCP−2、MCP−3、MCP−4、またはエオタキシンと少なくとも70%の相同性を有する、請求項1または2に記載のアンタゴニスト。
  5. MCPタンパク質のアンタゴニストであって、
    a)アンタゴニスト活性を妨げることなく、1もしくは数個のアミノ酸残基が付加、欠失、または置換されている、請求項1〜5のいずれか1項に記載のMCPタンパク質のアンタゴニストの活性変異体;、
    b)(a)のポリペプチドあるいはペプチドの配列および/または構造に基づいて設計されるペプチド疑似物;
    c)(a)もしくは(b)のアミノ酸配列、および対応するMCPタンパク質以外のタンパク質配列に属するアミノ酸配列を含んでなる、ポリペプチドまたはペプチド;
    d)(a)、(b)、または(d)の活性フラクション、前駆体、塩もしくは誘導体、
    から選択される、アンタゴニスト。
  6. (a)のポリペプチドまたはペプチドが配列番号3に対応する配列を有する、請求項5に記載のMCPタンパク質。
  7. (c)のポリペプチドまたはペプチドが、膜結合タンパク質の細胞外ドメイン、免疫グロブリンの定常領域、多量体化ドメイン、細胞外タンパク質、シグナルペプチド含有タンパク質、輸送シグナル含有タンパク質の1つもしくはそれ以上のタンパク質に属するアミノ酸配列を含んでなる、請求項5に記載のMCPアンタゴニスト。
  8. 前記アンタゴニストが、放射能標識、ビオチン、蛍光標識、細胞障害性薬剤、薬物送達剤との活性共役または複合体の形態にある、請求項5または7に記載のMCPアンタゴニスト。
  9. 請求項1〜7のいずれか1項に記載のMCPアンタゴニストをコードするDNA配列又は当該DNA配列と実質的に同一のヌクレオチド配列を含んでなる、DNA分子。
  10. 請求項9に記載のDNA分子を含んでなる発現ベクター。
  11. 請求項10に記載のベクターで形質転換された宿主細胞。
  12. 請求項11に記載の形質転換された細胞を培養することおよび発現されたタンパク質を回収することを含んでなる、請求項1〜8のいずれか1項に記載のMCPアンタゴニストの調製のプロセス。
  13. 請求項1〜8のいずれか1項に記載のMCPアンタゴニストの精製された調製物。
  14. 医薬品としてのMCPアンタゴニストの使用。
  15. 過剰な白血球遊走および活性化に関連する疾患の治療または予防のための薬学的組成物における有効成分としての請求項1〜8のいずれか1項に記載のMCPアンタゴニストの使用。
  16. 疾患は炎症性疾患、自己免疫疾患または感染症である、請求項15に記載の使用。
  17. 血管障害または癌の治療もしく予防のための薬学的組成物における有効成分としての請求項1〜8のいずれか1項に記載のMCPアンタゴニストの使用。
  18. 有効成分として請求項1〜8のいずれか1項に記載のMCPアンタゴニストを含有する薬学的組成物。
  19. 請求項1〜8のいずれか1項に記載のMCPアンタゴニストの有効量の投与を含んでなる、過剰な白血球遊走および活性化に関連する疾患の治療または予防方法。
  20. 疾患は炎症性疾患、自己免疫疾患または感染症である、請求項19に記載の方法。
  21. 請求項1〜8のいずれか1項に記載のMCPアンタゴニストの有効量の投与を含んでなる、血管障害または癌の治療もしくは予防方法。
JP2003582187A 2002-04-10 2003-04-09 Mcpタンパク質の新規のアンタゴニスト Pending JP2006505243A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37144202P 2002-04-10 2002-04-10
PCT/EP2003/050097 WO2003084993A1 (en) 2002-04-10 2003-04-09 Novel antagonists of mcp proteins

Publications (1)

Publication Number Publication Date
JP2006505243A true JP2006505243A (ja) 2006-02-16

Family

ID=28792054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003582187A Pending JP2006505243A (ja) 2002-04-10 2003-04-09 Mcpタンパク質の新規のアンタゴニスト

Country Status (18)

Country Link
US (1) US7425324B2 (ja)
EP (1) EP1495050A1 (ja)
JP (1) JP2006505243A (ja)
KR (1) KR20040101426A (ja)
CN (1) CN1665839A (ja)
AR (1) AR039629A1 (ja)
AU (1) AU2003240765A1 (ja)
BR (1) BR0309238A (ja)
CA (1) CA2509767A1 (ja)
EA (1) EA200401342A1 (ja)
HR (1) HRP20040946A2 (ja)
IL (1) IL164464A0 (ja)
MX (1) MXPA04009874A (ja)
NO (1) NO20044850L (ja)
PL (1) PL373007A1 (ja)
RS (1) RS89104A (ja)
WO (1) WO2003084993A1 (ja)
ZA (1) ZA200409062B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR046594A1 (es) * 2003-10-16 2005-12-14 Applied Research Systems Usos terapeuticos de variantes de quemoquina
US20050232923A1 (en) * 2003-11-05 2005-10-20 Li Yan Methods and compositions for treating MCP-1 related pathologies
US20050106740A1 (en) * 2003-11-13 2005-05-19 Boyes Barry E. Methods, systems and devices for performing analytical protocols
AT412785B (de) * 2003-12-04 2005-07-25 Kungl Andreas J Dr Gag-bindungsproteine
GB0412400D0 (en) * 2004-06-03 2004-07-07 Univ Newcastle Treatment of inflammatory conditions
CA2618951A1 (en) 2005-08-12 2007-02-22 Schering Corporation Mcp1 fusions
EP2041568A4 (en) * 2006-06-15 2009-08-12 CCR2 ANTAGONISTS FOR CHRONIC BREATHING REACTIONS IN ORGAN TRANSPLANTATIONS
US20080076120A1 (en) * 2006-09-14 2008-03-27 Millennium Pharmaceuticals, Inc. Methods for the identification, evaluation and treatment of patients having CC-Chemokine receptor 2 (CCR-2) mediated disorders
US10745701B2 (en) 2007-06-28 2020-08-18 The Trustees Of Princeton University Methods of identifying and treating poor-prognosis cancers
US20090324596A1 (en) 2008-06-30 2009-12-31 The Trustees Of Princeton University Methods of identifying and treating poor-prognosis cancers
EP2042516A1 (en) 2007-09-27 2009-04-01 Protaffin Biotechnologie AG Glycosaminoglycan-antagonising MCP-1 mutants and methods of using same
EP2391645A1 (en) 2009-01-30 2011-12-07 Protaffin Biotechnologie AG Glycosaminoglycan-antagonising mcp-i mutants and methods of using same
US8524217B2 (en) 2010-05-11 2013-09-03 Merck Sharp & Dohme Corp. MCP1-Ig fusion variants
KR101238196B1 (ko) * 2010-12-16 2013-02-28 사회복지법인 삼성생명공익재단 대장암의 간 전이 진단용 조성물 및 그 용도
US20180206726A1 (en) 2016-12-07 2018-07-26 Progenity Inc. Gastrointestinal tract detection methods, devices and systems
WO2018112264A1 (en) 2016-12-14 2018-06-21 Progenity Inc. Treatment of a disease of the gastrointestinal tract with a chemokine/chemokine receptor inhibitor
US20220249814A1 (en) 2018-11-19 2022-08-11 Progenity, Inc. Methods and devices for treating a disease with biotherapeutics
WO2021119482A1 (en) 2019-12-13 2021-06-17 Progenity, Inc. Ingestible device for delivery of therapeutic agent to the gastrointestinal tract

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094941A (en) * 1987-12-31 1992-03-10 Zymogenetics, Inc. Monoclonal antibodies to PDGF
US5116964A (en) * 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins

Also Published As

Publication number Publication date
AU2003240765A1 (en) 2003-10-20
CN1665839A (zh) 2005-09-07
BR0309238A (pt) 2005-02-15
US20070004906A1 (en) 2007-01-04
ZA200409062B (en) 2005-11-09
HRP20040946A2 (en) 2005-06-30
WO2003084993A1 (en) 2003-10-16
MXPA04009874A (es) 2005-10-19
EP1495050A1 (en) 2005-01-12
EA200401342A1 (ru) 2005-08-25
US7425324B2 (en) 2008-09-16
NO20044850L (no) 2004-12-09
AR039629A1 (es) 2005-03-02
KR20040101426A (ko) 2004-12-02
PL373007A1 (en) 2005-08-08
CA2509767A1 (en) 2003-10-16
IL164464A0 (en) 2005-12-18
RS89104A (en) 2006-12-15

Similar Documents

Publication Publication Date Title
JP2006505243A (ja) Mcpタンパク質の新規のアンタゴニスト
JP2007510403A (ja) ケモカイン変異体の治療への使用
JP4394569B2 (ja) Cxcr3結合cxcケモカインの新規なアンタゴニスト
CA2423616C (en) Chemokine mutants in the treatment of multiple sclerosis
AU2002358144B2 (en) Chemokine mutants acting as chemokine antagonists
AU2002215919A1 (en) Chemokine mutants in the treatment of multiple sclerosis
JP2007533300A (ja) 新規のcxcl8アンタゴニスト
CA2507990A1 (en) Novel ifngamma-like polypeptides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317