JP2006351504A - ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置 - Google Patents

ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置 Download PDF

Info

Publication number
JP2006351504A
JP2006351504A JP2005304253A JP2005304253A JP2006351504A JP 2006351504 A JP2006351504 A JP 2006351504A JP 2005304253 A JP2005304253 A JP 2005304253A JP 2005304253 A JP2005304253 A JP 2005304253A JP 2006351504 A JP2006351504 A JP 2006351504A
Authority
JP
Japan
Prior art keywords
conductive
wafer
inspection
layer
contact member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005304253A
Other languages
English (en)
Inventor
Kiyoshi Kimura
潔 木村
Fujio Hara
富士雄 原
Onori Yamada
大典 山田
Sugiro Shimoda
杉郎 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2005304253A priority Critical patent/JP2006351504A/ja
Publication of JP2006351504A publication Critical patent/JP2006351504A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】被検査電極のピッチが極めて小さいウエハに対しても、良好な電気的接続状態を確実に達成することができる異方導電性コネクターおよびその製造方法、プローブカードおよびその製造方法並びにウエハ検査装置を提供する。
【解決手段】本発明の異方導電性コネクターの製造方法は、離型性支持板上に形成された導電性エラストマー用材料層の表面に、磁性を示す金属よりなる接点部材を配置し、導電性エラストマー用材料層に対して厚み方向に磁場を作用させると共に硬化処理を行って導電性エラストマー層を形成し、導電性エラストマー層をレーザー加工して接点部材が配置された部分以外の部分を除去することにより、接点部材が設けられた接続用導電部を形成し、この接続用導電部の各々を、フレーム板の開口を塞ぐよう形成された絶縁部用材料層中に浸入させ、絶縁部用材料層を硬化処理して絶縁部を形成する工程を有する。
【選択図】 図13

Description

本発明は、ウエハに形成された複数の集積回路の電気的検査をウエハの状態で行うために用いられるウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置に関する。
一般に、半導体集積回路装置の製造工程においては、例えばシリコンよりなるウエハに多数の集積回路を形成し、その後、これらの集積回路の各々について、基礎的な電気特性を検査することによって、欠陥を有する集積回路を選別するプローブ試験が行われる。次いで、このウエハを切断することによって半導体チップが形成され、この半導体チップが適宜のパッケージ内に収納されて封止される。更に、パッケージ化された半導体集積回路装置の各々について、高温環境下において電気特性を検査することによって、潜在的欠陥を有する半導体集積回路装置を選別するバーンイン試験が行われる。
このようなプローブ試験またはバーンイン試験などの集積回路の電気的検査においては、検査対象物における被検査電極の各々をテスターに電気的に接続するためにプローブカードが用いられている。このようなプローブカードとしては、被検査電極のパターンに対応するパターンに従って検査電極が形成された検査用回路基板と、この検査用回路基板上に配置された異方導電性エラストマーシートと、この異方導電性エラストマーシート上に配置されたシート状プローブとよりなるものが知られている。
かかるプローブカードにおける異方導電性エラストマーシートとしては、従来、種々の構造のものが知られており、例えば特許文献1等には、金属粒子をエラストマー中に均一に分散して得られる異方導電性エラストマーシート(以下、これを「分散型異方導電性エラストマーシート」という。)が開示され、また、特許文献2等には、導電性磁性体粒子をエラストマー中に不均一に分布させることにより、厚み方向に伸びる多数の導電部と、これらを相互に絶縁する絶縁部とが形成されてなる異方導電性エラストマーシート(以下、これを「偏在型異方導電性エラストマーシート」という。)が開示され、更に、特許文献3等には、導電部の表面と絶縁部との間に段差が形成された偏在型異方導電性エラストマーシートが開示されている。
これらの異方導電性エラストマーシートの中で、偏在型異方導電性エラストマーシートは、検査すべき集積回路の被検査電極のパターンに対応するパターンに従って導電部が形成されているため、分散型異方導電性エラストマーシートに比較して、被検査電極の配列ピッチすなわち隣接する被検査電極の中心間距離が小さい集積回路などに対しても電極間の電気的接続を高い信頼性で達成することができる点で、有利である。従って、被検査電極のピッチが小さい半導体集積回路装置のプローブ試験またはバーンイン試験においては、偏在型異方導電性エラストマーシートが用いられている。
而して、ウエハに形成された集積回路に対して行われるプローブ試験においては、従来、多数の集積回路のうち例えば16個または32個の集積回路が形成された複数のエリアにウエハを分割し、このエリアに形成された全ての集積回路について一括してプローブ試験を行い、順次、その他のエリアに形成された集積回路についてプローブ試験を行う方法が採用されている。そして、近年、検査効率を向上させ、検査コストの低減化を図るために、ウエハに形成された多数の集積回路のうち例えば64個若しくは124個または全部の集積回路について一括してプローブ試験を行うことが要請されている。
一方、バーンイン試験においては、検査対象である集積回路装置は微小なものであってその取扱いが不便なものであるため、多数の集積回路装置の電気的検査を個別的に行うためには,長い時間を要し、これにより、検査コストが相当に高いものとなる。このような理由から、ウエハ上に形成された多数の集積回路について、それらのバーンイン試験をウエハの状態で一括して行うWLBI(Wafer Lebel Burn−in)試験が提案されている。
しかしながら、検査対象であるウエハが、例えば直径が8インチ以上の大型のものであって、その被検査電極の数が例えば5000以上、特に10000以上のものである場合には、各集積回路における被検査電極のピッチが極めて小さいものであるため、プローブ試験またはWLBI試験に偏在型異方導電性エラストマーシートを用いると、以下のような問題がある。
(1)直径が例えば8インチ(約20cm)のウエハを検査するためには、偏在型異方導電性エラストマーシートとして、その直径が8インチ程度のものを用いることが必要となる。然るに、このような偏在型異方導電性エラストマーシートは、全体の面積が相当に大きいものであるが、各導電部は微細で、当該偏在型異方導電性エラストマーシート表面に占める導電部表面の面積の割合が小さいものであるため、当該偏在型異方導電性エラストマーシートを確実に製造することは極めて困難である。従って、異方導電性エラストマーシートの製造においては、歩留りが極端に低下する結果、異方導電性エラストマーシートの製造コストが増大し、延いては検査コストが増大する。
(2)偏在型異方導電性エラストマーシートにおいては、検査用回路基板および検査対象であるウエハとの電気的接続作業において、それらに対して特定の位置関係をもって保持固定することが必要である。然るに、異方導電性エラストマーシートは柔軟で容易に変形しやすいものであって、その取扱い性が低いものであるるため、検査対象であるウエハの被検査電極に対する電気的接続を行う際に、偏在型異方導電性エラストマーシートの位置合わせおよび保持固定が極めて困難である。
(3)ウエハを構成する材料例えばシリコンの線熱膨張係数は3.3×10-6/K程度であり、一方、異方導電性エラストマーシートを構成する材料例えばシリコーンゴムの線熱膨張係数は2.2×10-4/K程度である。従って、例えば25℃において、それぞれ直径が20cmのウエハおよび異方導電性エラストマーシートの各々を、20℃から120℃までに加熱した場合には、理論上、ウエハの直径の変化は0.0066cmにすぎないが、異方導電性エラストマーシートの直径の変化は0.44cmに達する。このように、検査対象である集積回路装置を構成する材料(例えばシリコン)と偏在型異方導電性エラストマーシートを構成する材料(例えばシリコーンゴム)との間で、熱膨張率が大きく異なるため、バーンイン試験においては、一旦はウエハと偏在型異方導電性エラストマーシートとの所要の位置合わせおよび保持固定が実現された場合であっても、温度変化による熱履歴を受けると、偏在型異方導電性エラストマーシートの導電部とウエハの被検査電極との間に位置ずれが生じる結果、電気的接続状態が変化して安定な接続状態を維持することが困難である。
上記の問題を解決するため、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域に対応して複数の開口が形成されたフレーム板と、このフレーム板の開口の各々を塞ぐよう配置された複数の弾性異方導電膜とよりなる異方導電性コネクター、およびこの異方導電性コネクターと、当該異方導電性コネクター上に配置されたシート状プローブとを具えてなるプローブカードが提案されている(例えば特許文献4参照。)。 このような異方導電性コネクターによれば、以下のような効果が得られる。
(1)フレーム板に形成された開口の各々は、検査対象であるウエハにおける集積回路の電極領域に対応する寸法であり、従って、当該開口の各々に配置される弾性異方導電膜は、サイズの小さいものでよいため、個々の弾性異方導電膜の形成が容易である。
(2)弾性異方導電膜の各々がフレーム板に支持されているため、変形しにくくて取扱いやすく、また、予めフレーム板に位置決め用マーク(例えば孔)を形成することにより、集積回路装置の電気的接続作業において、当該集積回路装置に対する位置合わせおよび保持固定を容易に行うことができる。
(3)サイズの小さい弾性異方導電膜は、熱履歴を受けた場合でも、熱膨張の絶対量が少ないため、弾性異方導電膜の熱膨張がフレーム板によって規制され、しかも、異方導電性コネクター全体の熱膨張は、フレーム板を構成する材料の熱膨張に依存するので、フレーム板を構成する材料として熱膨張率の小さいものを用いることにより、温度変化による熱履歴を受けた場合にも、当該異方導電性コネクターにおける導電部とウエハにおける被検査電極との位置ずれが防止される結果、良好な電気的接続状態が安定に維持される。
そして、このような異方導電性コネクターは、以下のようにして製造される。
図54に示すような上型80およびこれと対となる下型85よりなる弾性異方導電膜成形用の金型を用意する。この金型における上型80および下型85の各々は、基板81,86上に、成形すべき異方導電性エラストマーシートの導電部のパターンに対応するパターンに従って配置された複数の強磁性体層82,87と、これらの強磁性体層82,87が形成された個所以外の個所に配置された非磁性体層83,88とが設けられており、強磁性体層82,87および非磁性体層83,88により、成形面が形成されている。そして、上型80および下型85は、対応する強磁性体層82,87が互いに対向するよう配置されている。
このような金型内に、図55に示すように、検査対象であるウエハにおける電極領域に対応して開口91が形成されたフレーム板90を位置合わせして配置すると共に、硬化処理によって弾性高分子物質となる高分子物質形成材料中に磁性を示す導電性粒子Pが分散されてなる成形材料層95Aを、フレーム板90の各開口91を塞ぐようを形成する。ここで、成形材料層95Aに含有されている導電性粒子Pは、当該成形材料層95A中に分散された状態である。
そして、上型80の上面およひ下型85の下面に例えば一対の電磁石を配置してこれを作動させることにより、成形材料層95Aには、上型80の強磁性体層82とこれに対応する下型85の強磁性体層87との間の部分すなわち導電部となる部分において、それ以外の部分より大きい強度の磁場が当該成形材料層95Aの厚み方向に作用される。その結果、成形材料層95A中に分散されている導電性粒子Pは、図56に示すように、当該成形材料層95Aにおける大きい強度の磁場が作用されている部分、すなわち上型80の強磁性体層82とこれに対応する下型85の強磁性体層87との間の部分に集合し、更には厚み方向に並ぶよう配向する。そして、この状態で、成形材料層95Aの硬化処理を行うことにより、導電性粒子Pが厚み方向に並ぶよう配向した状態で含有された複数の導電部96と、これらの導電部96を相互に絶縁する絶縁部97とよりなる弾性異方導電膜95が、その周縁部がフレーム板90の開口縁部に支持された状態で成形され、以て異方導電性コネクターが製造される。
しかしながら、このような製造方法においては、以下のような問題がある。
被検査電極が小さいピッチで高密度に配置されたウエハについて電気的検査を行う場合には、導電部のピッチが小さくて高密度に配置された異方導電性コネクターを用いることが必要である。而して、このような異方導電性コネクターの製造においては、当然のことながら強磁性体層82,87が極めて小さいピッチで配置された上型80および下型85を用いることが必要である。
然るに、このような上型80および下型85を用い、上述のようにして弾性異方導電膜95を形成する場合には、上型80および下型85の各々において、互いに隣接する強磁性体層82,87の間の離間距離が小さいため、図57に示すように、上型80における或る強磁性体層82aからこれに対応する下型85の強磁性体層87aに向かう方向(矢印Xで示す)のみならず、例えば上型80の強磁性体層82aからこれに対応する下型85の強磁性体層87aに隣接する強磁性体層87bに向かう方向(矢印Yで示す)、或いは上型80の強磁性体層82bからこれに対応する下型85の強磁性体層87bに隣接する強磁性体層87aに向かう方向にも磁場が作用することとなる。そのため、成形材料層95Aにおいて、導電性粒子Pを、上型80の強磁性体層82aとこれに対応する下型85の強磁性体層87aとの間に位置する部分に集合させることが困難となり、例えば上型80の強磁性体層82aと下型85の強磁性体層87bとの間に位置する部分にも導電性粒子が集合してしまい、また、導電性粒子Pを成形材料層95Aの厚み方向に十分に配向させることが困難となり、その結果、所期の導電部および絶縁部を有する異方導電性コネクターが得られない。
また、上記のプローカードにおいては、以下のような問題がある。
プローブカードを構成するためには、検査用回路基板、異方導電性コネクターおよびシート状プローブの3つの部品が必要であるため、全体の構造が複雑であり、しかも、これらの部品を組み立てる際には、異方導電性コネクターの位置合わせおよびシート状プローブの位置合わせが必要であるため、組み立て作業が極めて煩雑である。
また、シート状プローブは、例えばポリイミドよりなる絶縁性シートに電極構造体が配置されてなるものであるため、温度変化による熱履歴を受けると、絶縁性シートの熱膨張によって被検査電極に対する位置ずれが生じる結果、電気的接続状態が変化して安定な接続状態を維持することが困難である。
特開昭51−93393号公報 特開昭53−147772号公報 特開昭61−250906号公報 特開2002−334732号公報
本発明は、以上のような事情に基づいてなされたものであって、その第1の目的は、検査対象であるウエハにおける被検査電極のピッチが極めて小さいものであっても、ウエハに対する良好な電気的接続状態を確実に達成することができるウエハ検査用異方導電性コネクターおよびその製造方法を提供することにある。
本発明の第2の目的は、検査対象であるウエハにおける被検査電極のピッチが極めて小さいものであっても、隣接する被検査電極間の所要の絶縁性が確保され、ウエハに対する良好な電気的接続状態を確実に達成することができ、しかも、温度変化による熱履歴を受けたときにも、ウエハに対する良好な電気的接続状態が安定に維持されるウエハ検査用プローブカードおよびその製造方法を提供することにある。
本発明の第3の目的は、検査対象であるウエハにおける被検査電極のピッチが極めて小さいものであっても、ウエハに対する良好な電気的接続状態を確実に達成することができるウエハ検査装置を提供することにある。
本発明のウエハ検査用異方導電性コネクターの製造方法は、検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極が配置された電極領域に対応して複数の開口が形成されたフレーム板と、前記電極領域における被検査電極のパターンに対応するパターンに従って配置された弾性高分子物質中に磁性を示す導電性粒子が含有されてなる複数の接続用導電部およびこれらを相互に絶縁する弾性高分子物質よりなる絶縁部を有し、前記フレーム板にその開口を塞ぐよう配置されて支持された複数の弾性異方導電膜と、これらの弾性異方導電膜における各接続用導電部上に一体的に設けられた金属よりなる複数の接点部材とを具えてなるウエハ検査用異方導電性コネクターを製造する方法であって、
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有されてなる導電性エラストマー用材料層を形成し、この導電性エラストマー用材料層の表面に、前記被検査電極のパターンに対応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、この状態で、当該導電性エラストマー用材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマー用材料層を硬化処理して導電性エラストマー層を形成し、この導電性エラストマー層をレーザー加工して前記接点部材が配置された部分以外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従って配置され、前記接点部材が設けられた複数の接続用導電部を形成し、
この状態で、当該接点部材が設けられた接続用導電部の各々を、フレーム板の開口を塞ぐよう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料よりなる絶縁部用材料層中に浸入させ、当該絶縁部用材料層を硬化処理することにより絶縁部を形成する工程を有することを特徴とする。
本発明のウエハ検査用異方導電性コネクターの製造方法においては、金属箔上に、特定のパターンに従って開口が形成されたレジスト層を形成し、前記金属箔における前記レジスト層の開口から露出した部分の表面に磁性を示す金属によるメッキ処理を施すことにより、当該レジスト層の開口の各々に接点部材が形成されてなる接点部材複合体を製造し、この接点部材複合体を導電性エラストマー用材料層の表面に積重することにより、当該導電性エラストマー用材料層の表面に、前記特定のパターンに従って磁性を示す金属よりなる接点部材を配置することが好ましい。
本発明のウエハ検査用異方導電性コネクターは、上記の製造方法によって得られることを特徴とする。
本発明のウエハ検査用プローブカードは、検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極のパターンに対応するパターンに従って複数の検査用電極が表面に形成された検査用回路基板と、この検査用回路基板の表面上に配置された、上記のウエハ検査用異方導電性コネクターとを具えてなることを特徴とする。
本発明のウエハ検査用プローブカードの製造方法は、検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極に対応するパターンに従って複数の検査用電極が表面に形成された検査用回路基板と、この検査用回路基板の表面上に一体的に設けられた、前記検査用電極の各々の表面上に位置された厚み方向に伸びる複数の接続用導電部およびこれらを相互に絶縁する絶縁部よりなる異方導電性エラストマー層と、この異方導電性エラストマー層の接続用導電部上に一体的に設けられた金属よりなる接点部材とを具えてなるウエハ検査用プローブカードを製造する方法であって、
金属板上に、前記検査用電極に係る特定のパターンに従ってそれぞれ磁性を示す金属よりなる複数の接点部材が形成されてなる接点部材複合体を用意し、
この接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有されてなる導電性エラストマー用材料層を形成し、この導電性エラストマー用材料層上に、それぞれ磁性を示す金属よりなる複数の金属マスクの各々を、当該導電性エラストマー用材料層を介して前記接点部材と互いに対向するよう配置し、この状態で、当該導電性エラストマー用材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマー用材料層を硬化処理することにより、導電性エラストマー層を形成し、当該導電性エラストマー層をレーザー加工して前記接点部材と前記金属マスクとの間に位置する部分以外の部分を除去することにより、前記特定のパターンに従って配置された複数の接続用導電部を形成し、
各接続用導電部上に配置された金属マスクを除去し、その後、当該接続用導電部が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる絶縁部用材料層が形成された検査用回路基板上に重ね合わせることにより、当該検査用回路基板の検査用電極の各々とこれに対応する接続用導電部とを対接させ、この状態で前記絶縁部用材料層を硬化処理することにより絶縁部を形成する工程を有することを特徴とする。
本発明のウエハ検査用プローブカードは、上記の製造方法によって得られることを特徴とする。
本発明のウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うウエハ検査装置であって、
上記のウエハ検査用プローブカードを具えてなることを特徴とする。
本発明のウエハ検査用異方導電性コネクターの製造方法によれば、導電性エラストマー用材料層上に、検査対象であるウエハにおける被検査電極のパターンに対応する特定のパターンに従って磁性を示す接点部材を配置した状態で、当該導電性エラスマー用材料層の厚み方向に磁場を作用させると共に当該導電性エラストマー用材料層を硬化処理することにより、得られる導電性エラストマー層は、接点部材が配置された部分における導電性粒子が密となり、それ以外の部分における導電性粒子が疎となる。そのため、接点部材をマスクとして利用して導電性エラストマー層をレーザー加工することにより、当該導電性エラストマー層における接点部材が配置されていない部分を容易に除去することができるので、所期の形態の接続用導電部を特定のパターンに従って確実に形成することができる。そして、特定のパターンに従って配置された複数の接続用導電部を形成したうえで、これらの接続用導電部の間に絶縁部用材料層を形成して硬化処理することにより絶縁部を形成するため、導電性粒子が全く存在しない絶縁部を確実に得ることができる。
従って、このような方法によって得られる本発明のウエハ検査用異方導電性コネクターによれば、検査対象であるウエハにおける被検査電極のピッチが微小で高密度に配置されている場合であっても、当該被検査電極の各々に対して所要の電気的接続が確実に達成され、しかも、小さいコストで製造することができる。
また、弾性異方導電膜における接続用導電部上には、接点部材が一体的に設けられているため、ウエハの検査を行う際に、シート状プローブを用いることが不要となるので、簡単な構造のプローブカードを得ることができると共に、シート状プローブの位置ずれによる接続不良を回避することができる。
本発明のウエハ検査用プローブカードの製造方法によれば、導電性エラストマー層をレーザー加工してその一部を除去することによって、接続用導電部を形成するため、所期の導電性を有する接続用導電部が得られる。
また、それぞれ磁性を示す金属よりなる複数の接点部材が検査用電極に係る特定のパターンに従って形成されてなる接点部材複合体上に導電性エラストマー用材料層を形成し、当該導電性エラストマー用材料層上に、特定のパターンに従ってそれぞれ磁性を示す金属マスクを配置した状態で、当該導電性エラスマー用材料層の厚み方向に磁場を作用させるため、得られる導電性エラストマー層は、接点部材と金属マスクとの間に位置する部分における導電性粒子が密となり、それ以外の部分における導電性粒子が疎となる。そのため、導電性エラストマー層をレーザー加工することにより、当該導電性エラストマー層における接点部材が配置されていない部分を容易に除去することができるので、所期の形態の接続用導電部を特定のパターンに従って確実に形成することができる。
また、接点部材複合体上に形成された導電性エラストマー用材料層を硬化処理することにより、得られる導電性エラストマー層には、接点部材複合体における接点部材の各々が接着されるので、接点部材が一体的に設けられた接続用導電部を形成することができる。 また、被検査電極のパターンに対応する特定のパターンに従って配置された複数の接続用導電部を形成したうえで、これらの接続用導電部の各々を、絶縁部用材料層が形成された検査用回路基板の検査用電極の各々に対接させ、この状態で、絶縁部用材料層を硬化処理するため、導電性粒子が全く存在しない絶縁部が検査用回路基板に一体的に形成された異方導電性エラストマー層を形成することができる。
従って、このような方法によって得られる本発明のウエハ検査用プローブカードによれば、所期の導電性を有する複数の接続用導電部が導電性粒子の全く存在しない絶縁部によって絶縁されているため、検査対象であるウエハにおける被検査電極のピッチが極めて小さいものであっても、隣接する被検査電極間の所要の絶縁性が確保され、ウエハに対する良好な電気的接続状態を確実に達成することができる。
また、異方導電性エラストマー層が検査用回路基板に一体的に形成されており、しかも、接点部材が接続用導電部に一体的に設けられていることにより、シート状プローブを用いることが不要となるため、温度変化による熱履歴を受けたときにも、接続用導電部と検査用電極との位置ずれによる接続不良を防止することができると共に、シート状プローブの位置ずれによる接続不良を回避することができ、従って、ウエハに対する良好な電気的接続状態を安定に維持することができる。
また、シート状プローブを用いることが不要であるため、組み立て作業が不要で簡単な構造のプローブカードを得ることができる。
以下、本発明を実施するための形態について詳細に説明する。
〔異方導電性コネクター〕
図1は、本発明に係る第1の例のウエハ検査用異方導電性コネクターを示す平面図、図2は、図1に示すウエハ検査用異方導電性コネクターの一部を拡大して示す平面図、図3は、図1に示すウエハ検査用異方導電性コネクターの一部を拡大して示す説明用断面図である。
第1の例のウエハ検査用異方導電性コネクター(以下、単に「異方導電性コネクター」ともいう。)20は、例えば複数の集積回路が形成されたウエハについて当該集積回路の各々の電気的検査をウエハの状態で行うために用いられるものであって、複数の開口22(破線で示す)が形成されたフレーム板21を有する。このフレーム板21の開口22は、検査対象であるウエハに形成された全ての集積回路における被検査電極が配置された電極領域に対応して形成されている。このフレーム板21には、厚み方向に導電性を有する複数の弾性異方導電膜23が、それぞれ一の開口22を塞ぐよう配置されて当該開口縁部に支持されている。
弾性異方導電膜23は、弾性高分子物質によって形成されており、図2に示すように、フレーム板21の開口22内に位置するよう配置された、厚み方向(図2において紙面と垂直な方向)に伸びる複数の接続用導電部24と、これらの接続用導電部24の各々の周囲に形成され、当該接続用導電部24の各々を相互に絶縁する絶縁部25とにより構成されている。接続用導電部24の各々は、検査対象であるウエハに形成された集積回路における被検査電極のパターンに対応するパターンに従って配置され、当該ウエハの検査において、その被検査電極に電気的に接続されるものである。
弾性異方導電膜23における接続用導電部24には、図3に示すように、磁性を示す導電性粒子Pが厚み方向に並ぶよう配向した状態で密に含有されている。これに対して、絶縁部25は、導電性粒子Pが全く含有されていないものである。
また、図示の例では、接続用導電部24の各々は、絶縁部25の一面から突出するよう形成され、これにより、弾性異方導電膜23の一面には接続用導電部24に係る突出部26が形成されている。
また、弾性異方導電膜23における接続用導電部24の一面上には、磁性を示す金属よりなる接点部材27が当該接続用導電部24に一体的に接着した状態で設けられている。
フレーム板21の厚みは、その材質によって異なるが、25〜600μmであることが好ましく、より好ましくは40〜400μmである。
この厚みが25μm未満である場合には、異方導電性コネクター20を使用する際に必要な強度が得られず、耐久性が低いものとなりやすく、また、当該フレーム板21の形状が維持される程度の剛性が得られず、異方導電性コネクター20の取扱い性が低いものとなる。一方、厚みが600μmを超える場合には、開口22に形成される弾性異方導電膜23は、その厚みが過大なものとなって、接続用導電部24における良好な導電性を得ることが困難となることがある。
フレーム板21の開口22における面方向の形状および寸法は、検査対象であるウエハの被検査電極の寸法、ピッチおよびパターンに応じて設計される。
フレーム板21を構成する材料としては、当該フレーム板21が容易に変形せず、その形状が安定に維持される程度の剛性を有するものであれば特に限定されず、例えば、金属材料、セラミックス材料、樹脂材料などの種々の材料を用いることができ、フレーム板21を例えば金属材料により構成する場合には、当該フレーム板21の表面に絶縁性被膜が形成されていてもよい。
フレーム板21を構成する金属材料の具体例としては、鉄、銅、ニッケル、クロム、コバルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジウム、チタン、タングステン、アルミニウム、金、白金、銀などの金属またはこれらを2種以上組み合わせた合金若しくは合金鋼などが挙げられる。
フレーム板21を構成する樹脂材料の具体例としては、液晶ポリマー、ポリイミド樹脂などが挙げられる。
また、フレーム板21を構成する材料としては、線熱膨張係数が3×10-5/K以下のものを用いることが好ましく、より好ましくは−1×10-7〜1×10-5/K、特に好ましくは1×10-6〜8×10-6/Kである。
このような材料の具体例としては、インバーなどのインバー型合金、エリンバーなどのエリンバー型合金、スーパーインバー、コバール、42合金などの磁性金属の合金または合金鋼などが挙げられる。
弾性異方導電膜23の全厚(図示の例では接続用導電部24における厚み)は、50〜2000μmであることが好ましく、より好ましくは70〜1000μm、特に好ましくは80〜500μmである。この厚みが50μm以上であれば、十分な強度を有する弾性異方導電膜23が確実に得られる。一方、この厚みが2000μm以下であれば、所要の導電性特性を有する接続用導電部24が確実に得られる。
突出部26の突出高さは、その合計が当該突出部26における厚みの10%以上であることが好ましく、より好ましくは20%以上である。このような突出高さを有する突出部26を形成することにより、小さい加圧力で接続用導電部24が十分に圧縮されるため、良好な導電性が確実に得られる。
また、突出部26の突出高さは、当該突出部26の最短幅または直径の100%以下であることが好ましく、より好ましくは70%以下である。このような突出高さを有する突出部26を形成することにより、当該突出部26が加圧されたときに座屈することがないため、所期の導電性が確実に得られる。
弾性異方導電膜23における接続用導電部24および絶縁部25を形成する弾性高分子物質としては、架橋構造を有する耐熱性の高分子物質が好ましい。かかる架橋高分子物質を得るために用いることができる硬化性の高分子物質形成材料としては、種々のものを用いることができるが、液状シリコーンゴムが好ましい。
液状シリコーンゴムは、付加型のものであっても縮合型のものであってもよいが、付加型液状シリコーンゴムが好ましい。この付加型液状シリコーンゴムは、ビニル基とSi−H結合との反応によって硬化するものであって、ビニル基およびSi−H結合の両方を含有するポリシロキサンからなる一液型(一成分型)のものと、ビニル基を含有するポリシロキサンおよびSi−H結合を含有するポリシロキサンからなる二液型(二成分型)のものがあるが、本発明においては、二液型の付加型液状シリコーンゴムを用いることが好ましい。
付加型液状シリコーンゴムとしては、その23℃における粘度が100〜1,250Pa・sのものを用いることが好ましく、さらに好ましくは150〜800Pa・s、特に好ましくは250〜500Pa・sのものである。この粘度が100Pa・s未満である場合には、後述する接続用導電部24を得るための導電性エラストマー用材料において、当該付加型液状シリコーンゴム中における導電性粒子の沈降が生じやすく、良好な保存安定性が得られず、また、後述する導電性エラストマー用材料層に平行磁場を作用させたときに、導電性粒子が厚み方向に並ぶよう配向せず、均一な状態で導電性粒子の連鎖を形成することが困難となることがある。一方、この粘度が1,250Pa・sを超える場合には、得られる導電性エラストマー用材料が粘度の高いものとなるため、導電性エラストマー用材料層に平行磁場を作用させても、導電性粒子が十分に移動せず、そのため、導電性粒子を厚み方向に並ぶよう配向させることが困難となることがある。
このような付加型液状シリコーンゴムの粘度は、B型粘度計によって測定することができる。
弾性異方導電膜23を液状シリコーンゴムの硬化物(以下、「シリコーンゴム硬化物」という。)によって形成する場合において、当該シリコーンゴム硬化物は、その150℃における圧縮永久歪みが10%以下であることが好ましく、より好ましくは8%以下、さらに好ましくは6%以下である。この圧縮永久歪みが10%を超える場合には、得られる異方導電性コネクター20を多数回にわたって繰り返し使用したとき或いは高温環境下において繰り返し使用したときには、接続用導電部24に永久歪みが発生しやすく、これにより、接続用導電部24における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持することが困難となる。
ここで、シリコーンゴム硬化物の圧縮永久歪みは、JIS K 6249に準拠した方法によって測定することができる。
また、弾性異方導電膜23を形成するシリコーンゴム硬化物は、その23℃におけるデュロメーターA硬度が10〜60のものであることが好ましく、さらに好ましくは15〜60、特に好ましくは20〜60のものである。このデュロメーターA硬度が10未満である場合には、加圧されたときに、接続用導電部24を相互に絶縁する絶縁部25が過度に歪みやすく、接続用導電部24間の所要の絶縁性を維持することが困難となることがある。一方、このデュロメーターA硬度が60を超える場合には、接続用導電部24に適正な歪みを与えるために相当に大きい荷重による加圧力が必要となるため、例えば検査対象であるウエハに大きな変形や破壊が生じやすくなる。
また、シリコーンゴム硬化物として、デュロメーターA硬度が上記の範囲外のものを用いる場合には、得られる異方導電性コネクター20を多数回にわたって繰り返し使用したときには、接続用導電部24に永久歪みが発生しやすく、これにより、接続用導電部24における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持することが困難となる。
更に、異方導電性コネクター20を高温環境下における試験例えばWLBI試験に用いる場合には、弾性異方導電膜23を形成するシリコーンゴム硬化物は、その23℃におけるデュロメーターA硬度が25〜40のものであることが好ましい。
シリコーンゴム硬化物として、デュロメーターA硬度が上記の範囲外のものを用いる場合には、得られる異方導電性コネクター20を高温度環境下における試験に繰り返し使用したときには、接続用導電部24に永久歪みが発生しやすく、これにより、接続用導電部24における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持することが困難となる。
ここで、シリコーンゴム硬化物のデュロメーターA硬度は、JIS K 6249に準拠した方法によって測定することができる。
また、弾性異方導電膜23を形成するシリコーンゴム硬化物は、その23℃における引き裂き強度が8kN/m以上のものであることが好ましく、さらに好ましくは10kN/m以上、より好ましくは15kN/m以上、特に好ましくは20kN/m以上のものである。この引き裂き強度が8kN/m未満である場合には、弾性異方導電膜23に過度の歪みが与えられたときに、耐久性の低下を起こしやすい。
ここで、シリコーンゴム硬化物の引き裂き強度は、JIS K 6249に準拠した方法によって測定することができる。
このような特性を有する付加型液状シリコーンゴムとしては、信越化学工業株式会社製の液状シリコーンゴム「KE2000」シリーズ、「KE1950」シリーズとして市販されているものを用いることができる。
本発明においては、付加型液状シリコーンゴムを硬化させるために適宜の硬化触媒を用いることができる。このような硬化触媒としては、白金系のものを用いることができ、その具体例としては、塩化白金酸およびその塩、白金−不飽和基含有シロキサンコンプレックス、ビニルシロキサンと白金とのコンプレックス、白金と1,3−ジビニルテトラメチルジシロキサンとのコンプレックス、トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、アセチルアセテート白金キレート、環状ジエンと白金とのコンプレックスなどの公知のものが挙げられる。
硬化触媒の使用量は、硬化触媒の種類、その他の硬化処理条件を考慮して適宜選択されるが、通常、付加型液状シリコーンゴム100重量部に対して3〜15重量部である。
また、付加型液状シリコーンゴム中には、付加型液状シリコーンゴムのチクソトロピー性の向上、粘度調整、導電性粒子の分散安定性の向上、或いは高い強度を有する基材を得ることなどを目的として、必要に応じて、通常のシリカ粉、コロイダルシリカ、エアロゲルシリカ、アルミナなどの無機充填材を含有させることができる。
このような無機充填材の使用量は、特に限定されるものではないが、多量に使用すると、磁場による導電性粒子の配向を十分に達成することができなくなるため、好ましくない。
弾性異方導電膜23における接続用導電部24に含有される導電性粒子Pとしては、磁性を示す芯粒子(以下、「磁性芯粒子」ともいう。)の表面に高導電性金属が被覆されてなるものを用いることが好ましい。
導電性粒子Pを得るための磁性芯粒子は、その数平均粒子径が3〜40μmのものであることが好ましい。
ここで、磁性芯粒子の数平均粒子径は、レーザー回折散乱法によって測定されたものをいう。
上記数平均粒子径が3μm以上であれば、加圧変形が容易で、抵抗値が低くて接続信頼性の高い接続用導電部24が得られやすい。一方、上記数平均粒子径が40μm以下であれば、微細な接続用導電部24を容易に形成することができ、また、得られる接続用導電部24は、安定な導電性を有するものとなりやすい。
また、磁性芯粒子は、そのBET比表面積が10〜500m2 /kgであることが好ましく、より好ましくは20〜500m2 /kg、特に好ましくは50〜400m2 /kgである。
このBET比表面積が10m2 /kg以上であれば、当該磁性芯粒子はメッキ可能な領域が十分に大きいものであるため、当該磁性芯粒子に所要の量のメッキを確実に行うことができ、従って、導電性の大きい導電性粒子Pを得ることができると共に、当該導電性粒子P間において、接触面積が十分に大きいため、安定で高い導電性が得られる。一方、このBET比表面積が500m2 /kg以下であれば、当該磁性芯粒子が脆弱なものとならず、物理的な応力が加わった際に破壊することが少なく、安定で高い導電性が保持される。
また、磁性芯粒子は、その粒子径の変動係数が50%以下のものであることが好ましく、より好ましくは40%以下、更に好ましくは30%以下、特に好ましくは20%以下のものである。
ここで、粒子径の変動係数は、式:(σ/Dn)×100(但し、σは、粒子径の標準偏差の値を示し、Dnは、粒子の数平均粒子径を示す。)によって求められるものである。
上記粒子径の変動係数が50%以下であれば、粒子径の均一性が大きいため、導電性のバラツキの小さい接続用導電部24を形成することかできる。
磁性芯粒子を構成する材料としては、鉄、ニッケル、コバルト、これらの金属を銅、樹脂によってコーティングしたものなどを用いことができるが、その飽和磁化が0.1Wb/m2 以上のものを好ましく用いることができ、より好ましくは0.3Wb/m2 以上、特に好ましくは0.5Wb/m2 以上のものであり、具体的には、鉄、ニッケル、コバルトまたはそれらの合金などが挙げられる。
この飽和磁化が0.1Wb/m2 以上であれば、後述する方法によって、当該弾性異方導電膜23を形成するための導電性エラストマー用材料層中において導電性粒子Pを容易に移動させることができ、これにより、当該導電性エラストマー用材料層における接続用導電部となる部分に、導電性粒子Pを確実に移動させて導電性粒子Pの連鎖を形成することができる。
接続用導電部24を得るために用いられる導電性粒子Pは、上記の磁性芯粒子の表面に高導電性金属が被覆されてなるものである。
ここで、「高導電性金属」とは、0℃における導電率が5×106 Ω-1-1以上のものをいう。
このような高導電性金属としては、金、銀、ロジウム、白金、クロムなどを用いることができ、これらの中では、化学的に安定でかつ高い導電率を有する点で金を用いるが好ましい。
導電性粒子Pは、芯粒子に対する高導電性金属の割合〔(高導電性金属の質量/芯粒子の質量)×100〕が15質量%以上とされ、好ましくは25〜35質量%とされる。
高導電性金属の割合が15質量%未満である場合には、得られる異方導電性コネクター20を高温環境下に繰り返し使用したとき、当該導電性粒子Pの導電性が著しく低下する結果、所要の導電性を維持することができない。
また、導電性粒子Pは、下記の式(1)によって算出される、高導電性金属による被覆層の厚みtが50nm以上のものとされ、好ましくは100〜200nmのものとされる。
式(1) t=〔1/(Sw・ρ)〕×〔N/(1−N)〕
〔但し、tは高導電性金属による被覆層の厚み(m)、Swは芯粒子のBET比表面積(m2 /kg)、ρは高導電性金属の比重(kg/m3 )、Nは(高導電性金属の重量/導電性粒子全体の重量)の値を示す。〕
上記の数式は、次のようにして導かれたものである。
(i)磁性芯粒子の重量をMp(kg)とすると、磁性芯粒子の表面積S(m2 )は、
S=Sw・Mp ………式(2)
によって求められる。
(ii)高導電性金属による被覆層の重量をm(kg)とすると、当該被覆層の体積V(m3 )は、
V=m/ρ ………式(3)
によって求められる。
(iii)ここで、被覆層の厚みが導電性粒子の表面全体にわたって均一なものであると仮定すると、t=V/Sであり、これに上記式(2)および式(3)を代入すると、被覆層の厚みtは、
t=(m/ρ)/(Sw・Mp)=m/(Sw・ρ・Mp) ………式(4)
によって求められる。
(iv)また、Nは、導電性粒子全体の質量に対する被覆層の質量の比であるから、このNの値は、
N=m/(Mp+m) ………式(5)
によって求められる。
(v)この式(5)の右辺における分子・分母をMpで割ると、
N=(m/Mp)/(1+m/Mp)となり、両辺に(1+m/Mp)をかけると、
N(1+m/Mp)=m/Mp、更には、
N+N(m/Mp)=m/Mpとなり、N(m/Mp)を右辺に移行すると、
N=m/Mp−N(m/Mp)=(m/Mp)(1−N)となり、両辺を(1−N)で割ると、 N/(1−N)=m/Mpとなり、
従って、磁性芯粒子の重量Mpは、
Mp=m/〔N/(1−N)〕=m(1−N)/N ………式(6)
によって求められる。
(vi)そして、式(4)に式(6)を代入すると、
t=1/〔Sw・ρ・(1−N)/N〕
=〔1/(Sw・ρ)〕×〔N/(1−N)〕
が導かれる。
この被覆層の厚みtが50nm以上であれば、当該異方導電性コネクター20を高温環境下に繰り返し使用した場合において、磁性芯粒子を構成する強磁性体が被覆層を構成する高導電性金属中に移行しても、当該導電性粒子Pの表面には、高導電性金属が高い割合で存在するので、当該導電性粒子Pの導電性が著しく低下することがなく、所期の導電性が維持される。
また、導電性粒子Pの数平均粒子径は、3〜40μmであることが好ましく、より好ましくは6〜25μmである。
このような導電性粒子Pを用いることにより、得られる弾性異方導電膜23は、加圧変形が容易なものとなり、また、当該弾性異方導電膜23における接続用導電部24において導電性粒子P間に十分な電気的接触が得られる。
また、導電性粒子Pの形状は、特に限定されるものではないが、高分子物質形成材料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれらが凝集した2次粒子による塊状のものであることが好ましい。
このような導電性粒子Pは、例えは以下の方法によって得ることができる。
先ず、強磁性体材料を常法により粒子化し或いは市販の強磁性体粒子を用意し、この粒子に対して分級処理を行うことにより、所要の粒子径を有する磁性芯粒子を調製する。
ここで、粒子の分級処理は、例えば空気分級装置、音波ふるい装置などの分級装置によって行うことができる。
また、分級処理の具体的な条件は、目的とする磁性芯粒子の数平均粒子径、分級装置の種類などに応じて適宜設定される。
次いで、磁性芯粒子の表面を酸によって処理し、更に、例えば純水によって洗浄することにより、磁性芯粒子の表面に存在する汚れ、異物、酸化膜などの不純物を除去し、その後、当該磁性芯粒子の表面に高導電性金属を被覆することによって、導電性粒子が得られる。
ここで、磁性芯粒子の表面を処理するために用いられる酸としては、塩酸などを挙げることができる。
高導電性金属を磁性芯粒子の表面に被覆する方法としては、無電解メッキ法、置換メッキ法等を用いることができるが、これらの方法に限定されるものではない。
無電解メッキ法または置換メッキ法によって導電性粒子を製造する方法について説明すると、先ず、メッキ液中に、酸処理および洗浄処理された磁性芯粒子を添加してスラリーを調製し、このスラリーを攪拌しながら当該磁性芯粒子の無電解メッキまたは置換メッキを行う。次いで、スラリー中の粒子をメッキ液から分離し、その後、当該粒子を例えば純水によって洗浄処理することにより、磁性芯粒子の表面に高導電性金属が被覆されてなる導電性粒子が得られる。
また、磁性芯粒子の表面に下地メッキを行って下地メッキ層を形成した後、当該下地メッキ層の表面に高導電性金属よりなるメッキ層を形成してもよい。下地メッキ層およびその表面に形成されるメッキ層を形成する方法は、特に限定されないが、無電解メッキ法により、磁性芯粒子の表面に下地メッキ層を形成し、その後、置換メッキ法により、下地メッキ層の表面に高導電性金属よりなるメッキ層を形成することが好ましい。
無電解メッキまたは置換メッキに用いられるメッキ液としては、特に限定されるものではなく、種々の市販のものを用いることができる。
また、磁性芯粒子の表面に高導電性金属を被覆する際に、粒子が凝集することにより、粒子径の大きい導電性粒子が発生することがあるため、必要に応じて、導電性粒子の分級処理を行うことが好ましく、これにより、所期の粒子径を有する導電性粒子が確実に得られる。
導電性粒子の分級処理を行うための分級装置としては、前述の磁性芯粒子を調製するための分級処理に用いられる分級装置として例示したものを挙げることができる。
接続用導電部24における導電性粒子Pの含有割合は、体積分率で10〜60%、好ましくは15〜50%となる割合で用いられることが好ましい。この割合が10%未満の場合には、十分に電気抵抗値の小さい接続用導電部24が得られないことがある。一方、この割合が60%を超える場合には、得られる接続用導電部24は脆弱なものとなりやすく、接続用導電部24として必要な弾性が得られないことがある。
接点部材27を構成する材料としては、磁性を示す金属材料を用いることが好ましく、その具体例としては、ニッケル、コバルトまたはこれらの合金などが挙げられる。
また、接点部材27の厚みは、1〜100μmであることが好ましく、より好ましくは5〜40μmである。この厚みが過小である場合には、後述する製造方法において、レーザー加工におけるマスクとして利用することが困難となることがある。一方、この厚みが過大である場合には、弾性異方導電膜23における接続用導電部24を圧縮変形するために大きな加圧力が必要となることがあり、好ましくない。
本発明において、上記の異方導電性コネクター20は、離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有されてなる導電性エラストマー用材料層を形成し、この導電性エラストマー用材料層の表面に、被検査電極のパターンに対応する特定のパターンに従って磁性を示す金属よりなる接点部材27を配置し、この状態で、当該導電性エラストマー用材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマー用材料層を硬化処理して導電性エラストマー層を形成し、この導電性エラストマー層をレーザー加工して接点部材27が配置された部分以外の部分を除去することにより、離型性支持板上に、特定のパターンに従って配置された複数の接続用導電部24を形成し、この離型性支持板に形成された接続用導電部24の各々を、フレーム板21の開口を塞ぐよう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料よりなる絶縁部用材料層中に浸入させ、この状態で絶縁部用材料層を硬化処理することにより絶縁部を形成することによって、得られる。
以下、異方導電性コネクター20の製造方法を具体的に説明する。
上記の異方導電性コネクター20は、以下のようにして製造することができる。
《フレーム板の作製》
検査対象であるウエハに形成された全ての集積回路における被検査電極が配置された電極領域に対応して開口22が形成されたフレーム板21を作製する。ここで、フレーム板21の開口22を形成する方法としては、当該フレーム板21を構成する材料に応じて適宜選択され、例えばエッチング法などを利用することができる。
《導電性エラストマー層の形成》
先ず、特定のパターンに従って配置された複数の接点部材27を有する接点部材複合体27Fを製造する。
具体的に説明すると、図4に示すように、金属箔30上に、フォトリソグラフィーの手法により、形成すべき接続用導電部のパターンすなわち被検査電極のパターンに対応する特定のパターンに従って開口31Kが形成されたレジスト層31を形成する。その後、金属箔30におけるレジスト層31の開口31Kを介して露出した部分の表面に、磁性を示す金属によるメッキ処理を施すことにより、図5に示すように、レジスト層31の開口31Kの各々に接点部材27を形成する。これにより、金属箔30上に特定のパターンに従って接点部材27が形成されてなる接点部材複合体27Fが得られる。
以上において、金属箔30としては、銅、ニッケルなどを用いることができる。また、金属箔30は、樹脂フィルム上に積層されたものであってもよい。
金属箔30の厚みは、0.05〜2μmであることが好ましく、より好ましくは0.1〜1μmである。この厚みが過小である場合には、均一な薄層が形成されず、メッキ電極として不適なものとなることがある。一方、この厚みが過大である場合には、例えばエッチングによって除去することが困難となることがある。
レジスト層31の厚みは、形成すべき接点部材27の厚みに応じて設定される。
次いで、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が分散されてなる導電性エラストマー用材料を調製し、図6に示すように、接続用導電部形成用の離型性支持板35上に、導電性エラストマー用材料を塗布することによって導電性エラストマー用材料層24Aを形成する。そして、図7に示すように、この導電性エラストマー用材料層24A上に、接点部材複合体27Fをその接点部材27の各々が当該導電性エラストマー用材料層24Aに接するよう配置する。ここで、導電性エラストマー用材料層24A中においては、磁性を示す導電性粒子Pが分散された状態で含有されている。
次いで、導電性エラストマー用材料層24Aに対し、接点部材27を介して当該導電性エラストマー用材料層24Aの厚み方向に磁場を作用させる。これにより、接点部材27が磁性を示す金属により形成されているため、導電性エラストマー用材料層24Aにおける接点部材27が配置された部分には、それ以外の部分より大きい強度の磁場が形成される。その結果、導電性エラストマー用材料層24A中に分散されていた導電性粒子Pは、図8に示すように、接点部材27が配置された部分に集合し、更に当該導電性エラストマー用材料層24Aの厚み方向に並ぶよう配向する。そして、導電性エラストマー用材料層24Aに対する磁場の作用を継続しながら、或いは磁場の作用を停止した後、導電性エラストマー用材料層24Aの硬化処理を行うことにより、図9に示すように、弾性高分子物質中に導電性粒子Pが厚み方向に並ぶよう配向した状態で含有されてなる導電性エラストマー層24Bが、離型性支持板35上に支持された状態で形成される。
以上において、離型性支持板35を構成する材料としては、金属、セラミックス、樹脂およびこれらの複合材などを用いることができる。
導電性エラストマー用材料を塗布する方法としては、スクリーン印刷などの印刷法、ロール塗布法、ブレード塗布法などを利用することができる。
導電性エラストマー用材料層24Aの厚みは、形成すべき接続用導電部の厚みに応じて設定される。
導電性エラストマー用材料層24Aに磁場を作用させる手段としては、電磁石、永久磁石などを用いることができる。
導電性エラストマー用材料層24Aに作用させる磁場の強度は、0.2〜2.5テスラとなる大きさが好ましい。
導電性エラストマー用材料層24Aの硬化処理は、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間は、導電性エラストマー用材料層24Aを構成する高分子物質形成材料の種類、導電性粒子の移動に要する時間などを考慮して適宜設定される。
《接続用導電部の形成》
先ず、導電性エラストマー層24B上に配置された接点部材複合体27Fにおける金属箔30に対して、エッチング処理を施して除去することにより、図10に示すように、接点部材27およびレジスト層31を露出させる。そして、導電性エラストマー層24Bおよびレジスト層31に対して、接点部材27をマスクとしてレーザー加工を施すことにより、レジスト層31および導電性エラストマー層24Bの一部が除去され、その結果、図11に示すように、特定のパターンに従って配置され、それぞれ接点部材27が一体的に設けられた複数の接続用導電部24が離型性支持板35上に支持された状態で形成される。
ここで、レーザー加工は、炭酸ガスレーザーによるものが好ましく、これにより、目的とする形態の接続用導電部24を確実に形成することができる。
《絶縁部の形成》
図12に示すように、絶縁部形成用の離型性支持板35Aを用意し、この離型性支持板35Aの表面に、フレーム板21を配置すると共に、硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料を塗布することにより、絶縁部用材料層25Aを形成する。次いで、図13に示すように、それぞれ接点部材27が設けられた複数の接続用導電部24が形成された離型性支持板35を、絶縁部用材料層25Aが形成された離型性支持板35A上に重ね合わせることにより、接続用導電部24の各々を絶縁部用材料層25A中に浸入させて離型性支持板35Aに接触させ、更に加圧することにより、接続用導電部24の各々は厚み方向に圧縮した状態に変形されると共に、隣接する接続用導電部24の間には、絶縁部用材料層25Aが形成された状態となる。その後、この状態で、絶縁部用材料層25Aの硬化処理を行うことにより、図14に示すように、接続用導電部24の各々の周囲に、これらを相互に絶縁する絶縁部25が、接続用導電部24に一体的に形成され、以て弾性異方導電膜23が形成される。
そして、離型性支持板35,35Aから離型させることにより、圧縮された接続用導電部24の各々は、元の形態に復元する結果、絶縁部25の両面から突出した状態となり、以て、図1に示す構成の異方導電性コネクター20が得られる。
以上において、離型性支持板35Aを構成する材料としては、接続用導電部形成用の離型性支持板35と同様のものを用いることができる。
高分子物質形成材料を塗布する方法としては、スクリーン印刷などの印刷法、ロール塗布法、ブレード塗布法などを利用することができる。
絶縁部用材料層25Aの厚みは、形成すべき絶縁部の厚みに応じて設定される。
絶縁部用材料層25Aの硬化処理は、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間は、絶縁部用材料層25Aを構成する高分子物質形成材料の種類などを考慮して適宜設定される。
上記の製造方法によれば、導電性エラストマー用材料層24A上に、検査対象であるウエハにおける被検査電極のパターンに対応する特定のパターンに従って磁性を示す接点部材27を配置した状態で、当該導電性エラスマー用材料層24Aの厚み方向に磁場を作用させると共に当該導電性エラストマー用材料層24Aを硬化処理することにより、得られる導電性エラストマー層24Bは、接点部材27が配置された部分における導電性粒子Pが密となり、その以外のの部分における導電性粒子Pが疎となる。そのため、接点部材27をマスクとして利用して導電性エラストマー層24Bをレーザー加工することにより、当該導電性エラストマー層24Bにおける接点部材27が配置されていない部分を容易に除去することができるので、所期の形態の接続用導電部24を特定のパターンに従って確実に形成することができる。そして、特定のパターンに従って配置された複数の接続用導電部24を形成したうえで、これらの接続用導電部24の間に絶縁部用材料層25Aを形成して硬化処理することにより絶縁部25を形成するため、導電性粒子Pが全く存在しない絶縁部25を確実に得ることができる。
従って、このような方法によって得られる異方導電性コネクター20によれば、検査対象であるウエハにおける被検査電極のピッチが微小で高密度に配置されている場合であっても、当該被検査電極の各々に対して所要の電気的接続が確実に達成され、しかも、小さいコストで製造することができる。
また、弾性異方導電膜23における接続用導電部24上には、接点部材27が一体的に設けられているため、ウエハの検査を行う際に、シート状プローブを用いることが不要となるので、簡単な構造のプローブカードを得ることができると共に、シート状プローブの位置ずれによる接続不良を回避することができる。
また、弾性異方導電膜23の各々がフレーム板21の開口縁部に支持されているため、変形しにくくて取扱いやすく、検査対象であるウエハとの電気的接続作業において、当該ウエハに対する位置合わせおよび保持固定を容易に行うことができる。
また、フレーム板21の開口22の各々は、検査対象であるウエハに形成された全ての集積回路の被検査電極が配置された電極領域に対応して形成されており、当該開口22の各々に配置される弾性異方導電膜23は面積が小さいものでよいため、個々の弾性異方導電膜23の形成が容易である。
また、面積の小さい弾性異方導電膜23は、熱履歴を受けた場合でも、当該弾性異方導電膜23の面方向における熱膨張の絶対量が少ないため、弾性異方導電膜23の面方向における熱膨張がフレーム板21によって確実に規制される。しかも、異方導電性コネクター20全体の熱膨張は、フレーム板21を構成する材料の熱膨張に依存するので、フレーム板21を構成する材料として熱膨張率の小さいものを用いることにより、温度変化による熱履歴を受けた場合にも、当該異方導電性コネクター20における接続用導電部24とウエハにおける被検査電極との位置ずれが防止される結果、良好な電気的接続状態が安定に維持される。
図15は、本発明に係る第2の例の異方導電性コネクターを示す平面図である。
この第2の例の異方導電性コネクター20は、それぞれ厚み方向に貫通して伸びる複数の開口22が形成された矩形の板状のフレーム板21を有する。このフレーム板21の開口22は、検査対象であるウエハに形成された集積回路のうち例えば32個(8個×4個)の集積回路における被検査電極が形成された電極領域のパターンに対応して形成されている。フレーム板21には、厚み方向に導電性を有する複数の弾性異方導電膜23が、それぞれ一の開口22を塞ぐよう、当該フレーム板21の開口縁部に支持された状態で配置されている。第2の例の異方導電性コネクター20におけるその他の構成は、第1の例の異方導電性コネクター20と同様である。
また、第2の例の異方導電性コネクター20は、第1の例の異方導電性コネクター20と同様にして製造することができる。
そして、第2の例の異方導電性コネクター20によれば、第1の例の異方導電性コネクター20と同様の効果が得られる。
〈ウエハ検査用プローブカード〉
図16は、本発明に係るウエハ検査用プローブカード(以下、単に「プローブカード」という。)の第1の例における構成を示す説明用断面図であり、図17は、第1の例のプローブカードの要部の構成を示す説明用断面図である。
この第1の例のプローブカード10は、例えば複数の集積回路が形成されたウエハについて当該集積回路の各々のバーンイン試験をウエハの状態で一括して行うために用いられるものであって、検査用回路基板11と、この検査用回路基板11の一面(図16および図17において上面)に配置された、図1に示す第1の例の異方導電性コネクター20とにより構成されている。
検査用回路基板11は、図18にも示すように、円板状の第1の基板素子12を有し、この第1の基板素子12の表面(図16および図17において上面)における中央部には、正八角形の板状の第2の基板素子15が配置され、この第2の基板素子15は、第1の基板素子12の表面に固定されたホルダー14に保持されている。また、第1の基板素子12の裏面における中央部には、補強部材17が設けられている。
第1の基板素子12の表面における中央部には、複数の接続用電極(図示省略)が適宜のパターンに従って形成されている。一方、第1の基板素子12の裏面における周縁部には、図19に示すように、複数のリード電極13が当該第1の基板素子12の周方向に沿って並ぶよう配置されたリード電極部13Rが形成されている。リード電極13のパターンは、後述するウエハ検査装置におけるコントローラーの入試出力端子のパターンに対応するパターンである。そして、リード電極13の各々は内部配線(図示省略)を介して接続用電極に電気的に接続されている。
第2の基板素子15の表面(図16および図17において上面)には、複数の検査用電極16が、検査対象であるウエハに形成された全ての集積回路における被検査電極のパターンに対応するパターンに従って配置された検査用電極部16Rが形成されている。一方、第2の基板素子15の裏面には、複数の端子電極(図示省略)が適宜のパターンに従って配置されており、端子電極の各々は内部配線(図示省略)を介して検査用電極16に電気的に接続されている。
そして、第1の基板素子12の接続用電極と第2の基板素子15の端子電極とは適宜の手段によって電気的に接続されている。
検査用回路基板11における第1の基板素子12を構成する基板材料としては、従来公知の種々の材料を用いることができ、その具体例としては、ガラス繊維補強型エポキシ樹脂、ガラス繊維補強型フェノール樹脂、ガラス繊維補強型ポリイミド樹脂、ガラス繊維補強型ビスマレイミドトリアジン樹脂等の複合樹脂基板材料などが挙げられる。
検査用回路基板11における第2の基板素子15を構成する材料としては、線熱膨張係数が3×10-5/K以下のものを用いることが好ましく、より好ましくは1×10-7〜1×10-5/K、特に好ましくは1×10-6〜6×10-6/Kである。このような基板材料の具体例としては、パイレックス(登録商標)ガラス、石英ガラス、アルミナ、ベリリア、炭化ケイ素、窒化アルミニウム、窒化ホウ素等よりなる無機系基板材料、42合金、コバール、インバー等の鉄−ニッケル合金鋼よりなる金属板をコア材としてエポキシ樹脂またはポリイミド樹脂等の樹脂を積層した積層基板材料などが挙げられる。
ホルダー14は、第2の基板素子15の外形に適合する正八角形状の開口14Kを有し、この開口14K内に第2の基板素子15が収容されている。また、ホルダー14の外縁は円形である。
このような第1の例のプローブカード10によれば、図1に示す異方導電性コネクター20を有するため、検査対象であるウエハにおける被検査電極のピッチが微小で高密度に配置されている場合であっても、当該被検査電極の各々に対して所要の電気的接続を確実に達成することができ、また、温度変化による熱履歴を受けた場合にも、良好な電気的接続状態が安定に維持される。従って、ウエハのバーンイン試験において、ウエハに対する良好な電気的接続状態を安定に維持することができる。
図20は、本発明に係るプローブカードの第2の例における構成を示す説明用断面図であり、図21は、第2の例のプローブカードの要部の構成を示す説明用断面図である。
この第2の例のプローブカード10は、例えば複数の集積回路が形成されたウエハについて当該集積回路の各々のプローブ試験をウエハの状態で行うために用いられるものであって、検査用回路基板11と、この検査用回路基板11の一面(図20および図21において上面)に配置された、図15に示す第2の例の異方導電性コネクター20とにより構成されている。
第2の例のプローブカード10の検査用回路基板11においては、図22に示すように、第2の基板素子15の表面に、検査対象であるウエハに形成された集積回路のうち例えは32個(8個×4個)の集積回路における被検査電極のパターンに対応するパターンに従って複数の検査用電極16が配置された検査用電極部16Rが形成されている。検査用回路基板11におけるその他の構成は、第1の例のプローブカード10における検査用回路基板11と基本的に同様である。
このような第2の例のプローブカード10によれば、図15に示す異方導電性コネクター20を有するため、検査対象であるウエハにおける被検査電極のピッチが微小で高密度に配置されている場合であっても、当該被検査電極の各々に対して所要の電気的接続を確実に達成することができ、また、温度変化による熱履歴を受けた場合にも、良好な電気的接続状態が安定に維持される。従って、ウエハのプローブ試験において、ウエハに対する良好な電気的接続状態を安定に維持することができる。
図23は、本発明に係るプローブカードの第3の例における構成を示す説明用断面図であり、図24は、第3の例のプローブカードの要部の構成を示す説明用断面図である。
この第3の例のプローブカード10は、例えば複数の集積回路が形成されたウエハについて当該集積回路の各々のバーンイン試験をウエハの状態で一括して行うために用いられるものであって、第1の例のプローブカード10と同様の構成の検査用回路基板11と、この検査用回路基板11の一面(図23において上面)に一体的に形成された異方導電性エラストマー層40と、この異方導電性エラストマー層40における接続用導電部41上に一体的に設けられた接点部材27とにより構成されている。
異方導電性エラストマー層40は、検査用回路基板11における検査用電極16のパターンと同一のパターンに従って配置された、それぞれ厚み方向に伸びる複数の接続用導電部41と、隣接する接続用導電部41の間に当該接続用導電部41の各々に一体的に接着した状態で形成された、これらの接続用導電部41を相互に絶縁する絶縁部42とにより構成されており、当該異方導電性エラストマー層40は、接続用導電部41の各々が検査用回路基板11における検査用電極16上に位置されるよう配置されている。
図25に拡大して示すように、各接続用導電部41は、絶縁性の弾性高分子物質中に磁性を示す導電性粒子Pが厚み方向に並ぶよう配向した状態で含有されて構成されている。これに対し、絶縁部42は、導電性粒子Pを全く含有しない弾性高分子物質により構成されている。接続用導電部41を構成する弾性高分子物質と絶縁部42を構成する弾性高分子物質とは、互いに異なる種類のものであっても同じ種類のものであってもよい。
図示の例においては、異方導電性エラストマー層40の表面(図25において上面)には、接続用導電部41が絶縁部42の表面から突出する突出部が形成されている。
このような例によれば、加圧による圧縮の程度が絶縁部42より接続用導電部41において大きいために十分に抵抗値の低い導電路が確実に接続用導電部41に形成され、これにより、加圧力の変化乃至変動に対して抵抗値の変化を小さくすることができ、その結果、異方導電性エラストマー層40に作用される加圧力が不均一であっても、各接続用導電部41間における導電性のバラツキの発生を防止することができる。
接続用導電部41の厚みは、50〜3000μmであることが好ましく、より好ましくは70〜2500μm、特に好ましくは100〜2000μmである。この厚みが50μm以上であれば、十分な強度を有する接続用導電部41が確実に得られる。一方、この厚みが3000μm以下であれば、所要の導電性特性を有する接続用導電部41が確実に得られる。
接続用導電部41における絶縁部42からの突出高さは、当該接続用導電部41の厚みの10%以上であることが好ましく、より好ましくは20%以上である。このような突出高さを有する接続用導電部41を形成することにより、小さい加圧力で接続用導電部41が十分に圧縮されるため、良好な導電性が確実に得られる。
また、この突出高さは、接続用導電部41の最短幅または直径の100%以下であることが好ましく、より好ましくは70%以下である。このような突出高さを有する接続用導電部41を形成することにより、当該接続用導電部41が加圧されたときに座屈することがないため、所期の導電性が確実に得られる。
接続用導電部41および絶縁部42を形成する弾性高分子物質としては、前述の第1の例の異方導電性コネクター20における接続用導電部24および絶縁部25を形成する弾性高分子物質と同様のものを用いることができる。
また、接続用導電部41に含有される導電性粒子Pとしては、前述の第1の例の異方導電性コネクター20における接続用導電部21に含有される導電性粒子Pと同様のものを用いることができる。
接続用導電部41における導電性粒子Pの含有割合は、体積分率で10〜60%、好ましくは15〜50%となる割合で用いられることが好ましい。この割合が10%未満の場合には、十分に電気抵抗値の小さい接続用導電部41が得られないことがある。一方、この割合が60%を超える場合には、得られる接続用導電部41は脆弱なものとなりやすく、接続用導電部41として必要な弾性が得られないことがある。
異方導電性エラストマー層40における接続用導電部41の各々の表面には、金属よりなる平板状の接点部材27が当該接続用導電部41に一体的に設けられている。
接点部材27を構成する金属としては、磁性を示すものが用いられ、その具体例としては、ニッケル、コバルトまたはこれらの合金などが挙げられる。
また、接点部材27の厚みは、1〜100μmであることが好ましく、より好ましくは5〜40μmである。
本発明において、上記の第1の例のプローブカード10は、以下の(a)〜(d)の工程を経由して得られる。
(a)金属箔上に、検査用回路基板11の検査用電極16に係る特定のパターンに従ってそれぞれ磁性を示す金属よりなる複数の接点部材27が形成されてなる接点部材複合体を製造する。
(b)接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子Pが含有されてなる導電性エラストマー用材料層を形成し、この導電性エラストマー用材料層上に、それぞれ磁性を示す金属よりなる複数の金属マスクの各々を、当該導電性エラストマー用材料層を介して接点部材27と互いに対向するよう配置し、この状態で、導電性エラストマー用材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマー用材料層を硬化処理することにより、導電性エラストマー層を形成する。
(c)導電性エラストマー層をレーザー加工して接点部材27と金属マスクとの間に位置する部分以外の部分を除去することにより、特定のパターンに従って配置された複数の接続用導電部41を形成する。
(d)各接続用導電部41上に配置された金属マスクを除去し、その後、接続用導電部41が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる絶縁部用材料層が形成された検査用回路基板11上に重ね合わせることにより、検査用回路基板11の検査用電極16の各々とこれに対応する接続用導電部41とを対接させ、この状態で絶縁部用材料層を硬化処理することにより、検査用回路基板11上に絶縁部42を一体的に形成する。
以下、第3の例のプローブカードの製造方法を具体的に説明する。
《接点部材複合体の製造》
前述の第1の例の異方導電性コネクター10の製造方法と同様にして金属箔30上に特定のパターンに従って複数の接点部材27が形成されてなる接点部材複合体27Fを製造する(図4および図5参照)。
《金属マスク複合体の製造》
図26に示すように、金属箔46上に、フォトリソグラフィーの手法により、特定のパターンに従って開口47Kが形成されたレジスト層47を形成する。その後、金属箔46におけるレジスト層47の開口47Kを介して露出した部分の表面に、磁性を示す金属によるメッキ処理を施すことにより、図27に示すように、レジスト層47の開口47Kの各々に金属マスク48を形成する。これにより、金属箔46上に特定のパターンに従って複数の金属マスク48が形成されてなる金属マスク複合体48Fが得られる。
以上において、金属箔46としては、銅、ニッケルなどを用いることができる。また、金属箔46は、樹脂フィルム上に積層されたものであってもよい。
金属箔46の厚みは、0.05〜2μmであることが好ましく、より好ましくは0.1〜1μmである。この厚みが過小である場合には、均一な薄層が形成されず、メッキ電極として不適なものとなることがある。一方、この厚みが過大である場合には、例えばエッチングによって除去することが困難となることがある。
レジスト層47の厚みは、形成すべき金属マスク48の厚みに応じて設定される。
金属マスク48を構成する材料としては、ニッケル、コバルトまたはこれらの合金などを用いることができる。
《導電性エラストマー層の形成》
硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が分散されてなる導電性エラストマー用材料を調製し、図28に示すように、接点部材複合体27Fにおける接点部材27が形成された一面上に、導電性エラストマー用材料を塗布することによって導電性エラストマー用材料層41Aを形成する。そして、図29に示すように、この導電性エラストマー用材料層41A上に、金属マスク複合体48Fを、その金属マスク48の各々が当該導電性エラストマー用材料層41Aを介して接点部材27の各々と互いに対向するよう配置する。ここで、導電性エラストマー用材料層41A中においては、磁性を示す導電性粒子Pが分散された状態で含有されている。
次いで、導電性エラストマー用材料層41Aに対し、接点部材27および金属マスク48を介して当該導電性エラストマー用材料層41Aの厚み方向に磁場を作用させる。これにより、接点部材27および金属マスク48の各々が磁性を示す金属により形成されているため、導電性エラストマー用材料層41Aにおける接点部材27と金属マスク48との間に位置する部分には、それ以外の部分より大きい強度の磁場が形成される。その結果、導電性エラストマー用材料層41A中に分散されていた導電性粒子Pは、図30に示すように、接点部材27と金属マスク48との間に位置する部分に集合し、更に当該導電性エラストマー用材料層41Aの厚み方向に並ぶよう配向する。そして、導電性エラストマー用材料層41Aに対する磁場の作用を継続しながら、或いは磁場の作用を停止した後、導電性エラストマー用材料層41Aの硬化処理を行うことにより、図31に示すように、弾性高分子物質中に導電性粒子Pが厚み方向に並ぶよう配向した状態で含有されてなる導電性エラストマー層41Bが、接点部材複合体27F上に一体的に形成される。この導電性エラストマー層41Bにおいては、接点部材27と金属マスク48との間に位置する部分における導電性粒子がが密となり、それ以外の部分における導電性粒子が疎となっている。
以上において、導電性エラストマー用材料を塗布する方法としては、スクリーン印刷などの印刷法、ロール塗布法、ブレード塗布法などを利用することができる。
導電性エラストマー用材料層41Aの厚みは、形成すべき接続用導電部の厚みに応じて設定される。
導電性エラストマー用材料層41Aに磁場を作用させる手段としては、電磁石、永久磁石などを用いることができる。
導電性エラストマー用材料層41Aに作用させる磁場の強度は、0.2〜2.5テスラとなる大きさが好ましい。
導電性エラストマー用材料層41Aの硬化処理は、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間は、導電性エラストマー用材料層41Aを構成する高分子物質形成材料の種類、導電性粒子の移動に要する時間などを考慮して適宜設定される。
《接続用導電部の形成》
先ず、導電性エラストマー層41B上に配置された金属マスク複合体48Fにおける金属箔46に対して、エッチング処理を施して除去することにより、図32に示すように、金属マスク48およびレジスト層47を露出させる。そして、導電性エラストマー層41Bおよびレジスト層47に対してレーザー加工を施すことにより、レジスト層47、導電性エラストマー層41Bにおける接点部材27と金属マスク48との間に位置する部分以外の部分およびレジスト層45が除去され、その結果、図33に示すように、接点部材複合体27Fにおける各接点部材27上に、接続用導電部41が形成される。その後、接続用導電部41の表面から金属マスク48を剥離する。
ここで、レーザー加工は、炭酸ガスレーザーまたは紫外線レーザーによるものが好ましく、これにより、目的とする形態の接続用導電部41を確実に形成することができる。
《絶縁部の形成》
図34に示すように、検査用回路基板における第2の基板素子15の表面に、硬化されて絶縁性の弾性高分子物質となる液状の高分子物質形成材料を塗布することにより、絶縁部用材料層42Aを形成する。次いで、図35に示すように、複数の接続用導電部41が形成された接点部材複合体27Fを、絶縁部用材料層42Aが形成された検査用回路基板における第2の基板素子15上に重ね合わせることにより、当該第2の基板素子15の検査用電極16の各々とこれに対応する接続用導電部41とを対接させる。これにより、隣接する接続用導電部41の間に絶縁部用材料層42Aが形成された状態となる。その後、この状態で、絶縁部用材料層42Aの硬化処理を行うことにより、図36に示すように、隣接する接続用導電部41の間にこれらを相互に絶縁する絶縁部42が、接続用導電部41および検査用回路基板における第2の基板素子15に一体的に形成される。
そして、接点部材複合体27Fにおける金属箔30を例えばエッチング処理によって除去することにより、検査用回路基板11における第2の基板素子15の表面に異方導電性エラストマー層40が一体的に形成され、当該異方導電性エラストマー層40の接続用導電部41の各々の表面に接点部材30が一体的に設けられてなる、図23に示す構成のプローブカード10が得られる。
以上において、高分子物質形成材料を塗布する方法としては、スクリーン印刷などの印刷法、ロール塗布法、ブレード塗布法などを利用することができる。
絶縁部用材料層42Aの厚みは、形成すべき絶縁部の厚みに応じて設定される。
絶縁部用材料層42Aの硬化処理は、通常、加熱処理によって行われる。具体的な加熱温度および加熱時間は、絶縁部用材料層42Aを構成する高分子物質形成材料の種類などを考慮して適宜設定される。
このような製造方法によれば、導電性エラストマー層41Bをレーザー加工してその一部を除去することによって、接続用導電部41を形成するため、所期の導電性を有する接続用導電部41が得られる。
また、それぞれ磁性を示す金属よりなる複数の接点部材27が検査用電極16に係る特定のパターンに従って形成されてなる接点部材複合体27F上に導電性エラストマー用材料層41Aを形成し、当該導電性エラストマー用材料層41A上に、特定のパターンに従ってそれぞれ磁性を示す金属マスク48を配置した状態で、当該導電性エラスマー用材料層41Aの厚み方向に磁場を作用させるため、得られる導電性エラストマー層41Bは、接点部材27と金属マスク48との間に位置する部分における導電性粒子Pと密となり、それ以外の部分における導電性粒子Pが疎となる。そのため、導電性エラストマー層41Bをレーザー加工することにより、当該導電性エラストマー層41Bにおける接点部材27が配置されていない部分を容易に除去することができるので、所期の形態の接続用導電部41を特定のパターンに従って確実に形成することができる。
また、接点部材複合体27F上に形成された導電性エラストマー用材料層41Aを硬化処理することにより、得られる導電性エラストマー層40Bには、接点部材複合体27Fにおける接点部材27の各々が接着されるので、接点部材27が一体的に設けられた接続用導電部41を形成することができる。
また、被検査電極のパターンに対応する特定のパターンに従って配置された複数の接続用導電部41を形成したうえで、これらの接続用導電部41の各々を、絶縁部用材料層42Aが形成された検査用回路基板11の検査用電極16の各々に対接させ、この状態で、絶縁部用材料層42Aを硬化処理するため、導電性粒子Pが全く存在しない絶縁部42が検査用回路基板11に一体的に形成された異方導電性エラストマー層40を形成することができる。
従って、このような方法によって得られるプローブカード10によれば、所期の導電性を有する複数の接続用導電部41が導電性粒子全く存在しない絶縁部42によって絶縁されているため、検査対象であるウエハにおける被検査電極のピッチが極めて小さいものであっても、隣接する被検査電極間の所要の絶縁性が確保され、ウエハに対する良好な電気的接続状態を確実に達成することができる。
また、異方導電性エラストマー層40が検査用回路基板11に一体的に形成されており、しかも、接点部材27が接続用導電部41に一体的に設けられていることにより、シート状プローブを用いることが不要となるため、温度変化による熱履歴を受けたときにも、接続用導電部41と検査用電極16との位置ずれによる接続不良を防止することができると共に、シート状プローブの位置ずれによる接続不良を回避することができ、従って、ウエハに対する良好な電気的接続状態を安定に維持することができる。
また、シート状プローブを用いることが不要であるため、組み立て作業が不要で簡単な構造のプローブカード10を得ることができる。
図37は、本発明に係るプローブカードの第4の例における構成を示す説明用断面図であり、図38は、第4の例のプローブカードの要部の構成を示す説明用断面図である。
この第4の例のプローブカード10は、例えば複数の集積回路が形成されたウエハについて当該集積回路の各々のプローブ試験をウエハの状態で行うために用いられるものであって、前述の第2の例のプローブカード10と同様の構成の検査用回路基板11と、この検査用回路基板11の一面(図37および図38において上面)に一体的に形成された異方導電性エラストマー層40と、この異方導電性エラストマー層40の接続用導電部41上に一体的に設けられた接点部材27とにより構成されている。
異方導電性エラストマー層40は、検査用回路基板11における検査用電極16のパターンと同一のパターンに従って配置された、それぞれ厚み方向に伸びる複数の接続用導電部41と、隣接する接続用導電部41の間に当該接続用導電部41の各々に一体的に接着した状態で形成された、これらの接続用導電部41を相互に絶縁する絶縁部42とにより構成されており、当該異方導電性エラストマー層40は、接続用導電部41の各々が検査用回路基板11における検査用電極16上に位置されるよう配置されている。各接続用導電部41は、絶縁性の弾性高分子物質中に磁性を示す導電性粒子Pが厚み方向に並ぶよう配向した状態で含有されて構成されている(図25参照)。これに対し、絶縁部42は、導電性粒子Pを全く含有しない弾性高分子物質により構成されている。接続用導電部41を構成する弾性高分子物質と絶縁部42を形成する弾性高分子物質とは、互いに異なる種類のものであっても同じ種類のものであってもよい。
第4の例のプローブカード10における異方導電性エラストマー層40を構成する弾性高分子物質および導電性粒子としては、第1の例の異方導電性コネクター20における弾性異方導電膜23を構成する弾性高分子物質および導電性粒子と同様のものを用いることができる。
異方導電性エラストマー層40における接続用導電部41の各々の表面には、金属よりなる平板状の接点部材27が当該接続用導電部41に一体的に設けられている。接点部材27の材質および寸法は、前述の第3の例に係るプローブカード10と同様である。
本発明において、第4の例のプローブカード10は、前述の第3の例のプローブカード10と同様にして製造することができる。
すなわち、第4の例のプローブカード10は、以下の(a)〜(d)の工程を経由して得られる。
(a)金属箔上に、検査用回路基板11の検査用電極16に係る特定のパターンに従ってそれぞれ磁性を示す金属よりなる複数の接点部材27が形成されてなる接点部材複合体を製造する。
(b)接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子Pが含有されてなる導電性エラストマー用材料層を形成し、この導電性エラストマー用材料層上に、それぞれ磁性を示す金属よりなる複数の金属マスクの各々を、当該導電性エラストマー用材料層を介して接点部材27と互いに対向するよう配置し、この状態で、導電性エラストマー用材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマー用材料層を硬化処理することにより、導電性エラストマー層を形成する。
(c)導電性エラストマー層をレーザー加工して接点部材27と金属マスクとの間に位置する部分以外の部分を除去することにより、特定のパターンに従って配置された複数の接続用導電部41を形成する。
(d)各接続用導電部41上に配置された金属マスクを除去し、その後、接続用導電部41が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる絶縁部用材料層が形成された検査用回路基板11上に重ね合わせることにより、検査用回路基板11の検査用電極16の各々とこれに対応する接続用導電部41とを対接させ、この状態で絶縁部用材料層を硬化処理することにより、検査用回路基板11上に絶縁部42を一体的に形成する。
そして、このような製造方法によれば、導電性エラストマー層をレーザー加工してその一部を除去することによって、接続用導電部41を形成するため、所期の導電性を有する接続用導電部41が得られる。
また、それぞれ磁性を示す金属よりなる複数の接点部材27が検査用電極16に係る特定のパターンに従って形成されてなる接点部材複合体上に導電性エラストマー用材料層を形成し、当該導電性エラストマー用材料層上に、特定のパターンに従ってそれぞれ磁性を示す金属マスクを配置した状態で、当該導電性エラスマー用材料層の厚み方向に磁場を作用させるため、得られる導電性エラストマー層は、接点部材27と金属マスクとの間に位置する部分における導電性粒子Pと密となり、それ以外の部分における導電性粒子Pが疎となる。そのため、導電性エラストマー層をレーザー加工することにより、当該導電性エラストマー層における接点部材27が配置されていない部分を容易に除去することができるので、所期の形態の接続用導電部41を特定のパターンに従って確実に形成することができる。
また、接点部材複合体上に形成された導電性エラストマー用材料層を硬化処理することにより、得られる導電性エラストマー層には、接点部材複合体における接点部材27の各々が接着されるのて、接点部材27が一体的に設けられた接続用導電部41を形成することができる。
また、被検査電極のパターンに対応する特定のパターンに従って配置された複数の接続用導電部41を形成したうえで、これらの接続用導電部41の各々を、絶縁部用材料層が形成された検査用回路基板11の検査用電極16の各々に対接させ、この状態で、絶縁部用材料層を硬化処理するため、導電性粒子Pが全く存在しない絶縁部22が検査用回路基板11に一体的に形成された異方導電性エラストマー層40を形成することができる。
従って、このような方法によって得られるプローブカード10によれば、所期の導電性を有する複数の接続用導電部41が導電性粒子全く存在しない絶縁部42によって絶縁されているため、検査対象であるウエハにおける被検査電極のピッチが極めて小さいものであっても、隣接する被検査電極間の所要の絶縁性が確保され、ウエハに対する良好な電気的接続状態を確実に達成することができる。
また、異方導電性エラストマー層40が検査用回路基板11に一体的に形成されており、しかも、接点部材27が接続用導電部41に一体的に設けられていることにより、シート状プローブを用いることが不要となるため、温度変化による熱履歴を受けたときにも、接続用導電部41と検査用電極16との位置ずれによる接続不良を防止することができると共に、シート状プローブの位置ずれによる接続不良を回避することができ、従って、ウエハに対する良好な電気的接続状態を安定に維持することができる。
また、シート状プローブを用いることが不要であるため、組み立て作業が不要で簡単な構造のプローブカード10を得ることができる。
〔ウエハ検査装置〕
図39は、本発明に係るウエハ検査装置の第1の例における構成の概略を示す説明用断面図であり、図40は、第1の例のウエハ検査装置の要部を拡大して示す説明用断面図である。この第1のウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路のバーンイン試験をウエハの状態で一括して行うためのものである。
第1の例のウエハ検査装置は、検査対象であるウエハ6の温度制御、ウエハ6の検査を行うための電源供給、信号の入出力制御およびウエハ6からの出力信号を検出して当該ウエハ6における集積回路の良否の判定を行うためのコントローラー2を有する。図41に示すように、コントローラー2は、その下面に、多数の入出力端子3が円周方向に沿って配置された入出力端子部3Rを有する。
コントローラー2の下方には、第1の例のプローブカード10が、その検査用回路基板11のリード電極13の各々が、当該コントローラー2の入出力端子3に対向するよう、適宜の保持手段によって保持された状態で配置されている。
コントローラー2の入出力端子部3Rとプローブカード10における検査用回路基板11のリード電極部13Rとの間には、コネクター4が配置され、当該コネクター4によって、検査用回路基板11のリード電極13の各々がコントローラー2の入出力端子3の各々に電気的に接続されている。図示の例のコネクター4は、長さ方向に弾性的に圧縮可能な複数の導電ピン4Aと、これらの導電ピン4Aを支持する支持部材4Bとにより構成され、導電ピン4Aは、コントローラー2の入出力端子3と第1の基板素子12に形成されたリード電極13との間に位置するよう配列されている。
プローブカード10の下方には、検査対象であるウエハ6が載置されるウエハ載置台5が設けられている。
このようなウエハ検査装置においては、ウエハ載置台5上に検査対象であるウエハ6が載置され、次いで、プローブカード10が下方に加圧されることにより、その異方導電性コネクター20における接点部材27の各々が、ウエハ6の被検査電極7の各々に接触し、更に、当該接点部材27の各々によって、ウエハ6の被検査電極7の各々が加圧される。この状態においては、異方導電性コネクター20の弾性異方導電膜23における接続用導電部24の各々は、検査用回路基板11の検査用電極16と接点部材27とによって挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部24にはその厚み方向に導電路が形成され、その結果、ウエハ6の被検査電極7と検査用回路基板11の検査用電極16との電気的接続が達成される。その後、ウエハ載置台5を介してウエハ6が所定の温度に加熱され、この状態で、当該ウエハ6における複数の集積回路の各々について所要の電気的検査が実行される。
このような第1の例のウエハ検査装置によれば、第1の例のプローブカード10を介して、検査対象であるウエハ6の被検査電極7に対する電気的接続が達成されるため、ウエハに対する良好な電気的接続状態を確実に達成することができ、しかも、ウエハに対する良好な電気的接続状態を安定に維持することができ、従って、ウエハのバーンイン試験において、当該ウエハに対する所要の電気的検査を確実に実行することができる。
図42は、本発明に係るウエハ検査装置の第2の例における構成の概略を示す説明用断面図であり、このウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路のプローブ試験をウエハの状態で行うためのものである。
この第2の例のウエハ検査装置は、第1の例のプローブカード10の代わりに第2の例のプローブカード10を用いたこと以外は、第1の例のウエハ検査装置と基本的に同様の構成である。
この第2の例のウエハ検査装置においては、ウエハ6に形成された全ての集積回路の中から選択された例えば32個の集積回路の被検査電極7に、プローブカード10を電気的に接続して検査を行い、その後、他の集積回路の中から選択された複数の集積回路の被検査電極7に、プローブカード10を電気的に接続して検査を行う工程を繰り返すことにより、ウエハ6に形成された全ての集積回路のプローブ試験が行われる。
このような第2の例のウエハ検査装置によれば、第2の例のプローブカード10を介して、検査対象であるウエハ6の被検査電極7に対する電気的接続が達成されるため、ウエハに対する良好な電気的接続状態を確実に達成することができ、しかも、ウエハに対する良好な電気的接続状態を安定に維持することができ、従って、ウエハのプローブ試験において、当該ウエハに対する所要の電気的検査を確実に実行することができる。
図43は、本発明に係るウエハ検査装置の第3の例における構成の概略を示す説明用断面図であり、図44は、第3の例のウエハ検査装置の要部を拡大して示す説明用断面図である。この第3の例のウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路のバーンイン試験をウエハの状態で一括して行うためのものである。 この第3の例のウエハ検査装置は、第1の例のプローブカード10の代わりに第3の例のプローブカード10を用いたこと以外は、第1の例のウエハ検査装置と基本的に同様の構成である。
このようなウエハ検査装置においては、ウエハ載置台5上に検査対象であるウエハ6が載置され、次いで、プローブカード10が下方に加圧されることにより、その接点部材27の各々が、ウエハ6の被検査電極7の各々に接触し、更に、当該接点部材27の各々によって、ウエハ6の被検査電極7の各々が加圧される。この状態においては、異方導電性エラストマー層40における接続用導電部41の各々は、検査用回路基板11の検査用電極16と接点部材27とによって挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部41にはその厚み方向に導電路が形成され、その結果、ウエハ6の被検査電極7と検査用回路基板11の検査用電極16との電気的接続が達成される。その後、ウエハ載置台5を介してウエハ6が所定の温度に加熱され、この状態で、当該ウエハ6における複数の集積回路の各々について所要の電気的検査が実行される。
このような第3の例のウエハ検査装置によれば、第3の例のプローブカード10を介して、検査対象であるウエハ6の被検査電極7に対する電気的接続が達成されるため、ウエハ6が、直径が8インチ以上の大面積であって被検査電極7のピッチが極めて小さいものであっても、バーンイン試験において、当該ウエハに対する良好な電気的接続状態を確実に達成することができ、しかも、温度変化による被検査電極7に対する位置ずれを確実に防止することができ、これにより、ウエハ6に対する良好な電気的接続状態を安定に維持することができる。従って、ウエハのバーンイン試験において、当該ウエハに対する所要の電気的検査を確実に実行することができる。
図45は、本発明に係るウエハ検査装置の第4の例における構成の概略を示す説明用断面図であり、このウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路のプローブ試験をウエハの状態で行うためのものである。
この第4の例のウエハ検査装置は、第1の例のプローブカード10の代わりに第4の例のプローブカード10を用いたこと以外は、第1の例のウエハ検査装置と基本的に同様の構成である。
この第4の例のウエハ検査装置においては、ウエハ6に形成された全ての集積回路の中から選択された例えば32個の集積回路の被検査電極7に、プローブカード10を電気的に接続して検査を行い、その後、他の集積回路の中から選択された複数の集積回路の被検査電極7に、プローブカード10を電気的に接続して検査を行う工程を繰り返すことにより、ウエハ6に形成された全ての集積回路のプローブ試験が行われる。
このような第4の例のウエハ検査装置によれば、第4の例のプローブカード10を介して、検査対象であるウエハ6の被検査電極7に対する電気的接続が達成されるため、ウエハ6が、直径が8インチ以上の大面積であって被検査電極7のピッチが極めて小さいものであっても、バーンイン試験において、当該ウエハに対する良好な電気的接続状態を確実に達成することができ、しかも、温度変化による被検査電極7に対する位置ずれを確実に防止することができ、これにより、ウエハ6に対する良好な電気的接続状態を安定に維持することができる。従って、ウエハのプローブ試験において、当該ウエハに対する所要の電気的検査を確実に実行することができる。
本発明は、上記の実施の形態に限定されず、以下のように、種々の変更を加えることが可能である。
(1)異方導電性コネクター20においては、弾性異方導電膜23に突出部26が形成されることは必須のことではなく、弾性異方導電膜23の表面全体が平坦なものであってもよい。
また、プローブカード10の異方導電性エラストマー層40においては、接続用導電部41に突出部が形成されることは必須のことではなく、異方導電性エラストマー層40の表面全体が平坦なものであってもよい。
(2)異方導電性コネクター20における弾性異方導電膜23には、被検査電極のパターンに対応するパターンに従って形成された接続用導電部24の他に、被検査電極に電気的に接続されない非接続用の導電部が形成されていてもよい。
また、プローブカード10の異方導電性エラストマー層40には、被検査電極のパターンに対応するパターンに従って形成された接続用導電部41の他に、被検査電極に電気的に接続されない非接続用の導電部が形成されていてもよい。
(3)プローブカード10の異方導電性エラストマー層40は、例えば検査用回路基板11の検査用電極部16R毎に分割されて形成されていてもよい。
(4)接続用導電部24の形成においては、レーザー加工によって導電性エラストマー層24Bにおける接続用導電部となる部分以外の部分の全部が除去されることにより、接続用導電部24を形成することもできるが、図46および図47に示すように、導電性エラストマー層24Bにおける接続用導電部となる部分の周辺部分のみが除去されることにより、接続用導電部24を形成することもできる。この場合には、導電性エラストマー層24Bの残部は、離型性支持板35から機械的に剥離することによって除去することができる。
(5)プローブカード10においては、図48に示すように、検査用回路基板11上に一体的に設けられた異方導電性エラストマー層40上に、更に、弾性高分子物質中に導電性粒子Pが厚み方向に並ぶよう配向して連鎖を形成した状態でかつ当該導電性粒子Pによる連鎖が面方向に分散した状態で含有されてなる、いわゆる分散型の異方導電性エラストマーシート45を配置することができる。
(6)ウエハ検査装置におけるコントローラー2と検査用回路基板11を電気的に接続するコネクター4は、図41に示すものに限定されず、種々の構造のものを用いることができる。
以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
〔試験用ウエハの作製〕
図49〜図51に示す構成の試験用のウエハを作製した。具体的に説明すると、このウエハ(6)は、直径が8インチのシリコン(線熱膨張係数3.3×10-6/K)よりなり、当該ウエハ(6)上には、それぞれ寸法が9mm×9mmの正方形の集積回路(L)が合計で393個形成されている。ウエハ(6)に形成された集積回路(L)の各々は、その中央に被検査電極領域(A)を有し、この被検査電極領域(A)には、それぞれ縦方向(図51において上下方向)の寸法が200μmで横方向(図51において左右方向)の寸法が60μmの矩形の40個の被検査電極(7)が120μmのピッチで横方向に一列に配列されている。このウエハ(6)全体の被検査電極(7)の総数は15720個であり、全ての被検査電極(7)は互いに電気的に絶縁されている。以下、このウエハを「試験用ウエハW1」という。
また、全ての被検査電極(7)を互いに電気的に絶縁することに代えて、集積回路(L)における40個の被検査電極のうち最も外側の被検査電極(7)から数えて1個おきに2個ずつを互いに電気的に接続したこと以外は、上記試験用ウエハW1と同様の構成の393個の集積回路(L)を有するウエハ(6)を作製した。以下、このウエハを「試験用ウエハW2」という。
〈実施例1〉
〔フレーム板の作製〕
図52および図53に示す構成に従い、下記の条件により、上記の試験用ウエハW1における各被検査電極領域に対応して形成された393の開口(22)を有する直径が8インチのフレーム板(21)を作製した。
このフレーム板(21)の材質はコバール(線熱膨張係数5×10-6/K)で、その厚みは、60μmである。フレーム板(21)の開口(22)の各々は、その横方向(図52および図53において左右方向)の寸法が5.5mmで縦方向(図52および図53において上下方向)の寸法が0.4mmである。
また、縦方向に隣接する開口(22)の間の中央位置には、円形の空気流入孔(H)が形成されており、その直径は1mmである。
〔成形用スペーサーの作製〕
下記の条件により、試験用ウエハW1における被検査電極領域に対応して形成された複数の開口を有する弾性異方導電膜成形用のスペーサーを2枚作製した。
これらのスペーサーの材質はステンレス(SUS304)で、その厚みは20μmである。スペーサーの開口の各々と、その横方向の寸法が7mmで縦方向の寸法が4mmである。
〔磁性芯粒子[A]の調製〕
市販のニッケル粒子(Westaim社製,「FC1000」)を用い、以下のようにして磁性芯粒子[A]を調製した。
日清エンジニアリング株式会社製の空気分級機「ターボクラシファイア TC−15N」によって、ニッケル粒子2kgを、比重が8.9、風量が2.5m3 /min、ローター回転数が1,600rpm、分級点が25μm、ニッケル粒子の供給速度が16g/minの条件で分級処理し、ニッケル粒子1.8kgを捕集し、更に、このニッケル粒子1.8kgを、比重が8.9、風量が2.5m3 /min、ローター回転数が3,000rpm、分級点が10μm、ニッケル粒子の供給速度が14g/minの条件で分級処理し、ニッケル粒子1.5kgを捕集した。
次いで、筒井理化学機器株式会社製の音波ふるい器「SW−20AT形」によって、空気分級機によって分級されたニッケル粒子120gを更に分級処理した。具体的には、それぞれ直径が200mmで、開口径が25μm、20μm、16μmおよび8μmの4つのふるいを上からこの順で4段に重ね合わせ、ふるいの各々に直径が2mmのセラミックボール10gを投入し、最上段のふるい(開口径が25μm)にニッケル粒子20gを投入し、55Hzで12分間および125Hzで15分間の条件で分級処理し、最下段のふるい(開口径が8μm)に捕集されたニッケル粒子を回収した。この操作を合計で25回行うことにより、磁性芯粒子[A]110gを調製した。
得られた磁性芯粒子[A]は、数平均粒子径が10μm、粒子径の変動係数が10%、BET比表面積が0.2×103 2 /kg、飽和磁化が0.6Wb/m2 であった。
〔導電性粒子[a]の調製〕
粉末メッキ装置の処理槽内に、磁性芯粒子[A]100gを投入し、更に、0.32Nの塩酸水溶液2Lを加えて攪拌し、磁性芯粒子[A]を含有するスラリーを得た。このスラリーを常温で30分間攪拌することにより、磁性芯粒子[A]の酸処理を行い、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。
次いで、酸処理が施された磁性芯粒子[A]に純水2Lを加え、常温で2分間攪拌し、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。この操作を更に2回繰り返すことにより、磁性芯粒子[A]の洗浄処理を行った。
そして、酸処理および洗浄処理が施された磁性芯粒子[A]に、金の含有割合が20g/Lの金メッキ液2Lを加え、処理層内の温度を90℃に昇温して攪拌することにより、スラリーを調製した。この状態で、スラリーを攪拌しながら、磁性芯粒子[A]に対して金の置換メッキを行った。その後、スラリーを放冷しながら静置して粒子を沈殿させ、上澄み液を除去することにより、本発明用の導電性粒子[a]を調製した。
このようにして得られた導電性粒子[a]に純水2Lを加え、常温で2分間攪拌し、その後、1分間静置して導電性粒子[a]を沈殿させ、上澄み液を除去した。この操作を更に2回繰り返し、その後、90℃に加熱した純水2Lを加えて攪拌し、得られたスラリーを濾紙によって濾過して導電性粒子[a]を回収した。そして、この導電性粒子[a]を、90℃に設定された乾燥機によって乾燥処理した。
得られた導電性粒子[a]は、数平均粒子径が12μm、BET比表面積が0.15×103 2 /kg、被覆層の厚みtが111nm、(被覆層を形成する金の質量)/(導電性粒子[a]全体の質量)の値Nが0.3であった。
〔接点部材複合体の製造〕
ポリエチレンテレフタレートよりなる厚みが100μmの樹脂フィルムの一面に、厚みが18μmの銅よりなる金属箔(30)が剥離可能に積層されてなる積層材料を用意し、この積層材料における金属箔(30)の表面に、フォトリソグラフィーの手法により、それぞれ寸法が60μm×200μmの矩形の15720個の開口(31K)が、試験用ウエハW1の被検査電極のパターンに対応するパターンに従って形成された、厚みが80μmのレジスト層(31)を形成した(図4参照)。その後、金属箔(30)の表面に電解ニッケルメッキ処理を施すことにより、レジスト層(31)の各開口(31K)内に厚みが約80μmのニッケルよりなる接点部材(27)を形成し、以て、接点部材複合体(27F)を製造した(図5参照)。
〔導電性エラストマー層の形成〕
付加型液状シリコーンゴム100重量部中に、上記の導電性粒子[a]70重量部を分散させることにより、導電性エラストマー用材料を調製した。この導電性エラストマー用材料を、厚みが5mmのステンレスよりなる離型性支持板(35)の表面に、スクリーン印刷により塗布することにより、当該離型性支持板(35)上に、厚みが140μmの導電性エラストマー用材料層(24A)を形成した(図6参照)。
次いで、導電性エラストマー用材料層(24A)上に、接点部材複合体(27F)をその接点部材(27)の各々が当該導電性エラストマー用材料層(24A)に接するよう配置し、この状態で、導電性エラストマー用材料層(24A)に対して、電磁石によって厚み方向に2テスラの磁場を作用させながら、120℃、1時間の条件で硬化処理を行うことにより、離型性支持板(35)上に支持された厚みが140μmの導電性エラストマー層(21B)を形成した(図7乃至図9参照)。
以上において、使用した付加型液状シリコーンゴムは、それぞれ粘度が250Pa・sであるA液およびB液よりなる二液型のものであって、その硬化物の圧縮永久歪みが5%、デュロメーターA硬度が32、引裂強度が25kN/mのものである。
ここで、付加型液状シリコーンゴムおよびその硬化物の特性は、以下のようにして測定されたものである。
(i)付加型液状シリコーンゴムの粘度は、B型粘度計により、23±2℃における値を測定した。
(ii)シリコーンゴム硬化物の圧縮永久歪みは、次のようにして測定した。
二液型の付加型液状シリコーンゴムにおけるA液とB液とを等量となる割合で攪拌混合した。次いで、この混合物を金型に流し込み、混合物に対して減圧による脱泡処理を行った後、120℃、30分間の条件で硬化処理を行うことにより、厚みが12.7mm、直径が29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱体に対して、200℃、4時間の条件でポストキュアを行った。このようにして得られた円柱体を試験片として用い、JIS K 6249に準拠して150±2℃における圧縮永久歪みを測定した。
(iii)シリコーンゴム硬化物の引裂強度は、次のようにして測定した。
上記(ii)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュアを行うことにより、厚みが2.5mmのシートを作製した。
このシートから打ち抜きによってクレセント形の試験片を作製し、JIS K 6249に準拠して23±2℃における引裂強度を測定した。
(iv)デュロメーターA硬度は、上記(iii)と同様にして作製されたシートを5枚重ね合わせ、得られた積重体を試験片として用い、JIS K 6249に準拠して23±2℃における値を測定した。
〔接続用導電部の形成〕
接点部材複合体(27F)における金属箔(30)の表面から樹脂フィルムを剥離し、当該金属箔(30)をエッチング処理によって除去することにより、接点部材(27)およびレジスト層(31)を露出させた(図10参照)。そして、この状態で、導電性エラストマー層(24B)およびレジスト層(31)に対して、接点部材(27)をマスクとして炭酸ガスレーザー装置によってレーザー加工を施すことにより、それぞれ離型性支持板(35)上に支持され、それぞれ接点部材(27)が一体的に設けられた15720個の接続用導電部(24)を形成した(図11参照)。
以上において、炭酸ガスレーザー装置によるレーザー加工条件は、以下の通りである。すなわち、装置として、炭酸ガスレーザー加工機「ML−605GTX」(三菱電機(株)製)を用い、レーザービーム径が直径60μm,レーザー出力が0.8mJの条件で、1つの加工点にレーザービームを10ショット照射することによりレーザー加工を行った。
〔絶縁部の形成〕
厚みが5mmのステンレスよりなる絶縁部形成用の離型性支持板(35A)を用意し、この離型性支持板(35A)の表面に、一方の成形用スペーサーを配置し、この成形用スペーサー上にフレーム板(21)を位置合わせして配置し、このフレーム板(21)上に他方の成形用スペーサーを位置合わせして配置した。
次いで、導電性エラストマー材料の調製において使用した付加型液状シリコーンゴムを用意し、この付加型液状シリコーンゴムに対して減圧による脱泡処理を行った後、当該付加型液状シリコーンゴムをスクリーン印刷によって離型性支持板(35A)に塗布することにより、2枚の成形用スペーサーの各々の開口内およびフレーム板(21)の開口(22)内に付加型液状シリコーンゴムを充填することにより、絶縁部用材料層(25A)を形成した(図12参照)。
次いで、それぞれ接点部材(27)が設けられた15720個の接続用導電部(24)が形成された離型性支持板(35)を、絶縁部用材料層(25A)が形成された離型性支持板(35A)上に重ね合わせることにより、接続用導電部(24)の各々を絶縁部用材料層(25A)中に浸入させ、接点部材(27)を離型性支持板(35A)に接触させた(図13参照)。その後、この状態で、離型性支持板(35)および離型性支持板(35A)に1500kgfの圧力を加えることにより、接続用導電部(24)を厚み方向に圧縮しながら、絶縁部用材料層(25A)の硬化処理を行うことにより、接続用導電部(24)の各々の周囲に、これらを相互に絶縁する絶縁部(25)が、接続用導電部(24)に一体的に形成された弾性異方導電膜(23)を形成した(図14参照)。
そして、離型性支持板(35),(35A)から弾性異方導電膜(23)を離型させ、成形用スペーサーを除去することにより、本発明の異方導電性コネクターを製造した。
得られた異方導電性コネクターにおける弾性異方導電膜について具体的に説明すると、弾性異方導電膜の各々は、横方向の寸法が5.5mm、縦方向の寸法が0.4mmである。
弾性異方導電膜の各々には、40個の接続用導電部が120μmのピッチで横方向に一列に配列されており、接続用導電部の各々は、横方向の寸法が60μm、縦方向の寸法が200μm、厚みが約140μmであり、絶縁部の厚みが100μmである。
また、弾性異方導電膜の各々における被支持部の厚み(二股部分の一方の厚み)は20μmである。
また、弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
〔検査用回路基板の作製〕
基板材料としてアルミナセラミックス(線熱膨張係数4.8×10-6/K)を用い、試験用ウエハW1における被検査電極のパターンに対応するパターンに従って検査電極が形成された検査用回路基板を作製した。この検査用回路基板は、全体の寸法が30cm×30cmの矩形であり、その検査電極は、横方向の寸法が60μmで縦方向の寸法が200μmである。以下、この検査用回路基板を「検査用回路基板T」という。
〔異方導電性コネクターの評価〕
(1)試験1:
試験用ウエハW1を試験台に配置し、この試験用ウエハW1上に、異方導電性コネクターをその接続用導電部の各々が試験用ウエハW1の被検査電極上に位置するよう位置合わせして配置した。次いで、この異方導電製コネクター上に、検査用回路基板Tをその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置するよう位置合わせして固定し、更に、検査用回路基板Tを下方に160kgの荷重で加圧した。
そして、室温(25℃)下において、検査用回路基板Tにおける検査電極の各々に順次電圧を印加すると共に、電圧が印加された検査電極とこれに隣接する検査電極との間の電気抵抗を、異方導電性コネクターにおける接続用導電部間の電気抵抗(以下、「絶縁抵抗」という。)として測定し、絶縁抵抗が5MΩ以下である接続用導電部対の数を求めた。ここで、接続用導電部間の絶縁抵抗が5MΩ以下のものについては、ウエハに形成された集積回路の電気的検査において、これを実際上使用することが困難な場合がある。
以上、結果を下記表1に示す。
(2)試験2:
試験用ウエハW2を、電熱ヒーターを具えた試験台に配置し、この試験用ウエハW1上に異方導電性コネクターをその接続用導電部の各々が当該試験用ウエハW2の被検査電極上に位置するよう位置合わせして配置し、この異方導電製コネクター上に、検査用回路基板Tをその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板Tを下方に32kgの荷重(接続用導電部1個当たりに加わる荷重が平均で約2g)で加圧した。
そして、室温(25℃)下において、検査用回路基板Tにおける15720個の検査電極について、異方導電性コネクターおよび試験用ウエハW1を介して互いに電気的に接続された2個の検査電極の間の電気抵抗を順次測定し、測定された電気抵抗値の2分の1の値を異方導電性コネクターにおける接続用導電部の電気抵抗(以下、「導通抵抗」という。)として記録し、導通抵抗が0.5Ω以上である接続用導電部の数を求めた。以上の操作を「操作(1)」とする。
次いで、検査用回路基板Tを加圧する荷重を126kgに変更し(接続用導電部1個当たりに加わる荷重が平均で約8g)、その後、試験台を125℃に加熱し、試験台の温度が安定した後、この状態で1時間放置した。以上の操作を「操作(2)」とする。
次いで、試験台を室温まで冷却し、その後、検査用回路基板Tに対する加圧を解除した。以上の操作を「操作(3)」とする。
そして、上記の操作(1)、操作(2)および操作(3)を1サイクルとして、合計で500サイクル連続して行った。
以上において、接続用導電部の導通抵抗が0.5Ω以上のものについては、ウエハに形成された集積回路の電気的検査において、これを実際上使用することが困難である。
以上の結果を下記表2に示す。
〈比較例1〉
実施例1と同様のフレーム板を用い、特開2002−334732号公報に記載の方法に従って、フレーム板の開口の各々に下記の仕様の弾性異方導電膜を形成することにより、比較用の異方導電性コネクターを製造した。
得られた比較用の異方導電性コネクターにおける弾性異方導電膜について説明すると、弾性異方導電膜の各々は、横方向の寸法が5.5mm、縦方向の寸法が0.4mmである。
弾性異方導電膜の各々には、40個の接続用導電部が120μmのピッチで横方向に一列に配列されており、接続用導電部の各々は、横方向の寸法が60μm、縦方向の寸法が200μm、厚みが約140μmであり、絶縁部の厚みが100μmである。
また、弾性異方導電膜の各々における被支持部の厚み(二股部分の一方の厚み)は20μmである。
また、弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、体積分率で約20%であった。
そして、この比較用の異方導電性コネクターについて実施例1と同様にして評価を行った。以上、結果を表1および表2に示す。
Figure 2006351504
Figure 2006351504
表1および表2の結果から明らかなように、実施例1に係る異方導電性コネクターによれば、弾性異方導電膜における接続用導電部のピッチが小さいものであっても、当該接続用導電部には良好な導電性が得られると共に、隣接する接続用導電部間には十分な絶縁性が得られ、しかも、温度変化による熱履歴などの環境の変化に対しても良好な電気的接続状態が安定に維持され、更に、高温環境下において繰り返し使用した場合にも、全ての接続用導電部において長期間にわたって良好な導電性が維持されることが確認された。
これに対し、比較例1の異方導電性コネクターにおいては、絶縁部に導電性粒子が残存しているため、絶縁抵抗が低い接続用導電部対が存在し、また、各接続用導電部における導電性粒子の含有割合のバラツキが大きいため、高温環境下において繰り返し使用した場合に、一部の接続用導電部について導電性の低下が認められた。
本発明に係る第1の例のウエハ検査用異方導電性コネクターを示す平面図である。 第1の例のウエハ検査用異方導電性コネクターの一部を拡大して示す平面図である。 第1の例のウエハ検査用異方導電性コネクターの一部を拡大して示す説明用断面図である。 金属箔上にレジスト層が形成された状態を示す説明用断面図である。 レジスト層の開口に接点部材が形成された状態を示す説明用断面図である。 離型性支持板上に導電性エラストマー用材料層が形成された状態を示す説明用断面図である。 導電性エラストマー用材料層上に接点部材複合体が配置された状態を示す説明用断面図である。 導電性エラストマー用材料層の厚み方向に磁場が作用された状態を示す説明用断面図である。 離型性支持板上に導電性エラストマー層が形成された状態を示す説明用断面図である。 接点部材複合体における金属箔が除去された状態を示す説明用断面図である。 離型性支持板上に接続用導電部が形成された状態を示す説明用断面図である。 離型性支持板上にフレーム板が配置されると共に絶縁部用材料層が形成された状態を示す説明用断面図である。 絶縁部用材料層が形成された離型性支持板上に、接続用導電部が形成された離型性支持板が重ね合わされた状態を示す説明用断面図である。 隣接する接続用導電部間に絶縁部が形成された状態を示す説明用断面図である。 本発明に係る第2の例のウエハ検査用異方導電性コネクターを示す平面図である。 本発明に係るプローブカードの第1の例の構成を示す説明用断面図である。 第1の例のプローブカードの要部の構成を拡大して示す説明用断面図である。 第1の例のプローブカードにおける検査用回路基板を示す平面図である。 検査用回路基板におけるリード電極部を拡大して示す説明図である。 本発明に係るプローブカードの第2の例の構成を示す説明用断面図である。 第2の例のプローブカードの要部の構成を拡大して示す説明用断面図である。 第2の例のプローブカードにおける検査用回路基板を示す平面図である。 本発明に係るプローブカードの第3の例の構成を示す説明用断面図である。 第3の例のプローブカードの要部の構成を拡大して示す説明用断面図である。 異方導電性エラストマー層を拡大して示す説明用断面図である。 金属箔上に特定のパターンに従って形成された複数の開口を有するレジスト層が形成された状態を示す説明用断面図である。 レジスト層の各開口内に接点部材が形成されて金属マスク複合体が形成された状態を示す説明用断面図である。 接点部材複合体上に導電性エラストマー用材料層が形成された状態を示す説明用断面図である。 導電性エラストマー用材料層の表面に金属マスク複合体が配置された状態を示す説明用断面図である。 導電性エラストマー用材料層にその厚み方向に磁場が作用された状態を示す説明用断面図である。 接点部材複合体上に導電性エラストマー層が形成された状態を示す説明用断面図である。 金属マスク複合体の金属箔が除去された状態を示す説明用断面図である。 接点部材複合体上に特定のパターンに従って複数の接続用導電部が形成された状態を示す説明用断面図である。 検査用回路基板上に絶縁部用材料層が形成された状態を示す説明用断面図である。 絶縁部用材料層が形成された検査用回路基板上に、接続用導電部が形成された接点部材複合体が重ね合わされた状態を示す説明用断面図である。 隣接する接続用導電部間に絶縁部が形成された状態を示す説明用断面図である。 本発明に係るプローブカードの第4の例の構成を示す説明用断面図である。 第4の例のプローブカードの要部の構成を拡大して示す説明用断面図である。 本発明に係るウエハ検査装置の第1の例の構成を示す説明用断面図である。 第1の例のウエハ検査装置の要部の構成を拡大して示す説明用断面図である。 第1の例のウエハ検査装置におけるコネクターを拡大して示す説明用断面図である。 本発明に係るウエハ検査装置の第2の例の構成を示す説明用断面図である。 本発明に係るウエハ検査装置の第3の例の構成を示す説明用断面図である。 第3の例のウエハ検査装置の要部の構成を拡大して示す説明用断面図である。 本発明に係るウエハ検査装置の第4の例の構成を示す説明用断面図である。 導電性エラストマー層における接続用導電部となる部分の周辺部部のみが除去されることにより、接続用導電部が形成された状態を示す説明図である。 導電性エラストマー層における接続用導電部となる部分の周辺部部のみが除去されることにより、接続用導電部が形成された状態を示す説明用断面図である。 本発明に係るプローブカードの他の例における要部の構成を拡大して示す説明用断面図である。 実施例で使用した試験用ウエハの上面図である。 図49に示す試験用ウエハに形成された集積回路の被検査電極領域の位置を示す説明図である。 図49に示す試験用ウエハに形成された集積回路の被検査電極を示す説明図である。 実施例で作製したフレーム板の上面図である。 図52に示すフレーム板の一部を拡大して示す説明図である。 従来の異方導電性コネクターを製造するための金型の構成を示す説明用断面図である。 従来の異方導電性コネクターを製造する工程において、金型内にフレーム板が配置されると共に、成形材料層が形成された状態を示す説明用断面図である。 成形材料層の厚み方向に磁場が作用された状態を示す説明用断面図である。 従来の異方導電性コネクターの製造方法において、成形材料層に作用される磁場の方向を示す説明用断面図である。
符号の説明
2 コントローラー
3 入出力端子
3R 入出力端子部
4 コネクター
4A 導電ピン
4B 支持部材
5 ウエハ載置台
6 ウエハ
7 被検査電極
10 プローブカード
11 検査用回路基板
12 第1の基板素子
13 リード電極
13R リード電極部
14 ホルダー
14K 開口
15 第2の基板素子
16 検査用電極
16R 検査用電極部
17 補強部材
20 異方導電性コネクター
21 フレーム板
22 開口
23 弾性異方導電膜
24 接続用導電部
24A 導電性エラストマー用材料層
24B 導電性エラストマー層
25 絶縁部
25A 絶縁部用材料層
26 突出部
27 接点部材
27F 接点部材複合体
30 金属箔
31 レジスト層
31K 開口
35,35A 離型性支持板
40 異方導電性エラストマー層
41 接続用導電部
41A 導電性エラストマー用材料層
41B 導電性エラストマー層
42 絶縁部
42A 絶縁部用材料層
45 異方導電性エラストマーシート
46 金属箔
47 レジスト層
47K 開口
48 金属マスク
48F 金属マスク複合体
80 上型
81 基板
82,82a,82b 強磁性体層
83 非磁性体層
85 下型
86 基板
87 87a,87b 強磁性体層
88 非磁性体層
90 フレーム板
91 開口
95 弾性異方導電膜
95A 成形材料層
96 導電部
97 絶縁部
A 被検査電極領域
P 導電性粒子
H 空気流入孔
L 集積回路

Claims (7)

  1. 検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極が配置された電極領域に対応して複数の開口が形成されたフレーム板と、前記電極領域における被検査電極のパターンに対応するパターンに従って配置された弾性高分子物質中に磁性を示す導電性粒子が含有されてなる複数の接続用導電部およびこれらを相互に絶縁する弾性高分子物質よりなる絶縁部を有し、前記フレーム板にその開口を塞ぐよう配置されて支持された複数の弾性異方導電膜と、これらの弾性異方導電膜における各接続用導電部上に一体的に設けられた金属よりなる複数の接点部材とを具えてなるウエハ検査用異方導電性コネクターを製造する方法であって、
    離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有されてなる導電性エラストマー用材料層を形成し、この導電性エラストマー用材料層の表面に、前記被検査電極のパターンに対応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、この状態で、当該導電性エラストマー用材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマー用材料層を硬化処理して導電性エラストマー層を形成し、この導電性エラストマー層をレーザー加工して前記接点部材が配置された部分以外の部分を除去することにより、前記離型性支持板上に、前記特定のパターンに従って配置され、前記接点部材が設けられた複数の接続用導電部を形成し、
    この状態で、当該接点部材が設けられた接続用導電部の各々を、フレーム板の開口を塞ぐよう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料よりなる絶縁部用材料層中に浸入させ、当該絶縁部用材料層を硬化処理することにより絶縁部を形成する工程を有することを特徴とするウエハ検査用異方導電性コネクターの製造方法。
  2. 金属箔上に、特定のパターンに従って開口が形成されたレジスト層を形成し、前記金属箔における前記レジスト層の開口から露出した部分の表面に磁性を示す金属によるメッキ処理を施すことにより、当該レジスト層の開口の各々に接点部材が形成されてなる接点部材複合体を製造し、この接点部材複合体を導電性エラストマー用材料層の表面に積重することにより、当該導電性エラストマー用材料層の表面に、前記特定のパターンに従って磁性を示す金属よりなる接点部材を配置することを特徴とする請求項1に記載のウエハ検査用異方導電性コネクターの製造方法。
  3. 請求項1または請求項2に記載の製造方法によって得られることを特徴とするウエハ検査用異方導電性コネクター。
  4. 検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極のパターンに対応するパターンに従って複数の検査用電極が表面に形成された検査用回路基板と、この検査用回路基板の表面上に配置された、請求項3に記載のウエハ検査用異方導電性コネクターとを具えてなることを特徴とするウエハ検査用プローブカード。
  5. 検査対象であるウエハに形成された全てのまたは一部の集積回路における被検査電極に対応するパターンに従って複数の検査用電極が表面に形成された検査用回路基板と、この検査用回路基板の表面上に一体的に設けられた、前記検査用電極の各々の表面上に位置された厚み方向に伸びる複数の接続用導電部およびこれらを相互に絶縁する絶縁部よりなる異方導電性エラストマー層と、この異方導電性エラストマー層の接続用導電部上に一体的に設けられた金属よりなる接点部材とを具えてなるウエハ検査用プローブカードを製造する方法であって、
    金属板上に、前記検査用電極に係る特定のパターンに従ってそれぞれ磁性を示す金属よりなる複数の接点部材が形成されてなる接点部材複合体を用意し、
    この接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が含有されてなる導電性エラストマー用材料層を形成し、この導電性エラストマー用材料層上に、それぞれ磁性を示す金属よりなる複数の金属マスクの各々を、当該導電性エラストマー用材料層を介して前記接点部材と互いに対向するよう配置し、この状態で、当該導電性エラストマー用材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマー用材料層を硬化処理することにより、導電性エラストマー層を形成し、当該導電性エラストマー層をレーザー加工して前記接点部材と前記金属マスクとの間に位置する部分以外の部分を除去することにより、前記特定のパターンに従って配置された複数の接続用導電部を形成し、
    各接続用導電部上に配置された金属マスクを除去し、その後、当該接続用導電部が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる絶縁部用材料層が形成された検査用回路基板上に重ね合わせることにより、当該検査用回路基板の検査用電極の各々とこれに対応する接続用導電部とを対接させ、この状態で前記絶縁部用材料層を硬化処理することにより絶縁部を形成する工程を有することを特徴とするウエハ検査用プローブカードの製造方法。
  6. 請求項5に記載の製造方法によって得られることを特徴とするウエハ検査用プローブカード。
  7. ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うウエハ検査装置であって、
    請求項4または請求項6に記載のウエハ検査用プローブカードを具えてなることを特徴とするウエハ検査装置。
JP2005304253A 2004-10-22 2005-10-19 ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置 Withdrawn JP2006351504A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304253A JP2006351504A (ja) 2004-10-22 2005-10-19 ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004308963 2004-10-22
JP2005148067 2005-05-20
JP2005304253A JP2006351504A (ja) 2004-10-22 2005-10-19 ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置

Publications (1)

Publication Number Publication Date
JP2006351504A true JP2006351504A (ja) 2006-12-28

Family

ID=37647116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304253A Withdrawn JP2006351504A (ja) 2004-10-22 2005-10-19 ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置

Country Status (1)

Country Link
JP (1) JP2006351504A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004996A2 (ko) * 2009-07-06 2011-01-13 Lee Jae Hak 매개부재의 제조방법 및 그 제조방법에 의해 제조된 매개부재
KR101037787B1 (ko) * 2009-07-06 2011-05-27 주식회사 아이에스시테크놀러지 매개부재의 제조방법 및 그 제조방법에 의해 제조된 매개부재
KR101042374B1 (ko) 2009-07-06 2011-06-17 주식회사 아이에스시테크놀러지 매개부재의 제조방법 및 그 제조방법에 의해 제조된 매개부재
JP2011150836A (ja) * 2010-01-20 2011-08-04 Jsr Corp 回路接続部材、導電性粒子および導電性粒子の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004996A2 (ko) * 2009-07-06 2011-01-13 Lee Jae Hak 매개부재의 제조방법 및 그 제조방법에 의해 제조된 매개부재
WO2011004996A3 (ko) * 2009-07-06 2011-04-07 Lee Jae Hak 매개부재의 제조방법 및 그 제조방법에 의해 제조된 매개부재
KR101037787B1 (ko) * 2009-07-06 2011-05-27 주식회사 아이에스시테크놀러지 매개부재의 제조방법 및 그 제조방법에 의해 제조된 매개부재
KR101042374B1 (ko) 2009-07-06 2011-06-17 주식회사 아이에스시테크놀러지 매개부재의 제조방법 및 그 제조방법에 의해 제조된 매개부재
JP2011150836A (ja) * 2010-01-20 2011-08-04 Jsr Corp 回路接続部材、導電性粒子および導電性粒子の製造方法

Similar Documents

Publication Publication Date Title
JP3685192B2 (ja) 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法
US7131851B2 (en) Anisotropic conductivity connector, conductive paste composition, probe member, and wafer inspection device, and wafer inspecting method
KR100595787B1 (ko) 시트형 커넥터 및 그 제조 방법 및 그 응용
KR100756120B1 (ko) 이방 도전성 커넥터 및 도전성 페이스트 조성물, 프로브부재 및 웨이퍼 검사 장치 및 웨이퍼 검사 방법
KR100715751B1 (ko) 이방 도전성 커넥터 및 프로우브 부재 및 웨이퍼 검사장치 및 웨이퍼 검사 방법
JP2007085833A (ja) ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカード並びにウエハ検査装置
KR20070046033A (ko) 웨이퍼 검사용 이방 도전성 커넥터 및 그의 제조 방법 및응용
KR100741228B1 (ko) 이방 도전성 커넥터 및 프로브 부재 및 웨이퍼 검사 장치및 웨이퍼 검사 방법
JP2006351504A (ja) ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置
WO2006043631A1 (ja) ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置
JP5104265B2 (ja) プローブ部材およびその製造方法ならびにその応用
JP3760950B2 (ja) シート状プローブの製造方法
JP4423991B2 (ja) 異方導電性コネクターおよびプローブ部材並びにウエハ検査装置およびウエハ検査方法
JP2006098395A (ja) ウエハ検査用異方導電性コネクターおよびその製造方法並びにその応用
JP3685191B2 (ja) 異方導電性コネクターおよびプローブ部材並びにウエハ検査装置およびウエハ検査方法
JP2009098065A (ja) プローブ部材およびその製造方法ならびにその応用
JP3938117B2 (ja) 異方導電性コネクターおよびプローブ部材並びにウエハ検査装置およびウエハ検査方法
JP3685190B2 (ja) 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法
JP2006063399A (ja) 耐半田性金組成物およびその応用
JP2006216502A (ja) 異方導電性コネクター、プローブカード並びにウエハ検査装置およびウエハ検査方法
JP2006100391A (ja) ウエハ検査用プローブカードおよびウエハ検査装置
JP2006038874A (ja) シート状プローブおよびその応用
WO2005103735A1 (ja) シート状プローブおよびその製造方法並びにその応用

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106