JP2006349032A - Double-row tapered roller bearing and spindle supporting structure of aerogenerator - Google Patents

Double-row tapered roller bearing and spindle supporting structure of aerogenerator Download PDF

Info

Publication number
JP2006349032A
JP2006349032A JP2005175404A JP2005175404A JP2006349032A JP 2006349032 A JP2006349032 A JP 2006349032A JP 2005175404 A JP2005175404 A JP 2005175404A JP 2005175404 A JP2005175404 A JP 2005175404A JP 2006349032 A JP2006349032 A JP 2006349032A
Authority
JP
Japan
Prior art keywords
small
tapered roller
diameter side
inner ring
ring spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005175404A
Other languages
Japanese (ja)
Inventor
Tatsuya Omoto
達也 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005175404A priority Critical patent/JP2006349032A/en
Publication of JP2006349032A publication Critical patent/JP2006349032A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/52Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers
    • F16C33/523Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers with pins extending into holes or bores on the axis of the rollers
    • F16C33/526Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers with pins extending into holes or bores on the axis of the rollers extending through the rollers and joining two lateral cage parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-row tapered roller bearing capable of avoiding interference between an inner ring spacer and a small diameter side side-plate while maintaining the rigidity of the inner ring spacer to a certain value and a spindle supporting structure of an aerogenerator. <P>SOLUTION: A relief part 20 reduced in thickness is formed in the inner ring spacer 18 in an area facing the minimum inner diameter portions of the small diameter side side-plates 17a and 17b during assembly. The relief part 20 is formed in such a stepped shape that its thickness is reduced from the outer diameter part 19 of the inner ring spacer 18 to a diameter at which the small diameter side side-plates 17a and 17b are not interfered with each other, namely, the center part of the inner ring spacer 18 is formed thick and both end parts thereof are formed thin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、複列円錐ころ軸受および風力発電機の主軸支持構造に関し、特に、大きなラジアル荷重やスラスト荷重、モーメント荷重を受けることができる複列円錐ころ軸受およびこのような軸受を使用した風力発電機の主軸支持構造に関する。   The present invention relates to a double-row tapered roller bearing and a main shaft support structure of a wind power generator, and more particularly to a double-row tapered roller bearing capable of receiving a large radial load, thrust load, and moment load, and wind power generation using such a bearing. The present invention relates to the main shaft support structure of the machine.

風力発電機の主軸に使用される軸受は、ブレードの自重等に対するラジアル荷重、風力に対するスラスト荷重およびモーメント荷重を受ける必要がある。さらには、風力発電機の主軸は片持ちの梁構造であるため、主軸の撓みに対する自動調心性を備えた軸受が求められるため、自動調心ころ軸受および円筒ころ軸受を組み合わせた軸受が使用されていた。図8は、自動調心ころ軸受101を風力発電機の主軸に使用した場合の概略図である。図8を参照して、自動調心ころ軸受101は、内輪102と、左右の列に配置された複数の調心ころ103a、103bと、複数の調心ころ103a、103bの間隔を保持する保持器104と、外輪105とを有する。自動調心ころ軸受101は、風を受けるブレード111が一方端に設けられた主軸112に取り付けられ、ハウジング113に組み込まれる。このように取り付けられた自動調心ころ軸受101と円筒ころ軸受とを組み合わせて、風力発電機の主軸に使用していた。   The bearing used for the main shaft of the wind power generator needs to receive a radial load against the weight of the blade, a thrust load against the wind force, and a moment load. Furthermore, since the main shaft of a wind power generator has a cantilever beam structure, a bearing having self-alignment with respect to the deflection of the main shaft is required, and therefore, a combination of a self-aligning roller bearing and a cylindrical roller bearing is used. It was. FIG. 8 is a schematic view when the self-aligning roller bearing 101 is used as a main shaft of a wind power generator. Referring to FIG. 8, the self-aligning roller bearing 101 holds an inner ring 102, a plurality of aligning rollers 103 a and 103 b arranged in the left and right rows, and a distance between the plurality of aligning rollers 103 a and 103 b. A container 104 and an outer ring 105. The self-aligning roller bearing 101 is mounted on a main shaft 112 provided with a blade 111 for receiving wind at one end, and is incorporated in a housing 113. The self-aligning roller bearing 101 and the cylindrical roller bearing thus mounted are combined and used for the main shaft of the wind power generator.

しかし、上記の二つの転がり軸受を組み合わせた軸受については、部品点数が多く、その削減が求められている。また、軸受の小型化についても要求される。   However, a bearing that combines the above-mentioned two rolling bearings has a large number of parts and is required to be reduced. Moreover, it is requested | required also about size reduction of a bearing.

そのような要求に応じて、自動調心ころ軸受と比較して調心性は劣るものの、一つの軸受で大きなラジアル荷重、スラスト荷重およびモーメント荷重を受けることができる複列円錐ころ軸受が、風力発電機の主軸に使用されている。図9は、複列円錐ころ軸受121の断面図の一例である。図9を参照して、複列円錐ころ軸受121は、小径側端面が向き合うように配置された左右の内輪122a、122bと、内輪122a、122bの間に配置された内輪間座128と、外輪124と、内輪122a、122bと外輪124との間に配置された複数の円錐ころ123a、123bと、左右の列において複数の円錐ころ123a、123bの間隔を保持する左右の保持器とを有する。   In response to such requirements, double-row tapered roller bearings that can receive large radial loads, thrust loads, and moment loads with a single bearing, although inferior in alignment compared to spherical roller bearings, Used for the main shaft of the machine. FIG. 9 is an example of a cross-sectional view of the double row tapered roller bearing 121. Referring to FIG. 9, double-row tapered roller bearing 121 includes left and right inner rings 122a, 122b arranged so that the end surfaces on the small diameter side face each other, inner ring spacers 128 arranged between inner rings 122a, 122b, and outer rings. 124, a plurality of tapered rollers 123a, 123b disposed between the inner rings 122a, 122b and the outer ring 124, and left and right cages for holding the intervals between the plurality of tapered rollers 123a, 123b in the left and right rows.

各保持器については、大きなラジアル荷重に対する負荷容量を実現するために、円錐ころ123a、123bをより多く保持することができるピン型保持器が用いられる。ピン型保持器は、各円錐ころ123a、123bを貫通するピン125a、125bと、各円錐ころ123a、123bの大端面側に突出する複数のピン125a、125bの一方端を保持して環状に延びる大径側側板126a、126bと、各円錐ころ123a、123bの小端面側に突出する複数のピン125a、125bの他方端を保持して環状に延びる小径側側板127a、127bとを有する。   For each cage, a pin type cage that can hold more tapered rollers 123a and 123b is used in order to realize a load capacity against a large radial load. The pin type retainer holds the one end of the pins 125a and 125b penetrating the tapered rollers 123a and 123b and the plurality of pins 125a and 125b protruding to the large end face side of the tapered rollers 123a and 123b and extends in an annular shape. Large-diameter side plates 126a and 126b, and small-diameter side plates 127a and 127b that hold the other ends of the plurality of pins 125a and 125b protruding toward the small end surfaces of the tapered rollers 123a and 123b and extend annularly.

また、このようなピン型保持器を使用した複列円錐ころ軸受が特開2003−49843号公報(特許文献1)に開示されており、複列円錐ころ軸受を主軸に使用した風力発電用風車が特開2005−105917号公報(特許文献2)に開示されている。
特開2003−49843号公報(段落番号0008〜0009、図1) 特開2005−105917号公報(段落番号0020〜0039、図2)
A double-row tapered roller bearing using such a pin type cage is disclosed in Japanese Patent Application Laid-Open No. 2003-49843 (Patent Document 1), and a wind turbine for wind power generation using the double-row tapered roller bearing as a main shaft. Is disclosed in Japanese Patent Laying-Open No. 2005-105917 (Patent Document 2).
JP 2003-49843 A (paragraph numbers 0008 to 0009, FIG. 1) Japanese Patent Laying-Open No. 2005-105917 (paragraph numbers 0020 to 0039, FIG. 2)

より大きな発電量を得るためには、ブレード111がより大きな風を受ける必要があり、そのような環境下においては、主軸を支持する軸受は、より大きなラジアル荷重、スラスト荷重およびモーメント荷重を受ける。より大きなラジアル荷重を受けるためには、上記した複列円錐ころ軸受121の円錐ころ123a、123bのころ長さをできるだけ大きくする必要がある。また、より大きなスラスト荷重およびモーメント荷重を受けるためには、外輪軌道面と複列円錐ころ軸受121の回転軸線とのなす角度である接触角を大きくする必要がある。   In order to obtain a larger power generation amount, the blade 111 needs to receive a larger wind. Under such an environment, the bearing supporting the main shaft receives a larger radial load, a thrust load, and a moment load. In order to receive a larger radial load, it is necessary to make the roller lengths of the tapered rollers 123a and 123b of the double-row tapered roller bearing 121 as large as possible. Further, in order to receive a larger thrust load and moment load, it is necessary to increase a contact angle that is an angle formed by the outer ring raceway surface and the rotational axis of the double row tapered roller bearing 121.

図10は、接触角を大きくした場合の複列円錐ころ軸受121の断面図である。図10を参照して、外輪軌道面131と複列円錐ころ軸受121の回転軸線(図示せず)とのなす角度である接触角αを大きくすると、小径側側板127a、127bの最小内径部分となる角部Kが、内輪間座128の外径部129に干渉するおそれがある。   FIG. 10 is a cross-sectional view of the double row tapered roller bearing 121 when the contact angle is increased. Referring to FIG. 10, when the contact angle α, which is the angle formed between the outer ring raceway surface 131 and the rotation axis (not shown) of the double row tapered roller bearing 121, is increased, the minimum inner diameter portion of the small diameter side plates 127a and 127b The corner portion K may interfere with the outer diameter portion 129 of the inner ring spacer 128.

この場合、内輪間座128の外径を小さくして、厚みを小さくすることにより、小径側側板127a、127bとの干渉を避けることも考えられる。しかし、内輪間座128には、軸受の組み込み時に、内輪122a、122bの小径側端面から大きな面圧がかかるため、内輪間座128の剛性をある程度維持することが必要であり、厚みを小さくするにも限界がある。   In this case, it is conceivable to avoid interference with the small-diameter side plates 127a and 127b by reducing the outer diameter of the inner ring spacer 128 and reducing the thickness. However, since a large surface pressure is applied to the inner ring spacer 128 from the end surfaces on the small diameter side of the inner rings 122a and 122b when the bearings are assembled, it is necessary to maintain the rigidity of the inner ring spacer 128 to some extent and reduce the thickness. There are also limitations.

また、上記したようにラジアル荷重に対する剛性を維持する観点から、円錐ころ123a、123bのころ長さを短くして、内輪間座128と小径側側板127a、127bとの干渉を避けることもできない。   Further, as described above, from the viewpoint of maintaining the rigidity against the radial load, the roller lengths of the tapered rollers 123a and 123b cannot be shortened to avoid interference between the inner ring spacer 128 and the small diameter side plates 127a and 127b.

さらに、小径側側板127a、127bを薄肉化し、内輪間座128と小径側側板127a、127bとの干渉を防ぐ等、小径側側板127a、127bの形状を変更することも考えられる。しかし、小径側側板127a、127bは複数のピン125a、125bを保持しなければならないため、小径側側板127a、127bにもある程度の剛性を維持することも必要であり、小径側側板127a、127bを薄肉化することもできない。   Further, it is conceivable to change the shapes of the small diameter side plates 127a and 127b, for example, by reducing the thickness of the small diameter side plates 127a and 127b to prevent interference between the inner ring spacer 128 and the small diameter side plates 127a and 127b. However, since the small-diameter side plates 127a and 127b must hold a plurality of pins 125a and 125b, the small-diameter side plates 127a and 127b also need to maintain a certain degree of rigidity. It cannot be thinned.

この発明は、内輪間座の剛性をある程度維持したまま、内輪間座と小径側側板との干渉を避けることができる複列円錐ころ軸受およびこのような軸受を使用した風力発電機の主軸支持構造を提供することを目的とする。   The present invention relates to a double-row tapered roller bearing capable of avoiding interference between the inner ring spacer and the small-diameter side plate while maintaining the rigidity of the inner ring spacer to some extent, and a main shaft support structure for a wind power generator using such a bearing. The purpose is to provide.

この発明に係る複列円錐ころ軸受は、外輪と、小径側端面を向き合わせるよう配置された左右の内輪と、左右の内輪の間に配置された内輪間座と、外輪と左右の内輪との間に配置された複数の円錐ころと、左右の列において複数の円錐ころの間隔を保持する左右の保持器とを備えた複列円錐ころ軸受である。また、上記した各保持器は、各円錐ころを貫通するピンと、各円錐ころの小端面側に突出する複数のピンの一方端を保持して環状に延びる小径側側板と、各円錐ころの大端面側に突出する複数のピンの他方端を保持して環状に延びる大径側側板とを有する。ここで、内輪間座は、小径側側板の最小内径部分に対面する領域に、厚みを減じた逃げ部を有している。   A double row tapered roller bearing according to the present invention includes an outer ring, left and right inner rings arranged to face the end surfaces on the small diameter side, an inner ring spacer arranged between the left and right inner rings, and an outer ring and left and right inner rings. It is a double row tapered roller bearing provided with a plurality of tapered rollers arranged between them and a left and right cage for maintaining the spacing between the plurality of tapered rollers in the left and right rows. Each of the cages described above includes a pin that passes through each tapered roller, a small-diameter side plate that extends annularly while holding one end of a plurality of pins protruding to the small end face side of each tapered roller, and a large diameter for each tapered roller. A large-diameter side plate extending annularly while holding the other ends of the plurality of pins protruding to the end surface side. Here, the inner ring spacer has a relief portion with a reduced thickness in a region facing the minimum inner diameter portion of the small-diameter side plate.

このように構成することにより、内輪間座の、小径側側板と干渉する部分である小径側側板の最小内径部分に対面する領域に、厚みを減じた逃げ部が設けられたため、内輪間座と小径側側板との干渉を避けることができる。また、干渉する部分にのみ逃げ部を設けているだけで、その他の部分については内輪間座の厚みは減じていないため、内輪間座の剛性もある程度維持することができる。   By configuring in this way, a relief portion with reduced thickness is provided in a region facing the minimum inner diameter portion of the small-diameter side plate that is a portion that interferes with the small-diameter side plate of the inner ring spacer. Interference with the small diameter side plate can be avoided. Further, since the relief portion is provided only in the interfering portion and the thickness of the inner ring spacer is not reduced in the other portions, the rigidity of the inner ring spacer can be maintained to some extent.

好ましくは、逃げ部の外径は、小径側側板の最小内径よりも小さくする。このように構成することにより、確実に内輪間座と小径側側板との干渉を避けることができる。   Preferably, the outer diameter of the escape portion is made smaller than the minimum inner diameter of the small diameter side plate. By comprising in this way, interference with an inner ring | wheel spacer and a small diameter side plate can be avoided reliably.

より好ましくは、内輪間座の最大外径は、小径側側板の最小内径よりも大きくする。このように構成することにより、内輪間座と小径側側板との干渉を避けながら、内輪間座の剛性を十分に保つことができる。   More preferably, the maximum outer diameter of the inner ring spacer is larger than the minimum inner diameter of the small-diameter side plate. By configuring in this way, the rigidity of the inner ring spacer can be sufficiently maintained while avoiding interference between the inner ring spacer and the small diameter side plate.

さらに好ましくは、小径側側板の最小内径部分は、円筒面を形成している。たとえば、小径側側板の断面形状が四角形であった場合に、最小内径部分に該当する四角形の角部を切削等して円筒面とする。こうすることにより、小径側側板の最小内径を大きくすることができ、その分、内輪間座に設ける逃げ部の径方向の厚みを減ずる量を少なくして、小径側側板および内輪間座それぞれの剛性を維持することができる。   More preferably, the minimum inner diameter portion of the small diameter side plate forms a cylindrical surface. For example, when the cross-sectional shape of the small-diameter side plate is a quadrangle, a rectangular corner corresponding to the minimum inner diameter portion is cut to obtain a cylindrical surface. By doing so, the minimum inner diameter of the small-diameter side plate can be increased, and accordingly, the amount of reducing the radial thickness of the escape portion provided in the inner ring spacer is reduced, and the small-diameter side plate and the inner ring spacer are respectively reduced. Stiffness can be maintained.

この発明の他の局面においては、風力発電機の主軸支持構造は、風力を受けるブレードと、その一端がブレードに固定され、ブレードとともに回転する主軸と、固定部材に組み込まれ、主軸を回転自在に支持する複列円錐ころ軸受とを有する風力発電機の主軸支持構造である。上記した複列円錐ころ軸受は、外輪と、小径側端面を向き合わせるよう配置された左右の内輪と、左右の内輪の間に配置された内輪間座と、外輪と左右の内輪との間に配置された複数の円錐ころと、左右の列において複数の円錐ころの間隔を保持する左右の保持器とを備える。また、上記した各保持器は、各円錐ころを貫通するピンと、各円錐ころの小端面側に突出する複数のピンの一方端を保持して環状に延びる小径側側板と、各円錐ころの大端面側に突出する複数のピンの他方端を保持して環状に延びる大径側側板とを有する。ここで、内輪間座は、小径側側板の最小内径部分に対面する領域に、厚みを減じた逃げ部を有している。   In another aspect of the present invention, the main shaft support structure of the wind power generator includes a blade that receives wind power, one end of which is fixed to the blade, the main shaft that rotates together with the blade, and a fixed member that can rotate the main shaft. A main shaft support structure of a wind power generator having a double row tapered roller bearing to be supported. The double-row tapered roller bearing described above includes an outer ring, left and right inner rings arranged so that the end faces on the small diameter side face each other, an inner ring spacer arranged between the left and right inner rings, and an outer ring and the left and right inner rings. A plurality of tapered rollers arranged, and left and right cages for holding the intervals between the plurality of tapered rollers in the left and right rows. Each of the cages described above includes a pin that passes through each tapered roller, a small-diameter side plate that extends annularly while holding one end of a plurality of pins protruding to the small end face side of each tapered roller, and a large diameter for each tapered roller. A large-diameter side plate extending annularly while holding the other ends of the plurality of pins protruding to the end surface side. Here, the inner ring spacer has a relief portion with a reduced thickness in a region facing the minimum inner diameter portion of the small-diameter side plate.

このように構成することにより、内輪間座と小径側側板との干渉を避けながら、かつ、内輪間座の剛性をある程度維持しながら、複列円錐ころ軸受の、外輪軌道面と軸受回転軸線とのなす角度である接触角を大きくすることができるので、より大きなスラスト荷重およびモーメント荷重を受けることができる風力発電機の主軸支持構造を提供することができる。   By configuring in this way, while avoiding interference between the inner ring spacer and the small-diameter side plate and maintaining the rigidity of the inner ring spacer to some extent, the outer ring raceway surface and the bearing rotation axis of the double row tapered roller bearing Therefore, it is possible to provide a main shaft support structure for a wind power generator capable of receiving a larger thrust load and moment load.

この発明によれば、内輪間座と小径側側板との干渉を避けつつ、内輪間座の剛性を良好に維持することができる。   According to this invention, the rigidity of the inner ring spacer can be favorably maintained while avoiding interference between the inner ring spacer and the small-diameter side plate.

また、このような複列円錐ころ軸受を風力発電機の主軸に使用すれば、内輪間座と小径側側板との干渉を避けながら、かつ、内輪間座の剛性を良好に維持しながら接触角を大きくすることができるので、より大きなスラスト荷重およびモーメント荷重を受けることができる。   If such a double-row tapered roller bearing is used for the main shaft of a wind power generator, the contact angle is avoided while avoiding interference between the inner ring spacer and the small-diameter side plate and maintaining the rigidity of the inner ring spacer. Therefore, it is possible to receive a larger thrust load and moment load.

以下、この発明の実施の形態を図面を参照して説明する。図1は、この発明の一実施形態に係る複列円錐ころ軸受11を示した図である。図1を参照して、複列円錐ころ軸受11は、小径側端面が向き合うよう配置された左右の内輪12a、12bと、内輪12a、12bの間に配置される内輪間座18と、左右の内輪12a、12bに対応する軌道面を有する外輪14と、内輪12a、12bと外輪14の間に配置された複数の円錐ころ13a、13bと、左右の列において複数の円錐ころ13a、13bの間隔を保持する左右の保持器とを有する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a double row tapered roller bearing 11 according to an embodiment of the present invention. Referring to FIG. 1, double-row tapered roller bearing 11 includes left and right inner rings 12a and 12b arranged so that the end faces on the small diameter side face each other, inner ring spacers 18 arranged between inner rings 12a and 12b, An outer ring 14 having a raceway surface corresponding to the inner rings 12a and 12b, a plurality of tapered rollers 13a and 13b disposed between the inner rings 12a and 12b and the outer ring 14, and a distance between the plurality of tapered rollers 13a and 13b in the left and right rows Left and right cages.

内輪12a、12bは、大きなスラスト荷重およびモーメント荷重を受けるため、外輪軌道面と複列円錐ころ軸受11の回転軸線(図示せず)とのなす角度である接触角が大きく構成されている。好ましくは、接触角は40°〜47°の範囲内に設定されている。   Since the inner rings 12a and 12b receive a large thrust load and moment load, a contact angle that is an angle formed between the outer ring raceway surface and the rotation axis (not shown) of the double row tapered roller bearing 11 is configured to be large. Preferably, the contact angle is set within a range of 40 ° to 47 °.

内輪12aと12bの間には、小径側側板17a、17bとの干渉を避け得る形状を有する内輪間座18が配置されている。内輪間座18は、その両端面がそれぞれ左右の内輪12a、12bの小径側端面に接しており、軸受の組み込み時に互いの内輪12a、12bから圧力がかかる。したがって、内輪間座18には、その圧力に耐えるだけの剛性が必要である。剛性を確保するためには、径方向の断面積を大きくする、すなわち、内輪間座18の径方向の厚みを増すことが必要である。   An inner ring spacer 18 having a shape capable of avoiding interference with the small-diameter side plates 17a and 17b is disposed between the inner rings 12a and 12b. Both end surfaces of the inner ring spacer 18 are in contact with the small diameter side end surfaces of the left and right inner rings 12a and 12b, respectively, and pressure is applied from the inner rings 12a and 12b when the bearings are assembled. Therefore, the inner ring spacer 18 needs to be rigid enough to withstand the pressure. In order to ensure rigidity, it is necessary to increase the radial sectional area, that is, to increase the radial thickness of the inner ring spacer 18.

外輪14は、中央部が径方向に凸状の断面形状をしており、内輪12a、12bとの間に複数の円錐ころ13a、13bを保持している。本実施形態では、外輪14は一つで構成されているが、内輪12a、12bに対してそれぞれ別個の外輪が設けられていてもよい。   The outer ring 14 has a cross-sectional shape whose central portion is convex in the radial direction, and holds a plurality of tapered rollers 13a and 13b between the inner rings 12a and 12b. In the present embodiment, one outer ring 14 is configured, but separate outer rings may be provided for the inner rings 12a and 12b, respectively.

円錐ころ13a、13bは、外輪14と内輪12a、12bとの間に配置されている。また、後述するピン型保持器による保持を可能にするため、円錐ころ13a、13bには、小端面から大端面にかけてピンを挿通するための貫通穴が設けられている。   The tapered rollers 13a and 13b are disposed between the outer ring 14 and the inner rings 12a and 12b. Further, in order to enable holding by a pin type cage, which will be described later, the tapered rollers 13a and 13b are provided with through holes for inserting pins from the small end surface to the large end surface.

保持器は、円錐ころ13a、13bをより多く保持することができるピン型保持器を使用している。左右の各保持器は、各円錐ころ13a、13bを貫通するピン15a、15bと、各円錐ころ13a、13bの小端面側に突出する複数のピン15a、15bの一方端を保持する小径側側板17a、17bと、各円錐ころ13a、13bの大端面側に突出する複数のピン15a、15bの他方端を保持する大径側側板16a、16bとを有する。   As the cage, a pin type cage that can hold more tapered rollers 13a and 13b is used. Each of the left and right cages includes a pin 15a, 15b that passes through each of the tapered rollers 13a, 13b, and a small-diameter side plate that holds one end of the plurality of pins 15a, 15b protruding toward the small end surface of each of the tapered rollers 13a, 13b. 17a, 17b and large-diameter side plates 16a, 16b that hold the other ends of the plurality of pins 15a, 15b protruding to the large end face side of the tapered rollers 13a, 13b.

小径側側板17a、17bおよび大径側側板16a、16bのいずれも回転軸線を中心に環状に延びており、リング状である。小径側側板17a、17bは内輪12a、12bの小鍔側に配置されており、大鍔側に配置された大径側側板16a、16bよりも内径が小さい。また、小径側側板17a、17bおよび大径側側板16a、16bは、いずれも多量のピン15a、15bを保持するため、一定の剛性が必要である。剛性や生産性等の観点から、小径側側板17a、17bおよび大径側側板16a、16bの断面形状は四角形状であることが好適である。ここで、剛性等を確保することができれば、断面形状が円状や楕円状等、他の形状の小径側側板17a、17bおよび大径側側板16a、16bであっても、特に問題はない。   Each of the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b extends annularly around the rotation axis and has a ring shape. The small-diameter side plates 17a and 17b are disposed on the small flange side of the inner rings 12a and 12b, and the inner diameter is smaller than the large-diameter side plates 16a and 16b disposed on the large collar side. In addition, the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b both hold a large amount of pins 15a and 15b, and therefore need a certain rigidity. From the viewpoint of rigidity, productivity, and the like, it is preferable that the cross-sectional shapes of the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b are rectangular. Here, there is no particular problem even if the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b have other shapes such as a circular shape and an elliptical shape as long as rigidity can be ensured.

内輪間座18には、組み込み時の小径側側板17a、17bの最小内径部分に対面する領域に、厚みを減じた逃げ部20が設けられている。逃げ部20は、内輪間座18の外径部19から小径側側板17a、17bが干渉しない径まで厚みが減じられた段形状、すなわち、内輪間座18の中央部が厚く、両端部が薄い形状となっている。最小内径部分に対面する領域は、少なくとも内輪間座18の中央部よりも両端側にずれた領域である。したがって、中央部については、内輪間座18の厚みは減じておらず、内輪間座18の剛性を維持することができる厚みのままである。   The inner ring spacer 18 is provided with a relief portion 20 having a reduced thickness in a region facing the minimum inner diameter portion of the small diameter side plates 17a and 17b when assembled. The escape portion 20 has a stepped shape in which the thickness is reduced from the outer diameter portion 19 of the inner ring spacer 18 to a diameter at which the small diameter side plates 17a and 17b do not interfere, that is, the central portion of the inner ring spacer 18 is thicker and both ends are thin. It has a shape. The region that faces the minimum inner diameter portion is a region that is shifted to both ends from at least the central portion of the inner ring spacer 18. Therefore, about the center part, the thickness of the inner ring spacer 18 is not reduced, and the thickness is such that the rigidity of the inner ring spacer 18 can be maintained.

このように構成することにより、内輪間座18の、組み込み時の小径側側板17a、17bの最小内径部分に対面する領域と小径側側板17a、17bの最小内径部分である角部Kとの干渉を避けることができる。また、内輪間座18の中央部については、厚みを減じていないため、内輪間座18の剛性をある程度維持することができる。   By configuring in this way, the interference between the region of the inner ring spacer 18 facing the minimum inner diameter portion of the small diameter side plates 17a and 17b and the corner portion K which is the minimum inner diameter portion of the small diameter side plates 17a and 17b when assembled. Can be avoided. Further, since the thickness of the central portion of the inner ring spacer 18 is not reduced, the rigidity of the inner ring spacer 18 can be maintained to some extent.

図2は、図1においてIIで示した部分のうち、逃げ部20と小径側側板17bを拡大した図である。図2を参照して、内輪間座18の最小内径部分に対面する領域に設けた逃げ部20の外径をA、小径側側板17bの最小内径をBとすると、B>Aの関係が成り立つ。こうすることにより、確実に内輪間座18と小径側側板17a、17bとの干渉を避けることができる。また、内輪間座18の最大外径をCとすると、C>Bの関係が成り立つ。こうすることにより、内輪間座18の剛性を維持することができる。   FIG. 2 is an enlarged view of the escape portion 20 and the small diameter side plate 17b among the portions indicated by II in FIG. Referring to FIG. 2, if the outer diameter of the escape portion 20 provided in the region facing the minimum inner diameter portion of the inner ring spacer 18 is A and the minimum inner diameter of the small-diameter side plate 17b is B, the relationship of B> A is established. . By doing so, it is possible to reliably avoid interference between the inner ring spacer 18 and the small diameter side plates 17a and 17b. Further, when the maximum outer diameter of the inner ring spacer 18 is C, a relationship of C> B is established. By doing so, the rigidity of the inner ring spacer 18 can be maintained.

ここで、逃げ部20の形状については、内輪間座18の外径部19と、小径側側板17a、17bの角部Kとの干渉を避けることができる形状であればよく、外径部19から小径側側板17a、17bの最小内径に対面する領域に、断面V字の溝形状の逃げ部を設けてもよい。こうすることにより、内輪間座18の端面の外径は、中央部と同じとなり、逃げ部の外径よりも大きくなるため、逃げ部の逃げる量を最小にし、内輪間座の剛性をより高く維持することができる。   Here, the shape of the escape portion 20 may be any shape that can avoid interference between the outer diameter portion 19 of the inner ring spacer 18 and the corner portions K of the small diameter side plates 17a and 17b. Further, a groove-shaped relief portion having a V-shaped cross section may be provided in a region facing the minimum inner diameter of the small-diameter side plates 17a and 17b. By doing so, the outer diameter of the end face of the inner ring spacer 18 becomes the same as the central part and is larger than the outer diameter of the escape part, so the amount of escape of the escape part is minimized and the rigidity of the inner ring spacer is increased. Can be maintained.

また、先の実施の形態においては、逃げ部の形状が、断面において二つの斜面を有し、段形状としていたが、これに限らず、一つの斜面で構成され、段形状が構成されていなくてもよい。   In the previous embodiment, the shape of the relief portion has two slopes in the cross section and has a step shape. However, the shape is not limited to this, and the step shape is not configured. May be.

図3は、この発明の他の実施形態に係る内輪間座55と小径側側板17a、17bの一例を示す概略図である。図3を参照して、外径部56から内輪間座55左右それぞれの端面に向けて一つの斜面を形成し、これを逃げ部57とする。この場合、逃げ部57を一つの斜面としたため、逃げ部57を形成する工程を容易にすることができる。   FIG. 3 is a schematic view showing an example of an inner ring spacer 55 and small-diameter side plates 17a and 17b according to another embodiment of the present invention. With reference to FIG. 3, one inclined surface is formed from the outer diameter portion 56 toward the left and right end faces of the inner ring spacer 55, and this is defined as a relief portion 57. In this case, since the escape portion 57 has a single slope, the step of forming the escape portion 57 can be facilitated.

さらに、先の実施の形態においては、大きな厚みは中央部であって、ある程度の幅をもっていたが、これに限らず、大きな厚みは幅を有しなくてもよい。   Further, in the previous embodiment, the large thickness is the central portion and has a certain width. However, the present invention is not limited to this, and the large thickness may not have a width.

図4は、この発明のさらに他の実施形態に係る内輪間座60と小径側側板17a、17bの一例を示す概略図である。図4を参照して、内輪間座60のほぼ中央部から内輪間座60の左右それぞれの端面に向けて一つの斜面を形成し、これを逃げ部62とする。この場合、中央部に厚みをもった幅がないため、比較的単純な構成の内輪間座60とすることができる。   FIG. 4 is a schematic view showing an example of an inner ring spacer 60 and small-diameter side plates 17a and 17b according to still another embodiment of the present invention. Referring to FIG. 4, one inclined surface is formed from the substantially central portion of inner ring spacer 60 toward the left and right end surfaces of inner ring spacer 60, and this is defined as escape portion 62. In this case, since there is no width having a thickness at the center, the inner ring spacer 60 having a relatively simple configuration can be obtained.

なお、先の実施の形態においては、内輪間座にのみ逃げ部を設けることとしたが、これに限らず、内輪間座および小径側側板のいずれにも逃げ部を設けてもよい。   In the previous embodiment, the escape portion is provided only in the inner ring spacer. However, the present invention is not limited to this, and the escape portion may be provided in any of the inner ring spacer and the small-diameter side plate.

図5は、この発明のさらに他の実施形態に係る内輪間座65と小径側側板68a、68bの一例を示す概略図である。図5を参照して、小径側側板68a、68bについて、最小内径部分に該当する角部Kを切削等し、干渉する部分である最小内径部分の最小内径を大きく確保するように、小径側側板68a、68bに円筒面69a、69bを設ける。角部Kを切削等することにより、最小内径は大きくなることになり、その形状も角状から、円筒状となる。この場合、小径側側板68a、68bの剛性を確保することができる量まで切削等して、最小内径を大きくすることができる。   FIG. 5 is a schematic view showing an example of an inner ring spacer 65 and small-diameter side plates 68a and 68b according to still another embodiment of the present invention. Referring to FIG. 5, the small-diameter side plates 68a and 68b have a small-diameter side plate so as to ensure a large minimum inner diameter of the minimum inner-diameter portion that is an interference portion by cutting the corner K corresponding to the minimum inner-diameter portion. Cylindrical surfaces 69a and 69b are provided on 68a and 68b. By cutting the corner portion K or the like, the minimum inner diameter is increased, and the shape is changed from a square shape to a cylindrical shape. In this case, the minimum inner diameter can be increased by cutting to an amount that can ensure the rigidity of the small-diameter side plates 68a and 68b.

ここで、内輪間座65については、小径側側板68a、68bの円筒面69a、69bに対面する領域に、厚みを減じた逃げ部67を設ける。この場合、角部Kにおける最小内径よりも大きな最小内径となっているため、逃げ部67の外径は、図1で設けた逃げ部の外径よりも大きな外径でよい。   Here, for the inner ring spacer 65, a relief portion 67 with a reduced thickness is provided in a region facing the cylindrical surfaces 69a and 69b of the small-diameter side plates 68a and 68b. In this case, since the inner diameter is larger than the minimum inner diameter at the corner portion K, the outer diameter of the escape portion 67 may be larger than the outer diameter of the escape portion provided in FIG.

このように、小径側側板68a、68bの最小内径を大きくすることにより、最小内径部分と内輪間座65との干渉を避けることができるようにしてもよい。   Thus, by increasing the minimum inner diameter of the small diameter side plates 68a and 68b, interference between the minimum inner diameter portion and the inner ring spacer 65 may be avoided.

こうすることにより、小径側側板68a、68bの最小内径を大きくすることができるとともに、逃げ部67の外径を大きくすることができる。したがって、内輪間座65および小径側側板68a、68bの剛性を良好に維持したまま、内輪間座65と小径側側板68a、68bとの干渉を避けることができる。   By doing so, the minimum inner diameter of the small-diameter side plates 68a and 68b can be increased, and the outer diameter of the escape portion 67 can be increased. Accordingly, it is possible to avoid interference between the inner ring spacer 65 and the small diameter side plates 68a and 68b while maintaining the rigidity of the inner ring spacer 65 and the small diameter side plates 68a and 68b well.

図6および図7は、上記した複列円錐ころ軸受を主軸支持軸受35として適用した、風力発電機の主軸支持構造の一例を示している。主軸支持構造の主要部品を支持するナセル32のケーシング33は、高い位置で、旋回座軸受31を介して支持台30上に水平旋回自在に設置されている。風力を受けるブレード37を一端に固定する主軸36は、ナセル32のケーシング33内で、軸受ハウジング34に組み込まれた主軸支持軸受35を介して、回転自在に支持されている、主軸36の他端は増速機38に接続され、この増速機38の出力軸が発電機39のロータ軸に結合されている。ナセル32は、旋回用モータ40により、減速機41を介して任意の角度に旋回させられる。   6 and 7 show an example of a main shaft support structure of a wind power generator in which the double row tapered roller bearing described above is applied as the main shaft support bearing 35. FIG. The casing 33 of the nacelle 32 that supports the main components of the spindle support structure is installed on the support base 30 via the swivel bearing 31 at a high position so as to be able to turn horizontally. A main shaft 36 that fixes a blade 37 that receives wind power to one end is rotatably supported in a casing 33 of the nacelle 32 via a main shaft support bearing 35 incorporated in a bearing housing 34. Is connected to the speed increaser 38, and the output shaft of the speed increaser 38 is coupled to the rotor shaft of the generator 39. The nacelle 32 is turned at an arbitrary angle by a turning motor 40 via a speed reducer 41.

軸受ハウジング34に組み込まれた主軸支持軸受35は、この発明の一実施形態に係る複列円錐ころ軸受であって、外輪と、小径側端面を向き合わせるよう配置された左右の内輪と、左右の内輪の間に配置された内輪間座と、外輪と左右の内輪との間に配置された複数の円錐ころと、左右の列において複数の円錐ころの間隔を保持する左右の保持器とを備える。上記した各保持器は、各円錐ころを貫通するピンと、各円錐ころの小端面側に突出する複数のピンの一方端を保持して環状に延びる小径側側板と、各円錐ころの大端面側に突出する複数のピンの他方端を保持して環状に延びる大径側側板とを有する。上記した内輪間座は、小径側側板の最小内径部分に対面する領域に、厚みを減じた逃げ部を有している。   The main shaft support bearing 35 incorporated in the bearing housing 34 is a double row tapered roller bearing according to an embodiment of the present invention, and includes an outer ring, left and right inner rings arranged to face the small-diameter side end faces, An inner ring spacer disposed between the inner rings, a plurality of tapered rollers disposed between the outer ring and the left and right inner rings, and left and right cages that maintain the spacing between the plurality of tapered rollers in the left and right rows. . Each of the cages described above includes a pin that passes through each tapered roller, a small-diameter side plate that extends annularly while holding one end of a plurality of pins protruding to the small end surface side of each tapered roller, and a large end surface side of each tapered roller And a large-diameter side plate extending annularly while holding the other ends of the plurality of pins projecting. The inner ring spacer described above has a relief portion with a reduced thickness in a region facing the minimum inner diameter portion of the small diameter side plate.

主軸支持軸受35を、このような構成の複列円錐ころ軸受にすることにより、内輪間座と小径側側板とが干渉することがなく、かつ、内輪間座の剛性もある程度維持しながら、接触角を大きくすることができ、より大きなスラスト荷重およびモーメント荷重を受けることができる。その結果、より大きなスラスト荷重およびモーメント荷重を受けることができる風力発電機の主軸支持構造を提供することができる。   By making the main shaft support bearing 35 a double-row tapered roller bearing having such a configuration, the inner ring spacer and the small-diameter side plate do not interfere with each other, and the rigidity of the inner ring spacer is maintained to a certain extent. The angle can be increased and a larger thrust load and moment load can be received. As a result, it is possible to provide a main shaft support structure for a wind power generator that can receive larger thrust loads and moment loads.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明に係る複列円錐ころ軸受および風力発電機の主軸支持構造は、内輪間座と小径側側板とが干渉することなく、かつ、内輪間座の剛性も良好に維持しながら接触角を大きくすることができるため、特に、大きなラジアル荷重、スラスト荷重およびモーメント荷重を受ける複列円錐ころ軸受および風力発電機の主軸支持構造に有効に利用できる。   The main shaft support structure of the double-row tapered roller bearing and the wind power generator according to the present invention has a large contact angle without causing interference between the inner ring spacer and the small-diameter side plate and maintaining good rigidity of the inner ring spacer. Therefore, it can be effectively used particularly for a double-row tapered roller bearing and a main shaft support structure of a wind power generator that receive a large radial load, thrust load and moment load.

この発明の一実施形態に係る複列円錐ころ軸受11の一例を示す図である。It is a figure showing an example of double row tapered roller bearing 11 concerning one embodiment of this invention. この発明の一実施形態に係る、内輪間座18と小径側側板17bとの詳細を表した拡大図である。It is an enlarged view showing the details of the inner ring spacer 18 and the small diameter side plate 17b according to an embodiment of the present invention. この発明の他の実施形態に係る、内輪間座55と小径側側板17a、17bの一例を示す概略図である。It is the schematic which shows an example of the inner ring spacer 55 and the small diameter side plates 17a and 17b based on other embodiment of this invention. この発明のさらに他の実施形態に係る、内輪間座60と小径側側板17a、17bの一例を示す概略図である。It is the schematic which shows an example of the inner ring spacer 60 and the small diameter side board 17a, 17b based on further another embodiment of this invention. この発明のさらに他の実施形態に係る、内輪間座65と小径側側板68a、68bの一例を示す概略図である。It is the schematic which shows an example of the inner ring | wheel spacer 65 and the small diameter side board 68a, 68b based on other embodiment of this invention. この発明に係る複列円錐ころ軸受を用いた風力発電機の主軸支持構造の一例を示す図である。It is a figure which shows an example of the spindle support structure of the wind power generator using the double row tapered roller bearing which concerns on this invention. 図6に示した風力発電機の主軸支持構造の図解的側面図である。FIG. 7 is a schematic side view of the main shaft support structure of the wind power generator shown in FIG. 6. 自動調心ころ軸受101を風力発電機の主軸に使用した場合の概略図である。It is the schematic at the time of using the self-aligning roller bearing 101 for the main axis | shaft of a wind power generator. 従来における複列円錐ころ軸受121の一例を示す断面図である。It is sectional drawing which shows an example of the conventional double row tapered roller bearing 121. 従来における接触角が大きい場合の複列円錐ころ軸受121を示す断面図である。It is sectional drawing which shows the double row tapered roller bearing 121 in the case of the conventional large contact angle.

符号の説明Explanation of symbols

11 複列円錐ころ軸受、12a,12b 内輪、13a,13b 円錐ころ、14 外輪、15a,15b ピン、16a,16b 大径側側板、17a,17b,68 小径側側板、18,55,60,65 内輪間座、19,56 外径部、20,57,62,67 逃げ部、30 支持台、31 旋回座軸受、32 ナセル、33 ケーシング、34 軸受ハウジング、35 主軸支持軸受、36 主軸、37 ブレード、38 増速機、39 発電機、40 旋回用モータ、41 減速機、69a,69b 円筒面。   11 Double-row tapered roller bearing, 12a, 12b Inner ring, 13a, 13b Tapered roller, 14 Outer ring, 15a, 15b Pin, 16a, 16b Large-diameter side plate, 17a, 17b, 68 Small-diameter side plate, 18, 55, 60, 65 Inner ring spacer, 19, 56 Outer diameter part, 20, 57, 62, 67 Relief part, 30 Support base, 31 Swivel seat bearing, 32 Nacelle, 33 Casing, 34 Bearing housing, 35 Main shaft support bearing, 36 Main shaft, 37 Blade , 38 speed increaser, 39 generator, 40 motor for turning, 41 speed reducer, 69a, 69b cylindrical surface.

Claims (5)

外輪と、小径側端面を向き合わせるよう配置された左右の内輪と、左右の内輪の間に配置された内輪間座と、外輪と左右の内輪との間に配置された複数の円錐ころと、左右の列において複数の円錐ころの間隔を保持する左右の保持器とを備えた複列円錐ころ軸受であって、
前記各保持器は、各円錐ころを貫通するピンと、各円錐ころの小端面側に突出する複数のピンの一方端を保持して環状に延びる小径側側板と、各円錐ころの大端面側に突出する複数のピンの他方端を保持して環状に延びる大径側側板とを有し、
前記内輪間座は、前記小径側側板の最小内径部分に対面する領域に、厚みを減じた逃げ部を有している、複列円錐ころ軸受。
An outer ring, left and right inner rings arranged so that the end surfaces on the small diameter side face each other, an inner ring spacer arranged between the left and right inner rings, and a plurality of tapered rollers arranged between the outer ring and the left and right inner rings, A double row tapered roller bearing comprising left and right cages for holding a plurality of tapered roller intervals in the left and right rows,
Each retainer includes a pin penetrating each tapered roller, a small-diameter side plate extending annularly while holding one end of a plurality of pins protruding to the small end surface side of each tapered roller, and a large end surface side of each tapered roller A large-diameter side plate that holds the other ends of the plurality of protruding pins and extends annularly,
The inner ring spacer is a double-row tapered roller bearing having a relief portion with reduced thickness in a region facing a minimum inner diameter portion of the small-diameter side plate.
前記逃げ部の外径は、前記小径側側板の最小内径よりも小さい、請求項1に記載の複列円錐ころ軸受。 The double row tapered roller bearing according to claim 1, wherein an outer diameter of the escape portion is smaller than a minimum inner diameter of the small-diameter side plate. 前記内輪間座の最大外径は、前記小径側側板の最小内径よりも大きい、請求項1または2に記載の複列円錐ころ軸受。 The double row tapered roller bearing according to claim 1 or 2, wherein a maximum outer diameter of the inner ring spacer is larger than a minimum inner diameter of the small-diameter side plate. 前記小径側側板の最小内径部分は、円筒面を形成している、請求項1〜3のいずれかに記載の複列円錐ころ軸受。 The double-row tapered roller bearing according to claim 1, wherein a minimum inner diameter portion of the small-diameter side plate forms a cylindrical surface. 風力を受けるブレードと、
その一端が前記ブレードに固定され、ブレードとともに回転する主軸と、
固定部材に組み込まれ、前記主軸を回転自在に支持する複列円錐ころ軸受とを有する風力発電機の主軸支持構造であって、
前記複列円錐ころ軸受は、外輪と、小径側端面を向き合わせるよう配置された左右の内輪と、左右の内輪の間に配置された内輪間座と、外輪と左右の内輪との間に配置された複数の円錐ころと、左右の列において複数の円錐ころの間隔を保持する左右の保持器とを備え、
前記各保持器は、各円錐ころを貫通するピンと、各円錐ころの小端面側に突出する複数のピンの一方端を保持して環状に延びる小径側側板と、各円錐ころの大端面側に突出する複数のピンの他方端を保持して環状に延びる大径側側板とを有し、
前記内輪間座は、前記小径側側板の最小内径部分に対面する領域に、厚みを減じた逃げ部を有している、風力発電機の主軸支持構造。
A blade that receives wind,
One end of which is fixed to the blade and rotates with the blade;
A main shaft support structure of a wind power generator, which is incorporated in a fixed member and has a double-row tapered roller bearing that rotatably supports the main shaft,
The double-row tapered roller bearing is disposed between the outer ring, the left and right inner rings arranged so that the end surfaces on the small diameter side face each other, the inner ring spacer disposed between the left and right inner rings, and the outer ring and the left and right inner rings. A plurality of tapered rollers, and left and right cages that maintain the spacing between the plurality of tapered rollers in the left and right rows,
Each retainer includes a pin penetrating each tapered roller, a small-diameter side plate extending annularly while holding one end of a plurality of pins protruding to the small end surface side of each tapered roller, and a large end surface side of each tapered roller A large-diameter side plate that holds the other ends of the plurality of protruding pins and extends annularly,
The inner ring spacer is a main shaft support structure for a wind power generator, and has a relief portion with a reduced thickness in a region facing a minimum inner diameter portion of the small-diameter side plate.
JP2005175404A 2005-06-15 2005-06-15 Double-row tapered roller bearing and spindle supporting structure of aerogenerator Withdrawn JP2006349032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175404A JP2006349032A (en) 2005-06-15 2005-06-15 Double-row tapered roller bearing and spindle supporting structure of aerogenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175404A JP2006349032A (en) 2005-06-15 2005-06-15 Double-row tapered roller bearing and spindle supporting structure of aerogenerator

Publications (1)

Publication Number Publication Date
JP2006349032A true JP2006349032A (en) 2006-12-28

Family

ID=37645109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175404A Withdrawn JP2006349032A (en) 2005-06-15 2005-06-15 Double-row tapered roller bearing and spindle supporting structure of aerogenerator

Country Status (1)

Country Link
JP (1) JP2006349032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001924A (en) * 2008-06-18 2010-01-07 Nsk Ltd Combination bearing
JP2016008642A (en) * 2014-06-23 2016-01-18 日本精工株式会社 Tapered roller bearing
JP2016008641A (en) * 2014-06-23 2016-01-18 日本精工株式会社 Tapered roller bearing
CN105317633A (en) * 2015-11-26 2016-02-10 重庆望江工业有限公司 Support and axial mounting play adjusting structure of wind generating set main bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001924A (en) * 2008-06-18 2010-01-07 Nsk Ltd Combination bearing
JP2016008642A (en) * 2014-06-23 2016-01-18 日本精工株式会社 Tapered roller bearing
JP2016008641A (en) * 2014-06-23 2016-01-18 日本精工株式会社 Tapered roller bearing
CN105317633A (en) * 2015-11-26 2016-02-10 重庆望江工业有限公司 Support and axial mounting play adjusting structure of wind generating set main bearing
CN105317633B (en) * 2015-11-26 2018-07-13 重庆望江工业有限公司 The adjustment structure of support and axially mounted clearance that wind driven generation set main shaft is held

Similar Documents

Publication Publication Date Title
US10788018B2 (en) Wind turbine rotor shaft arrangement
US7922396B2 (en) Double row self-aligning roller bearing and main shaft support structure of wind power generator
JP4554583B2 (en) Thrust bearing device
JP4573791B2 (en) Roller bearing and main shaft support structure of wind power generator
JP2008064248A (en) Rolling bearing cage, rolling bearing, and spindle supporting structure for wind power generator
JP2015090218A (en) Bearing structure for fluid machine device
JP4699827B2 (en) Main shaft support structure for tapered roller bearing and wind power generator
JP4248557B2 (en) Roller bearing, cage segment, and main shaft support structure for wind power generator
JP2007205557A (en) Rolling bearing, cage segment, and spindle supporting structure of wind power generator
JP4522266B2 (en) Double row roller bearing
JP2006349032A (en) Double-row tapered roller bearing and spindle supporting structure of aerogenerator
JP5010353B2 (en) Roller bearings, roller bearing cage segments, and wind turbine main shaft support structure
JP2009052681A (en) Bearing structure
JP5354849B2 (en) Wind generator main shaft support structure
JP2008032147A (en) Rotating shaft supporting structure of wind power generator
JP4616691B2 (en) Tapered roller bearing, pin type cage for tapered roller bearing and main shaft support structure of wind power generator
JP2009063099A (en) Raceway ring for rolling bearing, and self-aligning roller bearing
JP2007132418A (en) Spindle supporting structure for wind power generator
JP2006177447A (en) Double-row rolling bearing
JP2007024112A (en) Self-aligning roller bearing and planetary gear support structure
JP2006177445A (en) Double-row automatic aligned roller bearing
JP2007255534A (en) Roller bearing, retainer segment, spacer, and spindle supporting structure of wind power generator
JP4163596B2 (en) Double row spherical roller bearing and wind power generator spindle support device
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP4177854B2 (en) Rolling bearing for main shaft support of wind power generator and main shaft support structure of wind power generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902